THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

A CLASS OF CELLULAR COMPUTER
ARCHITECTURES TO SUPPORT
PHYSICAL DESIGN AUTOMATION

Robin Arthur Rutenbar

CRL-TR-35-84

September 1984

Room 1079, East Engineering Bulilding
Ann Arbor, Mlichigan 48109

USA

Tels (313) 763-8000

'Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.

ABSTRACT

A CLASS OF CELLULAR COMPUTER ARCHITECTURES

TO SUPPORT PHYSICAL DESIGN AUTOMATION

by

Robin Arthur Rutenbar

Chairman: Daniel E. Atkins

Special computer architectures for design automation (DA) problems are a practi-
cal solution to manage the increasing complexity of designing large integrated systems.
A class of cellular architectures is studied which is applicable to physical DA problems
that are cellular in nature: problems well-represented on a cellular grid with strongly
local functional dependencies. The Raster Pipeline Subarray (RPS) class is a systolic
organization, the central features of which evolved historically in classical picture-
processing applications. RPS-structured DA engines have several attractive engineer-
ing properties: transparent expansion of processing capacity with a linear pipeline,
direct accommodation of large grids with the raster data format, and application to

differing tasks with programmable pipeline stages.

This thesis studies routing and integrated circuit design rule checking in an RPS
environment. An experimental hardware/software RPS environment is constructed
around existing RPS hardware; tools are developed to support the design and debug-
ging of large-scale RPS-based DA systems. Maze-routing is the major application of
interest; a mapping of maze-routing algorithms onto an RPS pipeline is developed and
its complexity analyzed. A progression of increasingly complex, fully functional
routers is implemented in the prototype RPS environment to verify feasibility. Large-

scale benchmarks and comparisons with software routers show significant speedups.

Design rule checking is considered from an algorithmic viewpoint: it is shown that a
formalism derived from picture-processing tasks provides an elegant conceptual and
notational tool for mapping rules checking onto an RPS pipeline. Hardware implemen-
tations of some specifications are analyzed. These studies prove that existing RPS
engines can be improved incrementally and gracefully: additional pipeline stages
improve execution times. Experiments over a range of pipeline lengths, and extrapo-
lations based on experimental measurements support this claim. From these experi-
ments, detailed performance models and cost/performance metrics are developed,
treated analytically, and rigorously optimized. These results are employed to deduce
the necessary functionality and tradeoffs to design optimal RPS-structured DA

engines.

A CLASS OF CELLULAR COMPUTER ARCHITECTURES
TO SUPPORT PHYSICAL DESIGN AUTOMATION

by
Robin Arthur Rutenbar

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer, Information and Control Engineering)
in The University of Michigan
1984

Doctoral Committee:

Professor Daniel E. Atkins, Chairman
Professor John P. Hayes

Professor Ronald J. Lomax

Associate Professor Trevor N. Mudge
Professor Kensall D. Wise

© Robin Arthur Rutenbar _ 1984
All Rights Reserved

TABLE OF CONTENTS

II. BACKGROUND: CELLULAR ARCHITECTURES AND
DA ENGINESectctnitninnitssisosisssssssssnsssssesssssssssssssssesessesens

2.3.1 Design Issues for DA Hardwarecceoceeevecrercvvnecreerrerneennns
2.3.2 Survey and Critique of DA Enginesccceeueeveveeeverenncencenenns
2.3.2.1 Routing Enginesc.cccoivivrvrnecrnrenrerenrneneeneeseessesseessenes
2.3.2.2 DRC Enginesccuiiierecirnrreecrinreneennensenressessessessessessenses
2.3.2.3 Placement Enginescccovvurveenrivvnreeeeeeeeeceerenene
2.3.2.4 Simulation Enginesccoceeeeveeeereerrecreerenseenerireseeseessenne

2.4 DA Architectures as Cellular Architecturesceceveeereruernnnennnes
2.5 SUIMIATY ...cooceeviirertireenenieeieeeeereecsesnessesssessesssessosssssresseessesssesssssssnes

III. RPS ARCHITECTURES AS DA ENGINES ... oooteeeeeeeeeeeeeeereeeeseesssnnes
3.1 INFOAUCHON .ooueeeeveeiinereeeeeeieeeeneressseescnseessssossnsessnsesssssesnsesessnsessasessnnes

iv

D W = e

3.3.2 Basic Performance Analysisccccoevcrnveiincninnsenecrncissenncnceenne 44

3.3.3 Metrics for DA Engines Revisitedcccoovvvvivveriiccerncncncccnnnes 50
3.3.4 Comparing RPS and Array Structuresccoeceevvvveervnneenncnens 53
3.4 An RPS Environment for DA Studiesccccovvvivnicincnnnnuceennne 63
3.4.1 Hardware and Softwareccccececcvennsericerccnnssansssessssessnsosesens 64
3.4.2 RPS Application Designccovvuvvireenvvnunrnsnnnnenncniinincennncnens 68
3.5 SUMMATY .ccoceerreersrecsserssrenssnesssntasssssssanesssssssssnsssanessanssssasassssssssnasssane 69
IV. ROUTING IN AN RPS ENVIRONMENTconvvirririnrenrnncrneccnnnneennses 70
4.1 INrOAUCHION .eeeeeeeeeeeererereeerseeecsuesssanssssesssnnsessensssnesssassssanesssasssssessss 70
4.2 Maze-Routing Reviewedcooirvvnrnennninnnnncciiennenenecsennnne. 70
4.3 Elementary RPS Maze-Routingccccovevevuicnrinnnninnennecrensicnsennanns 74
4.4 One-Layer ROUUDE ..cocereeiinrennirintitnenencnseseeeeeseeeesesssesessenenes 79
4.4.1 Local Desigl ..ccocevrernirsinseninseninenininseesisensnesnssnsssnsnesnsnisnens 79
4.4.2 Global Design ..ccccvceeinrnineirnininrineneneninenn s 83
4.4.3 Framing EXperimentenenveienennieinnsennennennesnnenennees 91
4.4.4 Single-Net EXperimentsccccevereivvnsennuccrecruensnenensnissnnnnosnes 92
4.4.5 PCBEXPErimentsccccccveirirverrersensensessenucimesessesssssnssosseseesassnens 94
4.5 Two-Layer ROUUNEG .cccoverrvrriniriiinrinincnintincnanncsenieenssessesnesnes 96
4.5.1 Local Desigh ..ccccevernirnirnuniinsennninsnnniniiessesnssnesensnessnssessesssesnnnas 96
4.5.2 Global DeSign ...cccveeveecrenriniricrnisensinssnnsrisseissesissnessecsssesnsessnes 99
4.5.3 PCB and Gate Array Experimentsccccceevevuvnnicnseccsuensunennes 99
4.8 Global ROUUNE ..ccoevrerieeerieiniiinnrinsnrisnninnteeansisnsesesiseesanessassesennes 105
4.6.1 Local and Global DeSignccccevevurrerrmerrseernnsseessneeenessiseencnene 108
4.8.2 EXPEIIMENtS ..ccccccevrremreerinsissessissesseesessmssesssssessessnsssssnessssssssssnesnens 109
4.7 Generic Concerns for RPS ROULETSccccceveereermrcreeresrnnsereuenesenes 109
4.7.1 The Effects of Statelessnesscccceevrcrrervcreenscsscrscenesenes 110
4.7.2 FraMIDG ..ccccvervivrerninnecrensinesensnisisecssesseesssssssssessosansssessassnssanssnses 112
4.7.2.1 An Approximate Model of Framingcecevvreuirnennnnnnnns 113
4.7.2.2 Optimal Framing by Dynamic Programming 115

4.8 Connections to Picture-Processing Revisitedccceecvvvvvrcnrerinnnens 126
4.9 SUIMIMATY .cccerveerrcreecrieneieeseeessseessssescssessssnsessnrssssesssssesssssssssssssssesessasss 126
V. DESIGN RULE CHECKING IN AN RPS ENVIRONMENT 128
5.1 IDrodUCtON .ecceiveeeiiieeireerincrnceeecranssaesssssssssssessssnssssssanessssssssssansssens 128
5.2 DRC RevieWedccooerieciicniiernercennecesescscsnssnssssssanssessasssssssssssesses 129
5.3 Elementary DRC in an RPS Environmentccccoccevvvuevucninncnnccnens 132
5.4 Local Design of Simple Tolerance Checksocevueviricvnnvinnnnnns 134
5.5 DRC EXPEriMENntscccccvuivuirririrensensrcssncsuessecnessnssessessasssessessassnssnns 138
5.6 Extensions to Alternative Mask Operationsc.ccccccevvevrvueccnnennne. 141
5.7 SUDMIMATY .ccoccciirerrrieriirntieistiesisnssssssessessseesssssssesssssnossssssssssssssessssanases 145

VI.

DESIGN TRADEOFFS FOR RPS-STRUCTURED

DA ENGINES ..oornitnnnnncnnisnnnsnntecneesnesesssessessssssessnssssessssssones 146

6.1 INtroduction ...ttt esnsae e nnenns 146

6.2 Local Design of RPS-Structured DA Enginescueuueue.... 146

6.2.1 Buffering Schemecooeveirrevrrrreerenreeeereerrenressreesessseens 147

6.2.2 Subarray Storagecccevvreccinnsensesnnesensenenssnesseeseesesseessesnes 149

8.2.3 Subarray Processorcccocecrveeveenicceerennenneninnnenienseesnennessesnenees 150

6.3 Global Design of RPS-Structured DA Enginesccuuueen.e.... 153

6.4 SUMIATY ...oovcverricreiriristeisniisiesssnsssissssossessssssnsosasssanssasesssassssesssessasesaes 166

VII. CONCLUSIONS ...ticireecnccnrcnnnrcessarssssessessessasssssessessessessessessesasssessessesnens 167
7.1 Summary and Contributionscccccceeererreereerrenreecensneseesnessesseenne 167

7.2 Extensions and Future Researchcccevevevieeceercvecerienrnecennenne 169
APPENDICESoooririeeininirecesseeseessssessssesssssasssesssssssessassssssesessasnsssssssesssssssasssense 172
BIBLIOGRAPHYiriiriiercnnenccnenensennsnnessesesssssessessssnssnsssssssssessessessensessaassnans 183

TABLE

2.1
2.2
2.3
24
3.1
3.2
4.1
4.2
43
4.4
4.5
4.6

5.1
5.2

LIST OF TABLES

Survey of Routing Enginescccooevvivvininnnnnnicsernncnneensenscnsncenenences 23
Survey of DRC EDGINES .ccovreveveirreneiceiniieeesecneseeseeneeceeneennene 25
Survey of Placement Enginescccoevveiinvincienenencensensensensennneas 26
Survey of Simulation Enginesccoccevvvinennnnenncncnsecsensnnnennnen. 28
Candidate RPS and Array Systemscc.cccceccercvecrcniencnnecsneessacsosens 60
RPS System Hardwarecccccevvensenennunnrennninenseisinincsecssessecnnenns 66
Local Design for One-Layer RPS Routercceuvenenecnnennnnnen. 83
Machines for RPS/Software Maze-Router Comparison 94
Local Design for Two-Layer RPS Routerccovviinennicnncnninnnce. 99
Local Design for RPS Global Routerccccovurvinveinennuincncunnnennn. 109
Predicting Optimal Frame Incrementcccvuvvuivuvnecencnencnennen. 115
Comparison of DP Routing Times with One-Layer

BenChmMATK ..ccoveeeereeerecceeseeneeneeeeesnsssesesssunsncssessissseseossesessssnssssansns 123
DRC Strip EXPErimentsccccceveereiensunsessenscnsecssesssisseessessnssseesaens 140
Estimated DRC Times for 4096 X 4098 Maskcccceuvvcucrucnncns 140

vil

FIGURE

2.1
2.2
23
24
2.5
2.6
2.7

2.8
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
4.1
4.2
4.3
44

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16

LIST OF FIGURES

A Taxonomy of Cellular Processorscccccvnvvcvvecsnvnseriecnsnecnnes 10
ICN SHTUCLUTEeevererrrerrrrcnenissesscsssssssssnssssssssssossssssssssassesssssnsssssssnens 11
Full- ATTay STUCtUTEcoccovieceininnnninnscssunssessanssessanssnsssessncssessnsssessnens 12
Raster Single Subarray Structurecococvveeevvesenernnnnncsnnsesnesacenes 13
Raster Pipeline Sructureccevveevecirnnesinsnnicsnnessesnssessesusnsanenes 14
Non-Raster Multiple Subarray Structurecc.ccocevueeervuicincrecsnnens 15
Common Relationships between DA Hardware

aNd DA SOFtWATEccceeevreerrnicncnrensnsossnsassnsossansosssnsssssessesssssessssessssas 20
Cellular Hardware Paradigms for DAcoocvininnininnincennncninnnne 33
Basic Morphological Operatorscccoeeeriiennisenesnnesseresesassesnnsnnas 39
Serial Flow through a3 X3 Stagecccocvvvnvnnincennuccnensnnsensecenens 45
General Subarray Stage Structureccccocceeicrnneseniensessennssassnens 46
Latency to Reach Subarray Centerccoccvevvereverennnecccnciunsnsacnnes 47
Comparison of Candidate RPS and Array Systemscccceruennene 60
RPS/Array Time, Cost X Time vs. Problem Size, K=100 61
RPS/Array Time, Cost X Time vs. Problem Size, K=1000 62
RPS System Configurationccccecceveenvensenniccreninnsneeneessnssasesnesneas 65
Maze-Routing Phasescccoovivniicnnnnnnnnninencinniennenenneessenenns 72
Wavefront Expansion in One Subarray Stageccccocviveveinnenenee 74
Wavefront Expansion in an RPS Pipelinecccvvvveevnenrcnnnnnene. 75
Wavefront Expansion Problem for Com paring

MaAzZE-ROULETSooeivirrreerrreererraerecssuntessseissssnesnesssnesssssssasessasnesssssasesans 77
One-Layer Local Wavefront Expansion Algorithmc.c.c........ 80
One-Layer Local Backtrace Algorithmccooevvveeiivinnneiinnennnennenn. 81
One-Layer Local Cleanup Algorithmscccoeevviieneneninreninncnene 82
Static Framingcccccceecerrrerncninninnenininniecsinennisssesnsssaesssnssnseseasssess 84
Incremental Framingc.ccccocvecveennrcinninsncniensuinnisensansnessnensessssasenenns 86
One-Layer RPS Router Global Algorithmccoeveveevinineninnnnnnee. 89
Global Data Flow for One-Layer Routerc.ccccevvvevenrunnensnennennene 90
Elapsed Routing Time vs. Frame-Increment,

Pipeline Lengthcccoccoiivinniicniiiininecenniceitenneenecsnecnnecnenens 91
One-Layer Single-Net Routing Benchmarksccccoeeveeenviniennnnns 93
RPS and Software Routers Compared for PCB Benchmark 95
Two-Layer Expansion with Preferred Directions, Jogs 98
Place and Route System Environmentcccocvvuvenneiruenneninnennne 100

viil

4.17
4.18
4.19
4.20
4.21
4.22

4.23
4.24
4.25
4.26
4.27
4.28
4.29
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2
6.3

6.4

6.5
6.6

6.7
6.8
B.1

Two-Layer PCB EXperimentccccceeveeerueecnerccnnnecrneesneesseesssnesseens 102

Two-Layer Gate Array Experimentccccccceverenrenrenrensnerensvereenens 103
Estimated Gate Array Routing Timesccccceevvvvenveeevrenineeccnneannns 105
RPS Global Routing Followed by RPS Detailed Routing 106
Data Flow for RPS Global Routerccoveeenerververvencenecececncnee 108
Minimum Bounding Frame after Expansion

in Congested ReZIONcccoeiureereniicciririnieeceeere e 111
Wavefront Expansion in S-Stage Non-Stateless Pipeline 112
Elementary Dynamic Programming Problemccccoccueuernnneeen. 116
Model of Framed Routing Problem for DP Solution 117
DP Reformulation of Incremental Framingccccoveeveeveereenrennn. 118
DP Algorithm to Obtain Optimal Framing Strategyc......... 121
Feasible Decision Variablescccoceveerrveeerirveeciierreereeseceenennenees 122
Sensitivity Studies for RPS Routerscccccoevveevveceereeeeeevrcrennee, 125
Basis for Width Checking Algorithmcccoovveurevvvivcreiirecreennne 135
Geometric Figures for Width Check Algorithm 136
Width Check AlIZOrItAmcccevriiirriiirticeeceecreeeceecrccreeteeaeessees 137
Approximating Circles in a Gridcoceveeevecveiveecceenieecrerereereeennnes 138
64 X 64 Test Cell and Width Checked Result 139
Alternative Non-Orthogonal Grid Interpretationccceeeveennenn... 141
Example Representation on 0-Grid/d-Gridcceceevvveenevrercrennnen.. 142
Unrepi'esentable Oblique Notchesc.cooeeeirrvernreenceiriecreerrteeeveenee 143
Attempt to Open X by S using Decoupled Com putation 144
Basic Subarray Stage Structurecccceceeceeeveervecneeenieenieennneenneens 148
Routing Time Variation with Stage Cycle Timecccuveeuuuen..ee. 155
Percent Time vs. Percent Nets Routed,

Gate Array Benchmarkccccooviievriiiiiiirccree e 156
Net Length Distribution and Curve Fit for

Gate Array Benchmarkccococevvieoiniinieiiecenteeetec e 158
Predicted Shape of Routing Cost/Performance Curves 161
Measured and Quantized Cumulative Length Distributions

for Gate Array Benchmarkccooereeviiiiiiniinnicinininiencnecerereen, 162
Gate Array Routing Time, Cost/Performance Variation 163
Parallel Pipeline Architecturecoceevervevveevnnvennns cevvieeeeceeeneecnnnne 165
Basic Cell Representation for Global Routingccccecuvenuennn.ee. 177

LIST OF APPENDICES

APPENDIX

A. LOCAL ALGORITHMS FOR TWO-LAYER ROUTER

B. LOCAL ALGORITHMS FOR GLOBAL ROUTER

.......................

CHAPTER 1

INTRODUCTION

1.1. Problem Statement

The successful implementation of increasingly complex integrated systems demands the
existence of increasingly sophisticated design automation tools. Traditional DA research--for
example, mathematical analysis of DA algorithms and data-structures, application of software
structuring techniques to mask layout, and use of databases to manage the design process--has
produced software tools running on conventional serial computers. These tools are limited in
three fundamental ways: by the inherent complexity of the problem, by the efficiency of the
coded implementation, and by the resources of the machine on which the code runs. To over-
come these three limitations recent attention has focused on special-purpose hardware for DA
tasks. The strategy is to structure a machine architecture to exploit the task’s inherent parallel-
ism, replace software with hardware and firmware, and include precisely those resources critical

to the task’'s solution.

The increasing cost of solving such DA problems can render general-purpose serial com-
puters incapable of supporting a particular DA task. This application-dependent expense, meas-
ured in execution time or necessary machine reéources, may arise because a problem is
inherently too large, or because the preferred solution method requires complex or costly algo-
rithms unaffordable when applied to a realistic problem. For example, a simple design rule
check on the layout of a small mask is straightforward, but the same check performed on an
entire microprocessor layout may be so expensive as to preclude performing the check as often

as desired; the difficulty arises from the problem size. Similarly, maze-routers offer a wide

range of sophisticated performance, but may be unaffordable in practice due to the costly cell-
by-cell processing of the grids representing the routing task; the difficulty here arises because
the basic method is computationally demanding. Moreover, as technology advances permit the
construction of more sophisticated systems, there is no guarantee that currently tractable design
tools will accommodate these advanced designs, even on the enhanced gener'a.l-purpose
machines that will be built with such technologies. These concerns motivate research about

special D A architectures.

This thesis examines a class of cellular architectures suitable for problems in physical
design automation with respect to these concerns. A class of architectures called raster pipeline
subarrays is examined; individual members of the class are called RPS machines. An RPS
machine is a pipeline of subarray stages which processes a large grid as a serial, raster-order
cell-stream. Machines in this class are appropriate for physical design tasks that are well
represented on a fixed cellular grid and characterized by local functional dependencies among
cell neighborhoods. In this framework, a large problem is one that must be represented on a
large grid, and a complex solution method is one that requires computationally intensive pro-
cessing of single grid cells or local cell groups. Tasks such as placement, routing, design rule
checking, and device extraction have previously been solved by employing a grid representation
and primarily local processing. This thesis concentrates on the design and analysis of routers in

an RPS environment, and also examines briefly IC mask operations such as design rule checks

in this environment.

Two central features of the RPS class address the difficulties that prohibit general-purpose

machines from executing large DA tasks at an acceptable cost:

o Serial Cell-Stream
Because RPS architectures process a grid in raster order--that is, as a serial stream of grid
cells-the entire grid need never reside on an RPS machine. Thus, if extremely large

grids can be generated they can be processed directly as they stream through an RPS-

structured D A engine.

o Pipeline Structure
Parallelism in the form of a pipeline enables RPS machines to perform several concurrent
operations on grid cells streaming through the pipeline; it is this parallelism that enables
RPS machines to be fast DA engines. Programmable pipeline stages provide the flexibility
to accommodate a range of complex DA tasks adequately modeled in a cellular frame-
work. Modular pipeline stages provide a practical mechanism to achieve precisely the per-
formance required for the tasks at hand: small machines with short pipes can be upgraded

to more powerful machines by the addition of pipeline stages.

Direct accommodation of a range of problem sizes and applications, and incremental expansion
of processing power are the unique features that distinguish the RPS class as particularly cost-
effective for DA tasks. This thesis examines in detail how these features affect the formal

design, implementation, and analysis of RPS-structured D A engines.

1.2. Research Overview
The research undertaken in this thesis can be partitioned into four broad, related areas:
o The Evolution of RPS Architectures as DA Architectures

As part of the overall goal to show how RPS-structured machines can function as DA
engines, we survey and critique related architectures and applications. New machine architec-
tures often appear as evolutions or generalizations of previous structures motivated by new
applications. This is the case with the RPS class: in this thesis the RPS class is proposed as the
appropriate abstraction of some of the novel features introduced by machines such as the cylo-
computers in the field of cellular image processing [LoMS80, LoMc80|. Related cellular proces-
sors are reviewed and a taxonomy of these processors is constructed. This effort serves (1) to
show how similar cellular problems have been approached with different machine structures,
(2) to motivate the RPS organization, and (3) to delineate its relationship to and evolution
from other cellular organizations. Similarly, DA architecture research is reviewed and critiqued
in order (1) to show the range of DA problems being tackled, (2) to study how similar prob-

lems are handled on different DA machines, and (3) to motivate the typical metrics used to

evaluate DA hardware. Our cellular taxonomy is employed to categorize DA architectures
intended for grid-based problems (those problems for which RPS machines are appropriate);
several connections are made between such grid-based DA machines and general cellular archi-
tectures. The intent of this work to characterize the niche occupied by RPS-structured DA
engines in the spectrum of DA hardware. We suggest the RPS structure as a new paradigm for
DA machines, in precisely the sense that the standard parallel array has been the abstract model

for several DA engines.
o Experimental Studies of DA Tasks on RPS Machines

An existing family of RPS machines, the cytocomputers, is employed for experimental

implementation of several DA tasks.! The experiments range from initial feasibility studies to
mature, nearly complete systems. A new software environment is designed to support the
development of these DA algorithms for this RPS hardware. Concrete implementations and
performance statistics are examined for routing systems and DRC sub-systems {unctioning on
the hardware. A principle goal of the experimental work is to identify performance bottlenecks,
separating and abstracting those gemeric to RPS systems from those endemic to the current

hardware.
¢ Performance Evaluation and Optimization

The study of RPS architectures partitions naturally into local issues and global issues.
Local issues involve the processing of individual grid cells or cell groups as a grid streams
through a pipeline of subarray processors. Local concerns pertain primarily to the functional
design of pipeline subarray stages and the algorithms that execute within these stages. Global
issues concern strategies for handling complete grids in a pipeline environment; the design of
such strategies must account for system. parameters such as pipeline bandwidth and length, and
host overhead. Given a specific task such as a routing problem, a solution for a specific RPS
hardware environment comprises the encoding of the problem as a cellular grid, the design of

algorithms to execute in the RPS pipeline stages and the design of algorithms to move the

1By our definition, this family is a subset of the RPS class whose pipeline subarray stages are intended for
picture-processing. These machines should not be regarded as DA engines because they are not designed to accommo-
date DA tasks. Despite a sub-optimal architecture for DA problems, these machines provide a useful research vehicle
to realize basic variants of important DA tasks such as mase-routing and DRC.

necessary pieces of the grid through the pipeline. In this framework we examine how to
achieve optimal performance for specific problems and solution techniques. Typically, solutions
with minimum execution time are desired. It is shown that achieving such optimality mandates
an accurate model of the basic performance of a solution method in an RPS environment.
Such a model is parameterized by the values of the global constants for a specific machine reali-
zation. These models allow us to determine the best solution for a specific RPS realization.
Moreover, they allow us to predict a good solution for our experimental systems, which is

verified by measurement.
o Architectures for RPS-Structured DA Engines

Given a specific DA task and a set of performance goals, for example, routing a particular class
of layouts within fixed time and cost constraints, we study how to design an appropriate RPS-
structured DA engine that meets these goals. Local issues are briefly addressed here because it
is essential to match the functional capabilities of each RPS stage to the set of problems to be
solved. RPS stage architectures with different performance characteristics are suggested for
routing and IC mask operations; these proposed structures are based primarily on experience
with experimental systems. Although local subarray stage functionality does impact the optimal
global strategy for data movement, we concentrate on global design. Several stage architectures
embodying radically different tradeoffs and, moreover, incurring radically different costs may
each suffice to satisfy a set of performance constraints. We argue that it is naive to embark on
a detailed stage design without knowledge of how to evaluate abstractly the alternatives and
choose the best from among them. Hence, global design is addressed by employing the models
previously developed to optimize the performance of specific algorithms. One goal is to evalu-
ate the sensitivity of these algorithms to variations in global parameters, e.g., is a long, slow
pipe the same as a short, fast pipe? Systematic variation of these parameters generates a set of
candidate RPS systems; solving for the best performance achievable with each candidate
effectively partitions the design space into classes of machines with equivalent performance.
This analysis is used to evaluate the effects of cost/performance tradeoffs for different hardware

configurations.

1.3. Thesis Organization

The subsequent chapters of this thesis motivate our definition of the RPS class and focus

on the solution of routing and DRC problems on RPS-structured DA engines.

Chapter II discusses the evolution of RPS architectures and provides the background
necessary to evaluate their application as DA engines. Related cellular architectures are sur-
veyed and a compact taxonomy is constructed to categorize them. DA architectures are likewise
reviewed and critiqued, as are the metrics used to evaluate DA machines. Parallels are drawn
between these cellular machines and D A engines intended for grid-based D A problems; the cel-

lular taxonomy is employed to clarify the relationships among grid-based D A engines.

Chapter III defines and characterizes the RPS class. Important antecedents to the RPS
organization, including cellular algorithms and machine implementations, are summarized. It is
argued that the RPS class is the appropriate abstraction of the novel features introduced by
these antecedent machines. Divorced from implementation details and application constraints,
this definition is the appropriate level from which to proceed toward new areas such as DA
engines. A design methodology for RPS structured systems is then suggested. The engineering
tradeoffs implicit in the class are examined and compared with parallel array structures. The
experimental hardware [software environment developed to support our RPS DA experiments is

presented.

Chapter IV examines maze-routers in an RPS environment. A progression of increasingly
complex routers implemented in our prototype RPS environment is presented. We discuss the
essential local and global design issues for each router. These include the algorithms that exe-
cute in pipeline stages to mark cells in the roqﬁn; grid, and algorithms to move the appropriate
sections of the entire routing grid through the pipeline with the greatest economy. These
experimental systems illustrate fundamental performance issues common to any RPS system.
Analytical models are constructed to address these issues in the general case and optimal solu-
tions are obtained. Solutions obtained by varying model parameters enable us to extrapolate the
system configuration most suitable to meet any specific performance constraints. Further, these

models are used to accurately predict the measured performance of empirically tuned experi-

mental systems.

Chapter V considers design rule checking in an RPS environment. In contrast to previous
research on grid-based DRC, this work concentrates on the algorithmic specification of the indi-
vidual checks comprised by a complete DRC. It is shown that a formalism originally developed
for binary image analysis, suitably applied, provides an elegant and precise tool for the
specification of DRCs. An experimental implementation of an example specification is cén-

structed and its performance analyzed. Other IC mask operations are briefly addressed.

Chapter VI investigates the design of RPS-structured engines intended specifically to sup-
port DA tasks. The fundamental restrictions and bottlenecks discovered in the experimental
systems are reviewed briefly. Alternative RPS stage architectures embodying different tradeoffs
in functionality are suggested. We concentrate on global issues such as the design of system-
level parameters which must be adequately characterized before informed decisions can be
made about detailed stage architectures. The sensitivity of performance metrics is examined
with respect to variations in global system parameters. The models developed in earlier
chapters are employed to generate candidate RPS systems embodying different hardware

tradeoffs to satisfy a set of inflexible performance constraints.

Chapter VII presents concluding remarks, summarizes the basic contributions of this

research, and suggests some areas for further study related to the RPS organization.

CHAPTER II

BACKGROUND: CELLULAR ARCHITECTURES AND DA ENGINES

2.1. Introduction

This chapter connects research in the fields of cellular architecture--RPS architecture
specifically--and DA architecture. A central theme of this thesis is that the RPS class
represents a new approach to grid-based DA problems. To support this assertion, we survey
related cellular architectures because the RPS structure is itself a cellular architecture. An
extensive survey of DA engines is also presented, along with an analysis of the goals and
metrics by which such machines are typically evaluated. Parallels are then drawn between
architectures for cellular processing and for grid-based physical DA: each is characterized by
how storage and processing power are allocated to cells in the problem. It is shown that several
D A engines intended for grid-based applications can be well-regarded as instances of more gen-
eral cellular structures, and hence, that architectures for general cellular problems are potential

solutions for grid-based DA problems.

2.2. Cellular Architectures

It is important first to be specific about the notion of a cellular architecture. For our pur-
poses, a cellular architecture is simply one which supports a cellular grid as the primary data
structure. This definition includes special hardware designed specifically for grid-based tasks,
and excludes machines such as conventional mainframes that, while certainly applicable, are not
strictly intended for these tasks. Note also that machines composed primarily of replicated

components, that is, of replicated cells, are not necessarily cellular machines by this definition,

unless they are applicable to grid-based tasks. Similarly, machines need not be composed of

replicated elements (cells) to be suited to cellular problems.

Research in special-purpose hardware for cellular applications spans more than two
decades and has accelerated with recent advances in technology. An immediate candidate for
such problems is a cellular array, and indeed, advances in technology have heralded a renais-
sance for arrays in many applications, including DA. However, classical two-dimensional arrays
are not the only machine organization capable of efficient solution of grid-based DA problems.
Architectures for solving grid-based problems have been studied extensively in fields such as

image processing, pattern recognition, and mesh-based numerical analysis.

This section focuses on machines that support image-processing and pattern-recognition
[PDLN79, Dale81, DuLe81, PrUh82, Kido83, Pres83]. Discussion is restricted to these
machines for three reasons. First, much of the work on cellular architectures has been in the
picture-processing area because of the precise match between problem and architecture; many
of the cellular machines actually constructed are intended for picture-processing activities.
Second, this thesis is concerned with those DA tasks that can loosely be regarded as symbolic
processing, for example mask layout operations, which more resemble picture-processing appli-
cations like pattern-recognition than they resemble numerical-computation. Third, most of the
antecedents to the RPS class arose from tasks related to picture-processing; it is from solutions
to some of these concrete problems that we later abstract the central features of the RPS organ-
ization. From the narrow perspective of grid-based DA we construct a taxonomy of these cellu-

lar processors emphasizing:

. how storage is allocated to the cells of a grid being processed,

° how processing power is applied to individual cells or groups of cells,
. how processing elements and storage elements are interconnected.

The place of RPS architectures is described in this scheme. It will be shown later that many

grid-based D A architectures fit naturally into this scheme.

A central problem for a cellular architecture that manipulates large grids is how to distri-

bute all grid cells over a numerically smaller set of processors. In image-processor architecture

10

this problem has been referred to as windowing [Pres83]. Because the grids representing real
images span the range 10% to 10° cells on a side, it is generally impossible to allocate a unique
physical processor to each cell. Instead, the grid must be manipulated in subsections or win-
dows. For our purposes, the shapes of these discrete sections, their acquisition, their path to
and from processing elements, and the amount of parallelism in data-movement and data-

manipulation define the architecture.

Fig. 2.1 shows a taxonomy emphasizing these features. It has three salient points. First,
because the ultimate goal here is to illuminate DA architectures, this scheme is just large
enough to contain most of the interesting grid-based DA architectures of which we are aware;
cellular architectures that have no close analogue in current DA machines (e.g., pyramid
machines) are simply omitted. Accordingly, it is not intended to be formal in the sense that

the categories within the taxonomy are rigid, definitive partitions. Second, it is explicitly a

SINGLE

MULTIPLE
(RASTER)

-RASTER
PIPEL INE NN

Figure 2.1 A Taxonomy of Cellular Processors

11

hierarchical classification in contrast to other schemes [Dal.e81, Pres83|. Specifying a machine
by its parents in the hierarchy gives its concise relationship to other machines, emphasizing crit-
ical similarities and differences. Third, it places RPS machines in this scheme to show their

natural relationship with other array organizations.

At the first level the hierarchy divides into two basic machine organizations. As noted in
[DaLe81] there are machines whose architectures are dominated by a central bus structure or,
more generally, by an Interconnection-Network (ICN) structure. The other basic organization is,
as expected, the array structure. By array structure we mean specifically the existence of one or
more spatially distributed matrices of locally connected processor/storage elements and the
machinery to move data through these elements. The critical distinction between ICN and
array structures is that arrays are primarily locally connected--processing elements can be con-
sidered to be embedded in a grid or lattice--whereas ICN systems admit more general, global

connectivity. Each of these two basic organizations is subdivided into two classes.

SIMPLE ROUTING
p3 BUS P3
STRUCTURE NETWORK
[) []
[] []
® []
(a))

Figure 2.2 ICN Structure

(a) Bus-based structure. (b) Network-based structure.

132

ICN-structured machines are classified as using either a bus or a routing-network, as shown
in Fig. 2.2. Although bus-based structures can be considered as a degenerate form of a net-
work, we prefer to view them as a separate category. The label dus-structured is taken to imply
systems which have few physical communication paths and in which most data transfers are
multiplexed in time. Routing networks, on the other hand, imply more complex physical con-
nectivity and more concurrent data transfers. For example, the PICAP II machine [Anto82] is
centered around a single high-speed bus connecting image memories, a neighborhood proces-
sor, and a filter processor. In contrast, the proposed PASM architecture [Sieg81] employs

multi-path routing-networks to connect a set of processor/memory subsystems.

The class of array-structured machines is also divided into two subclasses. Adopting the
terminology of [Pres83|, arr#y-stmctured machines are classified as being subarrays or full-
arrays. The distinction here requires clarification, as it depends not only on structural
differences, but also on the size of the array involved. The full-array would be labeled a ﬁadi-
tional cellular array: a matrix of processor/memory pairs each connected locally to its neighbors
(Fig. 2.3). Early arrays include SOLOMON [SIBM62], and the Illiac machines [McCo63,

Barn68]. Modern machines in this class are typically large square arrays of simple bit-

PROCESSOR ARRAY State Machine
R] JU,]
GLOBAL p—
10 . Processor
CONTROL with Hemory

Figure 2.3 Full-Array Structure

13

processors with storage at each node. Examples include CLIP4, a 96 X 96 array with 32
bits/node [Dufi78]; the Distributed Array Processor (DAP), a 64 X 64 array with 4K-bits/node
[1if82]; the Massively Parallel Processor (MPP), a 128 X 128 array with 1K-bit/node [Batc80};
and the Adaptive Array Processor (AAP), whose basic building block is a single chip 8 X 8
array with 96 bits/node [Aoki82]. Some machines with large memories at each node, e.g.,
MPP and DAP, incorporate a notion of grid-folding: grids larger than the physical array are
folded into several planes and mapped onto the storage available at each node. Some also pro-
vide for limited global communication, e.g., DAP includes an additional bus for each row and

column, enabling complete row-vectors and column-vectors to be moved around the array.

The subarray class is further subdivided, and is characterized by the range of subarray
sizes and the connections between distinct subarrays. A subarray is an array much smaller than

the entire grid to be processed; it is simply a processing window. The smallest subarray is a sin-

INPUT CELL STREAM
o P P
L »
»
L
QUTPUT
m——gp{ LINE BUFFER CELL
1 P M SUBARRAY | ctream
]___._..._.__. ’
ol PROCESSOR
" o
weeefp! LINE BUFFER =M -bl '
I
\
>

STORAGE -FOR 2 GRID ROWS SUBARRAY STORAGE

Figure 2.4 Raster Single Subarray Structure

14

gle neighborhood, 3 X3 on a square lattice, while the largest is generally between 16 X 16
and 32X32. The simplest subarray organization is the class of raster, single-subarrays shown in
Fig. 2.4. The idea is to process the entire cell grid in a serial stream (raster order) as it passes
by a subarray processor. To do this, shift-registers are introduced as buffers for a few rows of
the grid. As the stream passes through the buffers and the processor, enough of the grid is
present to insure that each subarray of cells eventually arrives at the subarray processor to be
processed. The GLOPR machine [PrNo72] is an early example of this using a hexagonal subar-
ray and operating on a single bit-plane; the Texture Analyzer machine [KiSe72] is a similar
contemporary. Although single-subarray systems need not employ a raster structure as in Fig.
2.4, it turns out that subsequent non-raster machines generally use more than one subarray.

Hence, this category actually implies a raster organization.

The subarray class is not restricted to a single subarray processing element. The second
subclass contains the multiple-subarray machines and is itself subdivided.. Because the single
subarrays just discussed output a data stream with format identical to the input stream, it is pos-
sible to connect several in a pipeline. Here the individual processors are called stages, and the

entire machine is a raster pipeline subarray (see Fig. 2.5). This is the organization of the

PIPELINE DATA FLOW =

OUTPUT CELL STREAM
—

PROC [

——1
PROCESSOR

\ BUFFERS)

Figure 2.5 Raster Pipeline Subarray Structure

15

cytocomputer family [LoMc80, LoMS80]. The RPS organization and its antecedents are treated

more fully in Chapter III.

Multiple subarrays are not restricted to a raster input format. Non-raster organizations
use several interconnected subarray memories and subarray processors to concurrently process
several pieces of a complete grid (see Fig 2.6). The major difference between these machines
and the apparently similar ICN-based machines is a matter of emphasis. Of primary interest in
multiple subarrays is the physical design of the subarray buffers and processors, with their inter-
connections of secondary interest. In ICN structures much of the architecture is subordinated
to the interconnection scheme. This is perhaps the most general subarray structure, since we
define it basically in terms of the structure it lacks. An early example is the dif3 machine
[PDLN79] with four fixed-size binary image memories connected to eight table-driven subarray
processors. A modern example is the Preston-Herron Processor (PHP) |[HFPS82|, in which

three cell memories communicate with sixteen table-driven processors.

From this brief survey, some important points emerge. . As claimed earlier, not all
machines intended for cellular problems have a full-array structure. These alternative struc-
tures can be considered to be engineering responses to the problem of constructing an ideal

full-array--one processor per cell. The engineering constraint is the inability to construct such a

GRID STORAGE

SUBARRAY ACCESS

SUBARRAY | SUBARRAY SUBARRAY
BUFFER 1 | BUFFER 2 BUFFER M

SUBARRAY DATA DISTRIBUTION

SUBARRAY SUBARRAY SUBARRAY
PROCESSOR 1 | PROCESSOR 2 PROCESSOR N

Figure 2.8 Non-Raster Multiple Subarray Structure

16

large array economically. Thus, the raster single-subarray structure of GLOPR is a very early
answer to the problem, conceived at a time when only one subarray processor was technologi-
cally feasible. The raster pipeline subarray structure of the cytocomputer family is a subsequent
answer, derivable from this earlier structure, conceived at a time when multiple processors
became feasible. Non-raster multiple subarrays such as the PHP illustrate another non-array
direction made possible when multiple processors became feasible. Hence, we argue that the
development of the RPS structure appears as a natural evolution from earlier subarray forms.
This is in contrast to other classification schemes [DaLe81, Pres83] in which the RPS cytocom-
puters are inappropriately categorized as completely disjoint from all other cellular organiza-

tions.

2.3. DA Architectures

We turn now from general cellular structures to DA machine structures. This section
examines design issues for DA engines and surveys proposed and constructed DA engines.

This will provide background necessary for a later evaluation of RPS-structured DA engines.

2.3.1. Design Issues for DA Hardware

This section reviews key issues related to the design of special purpose DA engines.
[ssues common to the design of standard computing machines are not stressed. Rather, we

review the consequences of dedicating hardware to D A tasks.

Adshead [Adsh82a], and Abramovici et al. [ADLM82] briefly suggest several positive
attributes of successful DA hardware, and some potential drawbacks. Our discussion expands
on this theme. We identify seven relevant design issues: task model and architecture, speed
and cost-effectiveness, range of application, task representation and limitations,
hardware [software boundaries, modularity, and host environment. Although these will be
treated separately, the partition is somewhat artificial; design choices in one area force tradeoffs

in another. These seven areas can be considered metrics by which to evaluate the performance

of a specific DA engine,

17

o Task Model and Architecture
A task model comprises the data representation and processing steps necessary to solve a
problem. For example, switch-level networks and gate-level networks are models for logic
simulation; local-area cellular grids, discrete polygons and hierarchical cells are models for
DRC. Choice of task model is intimately bound together with choice of DA machine
architecture: some models admit more parallelism or concurrency, or permit cleaner data
movement, or incur less overhead than others. Trading model complexity (substituting
gimpler models) for speed is common; specific model/architecture tradeoffs are examined

in the subsequent survey section.

¢ Speed, Cost-Effectiveness
The central motivation for migration of DA tasks into hardware is to decrease execution
time: moderately large problems become cheap, perhaps interactive; previously intractable
problems become manageable; more passes through the design cycle are feasible, permit-
ting a more thorough search of the design space, and yielding a higher chance of success
before an irrevocable commitment to physical implementation. Nevertheless, improve-
ment upon the best available (affordable) software time is not the sole motivation. From
an engineering standpoint, these systems must also be cost-effective to be practical. For
example, a hardware system offering significantly more performance than a mainframe
computer for the same cost as a mainframe should be considered cost-effective, as should
a system offering mainframe performance for the cost of a workstation. Almost any DA
algorithm can be accelerated by hardware; we argue that the imposed constraint of cost-
effectiveness drastically reduces the number of alternative hardware approaches that will

compete successfully.

o Range of Application
The issue of whether to build a machine that handles one problem or a range of problems
involves tradeoffs between speed and flexibility. A single-purpose machine can be optim-
ized more fully than a multi-purpose machine. A single purpose machine may need to
achieve significantly more performance than the multi-purpose machine if it is to be as

cost-effective.

18

o Task Representation, Task Limitations
A hardware solution may require that the common representation of a DA task (i.e., the
software representation) be transformed into something suitable for the hardware. Like-
wise, the result may require a transformation back into the common representation.
These processes must be accounted for if they are time-intensive and can degrade overall
performance. There may also exist hard limits on the allowable size of the task that can
be processed in hardware, limits imposed by the physical structure of the DA engine.
Practical hardware must accommodate both the complexity of current systems and the

foreseeable growth of VLSI systems.

¢ Hardware/Software Boundaries
A common view of design is one of descent through decreasingly abstract, increasingly
physical levels in a hierarchy, a progression from behavior toward implementation. In
such a model, a DA task is typically a transition between levels of the hierarchy. We
might suppose that special DA hardware replaces entire steps in the descent, but such a
view is an overly restrictive simplification. In a real system it will be necessary to address
during design the location of the boundaries between the DA engine and its environment,
which we assume is mostly software. This is of concern for three reasons. First, not all
phases of any DA task necessarily have a structure that justifies hardware implementation.
Some phases may have little parallelism or concurrency (e.g., book-keeping operations)
and no reasonable fit onto the rest of the DA engine; these may be adequately performed
in the host environment. Second, the engine itself may be programmable and require
software support from the host environment. Third, the DA engine will in any event
need to communicate with other levels in the hierarchy, which are likely to be imple-
mented in software.

e Modularity
Modularity is closely related to questions of range-of-application and task-limitations. A
modular system can be expanded or augmented, without complete redesign, to accommo-
date larger or different tasks. This implies some tradeoff against speed: modular systems

may incur more overhead than tightly integrated systems that satisfy critical time

19

constraints for a select set of problems. However, modular systems may be more cost-
effective: they need not be redesigned to accommodate increasingly complex problems.
Note that modularity applies both to the hardware and software components of a DA
engine. If we assume that the primary competitor to a DA engine is a large software
package running on mainframe computer, then any software component of the engine
must be at least as maintainable as the competing software package. This becomes clearer
while reflecting upon the fact that the hardware engine may require arcane and subtle pro-

grams (managing parallelism, scheduling, transformation, IO, etc) to succeed.

o Host Environment
Given that DA hardware replaces only portions of a descent-through-levels design, it is
clear that a practical DA engine must interact with the rest of the design process. This
interaction is loosely what we call the host environment and includes: 10 overhead required
to move problems or results to and from the hardware, programming overhead, and task
representation transformation. For example, 10 bandwidth between the hardware and its
surrounding environment (assume configuration as a peripheral processor) is an important‘
design issue. The advantages of a fast engine may be negated by an inappropriate inter-

face.

Design choices in these seven areas define the engineering of a DA engine--they deter-
mine its practical application. Fig. 2.7 illustrates common relationships among these issues,
showing a simplified comparison between software and hardware approaches to one DA task.
Notice the possible need for representation changes, 10 overhead, and an explicit tradeoff of

model complexity for speed, yielding a faster solution to a perhaps simplified form of the prob-

lem.

HOST
! SOFTWARE
COMPLEX MODEL ; S
TUNED ALGORITHMS | NORMAL || DIFFERENT
ACCOMMODATE: —*{ PROBLEM:
EXCEPTIONS L |sLow FAST
HELRISTICS P |SIZELMIT)
EXPERTISE
ENVIRONMENT :
Ve
ORIGINAL
DA B
PROBLEM _ oL _
{ SOFTWARE © SOF TWARE
1 TASK - [SIVPLER MOOEL I 1Ak]
TRANS- ; b Rans-
0 10 %

; | FasT :
] FORMAT, ; .} BACK
' . | HARDWARE SOLN |

HOST HARDWARE HOST

Figure 2.7 Common Relationships between DA Hardware and DA Software

2.3.2. Survey and Critique of DA Engines

This section surveys research on DA hardware and serves two purposes. First, it provides
background for a later evaluation of RPS-structured DA engines. Second, it makes concrete
the evaluation metrics just discussed by providing examples of the consequences of different

design tradeoffs chosen for DA engines.

Considerable DA architecture research has appeared recently, e.g., [AbLM82, Adsh82a,
Adsh82b, BaST80, Blan82, BISv81, BrSh81, Carr81, DaGe82, Dunn84, HoMW83, HoNa83,
HoNS81, IoKB83, losu80, KaSa83, MRLAS82, MuLT81a, MuLT81b, Pfis82, RuMAS83a,
RuMA83b, RuMA84, Seil82, SKOT83, UeKH83, vanA71, vanB83|. For clarity, we partition

this body of work in two ways: level of abstraction, and intended application.

21

To define levels of abstraction, we observe that not all DA hardware research pertains to
concrete system building activities. Rather, a survey of the literature yields a clear pattern to
the evolution of DA architectures, starting from abstract notions of parallelism and algorithm
restructuring, and proceeding toward concrete mappings onto machine structures and system
integration. Hence, the first partition categorizes research by where it falls in this evolution

from idea to system. Three phases are identified:

e Problem Restructuring Studies
By restructuring we mean the mapping of a standard DA task onto new hardware. This
typically begins with identification of intrinsic parallelism in a DA problem or a critical
performance bottleneck in an algorithm. The next step is a suggested architectural solu-
tion, for example: a machine organization, instruction set, or technology enhancement to
an existing structure. The final step is a demonstration that this solution is feasible, usu-

ally by simulation of small, well-structured DA tasks running on an idealized machine.

e Machine Feasibility Studies
Engineering issues are considered in this phase. A machine feasibility study implies either
a new prototype hardware system, or a retrofit of an existing special-purpose machine that

demonstrates the viability of the machine organization for D A tasks.

o System Integration Studies
In this final phase appear full-scale hardware systems interfaced with a complete DA host

environment and intended to solve real-world DA problems.

The second partition categorizes DA machines by intended application. Those machines
intended for a range of tasks thus appear more than once. This organization permits close com-

parison of differing architectures solving similar problems.

Each of the following sections reviews research directed toward one DA task. A tabular
format is employed which emphasizes the central features of each contribution. Each table
gives relevant references for a particular study, summarizes the DA task modeled and any
assumptions about its structure, describes the architecture of the DA engine suggested for this

task, gives the status of any real implementation efforts, and classifies the entire study by its

level or levels of abstraction. Important examples of design tradeoffs categorized earlier in this
chapter are clarified by reference to concrete systems. We defer detailed discussion of the cellu-

lar aspects of these DA engines to a later section.

2.3.2.1. Routing Engines

Table 2.1 describes research on routing hardware. The important shared characteristic of
all these systems is that each implements a maze-router. Maze-routing is attractive for
hardware because of the potential for parallelism in the search for paths in a cellular routing

grid. All these systems are cellular by our earlier definition.

Moreover, all but two — [DaGe82] and the system examined in this thesis [RuMA84| -- are

full-array organizations.

The L-machine [BrSh81] and the Wire Routing Machine (WRM) [HoNS81| are illustra-
tive examples of different directions for model/architecture tradeoffs. Each is a full-array
organization. The L-machine trades model complexity for speed: one-layer unit-cost routing is
implemented as a very large array (1024 X 1024) of simple state-machines for marking the
grid. This is an elegant approach, fully exploiting the parallelism of maze-routing. Practical
utility, however, does not necessarily follow. Production-quality maze-routing software often
employs complex path-functions and heuristics [Souk81]--techniques not easily captured in this
simple model--to achieve acceptable performance. On the other hand, the WRM implements a
global maze-routing algorithm of grester complexity than common software approaches, and
uses special hardware to accelerate the execution speed. The algorithm [NHLV82| requires
general processing elements in the array, in this case microprocessors, and uses a small, virtual
array onto which is folded a larger routing grid. However, the performance improvements on
the small 8 X 8 WRM prototype were at best modest: basic problems required roughly 1 minute
to execute on either the WRM or a mainframe computer. Assuming that a few minutes of
mainframe computer time is easily obtained and is not a burdensome delay, the added complex-

ity of managing special hardware can detract from its acceptance, despite the hardware’s obvious

cost-effectiveness.

Model and) Engineering Level of
References Assumptions Architecture Status Abstraction
[BISV81], Mase-routing for detailed Bit Map Proc BMP: BMP:
[Blan82] wiring. (BMP): Proposed Prob. Restr.
Unit-cost grid; 1-2 layers. Fixed 10241024
BMP has fixed size; large Vir- array of bit-serial VBMP: VBMP:
tual grids folded onto physical | proc’s + mem. 4X 4 nodes under Mach. Feas.
array of VBMP. Each array node ad- construction at
dressable. Stanford Univ.
Virtual BMP
(VBMP):
32x32 armay of
bit-serial proc +
mem,
Support for folding
large gnids onto
physical array.
Each array node ad-
dressable.
[HoNSB81], Maze routing for global Wire Routing Functional: Mach. Feas.,
[NHLV82), wiring. Machine (WRM): 8 X8 armay Sys. Integ.
[HoNa83] Weighted gnd with expected | 32X 32 array (max) with 280 pproc,
(also {Bald83]) | wiring cost/demand; 2 layers. of pproc with mem. 15Kb mem/node
Detailed wiring proposed. Support for folding
Large grids folded onto physi- | large grid onto ar-
cal array. ray.
Each array node ad-
dressable.
[Adsh82a), Masze routing for detailed Distributed Array DAP is commercial | Mach. Feas.
[Adsh82b) wiring. Processor (DAP): machine Sys. Integ.
Unit cost grid, 2 layers. 64x64 armay of
Large grids folded onto physi- | bit-serial proc +
cal arnay. mem.
Global row/col
busses for global
movement.
Minicomp. host.
[Carr81} Maze routing for detailed Smart Memory Chips designed Prob. Restr.
wiring. Array Processor: Mach. Feas.

Unit cost grid, 2 layers.
Fixed grid.

memory array with
logic on one chip.

Table 2.1 Survey of Routing Engines

24

Model and) Engineering Level of
References Assumptions Architecture Status Abstraction
[Brshsi| Mazse routing for detailed L-Machine: Proposed Prob. Restr.
wiring. 1024X 1024 fixed
Unit cost grid, 1 layer. full-array of L-cells;
Fixed sise gnd. L-cell is state auto-
maton for marking
grid.
{losugo] Mase-routing for detailed Modular L-Machine: | Proposed Prob. Restr.
winng. Partition full-array
Unit cost grid, 1 layer. of [BrSh81] into
smaller subarray
chips which com-
municate senally to
reduce pin count.
[DaGe82] Maze routing for detailed CAD-CALAY: Functional: Mach. Feas.
wiring. Minicomp. plus: LSI 11/23 +
Weighted grid, 2 layer PWB's. Routing-Kernel Hardware kernel
in hardware
Extra pcode
Cell memory
Extra busses
[RuMAS4|, Maze routing for Raster Pipeline Functional: Mach. Feas.
[RuMABg3a], detailed /global winng. Subarray employ prototype | Sys. Integ.
[RuMA83b), Unit cost grid, 1-2 layers. | Cytocomputer: for commercial
[MRLAS2] Fixed grid. pipeline of 3x3 machine
subarray stages,
_minicomputer host.

Table 2.1 continued

2.3.2.2. DRC Engines
Table 2.2 describes research on design rule checking hardware.

All except one system [KaSa83] employ a local-area cellular model: masks are represented as
bit-planes on a large uniform grid. Design rules are local in extent, usually checked inside a
small processing window. This trades complexity for speed: no electrical parameters are
extracted; some incorrect errors are flagged due to connectivity problems; arbitrary obliques are
not permitted. But the flattened, uniform mask representation is conducive to rapid local pro-

cessing of cells.

25

Model and _ Engineering Level of

References Assumptions Architecture Status Abstraction

[BISV81], Local area DRC: BMP/VBMP: BMP: BMP:

[Blan82] mask represented as cellular see routing entries Proposed Prob. Restr.
grid, Manbhattan geometry
only. Large grid folded onto VBMP: VBMP:
processor array; rectangles can 4X4 nodes under | Mach. Feas,,
be loaded into array by indivi- construction at
dually addressing rows/cols in Stanford Univ.
array. Errors marked in grid.

[Seil82] Local area DRC: Hardware Assisted | Functional: Mach. Feas,,
mask represented as cellular | DRC: Custom NMOS Sys. Integ.
grid, Manhattan and some | Raster single subar- chips
45-degree geometry. Large | ray organization.
grid streamed through proces- | Line baffes and
sor in raster order; rasterisa- | custom chips for:
tion done elsewhere; error lo- Width-check
cations sent back to host. Edge-check
Width, edge, boolean mask Derived mask
ops are hardware primitives. check

» (Boolean ops)
Rasteriger
pcomp. controller
Minicomp. host

[RuMAB4), Local area DRC: Raster Pipeline Functional: Mach. Feas.,

[RuMA83a), mask represented as cellular | Subarray employ prototype

[MRLAS2], grid, Manhattan geometry | cytocomputer: for commercial

[MuLT81a], only. Large grid streamed | pipeline of 3x3 machine

[MuLT81b] through pipeline in raster ord- | subarmay stages,
er; rasterisation dome else- | minicomputer host
where; errors marked in grid.

Implements tolerance checks
on shapes in parallel in pipe-
line stages.

[KaSa83] Mask represented by edges of | Systolic DRC Proposed Prob. Restr.
features. Width/space checks | (SDRC):

on well-formed polygons with
Manhattan geometry.

2 systolic sort ar-
rays (SAX, SAY)
for hons, wvert.
edges.

Linear systolic DRC
array for
width/space checks
in 1 dimension (hor-
iz or vert).

Table 2.2 Survey of DRC Engines

2.3.2.3. Placement Engines

Table 2.3 describes research on placement hardware.

All these systems attempt to minimize the (possibly weighted) sum of wiring lengths between
connected modules. Although this is a common model for placement, experience with large
problems [Souk81] has recognized that minimum wiring length alone is insufficient to guaran-
tee wirability, and that more complex complex metrics, e.g., weighted sum of wire lengths and
maximum channel congestion, produce better results. Hence, these machines also trade some

model complexity for speed.

Moreover, the similar problem restructuring for a full-array suggested by [UeKH83] and

[ChBr83] presents several difficult engineering problems. The model is based on parallel inter-

Model and) Engineering Level of
References Assumptions Architecture Status Abstraction
——
[UeKH83] Parallel pairwise interchange | Full-array of proces- | Proposed Prob. Restr.
placement of connected | sors with memory.
modules to minimise total wir- | Global bus connects
ing length. Modules are ver- | all nodes.
tices of graph to be embedded | Global controller.
in a grid. Fixed size grid.
[ChBr83) Parallel pairwise interchange | Full-array of proces- | Proposed Prob. Restr.
placement of connected | sors.
modules to minimise total wir- | Processors have a
ing length. Modules are ver- | Content Address-
tices of graph to be embedded | able Mem to store
in a grid. Fixed size grid. connected modules;
tally-circuit to
count modules in
CAM connected to
modaule in cell.
Global bus connects
to all nodes.
v Global controller.
[loKB83| Pairwise interchange of con- | Module Interchange | Functional: Mach. Feas.,
nected modules to minimise | Placement Machine: 256 modules max
total wiring length. Solve 4-stage anth. pipe
quadratic assignment problem (solve QAP)
{min sum of module distances Connections table
over weighted nets) incremen- (Mem nets/mods)
tally after each interchange. pcomp controller
_Minicomp. host

Table 2.3 Survey of Placement Engines

27

change of adjacent modules in a grid. [ChBr83] suggests a Content Addressable Memory

(CAM) in each array-node to store module connectivity information.! This presents problems
for highly interconnected modules such as those on busses or clock-lines: a small CAM will not
accommodate dense connectivity; a large CAM will be expensive and sparsely occupied over
most array nodes. Questions of how to address realistically large problems--the problems that
may justify special hardware--on a physically small array have yet to be addressed. Indeed,
simulations that verify the technique for such large problems (10° to 10* modules) have yet to
appear in the literature. This work is an example of the difficulty in transforming elegant ideas

about restructuring into practical engineering systems.

2.3.2.4. Simulation Engines
Table 2.4 describes research on simulation hardware.

This has been the most active area of research in special DA hardware due to demonstrated
large performance-gains achieved with special hardware. Two approaches have been investi-
gated: event-driven simulation, in which time is quantized and components are only updated
when they are scheduled to change, and compiled-code simulation, in which the network to be
simulated is compiled into an executable description that is independent of network inputs.

Table 2.4 shows that event-driven systems have been more numerous.

The evolving family of compiled-code simulators developed at IBM--LSM, YSE, EVE--
illustrates serious, large-scale issues in system-integration. For example, the YSE is currently
constrained by the 10 bandwidth of its host connection |BHST84]. Capturing simulation trace
data thus takes place at the slower host speeds, rather than native YSE speed, and the overhead
makes the YSE slower than a mainframe when applied to modest problems, despite its superior
performance on large problems [Dunn84]. |[PfKr82] and [KMMN83, HKMR83|] discuss the
task-transformation software and user-interface software necessary to support the compiled-code
model on the YSE and LSM respectively. This work also exemplifies some range-of-application

tradeoffs. Although easily regarded as a gate-level simulator, [BHST84] shows how MOS pass-

1See [WeL 82| for a discussion of CAMs3 in array structures.

Model and) Engineering Level of
References Assumptions Architecture Status Abstraction
[vanA71] Event driven gate simulation Boeing Computer | Functional: Mach. Feas.,
Simulator 48K gates max Sys. Integ.
[HoMW83], Compiled gate simulation | Logic Simulation Functional: Mach. Feas.,
|BLMR83], (non-event driven); every gate | Machine (LSM): 64512 gates max Sys. Integ.
[KMMNB3|, evaluated every cycle: 1 control proc.
[HKMR 83| Variable gate delay; a gate is logic proc’s
a 6-input l-output function (eval. logic expr)
over 2-bit values. Software array proc’s
schedules processing over a (sim. memory)
crossbar. 64 64 crossbar
(communication)
mini. interface
mainframe host
|Pfisg2], Same as LSM, except: unit | Yorktown Simulat. Functional: Sys. Integ.
[Denn82}, gate delay and rank-order | Engine (YSE): 16 logic proc.
[PfKr82| simulation (~ zero gate- 1 contro! proc. 0 array proc.
delay); a gate is a 4-input 1- logic proc’s 64K gates max
output function over 2-bit (eval. logic expr)
values. 16X 16 crossbar
(communication)
bus
bus-controller
{comm. all proc)
peomp. interface
mainframe host
[Dunn84| Same as YSE Engin. Venfication Under construction | Sys. Integ.
Engine (EVE): at IBM
same as YSE baut
256256 crossbar,
2.0M gates max,
12.8Mb array
memory.
{BaST80], Event driven gate simulation. | Tegas Accelerator: Prototype under | Mach. Feas.
(also [ABLMS82]) | A gate has any number of | 5 memories: construction,
fan-ins or fam-outs; all gates Status&Data 32K gates max.
examined each time-unit for {net descrip)
event activity. Fan-In
Fap-Out

- Activity Flags
(active gates)
Event Queue
(schedule events)
3 proc. units:
Evaluation
(8 identical units
for gate eval)
Event Queue
Update
(7-stage pipe)

Table 2.4 Survey of Simulation Engines

Model and . Engineerin Level of
References Assumptions Architecture Status ¢ Abstraction
——
[GiCas83] Event driven simulation. Megalogician: Commercial Sys. Integ.
Gate-level simulation with 12 | 3 processors machine:
logic values. Functional and | in pipeline ring: 1M gates max
behavioral simulation using Queue unit
macros. State unit
Evaluation unit
{Each unit has
dedicated
memory)
[vanB83] Event dnven gate simulation; | ZYCAD Logic Commercial Sys. Integ.
(also [Meye84]) | 3-input gates. Evaluator: machines,
multiple memories, | max gate capacity:
processors, and LE-1001: 50K gate
pipelines. LE-1002: 100K gate
[Adsh82a| Event driven gate simulation: Distributed Array | DAP is commercial | Prob. Restr.,
map logic primitives into 2D | Processor (DAP): machine Mach. Feas.
sheets; fold sheets onto physi- see Routing entry.
cal array processor; net con-
nections modeled as stored
node addresses in each sheet;
sweep through sheets to pro-
cess events.
[SKOT33] Event driven gate simulation: | HAL: Functional: Sy». Integ.
simulate “blocks”™ of logic; 1 control proc. 29 logic proc.
block is ~ 10-100 gates or 1- logic proc’s 2 mem proc.
10 RAMs; two-valued logic. (sim. blocks) 1.5M gates max
memory proc’s 2.5Mb mem max
(sim memory)
32X 32 multistage-
network
minicomp. host
[AbLM82] Event driven simulation of | Logic Sim. Machine: | Proposed Prob. Restr.

simple elements (gates, flip-
flops) or functional elements
(high-level blocks). Events are
messages that travel through
processing pipeline.

Pipeline ring with
FIFO's between
stages (dataflow),
#PpTOg. processors:
Current Event
Model Access
(get fanout)
Schedule (delays)
Event List Manag.
Simple Config.
(eval gates)
Functional Eval.
(eval funct. elems
in panallel proc's)
Memories:
Event List
Model Data
{network descr.)

Table 2.4 continued

transistor networks can be handled by the YSE with appropriate transformation software. This
is possible because the YSE is a programmable machine, executing 4-input 1-output table-
lookup instructions (i.e., abstract gate evaluations). Several YSE instructions are required to
evaluate a transistor (as opposed to ome for a simple gate) thus trading some speed and

problem-size for added flexibility.

2.4. DA Architectures as Cellular Architectures

This section connects the general cellular architectures of Sec. 2.2 with the DA architec-
tures of Sec. 2.3. This thesis suggests that the RPS structure, which evolved outside the DA
area in picture-processing applications, is a novel, useful model for DA engines. Before we can

examine this claim in detail, three fundamental questions must be answered:
° Are there DA problems which are cellular problems?
. Are there cellular DA machines that address these problems?

° Do all such DA machines necessarily employ identical machine architectures? That is,

are they all derived from a standard model such as the full-array?

The answer to each of the first two questions is clearly positive: note the variety of grid-based
DA models and cellular DA machines surveyed in Sec. 2.3. Cellular machines can certainly
tackle DA tasks. The answer to the last question is negative: we find a variety of different
machine organizations among the cellular DA engines surveyed. It is important to observe,
however, that these various cellular DA engines are not unrelated: many of these machines are
neatly categorized by the simple cellular taxonomy developed in Sec. 2.2. This idea is made

clear by stepping through the taxonomy of Fig. 2.1 and identifying the relevant DA engines.

Full-array structures have been particularly popular for DA. Breuer and Shamsa |BrSh81]
have proposed a single chip 256 X 256 array of finite-state machines (an L-machine) to perform
unit-cost Lee routing and a multi-chip 1024 X 1024 machine. losupovicz [losu80| discusses the
details of such a routing machine based on an interconnection of smaller, more modular build-

ing block chips.

31

Adshead [Adsh82a, Adsh82b] has reported successful application of the DAP machine to
problems in maze-routing and logic simulation. Routing involves folding large grids onto the
physical array and attending to edge effects. Simulation involves coordinating updates to logic

gates distributed across the nodes in the array.

Blank [BISv81, Blan82] has proposed two array architectures for solving general bit-map
DA problems: a Bit Map Processor (BMP) and a Virtual Bit Map Processor (VBMP). A BMP
is a standgrd array of 1024 X 1024 simple processors each with memory. A VBMP is a much
smaller array, e.g., 32 X 32, with special hardware to fold a larger virtual grid onto the physical
array. Large memories reside at each array node, and the edge and corner nodes include special
mechanisms for dealing with border effects. Each cell in the array can also be individually
addressed via row and column lines to provide some global communication. Simulations for
DRC and simple maze-routing have been constructed, and a 4 X4 TTL prototype is being

fabricated.

Hong et al. [HONS81, HoNa83] describe a Wire Routing Machine based on an array of
microprocessors, which also incorporates provisions for folding large problems onto the array.
An 8 X 8 prototype with 15K bytes/node is operational, and claims are made that a 32 X 32
structure would likely suffice for all real problems. Complex global-routing algorithms have

been implemented and run on modest test grids [NHLV82].

Placement algorithms have also been considered in a full-array environment. The basic
idea is to perform many concurrent pairwise interchanges among adjacent modules until total
wire length is minimized. The restriction to adjacent interchanges enables each node to com-
pute the change in wire length from one interchange; the array structure enables concurrent
interchanges. Ueda et al. [UeKH83|, and Chyan and Breuer [ChBr83] describe similar array

machines for placement.

Bus-structured machines have also been constructed. Damm and Gethoefler [DaGe82)
have built a Lee-routing engine by modifying a commercial minicomputer. A special cell-
memory, a hardware "kernel” of routing operations, and an interconnecting bus were added to

optimize performance. Successful operation with PC boards has been reported.

Subarray architectures also appear. Seiler [Seil82] has developed a hardware implementa-
tion of Baker’s raster DRC [Bake80] using a raster single-subarray. The processing section uses
a few custom PLA-based chips to perform width checks, edge checks, and logical combination
of mask layers in a small window. A feedback mechanism with shrink /expand templates is pro-
vided in the subarray to enable larger width checking using multiple passes through the proces-
sor. An RPS-structured cytocomputer [MuLT8la, MuLT81b, MRLAS82, RuMAS83a,
RuMA83b, RuMA84] has been used to perform DRC and routing; these algorithms are the

subject of éubsequent Chapters.

(Outside the area of grid-based D A, several machines have been studied which also fit our
taxonomy. Kane and Sahni [KaSa83] describe a systolic? array organization for DRC using
polygon edges as the basic data element. The Logic Simulation Machine [HoMW83|, the York-
town Simulation Engine [Pfis82], and the Engineering Verification Engine [Dunn84] are
compiled-code logic-simulators developed at IBM, all with an ICN structure. From 16 to 256

logic processors, each storing and updating logic elements, communicate over a cross-bar

switch.)

The ability to categorize these systems neatly as specific instances of more general cellular
structures supports our premise that cellular organizations are appropriate models for DA
engines. Indeed, the approach to DA hardware taken in this thesis is suggested by this analysis.
Instead of attacking a single DA task with one specific, tightly optimized machine architecture,
we shall examine the relevance of a general dass of cellular architectures to particular DA tasks.
There is one striking advantage to this general-to-specific approach: because we start with a
broader view of basic cellular architectures before we pursue specific applications, we can avoid

reinventing solutions that arose in (apparently) dissimilar applications.

Given the connections made in this section, we refine the objectives for this thesis given
in Chapter I. This chapter has shown that many different cellular organizations have been used
as basic models for DA machines. The traditional parallel array structure has been particularly

popular as a paradigm for DA machines. Research in this area provides an apt analogy to our

Z3ystolic structures [Kung79] are generally labeled as cellular; it is only our nonstandard definition of the term
cellular to mean ‘‘applicable to grids’’ that labels them otherwise.

7/ 24
/ //
R 1A
sy 2rses
0227002077
A A l,/l/l/’/’/
2
227,
4 //uuuuu/uu 500
/.

7! ///// $052204024277

o \LAYQJT_ TASKS?

Figure 2.8 Cellular Hardware Paradigms for DA

own goals (Fig. 2.8): this research examines engineering issues related to the design, analysis,

and optimization of D A engines that use an RPS organization as the basic model.

2.5. Summary

This chapter connects research on general cellular structures, such as those developed in
classical picture-processing applications, with research on D A engines. The RPS organization is
introduced and itsrelationship to other general cellular structures is clarified. Engineering issues
in the design of practical DA engines are examined; a DA hardware survey shows that several
DA engines have been applied to grid-based DA problems, and that these diverse engines can
be classified as instances of general cellular organizations. This is taken to imply that cellular
structures are good candidates for some DA problems. It is argued that the study of DA
hardware for grid-based tasks might reasonably be approached by employing a general cellular

architecture--the RPS organization--as a basic model for DA engines.

CHAPTER III

RPS ARCHITECTURES AS DA ENGINES

3.1. Introduction

Chapter II introduced the RPS class as an evolution from earlier subarray structures and
placed it in the spectrum of related cellular structures. This chapter undertakes a detailed
analysis of the RPS organization. The following section examines more carefully the origins of
the concept of an RPS class. It defines the class and summarizes some important antecedent
ideas related to the class. Issues related to basic design and performance analysis are addressed
next. This examination includes a qualitative evaluation of RPS structures as D A engines using
the metrics developed in the previous chapter. A quantitative performance comparison for
illustrative RPS and array structures is also presented. Finally, we describe the prototype RPS

system developed to support DA experiments for this thesis.

3.2. The RPS Class: Origins and Antecedents

The label Raster Pipeline Subarray describes the central features of a particular class of
machines: these machines perform local computations on a cellular grid as cells stream serially
through a pipeline of subarray processors. More succinctly, we shall refer to this idea as pipe-
lined serial subarray computation. This idea forms the template for all machines in the RPS class.

The following sections examine the origins of the class, and summarize the important cellular

tasks and machines that motivate it.

3. 2.1. mg.ns

We discriminate here between two definitions of the RPS class in order to clarify its origin
relative to the goals of this thesis. These two definitions are labeled simply bottom-up and top-

down,
The bottom-up definition reflects our early experimental work:

The RPS class is the appropriate abstraction of the novel features intro-
duced by machines such as the cytocomputers, i.e., pipelined serial
subarray computation.

The class is based on two fundamental innovations originally disclosed as patents. The
first is the notion of a single, serial subarray processor that performs array-style neighborhood
operations without a complete array of processors. This idea was disclosed in a patent issued to
Golay et al. [Gola65|. The second innovation is the notion of a pipeline of these serial subarray
processors which we attribute to the patent of Sternberg [Ster79b]. Because these two patents
actually propose picture-processing hardware, they disclose several other ideas related to the
implementation of such systems. However, we argue that it is only the idea of pipelined serial
subarray computation that is compelling as a general architectural feature!. We choose to

regard most other issues as application-specific details.

The RPS class was proposed following our early development of D A applications on such
picture-processing architectures. [MuLT81a, MuLTSlb] first suggested the application of cyto-
computers to elementary DRC for Mead/Conway rules [MeCo80]. This was extended to more
general cellular DA tasks such as maze-routing in [MRLAS82]. As these early machine-
feasibility studies progressed toward system-integration research it became increasingly clear
that cytocomputer architecture per se was an inappropriate focus for research intent on produc-
ing practical DA machine structures. It was concluded that the idea of a DA engine designed as
an elaboration of cytocomputer architecture was necessarily sub-optimal. Such an approach
increases hardware complexity to compensate for an inadequate foundation: the specifics of

cytocomputer hardware are optimized to support picture processing, not DA. The alternative

! Machines based upon the Golay patent include CELLSCAN and GLOPR (see [PDLN79]). These machines are
raster single subarrays by our classification. Machines based on the Sternberg patent include the cytocomputer family;
these are RPS machines. The lack of descriptive architectural detail conveyed by some proprietary names motivates the
label Raster Pipeline Subarray, which attempts to describe the structure of pipelined serial subarray hardware.

36

proposed in [RuMA83a, RuUMAS84| is to abstract a class of machines embodying only a pipe-
lined serial subarray organization. The name Raster Pipeline Subarray for this class was sug-
gested in [RuMA83a]. Specific machine implementations are regarded as members of the class
optimized for specific problems. This thesis uses the class as the point of departure from previ-

ous picture-processing research toward new applications such as DA.

On the other hand, the top-down definition ignores the insights gained from these early
problem-restructuring and machine-feasibility studies. The premise here is simply to accept
pipelined serial subarray structures as the basic template for the RPS class, and to describe this

structure in current terminology:

The RPS organization is a systolic structure. Local (subarray) opera-
tions on a cellular grid are spatially distributed across processors ar-
ranged in a linear pipeline.

We take systolic to mean spatial-pipelining [Kung79]. The necessity of cell-buffering
hardware to properly align successive subarrays of data in the cell-stream that moves through
each processor does not affect the basic classification as a systolic structure [Kung84]. Hence,
the RPS class is a proper sub-class of linear systolic arrays. The bottom-up definition suggests
more of the original motivation for the class, while the top-down definition is a2 more succinct

description of the template for the RPS class.

3.2.2. Antecedents

The taxonomy of Chapter II focussed on the architectures of related cellular machines and
largely ignored the algorithms they performed. This section briefly surveys the tasks and algo-
rithms that influenced the development of the RPS structure. We view cellular machines as
special-purpose engines built to solve particular cellular problems. Following the previous
development, we look mostly at picture-processing applications. Nevertheless, it turns out that
ideas developed here are influential beyond this restricted application. Three areas are exam-
ined: cellular automata, binary template-matching, and mathematical morphology. These three

areas have been especially influential to cytocomputer architecture, and thus indirectly to the
RPS class.

37

Studies of cellular automata are a starting point for most subsequent studies of cellular
structures [Burk70]. A general form is a cellular space of automata, which commonly appears
as a collection of locally-connected state-machines embedded in a two-dimensional lattice.
Even at this level of abstraction some precursors to picture-processing appear [Ulam70|. For
our purposes though, the important concept is that of an array of state-machines operating in
lock-step. An algorithm here is defined by the state-machine at each lattice point, and the
problem input is an initial set of machine states at each lattice point. Likewise, the output is
the aggregate state arrived at after several synchronized state transitions of each machine in the

grid.

The second operation to comsider is template-matching on binary images. Given one
binary image (the input) and a small binary template, we produce a new binary image with a 1
in each cell where the template matches the configuration in the input image, and count the
number of template matches. The match-and-count approach motivates several real machines,
notably CELLSCAN and GLOPR, the first raster single-subarrays. Several global topological
properties of binary images can be ascertained using only local match-and-count; see [Gola69,

Gray71].

The final class of operations we review is called mathematical morphology, originated in
[Math75, Serr81]. Although this formalism comprises a broad theory for the statistical and
structural analysis of images, we examine only those aspects influential to machine architecture.
Mathematical morphology provides a set of formal operators and an algebraic framework in
which to manipulate them. Local template matching again forms the basis of these operators.
Additional detail is provided here because this approach has a substantial impact on cytocom-
puter architecture, and because the notation and some of these ideas will appear later in our

DA applications.

Again, we begin with binary images. In this formalism, a binary image is represented as a
set of points, for example, black foreground points on a white background. A point is an
ordered pair of coordinates in a two-dimensional space, i.e., (z,y) coordinates in a grid or con-
tinuous plane. If A and B are binary images, and hence sets, the usual image-to-image Boolean

operators such as AND, OR, etc. appear in set-theoretic form as intersections, unions, etc.

Three primitive operators and two composite operators suffice to illustrate most of the useful

properties of the formalism. These are: translation, dilation, erosion, opening, and closing.

If A is an image, and thus a set, and p is a point in some space, then the transiation of
set A by point p is defined as A, ={a+p |a €A} and is itself another set. If A is regarded as a
geometric shape drawn in its own coordinate space with a local origin, then A, is shape A
translated so that its local origin is at point p. With translation define the two primitives of dila-

tion @ , and erosion © as follows:

A®B=Y 4 40B={|B,C4)

The dilation A@® B is the union of translations of A by points from B. The erosion AQ B is
the set of points to which we can translate B and still have it contained in A. Loosely, dilation
and erosion are formal generalizations of the intuitive ideas of expanding and shrinking. How-
ever, erosions and dilations are defined for arbitrarily complex sets A and B, whereas expands

and shrinks are usually specified with simple patterns.

Two operators defined as compositions of the dilation and erosion primitives are also use-
ful. These are called opening and closing. If X and S are sets, X opened by S is
Xs =(XO S)® S, and X closed by S is X° =(X® S)O© S. Again interpret sets X and S as
geometric figures. Then X opened by S is the set of points in X touched by shape S as S slides
around inside X. Closing has a similar interpretation for the complement of X. Fig. 3.1 illus-

trates all these operators for figures drawn on a continuous plane.

This formalism motivates special hardware because these operators are local, and can be
reduced to a sequence of template-matches. In an expression such as AO B, A is typically a
complete mask, and B is a small figure such as a circle or rectangle?. AQ B is easily seen from
its definition to be a form of template-matching: the result is the set of points at which B
matches A. Within the algebraic framework for these operators, duality relations exist that
allow the dilation A® B to be regarded similarly. Since the opening Ap and closing A2 are

composite operators built upon dilation and erosion, they also reduce to general template-

2B is properly called a structuring element in this formalism. Operations between image A and such stracturing
elements are intended to probe the structure of A. See [Serr81, Ster83] for examples.

39

+

X s
(o) i S

| ‘
| L l l ' l :
L 1N
; L | | L_—J |
| 1] '
| | ' '
| | | |
| I I |
kL———-—————-—_’ R, |

J

DILATION X®S EROSION X(OS

(

r“-"
|
I

A Y

OPENING X CLOSING X°

Figure 3.1 Basic Morphological Operators

Shape X operated upon by shape S. Local origins marked '+ ' for each shape.
Result shown with solid-lines, superimposed on original X in dotted-lines.

40

matching. If B is not a simple figure, but rather a large, complex shape, it may be possible to
decompose B into simpler shapes. The algebra includes identities which permit simplifications
similar to those done in Boolean algebra. For example, to compute AO B when B is a dilation
of simpler shapes B =B ,® B,® By, it suffices to compute (((A©B,)© B,)O By) which is a

sequence of simpler erosions.

These operators can also be extended from binary images to images with integer-valued
cells, generally called grey-level images. Sternberg [Ster80a, Ster80b| has shown that grey-level
images can be regarded as sets of coordinate points in a three-dimensional space. Such images
are regarded as surfaces, with individual cell values regarded as elevations. Dilations and ero-
sions, and hence any composite operators, can be formulated for this case. In the expressions
AO B and A® B, B is now itself a grey-level surface, and application of an operator changes
image A's grey-level values. [Ster83] shows that these operators can be formulated as local
template-matches requiring only simple addition and subtraction or individual cells, and

maximum /minimum detection on local cell-groups.

The goal of developing DA tasks on cytocomputers motivated the abstraction of the RPS

class. The review in this section answers the related question of what tasks motivated cytocom-

puter structure:

Cytocomputer structure is a direct hardware embodiment of binary and
grey-level morphological operators using a general template-matching
architecture; it is intended to emulate the basic action of state-
transitions in a space of automata.

This is verified by studying how the stages and pipeline relate to the morphological operators.

Consider a general operator applied to grid A, A op B, where B is a complex figure. To

implement in hardware, first use the algebra to decompose B into simpler figures to yield:

AopB=Aop B,op, B, - op; B
The goal is to have each B, fit inside the subarray of each subarray-stage in the pipeline.
Because each operator reduces to to a local template-match, one pipeline stage can perform
"op, B,” on the intermediate grid flowing through the stage. Thus, A enters the pipeline and
AopB exits. Pipelined subarray computation is a way to implement in parallel the composition

of primitives needed for these image operators. Indeed, cytocomputers have been referred to

41

as ‘‘operator parallel machines’’ [DaLe81].

Cytocomputer stage architecture bears a strong analogy to the action of state-change in a
cellular space. Consider a grid streaming through one subarray stage; at each time step, one
cell enters and one cell exits. The exiting cell is a computed function of whatever information
is stored in the subarray-stage. Because the entire grid flows through the stage, information can
accumulate in the stage to affect future computations. After the last cell has exited, the stage
might contain a residue of information computed over all grid cells. Clearly, nothing precludes
such computations in a general RPS stage. However, cytocomputer architecture imposes two
severe restrictions on such computation: exiting cells are computed only from the state of the
current subarray-storage, and no computed information is ever saved in a stage. Hence, com-
puted cells are never retained in a stage and cannot affect future stage computations. Global
residues are impossible to compute (for example, in the match-and-count approach, matich can

be done but count cannot).

Such a stage design is precisely the model of computation embodied in an array of state-
machines. One pass of a grid through one subarray stage is intended to emulate one state-
transition in the array. In one time-step, all nodes in the array examine their neighbors and all
simultaneously change state; no information ever moves further in one step than the immediate
neighbors of one node. Similarly, these stage restrictions mean that no information ever moves
further in one stage computation than the diameter of a single subarray; each cell is recomputed
as a function of its current subarray neighbors and nothing else. This suffices for the local

template-matching required for the image operators.

This discussion clarifies the distinction between the RPS class, which is the template for
pipelined serial subarray hardware, and machines such as cytocomputers which are strongly
influenced by specific applications. Cytocomputers are nonetheless RPS machines, but we

prefer to use the more abstract class as a starting point for the study of DA engines.

3.3. Design of RPS Systems

We now proceed to analyze the basic elements of the RPS structure. The first section
introduces some terminology and a partitioning of design issues in RPS systems. The second
section analyzes the performance of an abstract RPS machine. The third section evaluates
RPS-structured machines against the metrics for DA engines presented in Chapter II.v The final

section contrasts comparable RPS and array structures.

3.3.1. Local and Global Concerns in RPS Systems

RPS system design partitions into two issues: local issues that concern the processing of
individual cells in each stage, and global issues that concern the movement of entire grids
through the pipeline of subarray stages. Design of the hardware and software components an
RPS systems divides into local design and global design. This terminology will be used

throughout the subsequent sections.

Local issues pertain to subarray stage design. Referring again to Figs. 2.5 and 2.5, the
three basic components of one stage are the line buffering scheme, the subarray storage, and

the subarray processor. These function as follows:

) The Buffering Scheme, in combination with the subarray storage, aligns into subarrays the
serial cell stream passing through the stage. It insures that, on successive time steps, suc-

cessive subarrays of in the input grid arrive at the subarray processor.

. The Subarray Storage holds successive subarrays acquired from the cell stream. It is
closely tied to the buffering scheme. On successive time steps, this storage holds what is

effectively the state of the input grid.

. The Subarray Processor computes new cell values based on data stored in the stage. The
most important data source is the subarray storage itself which represents a small piece of
the input grid. This is the mechanism by which local, neighborhood computations (i.e.,
array-style computations) are performed. Other data sources include any previously com-
puted data retained internally for later use. The central function of this processor is to

compute a new cell value and inject it into the output cell stream for the following stage.

43

During each time step, one cell enters the stage, and a new, computed cell exits. This

activity is one subarray computation. One subarray computation has three basic parts:

(i) Examine the current state of the stage, which includes the subarray storage and any

internal variables.
(ii) Compute new values: a new cell to output, and any internal values to be retained.

(iii) Relocate computed values. A new cell must be injected into the output stream.
Internal variables may be relocated wherever appropriate, including either the subar-

ray storage or buffers, thus overwriting the input.

Global issues pertain to the physical properties of the pipeline, as distinct from the func-
tional properties of a stage. Three central concerns are pipeline rate, pipeline length, and pipe-

line control strategy.

Despite the partition, local stage design influences global pipeline rate. Two properties of
a stage are defined globally: the effective stage cycle time, and the stage latency. The stage
cycle time, 7, is the time between the output of consecutive cells from a streaming stage.
Tstage depends on the algorithm executing in the stage, i.e., how many low-level operations to
perform one subarray-computation, and hence also depends upon operation timing in a stage,
which is a hardware design parameter. The stage latency, 7, is the time required for a single
cell to pass completely through the stage. Latency is a function not only of 74, but also of

the size of the grid being processed.

Pipeline length is of concern because it is dynamically variable. With modular, pro-
grammable stages, pipeline length can be optimized to meet cost or performance constraints.
Nevertheless, as a rough metric, long pipes typically exhibit better performance than short

pipes.

The principle concern in pipeline control is the implementation-dependent overhead asso-
ciated with managing pipeline data movement and stage programming. As in most array sys-
tems, the existence of some global controller is assumed, the task of which is to synchronize

pipeline data movement, stage programming, and the interface to the data source.

44

Note that the local/global partition also applies to array-structured systems, where the
emphasis is usually upon local concerns. Consider a large array designed to meet bandwidth
constraints: such a system will minimize loading and unloading of grids, grid edge-effects, and
non-local data movement, all of which are essentially global issues. An ideal array, large
enough to store an entire problem that requires strictly local computations, needs to address
mostly local issues: cell computation, node design, etc. The only global problems are how to
broadcast the SIMD instruction stream to all array nodes, and how to load and unload grids.
Some practical arrays, on the other hand, do take special account of non-local issues. For
example, MPP [Batc80] has a separate staging memory for reordering sheets of data outside the
processor array; we regard this as a global concern. For RPS systems, global concerns are
always important because cell stream management (I0) and subarray computation in the pipe-
line (processing) are concurrent activities. In contrast, most grid IO for arrays can be viewed

as an unavoidable overhead at the start and close of processing.

3.3.2. Basic Performance Analysis

We analyze here the time required to process a grid of arbitrary size through an RPS pipe-
line of arbitrary length. Stage functionality will be ignored. It will be assumed that a stage
computation takes one time step of length 7,,,,. We examine first a single stage, and then a
pipeline of stages. Latency effects, and simple cost/performance optimization are analyzed.
Finally, we discuss how pipeline structure affects algorithm decomposition. This analysis geh-

eralizes and extends some earlier, narrower results pertaining to cytocomputer architecture

[LoMc80].

Before analyzing a general stage it is illustrative to examine a simple example of how a
grid moves through one stage. Fig 3.2 shows the state of the buffers and subarray storage on
successive time steps as a small grid moves through one 3 X 3 stage. The movement of the
grid through the stage can be visualized as a 3 X 3 subarray window moving across the grid as
shown in the figure [LoMc80]. This illustrates the structure of a cytocomputer stage. After
cell A, in the cell stream of Fig. 3.2 has entered the stage, the complete 3 X 3 neighborhood

of cell Ays is stored in the stage subarray.‘ The subarray processor then computes the new

45

T
INPUT GRID OUTPUT GRID
LA R

SUBARRAY
LINE
-BUFFERS SUBARRAY STORAGE PROCESSOR

SUBARRAY AT TIME = t+1

o alt]
"l HBET
B B o o R NN

SUBARRAY
LINE-BUFFERS SUBARRAY STORAGE PROCESSOR

OUTPUT GRID

Figure 3.2 Serial Flow through a 3 X 3 Stage

value A";: and injects it into the output stream. This activity requires one Tstage ¢ycle. On the
next cycle, A,; enters the stage and the computed value A”;: is output. In this example the
stage latency 7, is the number of 74, cycles between A, ; entering and A:'; leaving. This is
precisely the number of cells in the cell stream between A4 and A, , which clearly debends on

the width of the input grid.

The example illustrates data movement in a subarray stage. Note that the buffers and
subarray storage form one continuous shift-register through which the cell-stream flows. By
tapping off values at certain points in this path-- at the cells of the subarray storage--we access a

subarray in the input grid. The next, laterally displaced subarray appears at the next time step,

40

when this shift-register shifts.

Fig. 3.3 shows a more general stage structure. We restrict our analysis to rectangular
subarrays on a square lattice. Other topologies, such as the hexagonal lattice, are not addressed
here as they are rarely used in DA applications. This structure has a subarray with s; columns
and s, rows. There are 5, - 1 buffers of maximum length L; to process an X X Y grid, these

are configured to be of length X - o, .

The first time to calculate is the stage latency r,,;, which we may take to be the elapsed
time between the entry of A, and the exit of cell A';:. To compute A”:;, A, must appear
somewhere inside the subarray storage, along with some of its neighbors in the grid. However,
because it is on a corner, this cell does not possess all the neighbors of a cell in the middle of
the grid. It is necessary to define when the subarray holds sufficient data to recompute A4, .
Fig. 3.3 shows a distinguished cell in the subarray with (z,y) coordinates (c;,¢,) which we
term the center of the subarray. For the 3 X 3 subarray of Fig. 3.2, this was literally the center
of the subarray. One subarray-computation produced a new center value as a function of the

old center and eight neighbors in the subarray, and injected it into the output stream. Actually,

INPUT CELL STREAM

[’{ <+ L cells

L I [11H -
. —TTT L] -

LINE-BUFFERS SUBARRAY-STORAGE

L cells/line s by s cells
X y

Figure 3.3 General Subarray Stage Structure

47

the center of a subarray is entirely arbitrary. 7, is the number of time steps necessary to shift

cell A, into cell (¢c,,c,) of the subarray®, as shown in Fig. 3.4. By inspection, the latency for

a grid of size X X Y is then:

T X, Y) = ((¢ - DX+ ¢)70 (3.1)

This depends upon the grid width X because the total length of one line buffer plus one subar-

ray row is precisely X. Latency is a side-effect of the need to buffer a few rows of the grid.

After 7, cycles, a new computed cell value exits the stage on every cycle. By the
preceding analysis, the new computed cell occupies the same place in the output grid as the
center cell of the subarray conceptually passing across the input grid. XY additional cycles then
flush the remaining grid cells though the stage to complete this processing step. Define
Tpass (S, X, Y) to be the time required to pass an X X Y grid through an S stage pipeline. The

time to pass an X X Y grid through 1 subarray stage is then:

Toass (LX,Y) = ((g - 1) X+ ¢, + XY)75 (3.2)
SUBARRAY
N GRID REACHES
SUBARRAY
SUBARRAY INPUT GRID CENTER

Figure 3.4 Latency to Reach Subarray Center

3There is a subtle side-efect of the subarray configuration of Fig 3.3. When a cell near the edge of the grid occu-
pies the center of the subarray, there is a wrap-around effect which places cells near the opposile edge of the grid in the
subarray. The subarray processor must distinguish that these are not valid neighbors of the center cell.

48

Analysis of a pipeline of stages is similar. Consider a grid of size X X Y passing through
an S stage pipeline of general subarray stages. There is clearly a latency associated with the
pipeline because there is a latency associated with each stage. Let 7, be the latency for one
stage. Then after 7, the first valid cell exits stage-1 and enters stage-2. After 27, the first
valid cell exits stage-2 and enters stage-3, and so on. Thus, the first valid cell exits the pipe
after S7,;. XY steps later, the entire grid has been processed through the pipe. Hence we
have:

Tpass(srx: Y) =57t + XYngt

3.3
=S((cy - I)X+ cz)rmgl +XYTstays ()

As an example, consider the 3 X 3 cytocomputer stage of Fig. 3.2. Substituting values

3, =8 =3, ¢ =¢ =2
we obtain:
Toass (S, X, Y) = S(X + 2) 700 + XYT 4, (3.4)
which is the cytocomputer processing time derived in [LoMc80]. In keeping with the analogy
of a subarray window moving across the grid, [LoMc80] notes that a pipeline can be viewed as

a series of 3 X 3 stage windows following each other across the grid, each processing the previ-

ous stage's output.

A few minor points should be addressed before proceeding. First, note 7,,,, has been
assumed to be one atomic processing step. In fact, a stage may need to execute several instruc-
tions to perform a single subarray computation. r,,, is this aggregate time. For the entire
pipeline to operate properly, each stage must have the same 74, since 1/r,, is the rate at
which cells flow through the pipe. It may be necessary to insert null operations to pad stages so
that all share the same computation time. Second, although we speak of a pipeline of subarray
stages, the RPS structure differs slightly from a typical pipeline such as a floating-point arith-
metic pipe because its component stages exhibit a pipe-like latency effect. Also, this stage and
pipeline latency depend upon the input grid size. Nevertheless, for a given stage algorithm and
grid size, the entire RPS pipe has a setup time (S7,,;) and cycle time (7.) just as an ordinary

pipeline.

49

Latency is an important effect to consider. One simple measure of the effects of latency is
the ratio of pipeline latency to total pipeline processing time. Define R;; to be this fraction.
From (3.1) and (3.3):

S((o = DX+ ¢) Tatpe

Rau(S,X,Y)= S((ey =)X + €) Taage + XV 0y (3.5)
which simplifies to:
Xy -1
R,,,(S,X,Y)=[1 * SN a o)X+ e) (3.6)

Latency dominates processing time for very small grids close to the subarray size. For large
grids, we may assume X>>g¢, Y>> to obtain the approximation
R =~ (1 + Y/S(¢-1))"". The ratio of grid edge Y to pipe length S is seen to be the deter-

mining factor. Latency increases for long pipelines, decreases for large grids.

Again considering a 3 X 3 subarray, this approximation simplifies to R;;; =~ (1 + Y/S)"‘.

Here, latency is less than 10% for Y > 95, and less than 50%for Y > S.

A measure of the tradeoffs embodied in a pipeline structure is the pipeline
cost/performance ratio of [Kogg81]. Specifically, we evaluate cost per calculation-rate for an
RPS pipe. Cost is taken to be a linear function of pipeline length as in [Kogg81|: aS + § for
arbitrary constants* @, 8. For calculation-rate we divide the total number of subarray-

computations performed on one pipeline pass by the total processing time:

XYS
calculation-rate = —————
7 pass (S, X, Y)
Hence, we have
cost - (aS + B)7,(S5,X,Y) (3.7)
performance XYS)

which expands and simplifies to:

cost

performance =[S {')?_Y (e~ l)+°‘)} + {a-}-—)?y— ((e-1)+e;)} + %]rm,, (3.8)

‘a might reasonably depend upon the sise of the stage line buffers, and thus upon ¢, and X. We avoid this
complication here.

The object of this exercise is to evaluate the optimum pipeline length, S,;, as a function of
these cost and grid-size parameters. Minimizing (3.8) gives that pipeline length with the lowest

cost per subarray-computation. Differentiating and solving yields:

g __xx 1”
Sopt —[;' m] (3.9)

As a concrete example, assume a 3 X3 subarray with a =1, § =1. The cost here is
measured in stages, and the constant overhead is comparable to a single stage. Further, assume

that X and Y are large relative to the subarray. Then (3.9) and (3.6) can be approximated:

St =VY, Riu=(1+VY)!
This suggests that a 64-stage pipe is optimal for a grid with 4096 cells/edge, and that the associ-
ated latency will be roughly 2%. Of course, this is a much simplified model of processing tha;
does not account for the detailed structure of real applications. In particular, it does not
account for the length of the algorithm to be performed. These types of optimizations will be

examined relative to specific D A tasks in later chapters.

Pipeline length itself affects the decomposition of algorithms into individual steps per-
formed in each stage. Consider an algorithm composed of many repetitions of one processing ‘
step. If this step can be realized as K subarray-computations, then a KS-stage pipe performs S
of these steps on each grid pass. If the pipeline is too short, S < K, then [K/S] passes are
required to realize the step, and each stage performs a different function on each pass. Long

pipelines are generally desirable, but, as just discussed, have a longer total latency.

3.3.3. Metrics for DA Engines Revisited

The RPS structure evolved as an alternative to array-structured hardware in picture-
processing applications. One possible conclusion to be derived from this interpretation is that
RPS machines are necessarily sub-optimal alternatives to arrays in the long run. That is, the
availability of VLSI of wafer-scale arrays will necessarily obsolete RPS systems. We argue this
is not the case, that RPS systems have several intrinsically desirable properties. This section

evaluates these properties in the context of DA applications using the metrics suggested in

51

Chapter I1.

The following discussion steps through the seven design issues for DA hardware discussed
in Chapter II, summarizing the advantages and disadvantages of RPS machines relative to each.

Some comparisons to array structures are also included.

¢ Task Model and Architecture
Any task represented on a cellular grid with primarily local computation (i.e., subarray
computation) is a candidate for an RPS engine, or an array. Calculations to be applied to

groups of cells determine the required subarray-processor functionality.

o Speed, Cost-Effectiveness
Speed comes from the ability to perform several subarray-computations concurrently in an
RPS pipe. Roughly speaking, one can improve the execution speed of a task, up fo a
point, by increasing the pipeline length. The ability to start with a very short pipe and to
improve performance by acquiring stages, as cost permits, appears to us to be particulérly
cost-effective: one need never acquire more hardware than that demanded by the task at
hand. (Compare with a very large fixed array: the processing power is large, but so is the

start-up cost.) We quantify some of these comparisons in the following section.

e Range of Application
Programmable pipeline stages which perform variable subarray computations enable an
RPS pipeline to address a range of problems. A completely general subarray processor,
e.g., a microprocessor, is as flexible as a bit-serial array node, at the cost of some speed.
A stage optimized for a restricted set of applications, e.g., maze-routing, is less flexible,

likely faster, and can handle differing tasks within this limited range.

o Task Representation, Task Limitations
The fundamental concern regarding task representation is how to manage large cellular
grids. Note that a grid representation is often viewed as a brute-force approach since it
may require flattening a more compact hierarchical representation. This applies equally
well to RPS engines and arrays. We regard this as a tradeoff: compactness of representa-

tion is lost, but parallelism in processing is gained.

There are three fundamental task limitations for an RPS system. The first is locality of
processing: most of the processing on the grid must be local or the task is a bad candidate
for this approach. Neither RPS machines nor arrays handle non-local computation partic-
ularly well. Arrays typically accommodate this by including row/column busses so that
individual nodes can be addressed. It is thus possible to insert conditional branches,
based on the state of individual cells, into the SIMD instruction stream broadcast to the
array by the global controller. In contrast, an RPS pipeline performs several instructions
concurrently, one per stage, so arbitrary conditionals can only be evaluated after the grid
exits the pipe. However, it is possible to evaluate some global properties of the grid as it

streams through each stage, useful for future branches based upon global grid state.

The second limitation is cell size. An RPS pipeline must have some maximum internal
datapath width, limiting the maximum size of each grid cell. Some tradeoffs may be pos-
sible, however, if the internal memory for buffers and subarray-storage is reconfigurable.
Virtual arrays with large node mem?ries can make smoother tradeoffs between grid size

and cell size, and can handle small grids with very large cells.

The third limitation is grid size. RPS pipelines are attractive because, unlike arrays, the
entire grid need not reside in the stage buffers. Stages with long line buffers can process
very wide grids (with any number of rows) simply by streaming them through. In con-
trast, the entire grid must fold completely onto the node memories or it must be pro-

cessed in sections. This comparison is quantified in the following section.

¢ Hardware/Software Boundaries
In RPS systems, hardware includes the pipeline and anything required to store, manage,
or generate the cell stream; software includes the host environment and the programs exe-
cuting in each stage. The choice of where to implement a portion of a large task--in the
pipeline or on the host--depends not only on the structure of the computation, but also on

the host interface.

o Modularity

A strong point for the RPS organization is that it can be built from modular, programm-

able stages. Processing capacity may be expanded incrementally. Note however, that

there is a decreasing marginal return from additional stages. An S+1 stage pipe may not

perform significantly better than an S stage pipe for S large®. Also, because the grid does
not reside in the pipeline, the hardware which manages the cell stream, for example, a

cell-buffer and disk, is upgradable independent of the pipeline.

In contrast, arrays have typically been built large to meet large bandwidth requirements.
Modularity is less an architectural problem, more an engineering problem for arrays.
There is little to be gained from adding one row/column to a large array (again, the
diminishing returns effect). Signal propagation may become a problem as a small array
grows larger. Highly integrated arrays [Batc80, Aoki82, GrNE84] have both memories
and processors on the same chip. These arrays can be made larger, but the memory/node
cannot. The practical difficulty to increase nodal memory in a tightly integrated array--
widening busses, replacing chips--may be considerable. The best approach to general
modularity here seems to be abutting complete, small, virtual arrays to form larger rec-

tangular arrays |Blan84].

¢ Host Environment
Clearly, this environment is implementation dependent. We discuss the prototype

environment designed to support our experimental work later in this chapter.

3.3.4. Comparing RPS and Array Structures

A useful way to contrast RPS and array structures is to regard each as an architecture for
interpreting a stream of instructions. Consider a long, linear sequence of local instructions.
Each local instruction specifies how to recompute a grid cell as a function of its neighbors in the
grid. The array broadcasts one instruction to each node and all nodes execute it in parallel. It
interprets the instruction stream one instruction at a time. The RPS architecture executes a
group of sequential instructions in parallel, distributing them across the pipeline one instruction

per stage. The grid moves through an S-stage pipeline and emerges with S instructions

5Unless S+1 is a multiple of K and it is desired to perform several K-step algorithms in one pipeline pass. Then,
because S mod K # 0, the added stage means there need be no unused stages at the end of the pipe.

54

performed on it. The distinction is characterized by how the two structures distribute instruc-

tions in space : one instruction distributed to all nodes or several instructions distributed across

the pipe; and in &ime: one instruction completed at all nodes in one time step, or several

instructions completed in the pipe in many time steps as the grid flows through.

To reformulate this comparison quantitatively, we introduce simple models for RPS and

array structures, and for the the tasks to which they apply. These models are parameterized by

several variables which completely specify a particular machine or task. Variables will be sub-

scripted "a” for array structures and "r” for RPS structures.

Machines are specified by these six parameters:
Processor Count NNV - is the total number of nodes in an array or stages in an RPS pipeline.

Memory M - is the total memory, measured in bits, located in the nodes of an array or

the line buffers of an RPS pipe.

Datapath Width w - applies only to RPS systems. This is the internal datapath width
through the buffering, subarray, and stage processor. Cells with w, bits are the widest

that can be directly streamed through the pipeline.

Processor Density p - is the amount of non-memory hardware, measured in IC packages
(chips) per processor, for one node or stage. For highly integrated processors, p < 1; for
processors built of many packages, p > 1. (We avoid counting memory here, although

for some real integrated processors both memory and processors reside on the same chip.)

Processor Instruction Time r - is the basic cycle time for a single low-level processor
instruction, e.g., one bit-computation in a bit-serial array node, or one template-match in

a cytocomputer stage.

The description of a task is also parameterized. It is assumed that a fixed number of local

instructions are to be performed on a fixed cellular grid. Four parameters specify a task:

Grid Edge Length E - a problem is represented on a square grid with E cells per edge.

Grid Cell Size b - each cell in the E X E grid has b bits. The entire grid has E2) bits.

e Processor Instructions per Operation [- is a normalizing factor allowing us to compare
arrays and RPS pipelines. I, and I, are the number of atomic node and stage instructions

respectively, to perform the same local operation in an array or pipeline.

° Algorithm Length K - a complete algorithm is composed of K local operations; it is an
instruction stream of length K. Using I,, I,, we can determine how many actual proces-

sor instructions are required to implement this on an array or RPS pipeline.

Given these parameters, an RPS structure is described by the 5-tuple
(N, ,M,,w,,p,,7,). An array structure is the 4-tuple (N,,M,,p,,7,). A task is the 5-tuple
(E,b,K,I,,1,); the inclusion of I,,I, determines how the task runs on an RPS or array struc-

ture.
Two final parameters measure tasks and systems:

° Total Processing Time T - T, and T, are the total times required to run a specific task on

a specific RPS or array structure, respectively.

® System Cost,C - C, and C, are the cost in IC packages of a specific RPS or array struc-

ture. C depends upon N, p, and M.

One approach to comparing RPS and array structures is to fix most of these parameters,
vary a few, and analyze the result. For example, a result of [LoMc80|] for cytocomputers may
be interpreted as follows: if N, =E? is fixed, I, =I, =1, and K < N,, then T, =T, implies
that 7, must decrease with increasing K. In other words, for any algorithm with fewer steps
than pipeline stages, the RPS structure can satisfy a fixed bandwidth requirement T with con-
stant stage cycle time r,, whereas a fixed array must decrease its cycle time r, with increasing
algorithm length. This applies, for example, to real-time image display. One purpose of this
section is to generalize this sort of analysis (i.e., remove the picture-processing constraints) to
encompass more general tasks and machines. Given the number of parameters here, it is easy
to formulate comparisons, but difficult to obtain insightful closed-form answers without trivial-
izing away most of this complexity. This section examines memory utilization, processing tim;e,
and cost X time product for representative systems and tasks. Before proceeding, we need to

make clear our assumptions about these RPS and array models.

The model for arrays makes the following assumptions. Arrays are always square, with
VN, processors/edge. They are virtual arrays in the sense of [Blan82, HoNS81] where M, /N,
bits of memory are stacked upon each node and large grids are folded onto the physical array.
We assume that edge mechanisms are provided to make this transparent. If a task with an
EXExb grid requires more memory than present in the array then the task cannot be per-
formed. In a real system, the grid would be sectioned and processed piecewise. This intro-
duces system-dependent effects--]O overhead, edge handling-- that are desirable to avoid in a

simple model.

The model for RPS structures assumes that the pipeline has N, stages with M, bits of
memory distributed across the line-buffers in the stages. Stages have 3 X 3 subarrays. Internal
datapath width is fixed at w, bits. A task with an EXEXb grid cannot be processed if the cells
are too big or the grid itself is too wide for the line-buffers. Again, a real machine might sec-

tion the grid to process it; we avoid this complication as with arrays.

The first area to examine is memory utilization. This answers quantitatively what it
means for a task to be ‘‘too large.”” An EXEXb grid is too large if it cannot be folded onto an
array, or if its rows are too large for the buffers in an RPS stage. Consider E™® , the largest
(squar.e) grid edge size, as a function of N and M for an array or pipeline. Let M =M, =M,
be fixed. The grid fits onto the array just if there is sufficient memory: M > E?b. Thus, for

an array:

112
E" = [—1:1] (3.10)

and the need to convert to an integer is ignored. E';m is independent of N, since M, is fixed.
In an RPS pipeline, we assume the memory is partitioned equally among the line buffers in NN,
stages. Each stage has two buffers of w,-bit cells. If all memory is in the buffers, E:m is the

length of each buffer, and so

2, E N, =M

which yields:

57

M
EY = oA (3.11)

Assume w, =) so that the cells can be processed in the RPS pipe. Then our basic result is:

E* > E ¥ for -1;1 > 4N,? (3.12)
For all but the smallest M, a practical pipeline (1-100 stages) satisfies (3.12). For example, if
at least 40000 cells of memory are distributed across a 100-stage pipeline, then (3.12) holds.
Hence, for a fixed memory size, the RPS pipe typically accommodates larger grids directly

without sectioning.

The next areas to examine are processing time and system cost for tasks running on com-
parable machine structures. We regard machines as incomparable if comparison examines only
tasks that run on\one machine but not the other, or if comparison examines systems of radi-
cally different sizes. To avoid this, we only compare groups of machines. Candidate array and
RPS machines are constructed by varying N, M, and p over reasonable ranges. Candidate tasks
are constructed similarly by varying E, b, K, I, and I,. We evaluate the cost, C,, C,, of each
machine and the time, T,, T, to execute each task on each machine. This creates a set a
machine X task X performance points. Two relationships are extracted from this data: pro-
cessing time as a function of problem size, and cost X time product as a function of problem
size. The edge length E is taken as the problem size. By plotting these machine points we

compare the relative performance over a range of RPS and array structures and tasks.

Consider a task to be executed on an RPS structure. Assume sufficient memory for the
buffers. The the cost of this structure is computed as:

M,

Co=pN: + oo To28

(3.13)

Note we assume that memory is measured in units of 256k-bit packages. The units for C, are
IC packages (chips). The time to process this task is the time to perform KI, subarray compu-
tations on an NN, stage pipe. There are two cases. If KI, is a multiple of the pipeline length,

then we require several passes through an N, -stage pipe, and processing time is:

T, = [%’-](N,(E+2) +E9)r, (3.142)

If not a multiple of pipeline length, we require one extra pass with a shorter pipeline to take

care of the last few instructions, and processing time becomes:

T, = k%](N,(E+2) + E%r, + ((KI, mod N,)(E+2) + E?)7, (3.14b)

14

The first term is the the time for pipeline passes with N, active stages; the second term is the
time for one pass through a shorter (KI, mod N,)-stage pipe for the remaining computations.

It is assumed that pipeline stages can be deactivated with negligible delay.

Next consider a task to be executed on an array. Again, assume sufficient memory. As

before, the cost is:

Co = peNe + 504

(3.15)

where memory is measured in 256k-bit packages; C, has units of IC packages. The time to
process the task is the time to perform KI, computations over the nodes in the array. The grid

is stacked onto the array if it is larger than the physical array. If E < /N,, the grid fits onto

2
the array without stacking. If E > /N,, the grid must be stacked or folded into [7%]
a

tiles. In either case, the processing time can be expressed as:

E 2
T, = [——\/_1—\,_‘—_-] Kl ,r, (3.16)

After choosing parameters, (3.13)-(3.16) are used to calculate time and cost. The param-

eters for a task are varied as follows:

E = 16, 64, 256, 1024, 4096 cells/edge
b = 32bits

K = 100, 1000 local operations

I, = 10, 100 instructions/array-operation
I, = 1 instruction/RPS-operation

This generates 20 unique array tasks and 10 unique RPS tasks. We have essentially normalized
with respect to the RPS structure by fixing I, =1. In addition, these parameters are fixed for

both RPS and array structures:

w, = 32bits/cell (same as b, width of grid cells)
M, = 32Mbits
M, = 32Mbits

Given that memory utilization for arrays and RPS structures has already been characterized,
w,, M,, and M, are fixed at reasonable values for real systems. Table 3.1 describes the range
of variation for N, p, and 7, and also [, I, for candidate RPS and array systems. Fig. 3.5 illus-

trates these ranges graphically.

The choices in Table 3.1 require some justification. N, p, and 7 are varied over ranges
from ‘‘small”’ to ‘‘large’’ values. Arrays are assumed to have bit-serial nodes, so I, > 1
instruction /operation, and we choose I, =10, 100 as reasonable instruction counts for 32-bit
cells. Further, arrays integrate at least one node per chip, so p < 1 chip/processor; they
operate with at most a 1 ps cycle time. These ranges are consistent with several real bit-serial
arrays [Blan82, Batc80, Aoki82, GrNE84|. RPS structures are assumed to have fewer, larger,
slower processors. However, these processors are more complex than a bit-serial node, thus we
normalize to I, =1 instruction foperation for 32-bit cells. The values in the table are motivated
by machines in the cytocomputer family, which have p, = 1-150 chips/stage, 7, = 0.1us to
2us |Loug84|. For both structures, it is assumed that larger systems attain a higher degree of

integration, and so p decreases with increasing N.

Note that this generates 9 candidate arrays and 9 candidate RPS structures. [xecuting
each task on each structure gives 180 array points, 90 RPS points. Partitioning by algorithm

length K, we compare 90 array points against 45 RPS points for K =100, 1000.

Fig 3.6 shows processing times T,, T,, and cost X time products C, T,, C, T, versus
problem size for algorithm length K = 100. T is displayed as log;o(seconds). CT is displayed
as log,o(packages X seconds). Each machine structure appears as a point on a graph. Groups of

related machines are shaded: arrays with I, =10, arrays with /, =100, RPS with I, =1.

Fig. 3.7 shows the same data for K =1000. Note that the corresponding regions are

nearly identical, except shifted one unit higher on the T and CT axes.

This exercise reveals three important points of comparison. First, the arrays exhibit a

smaller range of allowable problem sizes. As expected form the analysis of memory utilization,

. Speed (7), Size (p) : 3 ranges
Proc/Machine (slow) (medium) (fast)
N r,p, 1 r, o 1 r, p 1
(small) T, =lps 7,=100ns | r, =10ns
pa=l pa=l ps =1
4 X 4 array 1, =10, 100 | I, =10, 100 | I, =10, 100
(medium) T,=lps 7,=100ns | r, =10ns
ps =0.1 ps =0.1 p. =0.1
32 x32armay | ;10 100 | 1 =10, 100 | I =10, 100
(large) T,=lps 7,=100ns | r, =10ns
ps =0.01 ps =0.01 po =0.01

(medium) 7,=10ps T,=lps 7, =100ns
po =10 ps =10 ps =10
22-stage RPS pipe I = I =1 I =1
(long) 7, =10ps T, =lps 7, =100ns
Pe = pe =l ps =l
128-stage RPS pipe I =1 I, =1 I =

Table 3.1 Candidate RPS and Array Systems

Cycle-Time (T)

s RP .
s 9 o S (Number associated with column
00 10 1. is Packages/Processor density P)
10us 9 o L L
; ARRAY
Lus one o | n
100 ns < ome o |]
10ns « [[a
1 0.1 0.01
l ns L) L] L] | L L] L | L] L] L J L] L LR k) L
1 2 4 8 16 32 64128 K < 16K BUK

Total Processors { N)

Figure 3.5 Comparison of Candidate RPS and Array Systems

61

(wabus abp3 pram)zbot

v1 FA o1 8 9 v z
v “ 1
(001=1) Kexxy
[=]
(01=1) Aeily
(owp1 X 31500)otbot
00T=X °821S-Q01d SA 3WTL X 15800 :AVHYV
(wabuay abp3 prag)zbort
14 FA ot 8 9 v z
v
(001=1) Keray
=]
(ot=1) Aexiv
(owtL)otbot

00T=)X ‘9Z7S-WATQOXd SA BWTL :AVHYV

v

(wbue abp3 prr9)ZBot

148 FA o1 8 9 v z

T v-
o

(1=1) Sin .
(]
Zz
v
9
]

(awrlL X 303)otbot

00T=) ‘9Z1S-QO0Id SA WYL X 350D :§d¥
(wabus 8bp3 pray)ZHot

1 FAS o1] 9) z

7 9-
o !
T=1) St

(1=1) v
Nl
0
2z
v

(awtL)orbot
00T=)N ‘9Z[S-WaTq0ld SA awWl]l :Sd¥

K=100

Figure 3.6 RPS/Array Time, Cost X Time vs. Problem Size

(uabuaq abp3 prro)Zbot

4 b ot 8 9 v z
Q!
v
(00t1=1) iAe11y .
o
(01=1) Keirvy o
2z
v
9
]
(swpy x 3803)otbot
000T=) ‘9Z1S-Q0JXd SA OWI) X 31800 :AVYYY
(wibua abip3 prry)zbot
14 rAd o1 8 9 v z
T 9
L 2
(oot=1) &
t v-
o
(01=1) Asaay .
0
z
v
9

(awty)otbot
000T=)} ‘9ZTS-WaTQOId SA 3WTL :AVYNY

(wabua abp3 pras)zbot

144 zt ot 8 9 v z
QI
NI

0

2z

v
9
]

(awyy % 3500)otbot

000T=X ‘8Z1S-QO0Xd SA BSWTL X 31S0J :Sdd
(yabue abp3 pras)Zbot
14 FA S o1 8] v z
T 9-
8 |

(T=1) st v
NI

0

2z

v

9

(swt1)ovbot
000T=) ‘927S-WOTQOId SA 8wl :SdY

Figure 3.7 RPS/Array Time, Cost X Time vs. Problem Size: K=1000

th largest grids cannot fit without sectioning on the arrays, but can flow through the RPS pipe-
lines. Second, the arrays occupy a broader range of T and CT-that is, the candidate arrays
include faster, slower, larger, and smaller machines than the corresponding range for RPS
machines. However, the third, critical observation is that there is a common range of achievable
performance for comparable arrays and pipelines. Thus, one can choose either an array or a

pipeline to meet some fixed performance or complexity constraints.

This is an important observation for the following reason. The previous section discussed
qualitatively the desirable properties of RPS structures, and argued that arrays are not neces-
sarily the superior alternative in all engineering situations. The preceding analysis suggests that

these desirable properties do not degrade performance by several orders of magnitude.

Roughly speaking, the largest array systems perform better than the largest RPS systems.
This results from a fundamental structural difference. Recall the instruction stream interpreta-
tion at the start of this section. We consider an array to be large if N, ~ 10% to 10* processors.
Such an array is desirable because it processes one instruction for a large input grid in one step;
the larger the array the better. In contrast, the RPS pipeline processes several instructions in
parallel, one per stage. Long pipes, N, ~ 10? stages, are useful just so long as there are algo-
rithms of corresponding length. We shall show later that long pipes are useful in some DA
applications. Pipelines with 10° stages or more appear to be less useful for DA applications.
Finally, despite the fact that this section constructs metrics to analyze fixed tasks and fixed
structures, the ability to reconfigure a pipeline dynamically is of central importance in practical

applications. The cost and performance of real pipelines will change with pipeline length.

3.4. An RPS Environment for DA Studies

This section describes an RPS environment based on a commercial minicomputer and

commercial RPS hardware, integrated to support experiments on D A tasks.

3.4.1. Hardware and Software

Fig. 3.8 shows the global configuration of the system. The host is a DEC VAX 11/7801,
connected to an ERIM Cytocomputer II''; the host software is constructed as several layers

running in UNIX 4.1bsd"!!. The hardware is described first, followed by the software.

The RPS hardware consists of a cell-buffer, a global controller, and a pipeline of subarray
stages, with properties summarized in Table 3.2. Cytocomputers exist in MSI and LSI imple-
mentations. Custom LSI and semi-custom stages have been fabricated with 74, between

100ns and 2us. The hardware used in this system is a prototype for subsequent models.

Each stage has a 3 X 3 subarray to process 8-bit cells, and performs the following steps in

one 7, cycle (see [LoMS80] for details):

Step-1: A cell enters the stage, is biased (normalized) or has some of its bits masked.

Step-2: The nine cells of the stored subarray are transformed into a nine-bit vector. Each bit
is a true/false decision about each cell, the result of a threshold comparison with an
arbitrary constant. This vector is an address into a table.

Step-3: A new cell value is selected from the following: the old center value in the subarray,
the largest value in the subarray, or the value in the table addressed by the nine-bit
address from (2).

Step-4: The cell from (3) is unbiased and unmasked, i.e., step (1) is selectively undone. It

is possible to alter only a single bit in this cell as a function of all the bits of the
subarray.

Step-5: The cell from (4) addresses another table to produce a modified cell value. This
table is used typically for Boolean operations on bits or for further arithmetic biasing.

Step-8: The cell from (5) is injected into the output stream. It occupies the same location in
the output grid as the center cell of the current subarray.

Consistent with the model of one state-transition, the computed value of Step-6 is never
retained internally for further computation. Neither is there any extra storage for temporary or
global data. This property of the cytocomputer stage will be referred to as statelessness. This
stage architecture, and statelessness specifically, reflect design choices motivated by the image-
operators of Sec. 3.2.2. The bias-values, masks, constants, and tables in Steps 1-6 are the
instructions for a single stage, called a stage pfogram. Because the stage depends heavily upon

table look-up the perceived format of the bits in each cell is arbitrary. Unlike the general RPS

'VAX is a trademark of the Digital Equipment Corporation.
"Cytocomputer is a trademark of the Environmental Research Institate of Michigan.
tHUNIX is a trademark of AT&T Bell Laboratories.

DA ENVIRONMENT

OTHER DA TOOLS

RPS-APPLICATIONS

ROUTE
DRC

APPLICATION-
SUPPORT

DEBUGGERS
CODE GEN

HIGH-LEVEL
FUNCTION LIB

PORTABILITY
SECURITY

DEVICE LEVEL

UNIX

HOST

LOW-LEVEL [0 | e

RPS
SOFTWARE
ENVIRONMENT

VAX 11/780 r—

CELL INSTRUCTIONS

CELL

PIPELINE
CONTROL

_L-l STAGE PROGRAMS

R
oo

CELL STREAM cumipp-

RPS HARDWARE: CYTOCOMPUTER II

Figure 3.8 RPS System Configuration

Component

Description

RPS Hardware

Cytocomputer II

Subarray Stage

3 X 3, limited arithmetic
extensive table-lookup

Cells, Line-buffers

8-bits/cell, 4096 cells/line

Cell-buffer | 256k-cells
Tstage | 288
Pipeline Length | Variable

Pipeline Controller

Microcoded, with
low-level instruction set

Host | VAX 11/780
Host-RPS Connection | 16-bit DMA channel
Host 10-overhead | ~ 15-30ms/RPS-command

Table 3.2 RPS System Hardware

stages discussed up to now, each stage-computation on this hardware is one atomic step.
Despite the general template-match architecture (Steps 2,3) the table mechanisms exhibit

sufficient side-effects to accomplish some of the computations necessary for DA problems.

The system is configured as a host with an attached cytocomputer. The host sends
instructions to the globd controller, a microprogrammed unit that programs the stages and
manages the pipeline. The controller provides a low-level instruction set (that is, one not dedi-
cated to a specific application) to process grids through the pipeline. In a typical processing
step, the host deposits a grid in the cytocomputer cell-buffer, instructs the controller to send it
repeatedly through the pipeline and back into the buffer, then retrieves some portion of the

processed grid from the buffer.

The ideal pipeline processing time 7,,,(S, X, Y) for 3 X 3 stages given in equation (3.4)
is affected by the system configuration. The actual time to process an X X Y grid K times

through an S-stage pipe (i.e., KS computation steps) is at worst:

Tos Tyt ST + K750 (5,X,Y) (3.17)
K 54 is the basic time for K pipeline passes. The other terms are lumped delays: 7; the time
to initialize the pipeline and S the time to set up all S stages. These terms arise because of
the non-negligible time to dispatch low-level instructions from the host to the controller.

Although small, these delays are always larger than 7,,., e.g., 15ms versus 2us on our

67

hardware, yielding an effective cost of several thousand subarray-computations for each con-

troller instruction.

Users interact with the RPS hardware through layers of software running on the host.
Earlier cytocomputer environments have been dedicated to picture-processing, and based upon
an interpreter running image-operators in the pipeline. These sufficed for early feasibility stu-
dies [MuLT81a, MuLT81b, MRLA82, RuMA83a] but proved neither flexible enough nor fast
enough for large-scale DA applications. The new environment is designed is to make DA
application development appear to be ordinary software development by hiding details of the
RPS hardware. Host software is divided into five layers. All software is written in C. The

layers have the following functions, from bottom to top:

o Device Layer
This layer provides the ‘physical connection from host to pipeline. Command dispatch,
hardware interrogation, grid 1O, pipeline processing, and synchronization with the host are
provided at this level. These device drivers fit into the UNIX kernel to provide standard

logical entry points (read, write, etc.) to the physical RPS hardware.

¢ Function Library Layer
This layer provides high-level entry points to the hardware and has three purposes. First,
it insulates the higher level application layers from the hardware, thus allowing them to be
debugged concurrently with lower levels. Second, it encourages portability: large applica-
tions which access the hardware only through these entry points can be moved to other
hosts if the device and library layers can be ported. Third, it makes application develop-
ment easier and safer by providing complex functions not actually available as primitives
in the RPS hardware, and by insuring that dangerous system functions are inaccessible to

the average user.

o Application Support Layer
In this layer reside software tools to support development of RPS application codes. We
have implemented an interpreter to allow interactive debugging of stage programs running

in the pipeline. There is also software to support construction and analysis of stage pro-

grams. These tools suppress enough details of the pipeline hardware to make it possible

to regard application development as ordinary software development.

¢ DA Application Layer
This is where user codes such as routers, rule-checkers, etc., are written. An RPS-based
tool must mesh with the other tools in the overall DA environment, and with the actual
pipeline hardware. An application consists of host programs and stage programs.

e DA Environment Layer
DA tools necessarily talk to each other. This environment is simply the aggregate set of
DA tools into which a specific RPS-based tool must fit. Without this fit, the RPS

hardware is useless, since it cannot acquire tasks built by other tools or pass on its results.

The lowest three levels are essentially fixed, and are implemented as approximately 4700
lines of C. DA application and environment codes vary. As an example, software for one-
layer, two-layer, and global routing experiments totals about 13,500 lines of C for these higher
layers. Because this thesis concentrates largely on maze-routing there has been extemsive

software development to support this task.

3.4.2. RPS Application Design

We sketch here the steps required to develop DA applications in the prototype RPS
environment. This is the methodology followed in the design of the experiments presented in

the following chapters. There are three steps:

o Partition tasks into local and global sub-tasks

Roughly speaking, the pipeline performs local grid computations, and the host does most

else.

e Design and debug local algorithm
Local computations are implemented as a series of stage programs in the pipeline. Design
involves the choice of the grid cell encoding (loosely analogous to a data structure), and
the mapping of the necessary computations onto the available stage architecture. One

apparently atomic calculation may require several stages. The local algorithm is physically

a C program which emits all the necessary raw stage programs. These can be debugged in

isolation using the interpreter; they can be interactively executed in the pipeline.

¢ Design and debug giobal algorithm
The global algorithm is responsible for grid 1O, pipeline processing, and anything that can-
not be mapped into local stage programs. Because cytocomputer stages are stateless, and
because the pipeline controller provides only limited functions, all global data movement
ard global computations are done on the host. This global algorithm is implemented as a
set of C programs that access the pipeline through the lower level layers. Much global
design is concerned with optimizing grid 1O, pipeline reprogramming, etc, to minimize the
communication overhead between the host and the pipeline. This code, like any ordinary
piece of software, is debugged by running it. Lower level software insures that errors or
program aborts are handled gracefully in the RPS hardware. In addition, these levels pro-

vide some simple tracing functions.

3.5. Summary

This chapter analyzes RPS architecture in detail. We show that the class derives from the
notion of pipelined serial subarray computation and serves as a template for hardware with this
structure. Antecedents to this idea are surveyed. The RPS class is the appropriate level from

which to proceed toward D A applications.

Some terminology for describing RPS systems is introduced, and basic performance issues
are analyzed. It is shown that RPS structures have several desirable engineering properties
related to DA applications. Further it is shown that performance is not seriously compromised,
relative to comparable array structures, to attain these features. A prototype hardware [software
environment for RPS DA experiments is outlined. With this background, subsequent chapters

proceed to study DA problems in this environment.

CHAPTER IV

ROUTINGIN AN RPS ENVIRONMENT

4.1. Introduction

This chapter examines maze-routing in an RPS environment. We first review maze-
routing in context with other routing techniques, then introduce the basic mapping of a maze-
routing algorithm onto an RPS pipeline, and sketch the central issues to address in order to
construct functional routers. We then construct a sequence of increasingly complex routers for
our prototype RPS environment: a one-layer router, a two-layer router, and a global router.
Local design, global design, and experimental performance measurements are described for
these systems. Generic optimization issues uncovered in these experiments are analyzed.

Finally, we examine a few interesting connections to other work.

4.2, Maze-Routing Reviewed

Maze-routing, as originated by Lee in [Lee6l], is a technique to find a path between

points in a cellular grid optimal with respect to some cost metric!. These cost metrics are called
path-functions. The most common function is simply path-length, and hence the algorithm can

be used to find shortest paths.

We illustrate basic maze-routing using the shortest path metric. There are three phases in
the algorithm: wavefront-ezpansion, backtrace, and cleanup. Given a grid whose cells are labeled

as free or blocked, the goal is to find a shortest path from a source cell to a target cell, where a

Lee's work showed how to find a path in a cellular grid, and is based on earier work by Moore [Moor59] that
finds a shortest path between vertices in a graph, which Moore terms a mase. Routers based on this idea are often
called Lee or Lee-Moore routers.

70

71

path may cross a free cell, but not a blocked one. The pair of source and target points is called
a nel, or a from-lo; in general a net may contain any number of points. In simple form, maze-

routing works as follows (see Fig. 4.1):

¢ Wavefront Expansion
Thié phase effectively labels a grid cell at location (z, y) with the length of a shortest path
from the source to that cell. Labeling proceeds in a sequence of wavefronts expanding
from the source cell. Cells on each wavefront are equidistant from the source. This pro-
duces the characteristic diamond-shaped wavefront in Fig. 4.1. At each step, the set of
labeled cells with neighbors not yet labeled is the wavefront. These cells and their neigh-
bors are active in the sense that computations are performed on them. Wavefront neigh-
bor cells can be labeled with the length of a shortest cell-to-source path because they are
adjacent to previously labeled cells, i.e., this requires only local computation. Neighbors
thus labeled are added to the wavefront; cells all of whose neighbors have been labeled
are said to be ezpanded and are removed from the active wavefront. One step in this pro-
cess can be viewed as breadth-first search of depth one in the area adjacent to the labeled
region. The order in which cells are visited here is called the ezpansion-order. This phase

terminates when the target cell has been expanded (success) or when no more cells an be

labeled (failure).

¢ Backtrace
This phase traces an optimal path from target to source through the expanded cells. In
practice, it is unnecessary to label cells with the values of the path-function (distance-to-
source in Fig. 4.1). We need only record in each cell sufficient information to find a path

back and relabel it as such.

¢ Cleanup
After a path has been traced, the final phase is to remove from the grid all extraneous

labels placed during the wavefront expansion phase, and relabel the path found as a new

obstacle.

72

START

211234 2|1 (2l3]a 2(1]2]3]a

1{sf1]2]3]a 1{s{1f2]3]a 1lsf{il2|3]e

21|23 21|23 2 2|3
E—

s{2s 3 3 :|s

4 | onpy 4 T 4 \

‘4 4 ‘4

Figure 4.1 Maze-Routing Phases

This basic algorithm has been subject to substantial elaboration and refinement (see
[Souk81, High83] for surveys). Research has focused upon the wavefront expansion phase
because this phase consumes the most CPU resources: execution time is proportional to the
number of cells expanded to find each path; memory storage size depends upon the number of
bits required to encode each cell. [Aker67] originated a widely used cell-encoding requiring
only 2-bits/cell, applicable when the path-function is shortest distance. Most work, however,
deals with algorithms and data-structures for the expansion-order problem. |Hoel76] examines
efficient list structures to manage the active wavefront cells and the search for cells to expand.

[Rubi74] presents a depth-first cell expansion algorithm which expands preferentially toward the

73

target, thus visiting fewer cells and requiring less execution time. [Korn82] presents an imple-
mentation based on preferential expansion. [Souk78| discusses speedups obtained by control-
ling the expansion-order. [JiKo81] expands independently in the four quadrants surrounding
the source cell. [Aker72, TYKS80] impose an arbitrary frame around a net to be routed, and

expand only within the frame, thus limiting the admissible cells to be searched.

Maze-routing has two basic advantages over other routing techniques. First, it usually
guarantees that a source-to-target path will be found if one exists. Second, paths can be optim-
ized with respect to complex objective functions, for example, via-consumption and electrical
cross-talk can be minimized, cross-over and pin-blocking can be avoided. This flexibility
enables maze-routers to be used in a variety of routing applications and technologies. These two
advantages, however, are costly, and the maze-routing approach has four main disadvantages.
First, maze-routing requires large amounts of storage because of the grid representation. Com-
plex path-functions which require complex cells only exacerbate the problem. Second, because
of cell-by-cell expansion, maze-routers have long execution times. Third, despite guaranteed
path-finding ability, maze-routers typically consider only one net at a time. There are no
guarantees in the topological sense that all nets in a problem can be routed: paths found early
may block later paths. Moreover, the fourth disadvantage is that the approach admits less for-

mal, topological analysis of routability than other approaches.

Because of these disadvantages, maze-routing has been somewhat supplanted in recent
years by other techniques, notably line-probe routers for printed circuit board (PCB) problems,
and channel routers for LSI/VLSI problems. Maze-routers have not disappeared, however.
Commercial maze-routers are widely available for multi-layer carriers. Because of their path
finding ability, they are widely used as overflow routers to embed those final nets unroutable by
other means. They are also used as global (loose) routers, which assign nets loosely to routing

regions (channels) but not to detailed wiring tracks; see [SoRo81, NHLV82|.

The disadvantages of maze-routers are not necessarily unresolvable. [High83| argues per-
suasively that the storage and time penalties associated with the approach are largely mitigated
by modern virtual memory machines. The longer execution times can be viewed as the cost of

the added flexibility. Intelligent use of penalties in' the grid, and a path-function that finds least

74

costly paths, e.g. [High83, NHLV82, Korn82] reduces the one-path-at-a-time congestion prob-
lem. Moreover, maze-routing has been the exclusive technique embodied in DA routing
engines, where the inherent parallelism of the expansion phase can be exploited to reduce exe-
cution time. This chapter focuses on how we might retain the advantages of maze-routing, and

reduce the time burden by using RPS hardware.

4.3. Elementary RPS Maze-Routing

This section outlines how a maze-routing algorithm can be mapped onto RPS hardware,

and presents some elementary performance comparisons for software, array, and RPS maze-

router implementations.

Consider again the three phases of a maze-router: wavefront expansion, backtrace, and
cleanup. Wavefront expansion is an inherently parallel cellular task. Cells are labeled based
only on the status of neighboring cells, and all active cells can be labeled in parallel. Wavefront
expansion is thus a candidate for RPS hardware. Fig. 4.2 illustrates how wavefront expansion is
implemented in one subarray stage. We assume that the computation required to label a cell
can be realized as one subarray computation. As the grid flows through the stage, each cell

with neighbors on a wavefront is labeled as being on the wavefront. We call this one wavefront

OUTPUT GRID

.hew WAVEFRONT

Figure 4.3 Wavefront Expansion in One Subarray Stage

75

ezpand step: it is the addition of one layer of cells to an existing wavefront. The grid emerges
with the wavefront expanded one cell in each direction. In terms of the internal mechanics of a
stage, we relocate a newly computed cell by injecting it onto the output, and do not overwrite
the subarray storage or buffers. In this we again emulate a space of state machines. However,
unlike state machines, there are several useful global computations that can be performed as
the grid flows by. For example, it is useful to count how many cells are expanded, and to flag

when a target cell is expanded.

Although simple, the implementation of wavefront expansion by a single-stage RPS pipe-
line is unappealing for the reason that all grid cells must be examined, even though only wave-
front neighbors are being labeled. Compared to software approaches which maintain only a list
of active wavefront cells at each expansion step, the hardware approach seems quite inefficient.
Brute-force, in the form of fas-t stage hardware, mitigates this problem somewhat, but a single

stage exploits none of the parallelism of wavefront expansion.

An RPS pipeline can expand cells in parallel as shown in Fig. 4.3. Each stage operates on

a different version of the grid, and expands a different wavefront. That is, stage k has within

1]
1

] stace 1 &b STAGEJ-G-) 000 —P| STAGE K ==

Figure 4.3 Wavefront Expansion in an RPS Pipeline

76

its buffers a few rows of the grid on which (k-1) wavefront expands have been performed.
Stage k emits a grid on which k expands have been done. Note that the kth version of the grid
never exists in one place at one time. An S-stage pipeline adds S layers of cells to the active
wavefront, performing S wavefront-expands in our terminology. In practice, it is the combina-
tion of stage speed and pipeline length that exhibits a potential speedup of the wavefront

expansion phase,

The backtrace phase proceeds when a target cell has been expanded. Unlike wavefront
expansion, backtrace is entirely sequential: exactly one cell on the path is traced at each step.
Backtrace still requires local grid computations to determine the direction of the trace to the
next cell. It is possible to implement this in the pipeline, but it is extremely inefficient: each
stage relabels exactly one cell, and ignores the rest. Backtrace is best handled by an ordinary

serial processor such as the host.

The final cleanup phase removes extraneous cell labels and marks the traced path
appropriately so that further nets can be routed. Cleanup is clearly a parallel activity since all
cells can be labeled concurrently. It might appear that cleanup is actually a scalar activity in
which cells are relabeled based solely upon their own value, and not upon their neighbors. This
is not the case if the traced path is to influence subsequent nets at a distance. Regions adjacent
to vias or bends in the path may be labeled with increased penalties, so that future nets pre-
ferentially avoid these areas to minimize congestion or crosstalk. Hence, cleanup, like wave-
front expansion, also requires local processing. Unlike expansion, it is independent of path

length, and will generally require only a few subarrary computations (i.e., a short pipeline).

It is illustrative to compare the basic performance of software, array, and RPS implemen-
tations of maze-routers. Because wavefront expansion dominates execution time, consider only
this phase. Fig. 4.4 gives a simple problem: search for a path of length L in the grid shown.
The shaded area shown includes all cells within 2 Manhattan distance of L; the maximum
wavefront is at a Manhattan radius of L. In the worst case, all cells within Manhattan radius L

from the source will be expanded.

2L+1 cells/edge

— WAVEFRONT

~~SOURCE

Figure 4.4 Wavefront Expansion Problem for Comparing Maze-Routers

An ordinary software implementation will at worst visit each cell in the shaded area Its

time complexity is the number of cells expanded here:

Toroare =2L2+2L +1=0(L? (4.1)
It should be noted that we have tacitly assumed a shortest distance path-function which never
revisits labeled cells. More general path-functions may revisit labeled cells, because the shor-
test path, which is found first, is not necessarily the least costly. This can increase complexity
to as much as O(L 3) [NHLV82|, but ordinarily few cells are revisited. Next, consider a square
array structure with P processors. Assume L2 > P, so that the grid must be partitioned into
separate tiles and folded onto the array. Wavefront expansions must be performed on each tile,

so from (3.16) the time complexity is:

Tomy = %;“.,-1- rL =o[£P1 (4.2)

Finally, consider an S-stage RPS pipe where L > S. Assume one stage has a 3 X 3 subarray
and suffices for one wavefront expand step. Then one pipeline pass performs S wavefront
expands, and approximately L /S passes are needed in all. Using (3.14a) this gives time com-

plexity:

78

Trps =l-’§-] [S(2L +1+4+2)+(2L + 1)2] =o[-’-‘si] (4.3)

These rasults do not immediately suggest any speedup: although time decreases with additional
processors, the comparison with software yields speedups of O(S/L), O(P/L), for RPS and
array structures, respectively. A design goal for array structures is to have the area of expan-
sion fit onto the array with'only a few tiles, i.e, L2~ P, which reduces T,,,, to O(L).
Ideally, the array is as big as the entire routing grid (as with the machines of [BrSh81, Iosu80]),
so that each wavefront expand step takes O(1) time steps. Design goals for an ideal RPS system
are less obvious. However, if L= S, then O(1) pipeline passes perform the necessary expan-
sions in O(L?) time steps. In practice, the potential speedup for an RPS structure, compared
to an O(L ?) software implementation, arises from two sources. First, we assume special stage
hardware to expand cells rapidly. Second, there is no overhead associated with managing lists
of active wavefront cells: the grid is accessed rapidly in simple raster order, injected into the

pipe, and emitted with all the appropriate cells labeled.

Software implementations exhibit no parallelism. At each expansion step, at worst O(L)
wavefront cells are expanded. Array implementations trade space complexity (processors) for
speed. However, only cells adjacent to the wavefront are actively "processed”; most grid cells
are inactive and are ignored. [Adsh82a] cites an average of only 60 cells labeled in each wave-
front expand step on the 4096 processor DAP array router. RPS hardware is less parallel than
an array: S stages can expand S cells concurrently, but all cells, even inactive cells, must be
examined as they stream through the pipe. Because cells flow through the pipeline at a con-
stant rate, the subarray-computation that ignores an inactive cell takes as much time as the

computation that expands an active cell.

The design of practical RPS routers raises several questions in light of these comparisons.
These include system-level effects such as communication overhead in the host environment,
the O(L?) performance problems for long nets or large grids, and the effects of varying pipe-

line length. To address these questions we design and analyze three different RPS routers.

79

4.4. One-Layer Routing

We first construct a router to connect multi-point nets in a single interconnect layer. This
router functions in the experimental RPS environment described in Chapter III. (Local design is
addressed first, followed by global design. Performance characteristics are deduced from meas-
urements of single-net routing experiments. The RPS router is then compared with a software

maze-router for a PCB problem.

4.4.1. Local Design

Local design is concerned with local computations on grid cells. The limited arithmetic
capabilities and cell size of cytocomputer subarray stages preclude the use of any path-functions
that require grids with weighted cells; it is impossible to manipulate cell costs or penalties in
these stages. Hence, we construct a unit-cost maze-router (crossing any cell incurs the same
cost) to find paths of minimum length. Wavefront expansion, backtrace, and cleanup are con-

sidered in turn.

Several minimal-size cell encodings are possible for wavefront expansions. The basic
requirement is that each wavefront be distinguishable from the preceding and succeeding wave-
fronts, and that sufficient information is présent in the grid to trace a path. We choose a
modified version of the encoding used for the L-Machine router [BrSh81]. Cells are encoded

with the following alphabet:
A llayer = { s0urce, targel, free, blocked, 1, |, «—, —, tracel, lrace], trace—, trace— }

To route a 2-point net, we find a path over free cells from a source cell to a farget cell. Wave-
fronts are marked with source-pointing arrows. Each cell on a wavefront is equidistant from
the source and begins a unique path to the source. Wavefront expansion is illustrated in Fig.
4.5. Expansion proceeds until a target is relabeled with an arrow, at which time there is a
unique shortest path along the arrows to the source. To describe the necessary subarray-
computations, we refer to cells in the 3 X 3 subarray by compass directions. Although imple-
mented as an atomic template-match in the subarray stage, expansion can be expressed algo-

rithmically as in Fig. 4.5. A cell is added to a wavefront (given an arrow label) if it has an

ONE WAVEFRONT EXPAND STEP:

p— . p——

L]

ROUTING GRID AT ROUTING GRID AT
TME =T TIME = T+1

Glven: 3 3 X3 subarray in the routing grid.

Task: expand subarray center cell.
Algorithm: Wavefront_Expand
begin

active_labels := {t, |, ~, —, source }

If center = free

then begin
if north In active_labels
then center :={
else If west In active_labels
then center ;= «
else If east In active_labels
then center ;= —
else if south In active_labels
then center ;= —

end

end

Figure 4.5 One-Layer Local Wavefront Expansion Algorithm

active free neighbor marked as an arrow or a source. The arbitrary order of tests in the algo-
rithm resolves path conflicts: several shortest paths may exist between two points, but we elect

the unique one determined by the ordering.

This design also suffices for multi-point nets. Using the conventional approach of
[Aker72|, one net point is a source and the rest are targets. After wavefront expansion reaches

at least one target, each target-to-source path is traced. The shortest path is selected, and each

cell on it is relabeled as a new source. Wavefront expansion proceeds again using the entire
path as a source. This continues until all connections in the net are made. In this manner

Steiner-points--connections in the middle of wire segments—are constructed.

Backtrace follows the source-pointing arrows from a target to a source. Backtrace can be
performed in the pipeline, with each stage tracing exactly one cell as the grid goes by. This is
the approach taken in our early feasibility studies [MRLA82, RuMA83a] and is extremely
inefficicnt due to the entirely sequential nature of the processing?. A better approach is to per-

form this operation on the host. The algorithm appears in Fig. 4.6. Backtrace adds a frace label

81

a target cell marked with an arrow.
trace path to source, marking cells; compute path length.

cell := target
path_length := 0

If cell = 1 then begin
cell ;= tracet
cell := north(cell)

end

else If cell = « then begin
cell ;= trace—
cell := west(cell)

end
else if cell = -~ then begin
cell := trace—
cell := east(cell)
end

else if cell = | then begin
cell ;== frace|
cell ;= south(cell)
end

path_length := path_length + 1

untll cell = source

Glven:
Task:
Algorithm: Backtrace
begin
repeat
end

Figure 4.8 One-Layer Local Backtrace Algorithm

2Farly studies adopted this approach only because of the inability to remove the grid from the interpreted image-
operator cytocomputer environment for host processing. The new RPS environment of Chapter Il was designed to ad-

dress these sorts of difficulties.

to each cell on the trace path, and computes the path length. That is, wavefront labels 1, |, «,
—, become trace labels tracet, trace}, traces—, trace—. The algorithm shown suffices for 2-point
nets. For multi-point nets, we first suppress the relabeling of cells and simply compute the path

length for each target-to-source path. Then the shortest path is marked with {race.

Cleanup removes extraneous labels from the grid, setting it up for the next net to route,
With this encoding scheme, cleanup is actually a scalar operation; each cell is recomputed from
its own value and not its neighbors. This fits well with the table-lookup mechanisms of the
current hardware. The only complication here is this need for two separate cleanup routines:
final-cleanup, in which a traced net becomes an obstacle for future nets, and intermediate-
cleanup, in which a traced segment of a multi-point net becomes a gource for future expansions

on the same net. Fig. 4.7 shows the algorithm based on simple table-lookup for each cell:

The encodings and algorithms chosen here have the virtue of being simple. In particular,
those phases performed in the pipeline require only one subarray computation (one stage) per

step, as summarized in Table 4.1. The advantage of this simplicity is that we may examine the

Glven: a 3X3 subarray in the routing grid
Task: mark traced cells as blocked for final-cleanup, source for intermediate-cleanup.
Algorithm: Intermediate_Cleanup ‘

begin

ifcellin {1, |, ~, =}
then cell := free
else if cell In { tracet, trace], trace—, trace— }
then cell ;= source
end

Algorithm: Final_Cleanup
begin
ifcellin {t, |, ~, =}
then cell ;= free
else if cell In { tracet, trace], trace—, trace— }
then cell := blocked
end

Figure 4.7 One-Layer Local Cleanup Algorithms

effects of multi-stage pipelines because we do not need the entire pipeline to perform one

wavefront expand or cleanup step.

| Phase Implementation Function
Wavefront-Expand | 1 stage/expand | Expand cells
Backtrace Host Trace paths
. Remove expanded cells,
Intermediate-Cleanup | 1 stage/cleanup mark path as source
. Remove expanded cells,
Final-Cleanup | 1 stage/cleanup mark path 2 obstacle

Table 4.1 Local Design for One-Layer RPS Router

4.4.2. Global Design

Global design is concerned with the movement of grids through the pipeline, pipeline pro-
gramming, and host processing. We treat first the O(L?) performance problem raised in the

analysis of elementary RPS routers, and then treat the system-level data low in our implemen-

tation.

The analysis of wavefront expansion in an RPS pipeline suggests that the method to find a

path of length L is to process the routing grid with roughly L /S passes through an S-stage pipe-

line. This method has three serious flaws:

o Unreachable, Unexpandable Cells

Consider again the example of Fig. 4.4 in which all cells within Manhattan radius L of a
source cell are expanded to find a path of length L. Note that the diamond-shaped area

of expanded cells occupies at most only 1/2 the entire routing area, that is, only half of all

cells can possibly be expanded, but all cells must stream through the pipe.

o Short Wires in Large Grids

Most nets in a practical problem occupy much less area than the routing grid representing
the entire problem. For example, in gate array routing, 70% to 80% of all nets are shorter
than 10% of the chip edge length. Hence, passing the entire routing grid through the

pipeline to find short nets is extraordinarily inefficient because of unexpandable cells.

¢ Long Wires
Some nets in practical problems are necessarily very long, and occupy large regions of the
routing grid. Such nets can easily exceed the length of a practical pipeline (10-100 stages)
by an order of magnitude. Again, we find the problem of unreachable cells: despite the
fact that the final path occupies a relatively large region of the grid, each pipeline pass
only extends a wavefront outward a distance O(S) for an S-stage pipe. L /S >> 1 passes
are required, and on many passes most grid cells are unreachable and inactive. Thus,
intermediate stages of the expansion resemble the problem of short wires in large grids.
Moreover, we necessarily revisit labeled (expanded) cells on subsequent pipeline passes.
This is of some use with weighted path-functions which occasionally revisit cells, but for

our unit-cost router this is only unavoidable overhead.

We attack these three problems by restricting the area of wavefront expansion around a net;
this is the notion of framing. A variety of frame-like techniques have been applied to software
maze-routers, e.g., [Aker72, TYKSS80, SNBS84]. These techmiques rely on the fact that in
practice most nets are routable near their minimum lengths, and do not extend much beyond

the minimum bounding rectangle around their points.

Fig. 4.8 illustrates the basic idea of static framing. Around a net's minimum bounding

ROUTING GRID
STATIC MAXIMUM
BOUNDING FRAME
NET
POINTS MINIMUM
BOUNDING FRAME

Figure 4.8 Static Framing

frame we size 2 maximum bounding frame which delimits the area in which cells are to be
expanded. - These frames are always rectangular. Given a set of net points, we abbreviate their
minimum bounding frame as mBF, and maximum bounding frame as MBF. Static framing
mitigates the first problem discussed, that of expanding isotropically from a source: it is rarely
necessary to search equally in all directions because, given a source cell, we know where the tar-
get cells are, and can confine the search to an appropriate frame. This also solves the second
problem of short wires in a large grid: the net is framed, and only the frame, not the entire
routing grid, is passed thfough the pipe. This assumes that the pipeline hardware can manipu-

late arbitrary rectangular subarrays in a cell buffer, which is true for our prototype system.

The third problem, nets long relative to the pipeline length, is addressed similarly with the
idea of incremental framing. The entire net, large now relative to the routing grid, is again
framed as in Fig. 4.8. Consider a 2-point net. Construct a sequence of nested incremental
frames, extending outward from the source cell, but never exceeding the bound of the MBF.
Wavefront expansions are performed incrementally in each frame as shown in Fig. 4.9. The
idea is to dynamically resize a frame just ahead of the expanding wavefront and so minimize
the number of unreachable cells processed through the pipe. Frame size determines the time

to process each incremental expansion in the pipeline.
There are several important points to note about framing:

° To begin, we need an estimate of the spatial extent of the net to size a static MBF. To
determine an incremental framing sequence, we need an estimate of the length of this net

which fixes a lower bound on the number of needed wavefront expands.

° Given the unit-cost encoding employed in the local design for the one-layer router, it is
necessary that a wavefront never run into a frame boundary: to do so destroys the guaran-
tee that all cells on a wavefront are equidistant from the source. However, wavefronts

can run into the MBF since we will never search beyond this boundary.

. If frame k+1 is larger than frame k by f cells in each compass direction, no more than f
incremenﬁl wavefront expands can be performed in frame k+1. For an S-stage pipe,

f > S implies several pipeline passes per incremental expansion step; f < S implies one

|- MBF
SOURCE »>8

] — TARGET

REFRAME * EXPAND

EXPAND

Figure 4.9 Incremental Framing

pass through a shortened pipe.

Eventually, one frame in an incremental sequence becomes large enough to become the
fixed MBF surrounding the net. At this point, there are no restrictions on the allowable

number of expansions in this frame since we will never look for a path that crosses the

MBF.

Multi-point nets can be accommodated in an incremental framing scheme also. When a
2-point segment is routed, the first frame is ostensibly just a single source cell. Subse-
quent frames surround it as the expansion wavefront grows outward from the source. For

multi-point nets, we start instead with the mBF of those segments already traced, which is

87

effectively a source frame instead of a source cell. Subsequent frames increase outward

from this source frame.

. There is host overhead incurred to resize a frame in the RPS hardware. The host must
compute the necessary frame size and set it up in the hardware. The time penalty due to
communication overhead is large relative to one subarray-computation time. This
immediately suggests an optimization problem: how to choose a framing sequence as a

function of the spatial extent of a net, the pipeline length and the host overhead.

Incremental framing implies a tradeoff between overhead and pipeline time. A sequence with
too many incremental frames, each close in size to the next, minimizes the pipeline time by
reducing the number of inactive cells processed, but maximizes the overhead of reframing.
Choosing instead fewer frames minimizes framing overhead, but maximizes the pipeline time

by processing wasted cells.

Given a multi-point net, the choice of MBF, sequence of incremental frames, and number
of trial expansion steps constitutes a framing strategy. Our implementation parameterizes a stra-

tegy as follows.

. If the minimum bounding frame for the net has dimensions X,,,, Y.., a static max-
imum bounding frame is constructed by extending the minimum frame a distance X,;; in

both horizontal directions, Y,; vertically, where:

Xt =0: X + 8, Yo =ay Yomin + by (4'4)
Let Xuﬂ, Xnghtv Ygo, , Ybodon define a frame. Then:

/Yl:/l;u = X?’e'};n' Xc:t ’ Xv”y‘ﬁ = X:}?ﬁ + Xezt

Y, =y Y, Yre = yme Y, (45)
top = Stop T ZLest sottom = LYogttom + Yent

. Incremental frame k+1 is constructed from frame k by extending it at most f cells in
each compass direction, subject to the constraint that it never extends past the MBF.
Incremental frames are bounded by the maximum frame. [is the frame-increment, the
maximum allowable incremental expansion allowed in one frame which determines how
many pipeline passes are required to process expands in each frame. This defines a very

simple heuristic: constant-increment, isotropic framing. Frame k+1 has dimensions:

Xef' =min(Xy - £, X9, X1 =min(Xiy + £, X745)

- : (4.6)
Yti:‘l =mm(Ytakp - !7 Yt:'p“) ’ tho‘t'f.c}m =mm(thmom + fy Yb’:gm

Frame k-1 is the last frame in the sequence when it has the same dimensions as the

MBF.

. The number of trial wavefront expands is just the estimated net length for a 2-point net.
For a multi-point net, we can estimate the length of individual segments, or estimate the

length of the entire net. Expected net length L,;, is computed as

Ly =014 Ly (4.7)
where L, is the length of the minimal Manhattan spanning tree for the net points, and
8., 15 an empirical constant that estimates how far a net is likely to meander past its
minimum length. Note that it is important to estimate net length accurately because the
RPS hardware cannot determine when a target has been expanded; the host must go
check the grid. It may be the case that a target is expanded in the middle of a pipeline,
and we cannot simply stop pipeline data flow in mid-raster. This derives from the fact
that an RPS pipe performs several local-instructions (wavefront expands) in parallel as a
unit. In such a case, we shall overrun the target and perform too many expands. The
local design for the one-layer router is such that this will not disturb the optimal path

found. Hence, a good net length estimate is essential.

For specific RPS hardware, {a,, b,, a,, b,, a1y, f} constitute a set of tunable parameters
for optimizing system performance. As a common example, we might size the MBF to be 15%
larger than the .mBF of the net, estimate net length to be at most 10% longer than its

minimum Manhattan length, and determine the frame-increment f experimentally.

Algorithm Route_1_Net (Fig. 4.10) summarizes the global algorithm for routing multi-
point nets. Steps requiring the RPS hardware are marked <operation> to distinguish them
from steps performed solely on the host. Figure 4.11 outlines the host/hardware data flow
graphically. Note that the expansion phase terminates when either all targets are expanded, for
which the host must explicitly check, or after exceeding some fixed threshold of expand steps,

after which some targets are yet unexpanded. Failure to find a path can be dealt with in several

Glven: a multi-point net, and a routing-grid.

Task: route the net in the grid in incremental frames on RPS hardware.
Algorithm: Route_1_Net

begin

end

estimate L ., expected net length

li= L p

<mark one net point as source, all others target>>
source_frame := single gource cell

for p := 1 to number_of_targets do
begin
compute framing strategy based upon
source_frame and remaining net length 1
found := false
while (more frames) and (not found) do
begin
<resize frame In RPS hardware>
< expand frame In pipellne>
if (active largets in frame)
then begin
<return active target cells>
if (any target expanded)
then found := true
end
end

if (not found) then

begin
<do final_cleanup In pipeline>
STOP

end

<return current frame to host>
backtrace shortest path
source_frame := mBF(current traced net segments)
:== | - new_path_length
<return frame to RPS hardware>
if (last target)
then <do final_cleanup in pipeline>
else <do final_cleanup in pipeline>
end

Figure 4.10 One-Layer RPS Router Global Algorithm

HOST

LABEL
VERTICES

CHOOSE
FRAME

HIT IT?

CHOQGSE
FRAME

HIT IT?

BACKTRACE

INTERFACE RPS HARDWARE

N
N
N S

NN

N T
N

oS,

%

L

e

X

Y S04 S

o
o,
s

LI,

A A
Fr

7
/

B 2

CLEAN-UP

L |

Figure 4.11 Global D ata Flow for One-Layer Router

o1

ways: choose a new larger maximum frame; remove the constraining maximum frame entirely;

increase the net length estimate; or quit. The current implementation permits the user to

choose any of these options.

A multi-point single-layer router embodying all these ideas has been implemented in the

prototype RPS environment. The following sections examine its performance experimentally.

4.4.3. Framing Experiment

We first measure the effects of the constant-increment framing heuristic. A standard
routing problem has been defined: a 2-point orthogonal L-shaped net of length L =256 cells
centered in an empty 512 X 512 grid. This is one net in the set of nets chosen for performance
benchmarks in the following section; see Fig. 4.13. The maximum bounding frame is chosen
approximately 25% larger than the minimum bounding frame. As an experiment, we vary the
frame increment f/ and the pipeline length S. Note there are roughly L /f frames in a strategy:
small f yields many frames with few wavefront expands done in each; large f yields few frames

with many expands each. Fig. 4.12 plots elapsed routing time as a function of frame increment

ROUTING TIME VS FRAME-INCREMENT
ELAPSED TIME (SEC)

40 :
/ (NET LENGTH = 256 CELLS)
: 1 STAGE
30 g ; a
: ‘ 2 STAGE
Y
20
3 STAGE
*
10
0
1 10 100 1000

FRAME-INCREMENT (CELLS)
Figure 4.12 Elapsed Routing Time vs. Frame-Increment, Pipeline Length

[and pipeline length. For each pipeline length, the elapsed-time curve has a global minimum.
Too many frames is costly because of overhead; too few frames costly because of processing
unexpandable cells. This cost is as high as ~50% in this experiment, which is unacceptable on
a per wire basis for a router. This experiment establishes that sub-optimal framing is detrimen-
tal to execution time. These results are used to empirically optimize the performance of the

router.

4.4.4. Single-Net Experiments

Having established that the effects of framing are significant, we now focus on the effects
of pipeline length and net length. A family of standard routing problems is studied: 2-point
nets of length 2% cells, £=2,3,...,9, and 4-point nets of length 2* cells, k=4,5,...,9, centered
in an empty 512 X 512 grid. Elapsed and host-CPU times for the router are measured for each
problem. Although embedding one net in the center of an empty grid seems trivial, recall that
a maze-router embeds one net at a time, and that grid congestion does not affect the routing
time for a constant net geometry. More precisely, the .time to route a net of a given shape and
length within a given MBF is constant, independent of its surroundings. Congestion will of
course change a routing path, or block it, but for a constant shape--such as those in our
experiment--time is fixed. Hence, this experiment is a good benchmark by which to predict
performance. Fig. 4.13 illustrates the test nets, and plots routing times for these nets, averaged

over several runs.

As expected, elapsed time increases with net length, and decreases with pipeline length.
The data for extremely short nets is noisy because the elapsed time is dominated by host over-
head. For longer nets, elapsed time decreases roughly linearly with pipeline length, i.e., an S-
stage pipe is S times faster than a 1-stage pipe. Host-CPU time measures primarily the over-
head incurred by pipeline commands and grid 10, notably the time to get the current frame for
host backtrace. It is fairly flat, and increases slightly for longer nets (because more pipeline
passes/net implies more pipeline commands) and decreases slightly with longer'pipelines

(because fewer passes/net implies fewer pipeline commands).

3

2-POINT NET GEOMETRY

512
cells

512 cells

Z-POINT NETS:
ELAPSED TIME VS NET LENGTH

ELAPSED TIME (SEC)

200 5] 1 STAGE
100 o
2 STAGE
o®
10 3 STAGE
¢
5 STAGE
v
1
7 STAGE
°
01
0 1 2 3

NET LENGTH (CELLS)

2-POINT NETS:
HOST CPU TIME VS NET LENGTH

CPU TIME (SEC)
3 1 STAGE
]

2 STAGE
o~

3 STAGE
L g

S5 STAGE

v

7 STAGE
]

0 1 2 3
NET LENGTH (CELLS)

4-POINT NET GEOMETRY

512
cells

T

512 cells

8-POINT NETS:

ELAPSED TIME VS NET LENGTH

200

ELAPSED TIME (SEC)

100
10
1
a1
0 1 2
NET LENGTH (CELLS)
4-POINT NETS:

1 STAGE
o

2 STAGE
a~

3 STAGE
L J

S STAGE

7 STAGE
<

HOST CPU TIME VS NET LENGTH

CPU TIME (SEC)
3 1 STAGE
[=]
2 STAGE
'
3 STAGE
[J
1
5 STAGE
7 STAGE
Qo
03
0 1 2 3

NET LENGTH (CELLYS)

Figure 4.13 One-Layer Single-Net Routing Benchmarks

o4

Note that these curves can be used to extrapolate how many stages are needed to route a
net with length less than L ,x in time less than T,,,. For example, given L p,, =256, 3

stages suffice to meet T, =10 seconds, approximately 30 stages to meet T, =1 second.

4.4.5. PCB Experiments

Consider now the more practical problem of Printed Circuit Board (PCB) routing. We
compare the performance of the single-layer RPS router with a conventional software maze-
router running on several machines. We use the PCB benchmark and software maze-router
developed by Blank in [Blan82|. The task is to embed 200 predominately right-way nets
(intended to represent a single layer of a board) with average length = 190 cells in a 512 X 512

grid.

The software maze-router is written in Pascal and embodies some of the ideas of
[Hoel76]. This experiment compares the RPS router running on 3-stage and 6-stage pipelines

against this software running on several machines; see Table 4.2. For fairness, each machine is

lightly loaded.
. MIPS Load
Machine (approx) Op Sys (3pprox)

Amdahl 5860 12 MTS ~ 100 users
DEC VAX 11/780 1 UNIX | load fac. ~ 1-2
DEC VAX 11/750 0.6 UNIX | load fac. ~ 1
Apollo DN600 0.5 AEGIS | single-user
VAX 11/780

+ 3-stage RPS pipe ﬂ - UNIX | load fac. ~ 1-3
VAX 11/780

+ 6-stage RPS pipe [I - UNIX | load fac. ~ 1-2

Table 4.2 Machines for RPS /Software Maze-Router Comparison

The routed PCB result is shown in Fig. 4.14, along with a plot of elapsed time and CPU time
for the software and RPS routers. CPU time for the RPS router is host CPU time; elapsed time
is wall-clock time. Elapsed time is included in the basic comparison because it is the most
appropriate metric for dedicated hardware. Elapsed time for the RPS router is superior to the

elapsed and CPU times of all except the largest mainframe. We estimate that between 9 and 12

TIME (SEC)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000 -

ROUTING TIME VS MACHINE

1939.7

847.0
~lsas

982.3

| 187.6

128303

AMDAHL VAX 780 VAX 780 DEC VAX DEC VAX APOLLO
6 STAGE 3 STAGE 11/780 11/750 DN 600

5860

PIPE

PIPE

ELAPSED

Figure 4.14 RPS and Software Routers Compared for PCB Benchmark

RPS stages would surpass the mainframe performance. Moreover, the RPS router requires less
CPU time than any software implementation. We take this to imply that it is not burdensome

to the host to manage the RPS hardware.

CPU time subtracted from elapsed time is a rough estimate of pipeline processing time®.
Ideally, this quantity decreases as 1/S for an S-stage pipe. With host overhead, this quantity
decreases less rapidly. In this experiment, the ratio of rough pipeline time between the 6-stage

and 3-stage systems is 2.14, reflecting a slightly higher host loading during the 3-stage run.

4.5. Two-Layer Routing

This section constructs an RPS router to embed 2-point nets in two interconnect layers
with floating vias. The one-layer router previously discussed has a simple local design--one
stage for expand, cleanup--in order to study the eflects of varying pipeline length over a modest
range (1-7 stages). This simplicity weakens its effectiveness as a practical router. To remedy
this, we consider the local and global design of a more complex router, and test its effectiveness

on real PCB and gate-array tasks.

4.5.1. Local Design

The cell encoding for a two-layer router must support wavefront expansion on separate
layers, and vias between layers. We allow vias to float, to appear wherever they are not prohi-
bited in the grid. Via exclusion is the process of prohibiting illegal via adjacencies in the grid;
exclusion prevents new nets from embedding vias too close to those in previously routed nets.
Two-layer routing is conventionally divided into separate horizontal and vertical layers, where

each layer is said to have a preferred direction.

Wavefront expansion is more complex with two layers. A source now expands in separate
wavefronts on each layer. However, this expansion cannot now proceed isotropically, as in Fig.
4.4, because net segments can no longer follow an arbitrary direction. One approach is to per-

mit only horizontal or vertical segments on a given layer. This has the disadvantage of

3A rough estimate because of the time-shared host. Elapsed time includes host processing for the RPS router,
pipeline time, 10, and some dead time in which no portions of the RPS router are running.

97

introducing many vias in most nets. A compromise is to permit segments to jog short distances

in the non-preferred direction to reduce the need for vias.

Again, we design a unit-cost router using an alphabet of source-pointing arrows. The
one-layer encoding is extended so each cell is now a 3-tuple containing via, layer-1, and layer-2
information. Layer-1 is mostly horizontal, layer-2 mostly vertical. The alphabet A y,,,, is the
Cartesian product of these three classes of labels A poriy X A ey XA it

Layer-1 Horizontal: A4, = { <540, =40, —h1, —h1, thl, |A1, th2, |A2,
h-via, h- free, h- blocked, h- src }

Layer-2 Vertical: A, = {1v, |v, «v, —v, v—via, v— free, v— blocked, v—src }

Vias: A, = { vis, novia }

Similar to A,y each layer has source, target, and blockage symbols, and expansion again
proceeds with wavefronts of source-pointing arrows. This encoding restricts jogs as follows:
one net segment on one layer can jog exactly once a short distance in the non-preferred direc-
tion. Horizontal segments can jog 2 cells, vertical segments 1 cell. Expansion with preferred
directions and these jog restrictions is contrasted with isotropic expansion in Fig. 4.15. The
figure shows the 24 ways in which a segment can escape from a source on the two layers, illus-
trating the possible jogs; segments are labeled with the appropriate symbols from this alphabet.
Vias appear as labels on each layer. Vias can be generated when a cell is expanded on one layer
and free on the other. If a via is not prohibited with the novia symbol, the other layer is rela-
beled as a new source, and expansion proceeds there. These particular path restrictions permit
a compact pipeline implementation. Unlike the one-layer router, the two-layer router requires

more than a single subarray-computation.

The local design resembles that of the one-layer version except for its greater complexity.
Wavefront expansion now requires three subarray-computations, thus diminishing the number
of expand steps performed in an S-stage pipeline to S/3. Backtrace is again done on the host,
and is similar to the one-layer version except that a trace can cross layers at a via. Wire seg-
ments are relabeled as blocked on the appropriate layer, and vias are labeled with the 3-tuple
(via, h-via, v-vis). Cleanup performs the standard removal of extraneous arrow labels, and also

enforces via exclusion. Cells adjacent in the four compass directions to a newly traced via are

2-LAYER EXPANSION WITH
ISOTROPIC EXPANSION PREFERRED DIRECTIONS

LAYER-2

SOURCE

EXPANSION FROM SOURCE ON VERTICAL LAYER

" | I N

T* —’LV* ’:—V
v —» v 4V

—
W . W

EXPANSION FROM SOURCE ON HORIZONTAL LAYER

) <4—no
H h
—»n0 ! ; N0 —n1 «n1
hl hl +
1 ml_g .,_I ¥ht
‘ —n0 «n0
—no <+—no
L WY, S) e i
1 M
—n0 «no —n1 «—n1
—n1 <hi —nt «~nl
h2 l inz inz n2
h1 n1 hi hi
—»no . L)
—»no <—ho
h1 » h1 h1 . | h1
h2 h2 h2 h2
—nt <hi —ni h1

Figure 4.15 Two-Layer Expansion with Preferred Directioné, Jogs

marked novis so that future vias are not embedded too close. This is a common physical res-
triction for vias in PCB or VLSI technologies. Cleanup requires two subarray-computations.

Appendix A presents these local algorithms in detail. Table 4.3 summarizes the local design.

Phase Implementation Function

Expand cells in 2 layers

with preferred directions, vias
Backtrace Host Trace paths

Remove expanded cells,
mark path as obstacle

on appropriate layers,
perform via-exclusion

Wavefront-Expand | 3 stages/expand

Cleanup | 2 stages/cleanup

Table 4.3 Local Design for Two-Layer RPS Router

4.5.2. Global Design

Global design for the two-layer router is essentially identical to that of the one-layer
router. The advantage of the local/global partition is the ability to re-use major system com-
ponents while changing details of the pipeline processing. In this case, the same global algo-
rithm, incremental framing and data flow apply. The code running on the host is a modification
of the one-layer code to manage the more complex pipeline programming. Only 2-point nets

are supported in this version.

Similar framing and single net experiments are performed to verify and tune system per-

formance; these are not discussed.

4.5.3. PCB and Gate Array Experiments

We now examine how an RPS router might be applied to realistic problems by integrating
it into a standard place-and-route environment. Figure 4.16 shows the major components of a
simple environment developed to support these experiments. This system places a set of
modules and signals using a standard pairwise interchange technique [HaKu72], binds the
abstract placement to the geometry of a physical carrier, routes the carrier using the two-layer

RPS router, and displays and analyzes the results. Binding to geometry produces the routing-

100

INITIAL DESIGN *
MANUAL OR
AUTOMATIC
MACRO-
EXPANSION
FLAT LIST OF ’ ROUTING GRID
MODULES, SIGNALS __' NET LIST
UNSIZED ; ;zps é ASED ROUTER
CONSTRAINTS passes\ U..........-] |PARAMETERS
s S
OVERFLOWS ROUTING GRIl
UNSIZED MOOULE VERFLO ESﬁED%(ZD NETS
LACEMEN FAILED NETS
: ¥ TIMING STATISTICS
CARRIER GEOMETRY STATISTICS
GEOMETRY = BINOING ACQUISITION,
DESCRIPTION ANALYSIS
SIZED MODULE
PLACEMENT
HARDCOPY
GRAPHICS
GENERATION

'

GRAPHICS QUTPUT

Figure 4.16 Place and Route System Environment

101

grid and is basically a task-transformation as discussed in Chapter II. We study only the perfor-
mance of the RPS router in this system. Two experiments are performed using a PCB and a

gate array.

The PCB experiment places 29 TTL packages of varying shapes on an 10 X 12 inch board.
The PCB is routed in two phases. First, via-availability is reduced near pins to prevent pin-
blocking of nets. The grid is routed and unroutable overflow nets are recorded. The grid is
then processed to restore via-availability near module pins. This is again a simple task-
transformation. The second phase then embeds these overflow nets. The routed result and

performance for each phase appear in Figure 4.17.

The gate array experiment places a 735-gate circuit in a 900-gate array. The circuit
represents a simplified portion of an 8-bit ALU with registers; the 82% gate occupancy of the
array is fairly typical. We have designed a gate array image following closely realistic chips.
The gate array is represented as a 25 X 18 array of circuit blocks, where each block holds up to
two 4-input gates. Vertical channels provide 12 wiring tracks, horizontal channels 7 tracks, and
unused blocks afford 3 extra vertical tracks. We do not route IO pads, but do fix some driver
gates around the periphery of the array. Routing is done in one pass, and overflows are ignored
here. Figure 4.18 gives the performance for 3-stage and 6-stage pipelines and shows the routed

result.

As a further experiment, we have instrumented the 3-stage two-layer router to give a
more accurate breakdown of the elapsed time. We measure Tg, (S, 7,), the time to route

the gate array on an S-stage pipeline with stage cycle time r,,, , and decompose it into the fol-

lowing times:

Tca (S; Tstagc) =Tpost + Toacktrace + Tcleanup T T ezpand (4-8)
We have measured Tg4(3,248) experimentally and measured or estimated these component

times. To estimate T4 (S, 4,,) in general, we make these assumptions:

. Thost is constant for a given host and includes actual CPU processing to support strategy
calculation and expansion, some IO time, instrumentation overhead, and general time-

sharing overhead. (Actually, 7,,4 varies with host loading, and also slightly with pipeline

102

22 S—17

5C17

27

C24

CRS

26/

c?

C8

C2

C4

(41}

20,

Cc21

C19,

C10

Two-Layer 3-Stage RPS Router

PCB Task Parameter Phase 1 Phase 2 Total
Grid Size || 200 X 240 cells same same
Nets Tried 412 81 412
Nets Completed 331 41 372
%Completions 80% 51% 90%
Length Routed 19323 cells 3746 cells | 23069 cells
(50 mil/cell 966.2 in 87.3in, 53.5 in
Elapsed Time 22.95 min. 11.05 min. 34.0 min.
CPU Time 4.24 min. 1.35 min. 5.59 min.

Figure 4.17 Two-Layer PCB Experiment

103

220000027220 R%2 %2

N
N

22

N

DDD a2 %

Gate-Array RPS Two-Layer Router
Task Parameter 3-Stage 6-Stage
Grid Size J| 500 X 502 cells same
Nets Tried 1155 1155
Nets Completed 1087 1086
%Completions 94% 94%
Length Routed 69966 cells 69907 cells
(8um/cell) 0.56 m 0.56 m
Elapsed Time 71.58 min. 50.99 min.
CPU Time 10.43 min. 11.12 min.

Figure 4.18 Two-Layer Gate Array Experiment

104

length and net length, which we ignore here; see CPU times in Fig. 4.13.)

® Tiacktrace 18 constant for a given host, and includes actual trace processing and IO to

retrieve the frame from the hardware.

® Tump is proportional to 7, because cleanup is dominated by pipeline processing time

and requires only a few stages.

) T ezpand 18 proportional to 74, , and inversely proportional to S [3 for a 3-stage 2-layer
expand step. That is, we assume 7,.,,,4 is entirely pipeline processing time, and hence

that a faster stage reduces time proportionally, as does a longer pipeline.

Given this data for T4 (3,2p¢), then Tgy (S, 75,) can be computed as:

(4.9)

T stage T expand T stage
TGA (Svrstage) ~ T host + T backirace + rclump -

2p 8 S 2us
Fig. 4.19 uses this formulation and plots T, for longer and faster pipelines. This is a best-case
estimate and does not account for expected variations in 7,,;. As expected, longer pipelines
and faster stages give better performance. Host overhead, notably the time to retrieve a frame
for backtrace, is a bottleneck in this implementation, producing the asymptote shown in the

figure. The predicted 6-stage time differs from the measured 6-stage time by about 15% due to

variations in 7, .

Some discussion of the performance of the two-layer router, relative to software maze-
routers, is appropriate here. The conventional metrics are execution time and net completions.
[High83, Wils83| cite times of 30 CPU minutes on a 1 MIP machine for maze-routing 1K-2K
gate arrays. The data in Fig. 4.19 indicate that for our not-quite-1K gate array, this time is
easily bettered by modestly longer or faster pipelines. The completion rates (90-94%) for the
RPS router are low, again due mainly to the local design. The PCB experiment uses a simplis-
tic model of an edge-connector which forces signals to escape on one layer and accounts for
most of the failed connections. In both experiments pin-blocking is a problem. Nets escaping
from pins jog several times and consume via-sites, thus blocking later nets from escaping. A
potential solution is a via-optimization pass during backtrace [High83]. Unneeded vias are

removed as short wrong-way segments are relocated to other layers. Nevertheless, to improve

105

GATE ARRAY ESTIMATED ROUTING TIME
VS PIPELINE LENGTH, STAGE CYCLE TIME

ELAPSED TIME (MINUTES)

80 STAGE CYCLE

?\\\\ 2us
60

Q

lus

o

0.500 us
*

0.250 us

v

0.100 us
o

0 3 6 9 12 15 18
PIPELINE LENGTH (STAGES)

Figure 4.19 Estimated Gate Array Routing Times

routing quality further, the hardware must accommodate more complex local algorithms, e.g.,
weighted path-functions. To address larger problems directly, e.g., 2K to 10K gate arrays, we
need only add memory to the cell buffers; even large grids can be accommodated in the subar-
ray stages. |High83| cites 13.5 Mbytes as the storage necessary to maze-route a 10K gate array,
an amount which is not impractical for dedicated hardware given current memory technology.
The superior routing quality achievable by more intelligent maze-routers, along with the practi-
cal speedups suggested by Fig. 4.19, together constitute a compelling argument for an RPS

architecture designed specifically to support routing.

4.6. Global Routing

Global routing assigns nets to routing regions rather than to detailed tracks. The one-
layer and two-layer routers are detailed routers by contrast. This section discusses the design of
an RPS global router. Global routers are widely used as the first phase for VLSI routing, e.g.,

gate arrays, followed by detailed routing of channels.

Global routing is also attractive as a first phase for a subsequent RPS detailed router.

Long wires are more expensive to route than short wires in an RPS pipe. Even with a good

100

placement, a few wires span the entire routing grid, and are disproportionately expensive given
the O(L3/S) time complexity of RPS routing. Incremental framing is a first-order solution,
but the last pipeline passes that expand a long wire still process very large grids. Global routing
offers a solution as shown in Fig. 4.20. Instead of routing these directly, we partition the rout-
ing grid, perform first a global routing of nets across routing regions, and then a detailed rout-

ing of net segments in each region. This reduces these worst-case longest nets and improves

execution time*. Moreover, this hierarchical routing scheme offers other practical advantages.
First is the prospect of better routing quality because of global topological optimization.
Second, partitioning into smaller routing tasks means that smaller RPS cell-buffers will suffice
for each, and that there is more potential for parallelism as each task may be routed con-

currently if parallel pipelines exist.

4.8.1. Local and Global Design

We treat the design of a simple gate-array-style global router. The routing grid is again a

rectilinear grid, but each cell is now a routing region. Cells contain resources consumed by

MBF IS ESSENTIALLY

ENTIRE ROUTING GRID GLOBAL (LOOSE) ROUTING DETAILED ROUTING
L PROB. 1
PROB. 2
PROB. 3
. PROB. 4

Figure 4.20 RPS Global Routing Followed by RPS D etailed Routing

*This is roughly analogous to framing a net to reduce the area searched. However, a smaller routing region does
not guarantee a shorter net: the best path between two close points may still be long (see [Souk81]). On the average,
however, this approach will reduce the problem.

107

paths that cross them. It is now the edges of the cells which are of interest: these are the rout-
ing channels crossed by nets. Channels have a fixed capacity of tracks for nets. Ideally, we
route with a path-function that penalizes nets that cross congested channels, or enter a cell
from one direction and exit from another to consume a via. Cytocomputer stage architecture
again prohibits this sophistication. Instead, we design a global router that finds shortest paths
for 2-point nets through admissible channels. A channel is admissible if it has a non-zero track

capacity.

Local and global design are summarized here. As before, wavefront expansion employs
source-pointing arrows in one conceptual layer. Cells are now characterized by their boundary
channels which have a capacity of O to 15 tracks; each cell stores two channels, its neighbors

store the remainder.

Fig. 4.21 illustrates the global data flow. Starting with a grid with channel capacities, there
is an initial translation phase: channels with non-zero capacities are marked as free channels,
others are marked as blocked channels. This new grid is the binary-capacity grid. Wavefront
expansion proceeds as with the; one-layer router except that channels, not cells, are crossed.
When a source-to-target path is found, the grid is returned to the host for backtrace. Subse-
quent cleanup produces another grid indicating channels with capacity diminished by the newly
traced path. This A-capacity grid is returned to the host. Cell-by-cell subtraction of the new
A-capacity grid from the original routing grid updates the routing grid to reflect the new path.
Routing the next net then proceeds. Detailed algorithms appear in Appendix B. Table 4.4

summarizes the local design.

108

INTERFACE

RPS HARDWARE

o gt m mm

3¢ §49 L[id

v 283 €| [
EERN

TARGET FOUND

AR
|6+0+5+5.
o~ (-] ~
~foFote
~ ~ o~
o B aats

T 7

GRID WITH

CHANNEL
CAPACITIES |,

BACKTRACE

MARK PATH

Figure 4.21 Data Flow for RPS Global Router

109

Phase Implementation Function
Binary-Capacity ..
Translation | 2 stages/translate | Mark admissible channels
Wavefront-Expand | 2 stages/expand | Expand across channels
Backtrace Host Trace shortest path

Remove expanded cells,
Cleanup | 1 stage/cleanup | mark channels with fewer tracks
to build A-capacity grid

. Update original routing grid
Grid Update Host by adding A-capacity grid

Table 4.4 Local Design for RPS Global Router

4.6.2. Experiments

The simplicity of the channel representation and inability to incorporate penalties for
congested channels restricts the router to very simple applications. Accordingly, we have not
implemented a complete router embodying these ideas, but rather, implemented and tested all

the necessary stage programs. These five stage programs have all been functionally verified.

Given that the local design works, we are assured that the global design will work. Execu-
tion time can be estimated by comparison to the previous routers. The neesd to move the grid
to the RPS hardware to begin routing, and to return the A-capacity grid after cleanup has essen-
tially the same total overhead of an extra backtrace step. Similarly, the initial translation phase
can be viewed as an extra cleanup step: the execution times for 2-stage translation or 1-stage
cleanup are nearly identical. Recall that the two-layer router has a 2-stage cleanup, and a 3-
stage wavefront expand. Hence, as a rough bound, execution time for a 2S-stage global router
is no more than twice that of a two-layer router running on a 3S-stage pipe. Framing has less
impact here, given the larger granularity of cells and the smaller 10% to 10* cell grids employed

in global routing.

4.7. Generic Concerns for RPS Routers

The goal of these routing experiments is to demonstrate the feasibility and practicality of

RPS-structured routing engines, and to uncover those problems that appear to be generic to all

110

RPS systems. Experiments with single nets verify feasibility, and support our early conjecture
that performance can be improved by adding pipeline stages. Experiments with PCB's and
gate-arrays, and comparison with software maze-routers verify practicality for real problems.
This section discusses two design /performance issues central to an RPS-structured router. We
discuss first the effects of statelessness, and examine the extent to which global data extracted

by a stage can improve routing performance. Next, we present a model and rigorous analysis of

the framing problem.

4.7.1. The Effects of Statelessness

The inability to extract global information from a grid streaming through a stage is a
major drawback of cytocomputer architecture. Although the state-machine model is appropriate
for wavefront expansion, it remains too restrictive as a general model for a routing engine. The

previous experiments suggest that the following primitives be available in each stage:

0 Count Marked Cells -- A count of the cells expanded by a stage is useful to determine the
need for further expansions. When this count is zero, no cells are expandable and we
may reframe or quit. Often, nets fail because of blocking near their pins. A small wave-
front expansion from each net terminal followed by a count of expanded cells can detect

this, and save the cost of trying to embed the net.

) Flag Distinguished Cells - As a special case of the above, the ability to detect cells with
special labels or at special locations is also useful to to terminate expansion. In our exper-
iments, the host checks for target expansion, and it is usually necessary to overrun the

target during expansion. Detection of target expansion in the RPS hardware appears to be

more efficient.

. Measure Extremal Cells -- Examples of this include retaining the maximum cell penalty
encountered, useful for path-functions with cell penalties, or determining the minimum
bounding frame of the current wavefront, useful for sizing the next incremental frame.
The current implementation uses worst-case framing, extending frames by the maximum

distance a wavefront might reach, because we are unable to compute their actual extent

111

mBF FOR WORST-CASE EXPANSION mBF FOR ACTUAL EXPANSION

Figure 4.22 Minimum Bounding Frame after Expansion in Congested Region

using the pipeline. A source cell in a congested region may expand wavefronts that
occupy an area much smaller than a source expanded in an empty grid; Fig. 4.22 illus-
trates such a case. This is important because minimizing the number of unreachable,

unexpandable cells passing through the pipeline minimizes execution time.

Also included in the definition of statelessness is the restriction that newly computed cells
are injected immediately into the output. It is of interest to pursue instead the consequences of
replacing these values in the current grid to use as the basis for subsequent subarray-
computations. Note first that expanding from a source cell with one pass through an S-stage
pipeline now searches the area shown in Fig. 4.23. Directionality is now a factor: as the grid
moves through the pipeline, subarray computations occur in the order determined by the grid
raster, for example, west to east, north to south. Hence, in the figure, all cells within Manhat-
tan radius S and all cells south and east of the wavefront at radius L are searched. West-to-east
and north-to-south segments starting from the source are found in one pass; jogs no longer
than S cells against these directions can also be found. However, the simple unit-cost expan-
sion with source-pointing arrows no longer suffices to guarantee shortest paths. This greedy,

directional expansion does not proceed in discrete wavefronts equidistant from the source.

112

Figure 4.23 Wavefront Expansion in S-Stage Non-Stateless Pipeline

This suggests that perhaps cells should be labeled directly with their distance from the
source. This succeeds, but routing time now depends on the number and direction of each net
segment in the best path. In general, the first path found is not the best, and many cells are
relabeled as wavefronts move around obstacles opposite to the direction of subarray computa-
tions. It may be desirable to change the raster order on subsequent pipeline passes, to allow
paths to move more rapidly around obstacles. It is unclear whether this added complexity is

warranted in general by the potential speedup from fewer pipeline passes.

4.7.2. Framing

Incremental framing has been shown experimentally to yield significant speedups for
routers running in our RPS environment (see again Fig. 4.12). Our informal derivation, how-
ever, is unsatisfactory because it provides little information to guide the design of an RPS rout-
ing engine. Tradeoffs among pipeline speed, length, and overhead must be considered in such
a design, and it is essential to compute optimal net routing times for a given hardware
configuration. To compute this time, we must predict an optimal framing strategy based on the
hardware configuration. Our experiments have shown that framing is significant in a short-pipe,
high-overhead environment, but provide little concrete insight for other configurations. This

section rigorously formulates the problem of optimal framing strategies. We develop first an

113

approximate algebraic model to provide some insight into the structure of the problem, then

formulate a more exact dynamic-programming model.

4.7.2.1. An Approximate Model of Framing

Consider the problem of expanding all cells within a Manhattan radius L from one source
cell. Using the constant frame-increment heuristic, we minimize processing time by optimizing

the frame-increment f. These simplifying assumptions are made:

] Pipeline length is S stages with S> L. Several pipeline passes are necessary to perform L

wavefront expands. One expand-step is one subarray-computation in one stage.
[} Each incremental frame is square; the kth frame has edge length f;. Successive frames
extend outward a constant distance equal to the frame increment f, that is:

fim- [y =2/ (4.10)
As a boundary condition, the source frame is considered to be a single dimensionless

point: f o =0.
. [incremental expansions are done in each frame, where f is a multiple of S:
[=rS (4.11)
. Pipeline processing time is dominated by the time to flush a grid through the pipe.

Latency is ignored. The time r,,,(r,S,X) to process a square X X X grid r passes

through an S-stage pipeline is

Toass (7,5, X) =1, + rX?r 45, (4.12)
which is equation (3.17) without latency and with one lumped time 7,, to account for all

host overhead.

. An entire framing strategy has exactly N frames, and the total number of expand steps

processed in all frames is exactly L:

NrS =L (4.13)

From these assumptions and boundary conditions, frame size can be computed as:

fr =[o+2kf =2krS, k=1,2,..,N (4.14)

114
T,:panq i8 the total time to expand each frame through the pipeline:
X 2
Tunal = Z (fmh +rfy Tdm) (4.15)
L]
This is expressible in terms of a single independent variable N with the substitution
s
rf 2 =4k2r3S2 =4k21£LSI-V-L (4.16)

whereupon To;pong has closed form:

aT 4ok

2L ST““,
N2

3S7'ovh

Tczpand = l a” llva + 2N2 +3N+ l] where a =

(4.17)

Tezpana is now minimized by allowing N to become a continuous variable. Minimum time

=0. For reasonable ranges of L, S, 74, and r,,,

dN |In

occurs at N, which satisfies 4T]
opt

a >> 1 and N, can be approximated as:

1
2L aT stage l-ﬁ-

Ny = V3a = (4.18)
i Sr ovh
The optimal frame-increment f,, can then be approximated as:
L St ovh Fl
fo) = =[] (4.19)
opt Napt 2eragc

The form of f,, satisfies our intuition about framing: when relative overhead, 7, /7, is
large, we choose fewer, larger frames; when relative overhead is small we choose many smaller
frames. By substituting N,, back into the equation for processing time, we find the optimal
time to be
r
T .-.—.—%"-'-'- [6a +6V3a +1]
=0(a) + 0(a'®) + 0(1) (4.20)
L3]
=0(a) = 0|=—
() [S

which has the expected time complexity. Framing is a practical technique to reduce the con-

stants in (4.20) but does not alter the intrinsic time complexity.

115

Table 4.5 uses (4.19) to compute f,, for the framing experiment of section 4.4.3. We
assume 7, =243, 7,,» =90ms (approximately 3 pipeline commands) and compare with the
optimum f interpolated from the experimental data in Fig. 4.12. Note that the results are in
reasonable agreement, although predicted f,, is uniformly too small. This is because the

model uses no MBF, while the real router imposes a tight MBF and always expands fewer cells.

. Optimal Frame-Increment f .
Pipeline Stages Experimental Predicted
1 _ ~12-16 10
2 ~ 16-20 14
3 ~ 20-24 17

Table 4.5 Predicting Optimal Frame Increment

4.7.2.2. Optimal Framing by Dynamic Programming

The assumptions required to formulate the algebraic model restrict its applicability to real
problems. The algebraic model assumes isotropic expansion, no maximum frame, and no pipe-
line latency. For long wires, all these assumptions are invalid and the model is less accurate.
Moreover, the model assumes constant-increment framing, which is a practical heuristic but not
necessarily an optimal solution. This section develops a dynamic programming (DP) model of

framing to address these problems.

It should be noted that this model is not intended to be solved at run-time on a net-by-
net basis in an RPS router. We show later that its intrinsic time complexity is too large for this
use. Rather, this model is an analytical tool to produce optimal framing strategies against which
practical run-time heuristics can be measured. Thus, it is useful to verify system tuning, and
also to measure the sensitivity of performance measures to changes in system parameters. This
section derives and solves the necessary dynamic programming equations, and examines these
sensitivity issues. In Chapter VI we revisit this model and study its application to RPS system

design.

116

We first discuss an interpretation of dynamic programming suitable for the framing prob-
lem. Fig. 4.24 shows a simple DP problem. A quantity Q is to be distributed among N stages.
In stage k a decision D; is made about how much of @ to retain; quantity Q; enters the stage

and @, =t (D,, Q) exits. This decision incurs a cost C; (D; Q;). The task is to optimize

N
the total cost Y, C; over the N decisions D, D, ‘- ,Dy. In DP terminology, the @, are
k=1

state variables, D, are decision variables, C, (Q, ,D;) are stage-returns, and the functional rela-

tionships t; (@ , D;) = Qi_, are stage-transformations.

To solve the framing problem, regard each DP stage as a frame5. The quantities distri-
buted among frames are wavefront expansions: L expand steps are needed to find a wire of
length L. The state variable in each frame is the total number of expand steps performed so
far. The decision variables determine how many pipeline stages are active in each frame, and
how many pipeline passes are done to process expamsions. The stage-return function is the
time to process wavefront expands in a frame with the pipeline specified by the decision vari-

ables. The optimization task is to minimize total processing time.

This model suffices to solve more general problems than the algebraic model. Our previ-

ous assumptions change as follows:

D D D D
N N~-1 2 1
Q-q, A [o |01 Q2 o,
n g e g Il o SYTE - Rl o 2 Rl =
v v v v
CN CN—I c2 Cl

Figure 4.24 Elementary Dynamic Programming Problem

51t is necessary to distinguish between RPS stages, whick are hardware, and DP stages, which are mathematical
antifacts used to decompose the optimization problem into independent sub-problems.

117

Starting from a source frame, we expand only cells that are in the specified maximum
bounding frame and within a Manhattan radius L. The source frame has dimension
f§ X f§. The maximum frame extends past the source frame by u,v in the horizontal

and vertical directions respectively; see Fig. 4.25.
Pipeline length is S stages, with no constraint on the relative magnitudes of L and S.

Each incremental frame has dimensions ff X f¥. Successive frames extend outward a
distance equal to the number of incremental wavefront expands performed in the stage
(this is a worst case scenario as in Fig. 4.22), but no frame may ever exceed the boun-

daries of the MBF.

The number of wavefront-expands done in each frame is determined by the number of
pipeline passes and pipeline length in the frame: the kth frame performs r;, passes
through an S; -stage pipe. Assume one wavefront-expand is one subarray computation, so

this yields r, S; wavefront-expands.

Pipeline processing time can be modeled arbitrarily. Let 7,,,(r,S,f*,f?) be the time to
process an f* X fY grid r passes through an S-stage pipe. We choose a simplified version

of (3.17):

MANHATTAN
RADIUS L

Figure 4.25 Model of Framed Routing Problem for DP Solution

118

Toass(T, S, [5, %) =T,m + r[S(!‘ +2) a0 + L5 1Y Tatage] (4.21)
where 7,, is again a single lumped overhead time. Note pipeline latency is now
included.

An entire framing strategy has exactly N frames. An optimal framing strategy is charac-
terized by N, and the pipeline passes and pipeline lengths per frame:

re, Sy, k=1,2,...,,N. Other needed parameters can be computed from these.

The basic frame optimization problem then becomes:

N
min Efnss(rk’skvf{rffv)

N,n o S bl
N
subject to: Y, r Sy =L

=t (4.22)

0<r k=1,2, .., N

1< 8 <8 k=1,2,...N

This problem can be transformed into a standard DP problem. The DP solution makes a

correspondence between DP stages and frames as shown in Fig. 4.26. The kth DP stage is

characterized as follows:

() Cdn) (rp5) (8))
Y y ¥ ¥

E E £ 13
N rAME L N R | N2 2 | ERAME 1 AME 0

m

N-1 2

1
. ™e e, TI™E
” N\

PIPE-PASSES, STAGES

3]

EXPANDS EXPANDS
AFTER AFTER
2 FRAMES 1 FRAME

PROCESING TIME
_ WITH OVERHEAD)

Figure 4.26 DP Reformulation of Incremental Framing

119

E; is the state variable, interpreted as the total number of wavefront-expands done after

the first £ frames.

The decision variables are r; S;, where r; is the number of pipeline passes, S, the
number of active pipeline stages. Pipeline length is constant in each frame, but may vary

frame to frame,

The stage-transformation is:

b(re, S, B) =E_y=E - 1 5 (4.23)

that is, stage k adds r, S, expansions to the total.

The stage-return is the pipeline processing time 7,,4(r:,S:,fi,f¢). We need to
transform this to the form C;(r.,S;,E;). Since frames increase in size with wavefront

expands, but never cross the MBF, we have the constraints:

f‘-‘ =fg-‘..l +2min(u,r;S¢), f! =f§'.1 +2min(v,r,,S,,) (424)
Summing over k frames gives:
3]
JE=f§+2min(y, Y1, S,), f!=f§+2min(v,) r,S) (4.25)
=] =]

To put the stage-return in terms only of decision and state variables, note that

k
E, =Y,r/S,. Then the stage-return is

=1

Celri Sk, Ey) =7 puss(r:, S, f§ + 2min(u,E;), f§ + 2min(v,E;)) (4.26)

which has the appropriate form.

Given the stage-transformation, the state variables E, are constrained as follows:

Ey > L
E,,=E -nS k=12 ---,N (4.27)
Eo =0

The boundary conditions imply that no expansions are done prior to the first stage, and
that at least L expansions are done in all. Summing over the first k state variables yields:

k-1 k
YE =Y(E - 15) (4.28)

jam O ja=]

which rearranges to become

120

E E
E, =YnS - Ep=Y 15, (4.29)

am] jam]

to show that E; is indeed the number of expansions through the first k frames.

In this form, the original optimization problem can be decomposed into N sequential
sub-problems. Define T;(E;) to be the optimal time to process E; wavefront expands in
exactly k frames. Then Ty(L) is the solution to the original frame optimization task (4.22).
The T;(e) comprise N dynamic programming equations [Nemh66] that can be solved recur-

sively when formulated as follows:
T\(E,) ='mi;: [Ciry, S1,Ey)]
re1

T (E:) =mi;1[Ce(re, Sk, Ex) + Teoal te(re, St ,E))] k=23, N
Tt oo

subjectto: Ey 2> L (4.30)
Ey=0
n2>0 k=1,2,..,.N
1<S, €S k=12,..N

Solving recursively, we find T,(E,), To(E,), ' - -, Ty (Ey) in order. The result of solving the
kth stage is T; (E;) for all feasible E; , and the two decision functions D{(E;), DJ(E.), which
give the optimal r,, S, for each feasible E;. From these T, and optimal decision functions,
one can trace the decisions that produce the optimal framing strategy, from which the actual
frames in the sequence may be reconstructed. A straightforward algorithm to find an N-frame

sequence that performs exactly L expands appears in Fig. 4.27.

There are a few additional points to consider about how this model is solved practically.
First, note there is no guarantee that the optimal method to find a path of length L is to per-
form ezactly L wavefront expands. It may be less costly to perform a few extra expands and
overrun the target than to reconfigure the pipeline. Hence, we should solve for the best fram-
ing strategy giving at least L wavefront-expands. Given the function Ty (Ey), the best framing

strategy performs L, expands, where:

Tn(Lopt) =, <f,n§nL“I Tn(l) | (4.31)

In practice, L p,x never exceeds L + S, and is often simply the nearest multiple of S; this

accounts for the constraint Ey > L in (4.30). Second, it appears that the DP algorithm only

121

Glven: N, L, and description of net geometry as in Fig (4.25).

Task: Generate functions T} (e) and associated optimal decision functions for N stages,
then trace optimal decisions r” S¢* that define optimal framing strategy.

Algorithm: Solve_Optimal_Framing
begin

/* solve for T, (e) in order ¢/
fork :=1to Ndo

begin
for each feasible E; do
begin
if k=1
then begin
T\(E,) :=:ni§1[Cy(r,S1,E) |
)L §
D{(E;) := optimal r, that minimizes T,(E,)
D{(E.) := optimal S, that minimizes T,(E,)
end
else begin
T: (E;) :={knis':[Cel(re,Se,Ex) + Tioa(te (re, Si, B) |
D{(E;) := optimal r; that minimizes T, (E;)
DSE,) := optimal S; that minimizes T; (E;)
end
end
end

/* trace decisions in optimal strategy */
E:=1
for k ;= N downto 1 do

begin

¥ i=D| (E)

{7 :=Di(E)

E =t (r/" S* E)
end

end
Flgure 4.27 DP Algorithm to Obtain Optimal Framing Strategy

solves half the problem: given a fixed N, we can find an N-frame strategy, but it appears we
must re-solve for each N. A small trick alleviates this problem. If pipeline passes per frame r;
is allowed to be 0, then the DP algorithm can find a shorter strategy with essentially null, no-
expand frames. Hence, by choosing N sufficiently large, we can find an optimal frame strategy

with at most N frames. In practice, reasonable values of N are easily guessed.

122

The time complexity of this algorithm is too great for it to be solved for each net at run-
time. An optimal strategy to perform exactly L expand steps in at most N stages can be
obtained with time complexity Tpp == O(NL %logS), where it is assumed that the time to com-
pute one stage-return is O(1). Consider the kth DP stage. This stage examines E, in the
range O to L. For each feasible E; , the stage examines decision variables r;, S; that satisfy the

stage-transformation:

L2E -nS =E_, 20 (4.32)
and from the feasible decision variables chooses the best for each E,. The number of stage-
returns computed is bounded by:

L

Y. (mo. of r;, S, decision pairs with r, Sy < L-e¢) (4.33)

cms]
Given 1 £ §; £ 5, 0 £ r,, the number of feasible decision pairs is the number of points
under the curve r; Sy =L - e of Fig 4.28, shown there to be no more than (L- ¢)logS. Hence

Tpp becomes:

L 2
Tpp = Y, (L-¢)logS = L ; L]logS=0(LzlogS) (4.34)
¢mx]

Since all N stages perform the same set of computations in order, the overall time is

O(NL%0gS). We can safely ignore the time to trace the optimal decision, as it is only O(N).

I: Passes

s

no. of decision pairs < | L-c
1

8

L-e «

ds =(L- ¢)logS

—

¥ >
1 S « Stages

Figure 4.28 Feasible Decision Variables

123

To verify the DP model, we recompute the expected wavefront expansion times for some
of the one-layer two-point nets routed in the benchmark of Fig. 4.13. These computed times
appear next to the best measured routing times in Table 4.6. Note that we should not expect
an exact prediction as only expansion times are computed, the geometry of the nets is some-
what simplified (source in exact center of MBF, etc.), overhead is one lumped time, no pipe-
line programming times are modeled, and the real RPS router uses the constant-increment
heuristic. However, we can verify that the same large-scale behavior occurs, and that the times
are reasonably close. The data in Table 4.6 do exhibit the expected behavior, and are uniformly
smaller than the measured times as should be expected for an optimal solution that ignores

backtrace, etc.

An advantage of the DP solution is its flexibility. To obtain more accurate answers, we
could modify the derivation to model the geometry of nets more accurately, and modify the
stage-returns to account for more subtle timing effects. One major reformulation to consider is
to recast S;, pipeline stages per frame, from a decision variable into a state variable. The rea-
son is that pipeline programming overhead in the current implementation is dependent on how
many ezire stages must be deactivated or activated between frames. To account for this, we

must know S, S;_, in each frame to determine |S, - S;_,| Hence, S, must be a state vari-

able.
Net Elapsed Time (sec)
Length 1 Stage 3 Stage 5 Stage 7 Stage

Exp DP Exp DP Exp DP Exp DP
16 0.533 0.126 0.467 0.108 0.516 0.099 0.450 0.099
32 0.767 0.302 0.566 0.165 0.650 0.140 0.516 0.127
64 1.68 0.829 0.950 0.390 0.900 0.271 0.734 0.233
128 5.33 3.50 2.30 1.37 1.78 0.913 1.47 0.719
256 25.1 19.3 9.40 6.89 6.38 4.32 4.87 3.22
512 156 118 54.9 40.5 34.5 24.7 25.4 17.9

Table 4.6 Comparison of DP Routing Times with One-L ayer Benchmark

124

Given the ability to predict optimal expansion times over a wide range of system
configurations, we can now obtain a qualitative picture of the sensitivity of our performance
metrics to variations in system parameters. As an experiment, we vary net length L, pipeline

stages S, and times 7,,,, 7,,, 28 follows:

L = 32, 256 cells (orthogonal 2-point nets from Fig. 4.13)
S = 1, 2, 4, 8, 16, 32, 64, 128 stages

Towm = 1, 10°% 10* time-units

T stage = 1 time-unit

This experiment varies wire length, pipeline length, and relative overhead ,, [7 stage OVer wide
ranges of feasible values. For each of the 48 unique problem/hardware configurations gen-
erated, we solve for the optimal framing strategy. Fig. 4.29 plots the results. For each wire

length, three plots are given:

. Expansion Time vs. Pipeline Length -- Expansion time is an accurate indicator of total
routing time; log,, time versus log, stages is displayed, parameterized by relative overhead
7 ouh /7 stage -

° Framés vs. Pipeline Length -~ As an indicator of the structure of an optimal strategy, we
plot the number of frames in the optimal framing sequence versus log, stages, parameter-
ized by relative overhead 7,, [ry,,. Note than in the optimal sequence, the frame-

increment (expands per frame) is no longer constant.

° Ratio of Naive-Time/Optimal-Time vs. Pipeline Length -- To determine whether incre-
mental framing is actually worthwhile, define the naive time to be the time to process the
entire MBF of the net (no framing) through the pipeline for expansion. The ratio of
naive time to optimal time is shown versus log, stages, parameterized by relative overhead

T ovh /7 stage -

These results provide several insights. High overhead is more detrimental to short nets,
but has little effect on long nets. However, overhead significantly influences the structure of
the best framing strategy; that is, although the optimal times may vary little, the manner in
which we arrive at these times varies greatly with overhead. Savings due to framing are more
significant for short pipelines, and decrease with added stages. With low overhead, long com-

plex framing sequences are justified; with high overhead, short sequences prevail.

125

NET LENGTH 32: NET LENGTH 256;
ROUTING TIME VS PIPE LENGTH ROUTING TIME VS PIPE LENGTH
s JME L DE
10 . 10 RELATIVE
OVERHEAD
1
: H . o
e 100
. r
s : 6
10 ' : 10000 10 10000
L J *
3 ' 5 : :
17 4 16 64 25 17 a 16 64 25
PIPELINE LENGTH (STAGES) PIPELINE LENGTH (STAGES)
NET LENGTH 32: NET LENGTH 256;
FRAMES VS PIPE LENGTH FRAMES VS PIPE LENGTH
FRAMES FRAMES
30 : , . 120 . :
4 ; : ; RELATIVE 4 , ; RELATIVE
: z - OVERHEAD 4 : : OVERHEAD
, : 1 : 1
N o - o
« o 100 %0 v : 100
-~ ; . ! 'y
10000 : : 10000
< : ’ *
1 4 16 64 2 1 4 16 68 2%
PIPELINE LENGTH (STAGES) PIPELINE LENGTH (STAGES)
NET LENGTH 32: NET LENGTH 256:
NAIVE/OPTIMAL TIME VS PIPE LENGTH NAIVE/OPTIMAL TIME VS PIPE LENGTH
RATIO RATIO
2.50 —— RELATIVE 1.45 T RELATIVE
] ; : OVERHEAD : - : OVERHEAD
‘\ : 1 1
\\ : a o
2.00 g 100 1.30 100
- r'S
10000 10000
* L J
1.50 1.15
1.00 1.00 -
1 4 16 6h 25 1 4 16 64 2%
PIPELINE LENGTH (STAGES) PIPELINE LENGTH (STAGES)

Figure 4.29 Sensitivity Studies for RPS Routers

126

4.8. Connections to Picture-Processing Revisited

To conclude our examination of RPS routers, we outline briefly how the image-operators
for which the current hardware was originally designed may be applied to routing problems.
Although the experiments in this chapter clearly demonstrate the need for a subarray stage
optimized for routing tasks, some of the image-operators appear to be useful. Fbr example, a
routing grid with embedded penalties can be viewed as a grey-level image where each cell's
penalty value is its grey-value. The operation of growing regions of enhanced or diminished
cost around objects in the grid can be conveniently interpreted as an application of the grey-
level operators. For example, consider how to mark all cells within radius R of a pin with a
cost determined by their distance from the pin. A cell at radius p is to receive cost R /p.
Viewed as a 3-dimensional surface, this cost-surface around a pin is a section of a cone. From
an operator viewpoint, this is dilation of a point by a cone as in [Ster80a], which can be per-
formed on the current hardware. [NHLV82| describes a method to reduce dependence on wire
ordering by growing additive regions of cost around pins; this operation turns out to be pre-
cisely a grey-level dilation as defined in Sec 3.2.2. The via exclusion phase of cleanup for the
two-layer RPS router is actually; implemented as an elementary dilation. As another application,
consider how one might route wires wider than one single cell. We cannot simply route the
wire as usual and then increase its width, since it might overlap other wires or violate design
rules. Instead, mark as free only those cells at which the wider wire could be centered. In mor-
phological terms, this is an erosion operation. On this new grid we route as usual, assured that
the final path will violate no design rules. After backtrace, we dilate out the new unit-width
path to mark cells that become obstacles due to the presence of this wider wire. In general, the

image-operators find some use for pre- and post-processing of routing grids.

4.9. Summary

This chapter studies RPS-structured maze-routers. Maze routing is reviewed and an
analysis of the intrinsic complexity of software, array and RPS routers is presented. Functional
one-layer and two-layer RPS routers are designed and analyzed in our prototype environment,

and a workable scheme for global routing is suggested. PCB’s and gate-arrays have been

127

successfully routed. These routers verify our original conjecture that RPS-structured machines
can be fast, practical routing engines. Moreover, existing RPS routers, including our proto-
types, can be improved incrementally and gracefully: additional pipeline stages improve execu-
tion time; additional cell memory enables larger problems to be tackled directly. Experiments
over a range of pipeline lengths, and extrapolations based on experimental measurements sup-
port this claim. Critical design issues such as statelessness, and performance issues such as
incremental framing, are identified and analyzed. Approximate and exact solutions to the
optimal framing problem are rigorously derived and applied. Using these solutions, we study
the sensitivity of routing performance to changes in the hardware environment. The success of
these systems and experiments argues for the design of an RPS architecture optimized

specifically for routing.

CHAPTER V

DESIGN RULE CHECKING IN AN RPS ENVIRONMENT

5.1. Introduction

This chapter examines design rule checking in an RPS environment. We discuss this
application much more briefly than maze-routing for three principal reasons. First, DRC is a
simpler, more obvious application for RPS machines, given their antecedents: the analogy with
picture-processing is much stronger for DRC than for maze-routing. Second, concurrently with
the original DRC work by Mudge et al. [MuLT81a, MuLT81b], and our subsequent work
[MRLAS82], implementation of cellular DRC algorithms on different machine architectures was
studied in [BlSvSl, Blan82, Seil81, Sei]82]. Given this body of research, we need spend less
time justifying the basic feasibility of the approach. Third, based on discussion with us, Blank
has compared the performance of a cytocomputer DRC with other DRC engines |Blan82).

Hence, we need not reformulate these comparisons.

Accordingly, the first section reviews DRC in general, and examines how cellular DRCs
and DRC engines fit into the spectrum of DRC tools. The next section discusses the basic
structure of rules checking on an RPS machine, and reviews some of the differences between
DRC and traditional picture-processing. We then look at some simple examples of how the
image operators of Sec. 3.2.2 can be used to specify a DRC. We construct an experimental
implementation of one specification to verify its correctness, and examine its performance.

Finally, we suggest some alternative IC mask operations for an RPS-structured machine.

128

129

5.2. DRC Reviewed

The design rules for an IC mask are a set of geometrical constraints on mask features’
imposed by the the wafer fabrication process. The two general approaches to the implementa-
tion of DRCs reflect the data-structure chosen for the IC mask. Geometric-shapes checkers
perform checks on masks represented as sets of intersecting polygons or rectangles [Bair78].
Corner-stitched rectangles are a popular variant of this idea [Oust84]. Grid-based checkers
work with a mask represented as a grid whose cells are labeled according to the presence or
absence of particular mask layers. Both nonuniform grids, in which the chips are dissected into
contiguous rectangles of arbitrary size [LoTh79], and uniform grids whose cells are unit squares
have been used. For uniform grids, raster-scan approaches [Bake80, EuMu82] have been
developed that access a grid in raster order and check local design rules. The idea here is to
pass a small window over the grid and identify the local violation-patterns appearing in the win-
dow. This latter approach, which we can easily identify with subarray-computations, motivates

a DRC on RPS hardware.

Roughly speaking, a design rule checker performs three functions on mask features: con-
nectivity resolution, layer combination, and tolerance checking. Connectivity resolution merges
discrete shapes on the same layer into a single larger shape if they overlap; connectivity is simi-
larly assessed across several layers, e.g., across contact windows. Layer combination creates
new layers from Boolean combinations of existing layers, e.g., the intersection of several layers.
Tolerance checks determine whether a local group of shapes on one or more layers satisfies
some spatial constraint: corner/edge separation, incursion, inclusion, exclusion, size, area, per-

imeter.

Different mask data structures have different advantages and disadvantages with respect to
these three DRC operations. The singular advantage of cellular grids is, unsurprisingly, their
uniformity: processing is homogeneous across the grid. This is particularly attractive for a
hardware-based DRC. For masks represented as grids, local connectivity and layer combination

are easily computed. - Overlapping shapes automatically become a single entity as the cells

The following terms are interchangeable: mask, mask festures, artwork, layout, geometry.

130

within the shapes are labeled as belonging to a particular layer, and Boolean combinations per-
formed globally across several layers are simply performed on each cell in the mask. Tolerance
checks are more interesting since they require not just cell by cell processing but also pattern
recognition operations on spatially distributed groups of cells. We concentrate on these in sub-

sequent sections.

There are also several serious disadvantages to uniform cellular grids. Six basic problems
are: global connectivity resolution, connectivity pathologies, oblique geometry, restricted

feature sizes, increased rule complexity with distance, and mask size. We treat each separately.

o Global Connectivity Resolution
Features widely separated on a mask may be connected electrically. Such global connec-
tivity is difficult to resolve if we are restricted to strictly local processing of grid cells.
Resolution requires propagating nodal information globally around the grid. It is not
impossible to perform this on a cellular grid if some global processing is available

[Bake80], but it is expensive to maintain a node-number in each grid cell.

¢ Connectivity Pathologies
Because we may not be able to identify electrically connected features, we may flag spuri-
ous rule violations, e.g., features that appear too close together may not violate design

rules if they are electrically equivalent.

¢ Oblique Geometry
Layouts represented with polygon-based data structures may contain features of arbitrary
shape and arbitrary size. Grid-based representations are generally restricted to orthogonal

artwork only.

¢ Restricted Feature Sizes
Layout represented on a grid must conform to the size of each grid cell. Mask features
are restricted to multiples of unit the cell size. In particular, the design rules must also

conform to this restriction. This is the form of the Mead and Conway NMOS rules

[MeCo80].

131

¢ Increased Rule Complexity with Distance
In a polygon-based layout representation, sizes are encoded directly in each feature. It is
no more complex to check a design rule involving a distance D, than to check with a
different distance D ,. For a cellular grid, complexity increases with the critical sizes that
parameterize design rules. For example, a width- W check at a point may require visiting
all cells within a radius- W circle. Rule checks involving large distances, e.g., verification

of minimum size for a bonding pad, thus consume more time than for a small distance.

¢ Mask Size
Individual grid cells must be small to resolve all features of a mask and the associated
design rules. Consequently, mask grids can be sizable. Consider a large chip drawn on a
cellular grid. If f is the minimum feature size of the given layout, some commercial
microprocessors drawn on a grid of f X f squares require 10 to 15 million cells [FrSp81|;
for reference, a 300 mil X 300 mil chip drawn on a 1pm grid has about 60 million cells.

The practical problem.is how to generate, rasterize, or store layouts with grids this large.

Because of these problems, some advocates of the polygon approach have dismissed cellu-
lar approaches as inadequate [SzZVW83]. We prefer to view cellular DRC, as implemented in
hardware, as embodying a tradeofl between quality and speed. That is, we do not suggest that a
cellular DRC engine is a replacement for a traditional polygon DRC. Rather, we suggest that it
is a separate point in the spectrum of DRC tools. Polygon checkers provide a very complete
rule check, but are often slow; run times are often measured in days on a mainframe
[BHMLS82|. On the other hand, a cellular DRC engine is potentially quite fast, but sacrifices
some quality. For that large class of designs for which grids are an appropriate representation,
we argue that this type of rules check, executed rapidly in hardware, is useful as feedback dur-

ing the design process.

Note that not all these problems associated with cellular checkers are insoluble. For
example, some oblique geometry is representable at the cost of increased storage or processing
complexity. [Seil82] discusses a scheme for 45° artwork based upon conditional labeling of

cells during rasterization. |LoTh79] suggests a scheme using extra storage for each cell; we

132

look at how formal image operators might be extended to this scheme in a later section. Inclu-
sion of oblique geometry is a classical tradeoff between designs and tools: chips that permit
obliques are always denser; tools that restrict to orthogonal features are always faster. It has
been argued that obliques are a questionable luxury that may become too expensive to check in
the face of VLSI complexity [Losl80|. Similarly, restriction to layouts on a unit-grid appears
not to be untenable. The popularity of the simplified NMOS design rules of Mead and Conway

[MeCo80] and their migration to other technologies [Lyon81, Gris82] support this claim.

The problem posed by the size of realistic layouts is also addressable. Given the bias of
this thesis toward hardware solutions, we suggest that the problem of digitizing the layout be
addressed in hardware, along with the actual rules checking mechanisms. For example, we
might simply dedicate a large disk and cell buffer to an RPS-based DRC system. The layout
need only be rasterized once and stored to be later streamed through the RPS pipeline. We
need not store the grid in flattened form here. If pre- or post-processing is available at the ends
of the pipeline, a simple run-length encoding would reduce storage requirements, and hence
data transfer time. More complex bit-map encoding schemes, e.g., [Wilm80|, might be possible
with extra hardware. [Seil82] discusses a single-chip polygon-to-raster converter to supply the
cell stream to a cellular DRC engine. This system is apparently functional; see [Seil84].
Hence, we conclude that some combination of memory and rasterization hardware suffices to

manage the size problem.

5.3. Elementary DRC in an RPS Environment

We assume that individual masks are represented as bit-planes. A grid with b-bit cells can
thus store b different masks representing the input layout, intermediate results, and final out-
put. This output is one or more bit-planes of error masks giving the location of specific rule
violations. If space is available, we may wish to produce several error masks for different types

of violations; if not, we may lump all errors into a single mask.

A DRC algorithm is a sequence of subarray-computations that checks all the individual
design rules. For each rule we have a short sequence of subarray-computations to identify loca-

tions of violations; it is assumed that all rules are local in extent. Rules whose local extent fits

133

within the size of the subarray in each stage may be checked in one subarray-computation: one
template-match suffices. Rules with larger critical distances require several subarray-
computations, each of which produces an intermediate result. Hence, it is useful to have cells
wide enough to provide several of these temporary bit-planes. A complete DRC is the concate-
nation of these individual sequences of subarray-computations. If individual cells are wide
enough to provide all the necessary intermediate and error bit-planes, a K-step DRC can be
performed in one pass of the grid through a K-stage pipeline. If pipeline length S is less than

K, we require rK/S] passes, and must store or regenerate the grid for each pass.

There are two basic advantages of the RPS organization for DRC. First, a long pipeline
performs many individual rule checks in parallel. Processing time for an X X Y grid is the
pipeline flush time, XY7,,,, plus the pipeline latency which is small in comparison for large
grids. Second, we can accommodate large grids directly, without any sectioning or edge effects:
with line buffers of length L in each stage, we can handle any L X Y grid directly. In addition,

with programmable stages, we can perform a variety of different DRCs.

Note that DRC tasks resemble some typical geometric picture-processing tasks, given the
focus on local processing and pattern-matching. Indeed, central features of the RPS organiza-
tion (parallelism, accommodation of large grids) evolved in picture-processing applications.
There are, however, some important differences to note. IC masks are synthetic artifacts; there
are no errors introduced in the translation from original format into a grid.. In contrast, ordi-
nary images are typically acquired over noisy channels, and hence, much of their processing

concerns the identification and separation of the data from the noise.

Masks, because of their extreme size, are digitized at the minimum acceptable resolution.
They are characterized as having mostly very small features. Ordinary images are typically
acquired at greater resolution to avoid noise problems: a difference of a few cells in one feature
is insignificant. Differences in resolution imply differences in processing. If we apply the for-
mal image operators of Sec. 3.2.2 to an ordinary image, it is safe to make reasonable approxi-
mations for the geometric operations of interest, e.g., eroding or dilating with a disk. This is
not true for IC masks, where much of the critical processing occurs at distances of only a few

cell widths; we must be extremely careful in our definition of geometric operations here.

134

Finally, note that ordinary acquired images are typically, but not always, much smaller than an

IC mask.

5.4. Local Design of Simple Tolerance Checks

An adequate DRC may be constructed by employing only layer combinations and some
simple tolerance checks. In particular, many rules can be expressed with width or spacing

checks. Since layer combination is a trivial scalar operation on each cell, we focus on width and

spacing checks.

Note first that we require only one of these two checks, e.g., a spacing check is a width
check on the complement of a mask. All tolerance checks in a cellular DRC have the same
intuitive basis: two features fail a spacing check if, after ezpanding them, they touch; a feature
fails a width check if, after shrinking it, it disappears. Our intention in this section is to study
how to recast this intuition into the formalism of the image operators of Sec. 3.2.2. The advan-
tages of this are twofold. First, we are provided with a compact notation for writing rule-
checking algorithms. We wish to avoid the exhaustive pattern specification that often character-
izes template-match operations. Second, we are provided with some formal rules for manipu-
lating these algorithms, such as knowing which operations commute or associate. This is the

methodology we suggested in [MRLA82, RuMA84J.

To illustrate this idea, consider a width- W check to identify mask features less than W-
cells in diameter. The algorithm is based on the simple observation illustrated in Fig. 5.1,
which shows a mask on which a width-W check is to be done. Slide a disk of diameter W
around inside the mask to all possible locations at which it may be completely contained (Fig.
5.1b). While it slides, mark those points covered by the disk and trace the path of its center.
It is clear the disk should not pass through regions which are too narrow, i.e., regions which fail
the width test. Except for some square-corner effects, those regions left uncovered all violate
the width test (Fig. 5.1c). Note also that the region traced out by the center of the disk is not

connected across the diagonal neck of the mask.

135

N

;\\\\\ AR

N SRR

AN

V

(@) (¢

Figure 5.1 Basis for Width Checking Algorithm

With these observations we can construct an executable algorithm. Fig. 5.2 defines two
geometric figures useful for this algorithm: S(r) is a square with edge length r cells, and
QC(r, q) is a quarter-circle of radius r in quadrant ¢. Because we are using orthogonal masks,
we abandon the diameter- W disk in favor a W X W square. The operations of Fig. 5.1 all have
a formal interpretation: sliding the disk around inside a mask feature is an opening; tracing the
center is an erosion; searching for disconnected components of the center can be accomplished
by a conditional didation. This illustrates some of the geometric intuition permitted by these
operators. Fig. 5.3 gives the algorithm precisely and illustrates it geometrically. This particular
algorithm tags any region smaller than W X W cells, and tags the north side of each diagonal
pinched-neck width violation. Other schemes to indicate errors are possible, as are other

geometric interpretations for width-checking; see [MRLAS82].

136

>
N

Q=4
Xr) QX(r,q) gq=1,2,3,4

Figure 5.2 Geometric Figures for Width Check Algorithm

The only question remaining is how to realize the geometric shapes in Fig. 5.2. Recall
from the discussion of Sec. 3.2.2 that we typically formulate algorithms using general geometric
shapes and then decompose them into elementary subarray-computations using the rules from
the algebra. It is easy to build the square S(r) by successively dilating smaller squares. The
quarter-circle QC(r, ¢) is more interesting. |Blan82, Seil82| effectively build circles for their
DRCs using successive 4-way and 8-way expands from a point, as shown in Fig. 5.4. The
appropriate number of expands by each shape provides an approximation to a circle which can
be optimized empirically. We consider an alternative interpretation. First, recognize that
expands are really dilations, and that a 4-way expand is a digital approximation to dilation by a
diamond-shaped quadrilateral, and that an 8-way expand is likewise a dilation by a square (see
Fig. 5.4) Since dilation commutes and associates, we may dilate together all the diamonds first,
and then all the squares. Since these are both convex shapes, the individual dilations simply
scale the original figure, e.g., dilating p diamonds produces a diamond p-times larger. It is then
easy to see that the resulting continuous shape has the dimensions shown in Fig. 5.4. With this
knowledge, elementary calculus suffices to minimize the area between this approximation and a
perfect circle. Thus, we can determine directly the optimum sequence of elementary dilations

to form a circle, and hence also to form QC(r, ¢).

137

Glven: A mask, "M”, represented as a bit-plane.

Task: Produce another bit-plane, "error”, indicating the locations of violations for a
width- W rule check.

Algorithm: Width_Check

[* find simple orthogonal errors by opening mask M */
opened_M := Mg,

|* anything not in the opening is an error */
error = error (M - opened_M)

I error

[* trace center of S(W) sliding in M by eroding .
*s (Note we actually have this erosion from

s the opening above; we could save and reuse it)
*

Center := M O S(W)

[* tag northeast corners of center. this prepares

*+ {9 identify breaks in Center which restrict S(W)

*

NE_tag := match(center cells without north, northeast,
or east neighbors in Center)

[* search northeast within radius W of tagged
** corners, but only cells that are in M.
: i
dilats NE break ;= (NE_tag @ QC(W,1)) 1 M
. [* where break hils a center component
23 s+ (but not a tagged corner) iz a violation

— error */
‘ error := error | J (NE_break - NE_tag)

[* same steps to the northwest for other disgonal error */

NW_tag := match(center cells without north, northwest,
or west neighbors in Center)

dilaste NW_break := (NW_tag @ QC(W,1)) I M

error := error |J (NW_break - NW_tag)

__.._ A [* final result is in error */

| errorx

Figure 5.3 Width Check Algorithm

138

APPROXIMATION ON A GRID

U4-WAY EXPAND 8-WAY EXPAND
FROM ONE CELL FROM ONE CELL CIRCLE

CONTINUGCUS APPROXIMATION

P ®Q + =

DILATION BY DILATION BY
DIAMOND SQUARE CIRCLE

Figure 5.4 Approximating Circles an a Grid

In our experience, this approach has proven to be a particularly useful way of viewing the
geometric operations in each rule check, and to provide a compact notation for writing down

the algorithms.

5.5. DRC Experiments

We conduct a few simple experiments to verify our interpretation of the width check algo-
rithm. A 3-cell width check is implemented in our RPS environment. This is the smallest
non-trivial test requiring more than one subarray-computation: it requires eight subarray-
computations. First, we define a simple 64 X 64 test mask and check it. The result is shown in
Fig. 5.5. Total processing time is about 0.5 seconds elapsed for a 3-stage pipeline. All errors
are correctly flagged. As a more interesting experiment, we stack this test mask upon itself

vertically 64 times to yield a much larger 64 X 4096 mask. This is intended to represent one

139

TEST MASK MASK WITH ERRORS IN BLACK

Figure 5.5 64 X 64 Test Cell and Width Checked Result

strip® of a chip of realistic size. The width check is then performed on this strip for various
pipeline lengths. The global design for all these experiments is trivial: we digitize the mask
off-line, transfer it to the cell-buffer, and perform the necessary pipeline processing, and return
the grid. (Schemes appropriate for realistic masks have been discussed in Sec. 5.2.) Table 5.1
gives the resulting elapsed, host CPU, and IO times. Note that elapsed pipeline processing time
decreases again as 1/S. 10 overhead time is significant for moving grids of this size; without

careful design and some hardware support it is likely to be the major performance bottleneck.

Depending on the sophistication of the checking needed and extra processing required to
put meaningful labels on errors, we estimate that a DRC for the Mead and Conway rules will
take between 150 and 250 subarray-computations. Table 5.2 estimates the time to run such a

DRC on a 4096\ X 4096\ chip for different pipeline lengths. We assume processing is done in

2Note that if strips are to be used, it is always best to employ vertical strips: this minimizes pipeline latency,

140

: - Pipeline DRC || .
Pipeline | Host Load Strip 10 Time (sec) Process. Time (sec) Total Time (sec)
Length Factor Elapsed CPU El_g_gsed CPU Elapsed | CPU
1 2.26 2.849 .200 6.089 367 8.933 567
2 1.78 3.532 .283 3.304 .150 6.566 434
3 1.62 2.750 .200 2.350 .200 5.100 .400

Table 5.1 DRC Strip Experiments

contiguous vertical strips, each 64 cells wide and overlapped by 4 cells to avoid errors, and sum
all strip times. We use the transfer time for the 3-stage single strip test (Table. 5.1), and
assume that the host generates these strips as fast as the pipeline requires, i.e., with negligible
delay between strips. Pipeline processing time is estimated is estimated via (3.17), where the
pipeline overhead times are taken to be dominated by the grid transfer time. As expected, pro-
cessing time improves with additional stages, and approaches an asymptote determined by the

10 times.

[Blan82] has formulated relative performance comparisons among the DRC engines of
[BISv81, Seil82] and cytocomputers, and the software rule checkers of [Bake80, NoNM81|. A
wide range of DRC tasks is considered. Cytocomputers compare quite favorably to the software

implementations and to other hardware; see |Blan82| for details of this study.

Pipeline Estimated DRC Time (sec)
for 4096\ X 4096\ Mask
Length | 150-Step-DRC | 250-Step-DRC
1 5621. 9239.
10 737.2 1099.
50 305.8 380.9
100 266.9 304.0
250 230.7 231.7

Table 5.2 Estimated DRC Times for 4096 X 4096 Mask

which depends on the width of the strip.

141

5.6. Extensions to Alternative Mask Operations

This section suggests two extensions related to RPS-based DRC implementations. We
look first at a method to accommodate 45° mask geometry, and then examine the use of RPS

hardware as an interactive geometric query processor.

One criticism of raster DRC approaches is that they are generally restricted to orthogonal
artwork. [LoTh79] suggests a fixed grid structure which admits 45 ° lines. The basic idea is to
to draw an X through each cell, thus replacing each square cell with four small triangles, and to
use four bits to represent the four regions produced. This structure is appealing but has some
inherent problems. First, shrinks and expands are more complex; we must actually trace object
boundaries to correctly determine where the new edges fall. Second, a ‘‘bit-plane’’ is now a
more complex object requiring four times as much storage. Third, it is not immediately clear

how any image operators fit in here.

These problems arise because this grid is not as simple and as symmetrical as a square
tessellation. We propose an alternate interpretation of this grid. Instead of viewing this as a
square grid each of whose cells is cut into four pieces, we will regard this as two separate,
superimposed grids as shown in Fig. 5.6. Each grid is an ordinary square grid, except one has an

orthogonal orientation, and the other has a diagonal orientation and is smaller than the first.

PRGN
ROOZO200X
RSO0
PN
PRI
RXIXIXIXIX

NON-ORTHOGONAL GRID 0-GRID

Figure 5.8 Alternative Non-Orthogonal Grid Interpretation

142

Call the first the o-grid, and the second the d-grid. Note that the ratio of cell sizes here is
1:1/V2.

Let X be a figure with orthogonal and diagonal edges. Represent it in this new structure
by a pair of figures (X, ,X;) where X, is on the o-grid and X; is on the d-grid. It is necessary
that X be recoverable from X, and X, but it would be convenient if X could be manipulated
solely in terms of these two, so that we never need actually recreate X. The obvious mechan-
ism is to define X as some set-theoretic combination of the plane areas represented by the cells

in the two grids. Fig. 5.7 shows an example in which X =X, () X;.
Several questions suggest themselves concerning this proposed representation scheme:
° Does this scheme require any less than the four bits/cell of the original approach?
¢ How can this scheme be represented physically?
o Is this scheme as flexible as the original approach?
° How do formal operators work here?

In answer to the first question, it is easy to see that we need only three bits/cell. If we
consider an N X N o-grid and all the cells in the d-grid touching it, we find there are 3N%+2N

total cells covered, and hence 3N%+2N bits required. For reasonably large N, and ignoring the

Il
D)

Figure 5.7 Example Representation on o-Grid/d-Grid

143

edges, we require essentially three bits per o-cell, giving us a savings of about 25%.

This immediately suggests an answer to the question of physical representation: with each
o-cell associate two d-cells, so that each o-cell stores three bits. If we choose the north and
west adjacent d-cells for a given o-cell, an o-grid with three bits per cell can represent the

tessellation of Fig. 5.6.

Because the original approach uses 4N? bits and we use fewer, we immediately know that
this scheme cannot be as flexible as the original. Assuming that X is defined as X, [} X, what
is lost is the ability to represent 45° notches in solid figures. For example, if we tried to
represent Fig. 5.8a , we would actually get Fig. 5.8b. Similar problems occur for other combi-

nations of o-grid and d-grid.®

The answer to how the formal image operators apply here is more complex. Ideally, given
some binary morphological operator f on a standard square grid, and two figures X =(X,, X;)

and Y =(Y,, Y;), we would like to define F, the extension of f to the o- and d- grids, to be

FIX,Y)=(/f(X,, Y,), f(Xs, Y4)) (5.1)
to decouple completely the o-grid and d-grid computations. Unfortunately, this turns out not to
work. Assuming again that we intersect o-grid and d-grid, Fig. 5.9 shows a counter example.

Shape S fits into shape X in just one way, and so we would expect to have the opening X; =3S.

NOTCH LOST 2

DESIRED FIGURE REPRESENTABLE RESULT
(@ (®)

Figure 5.8 Unrepresentable Oblique Notches

3Such small, sharp features would likely be lost during the processing of the wafer anyway. Hence, this appears
not to be a serious problem.

144

An incorrect result is obtained because of the registration problem. Operating with S on X, S,
and S; are not independent: they have a fixed relationship, one above the other. In this exam-
ple, S, fits inside X in two places, but S; fits in precisely one. This violates our general expec-
tation for how S should behave; we cannot have part of it fit and part of it not. Although the
nature of the difficulty is understood and seems correctable, we have no formal characterization

of how to deal with it.

As a second extension, note that the individual geometric operations comprising a DRC
might also be applied elsewhere. In particular, a programmable RPS engine can perform
geometric queries on a digitized layout, with the query language based on the formalism of the
image operators. For example, the query "find all rectangular transistors with aspect ratios no
greater than 7 and within distance 10 of of a vertical metal bus” is a complex but well-defined
sequence of operations to tag and isolate the necessary features. As a step in this direction,
Bird [Bird84] has implemented a full compiler with grid data-types, formal operators, and con-
trol structures, in order to experiment with these image operators in our RPS environment.
The compiler runs in the application layer of our system; its code generator is based on the

simple stage-code generator implemented for the DRC experiments of the previous section.

INCORRECT

OPEN BY:

Figure 5.9 Attempt to Open X by S using Decoupled Computation

145

5.7. Summary

This chapter studies RPS-based DRC tools. Approaches to DRC systems are reviewed. It
is suggested that a cellular DRC realized on RPS hardware is not a replacement for traditional
DRC systems, but rather an alternative that sacrifices some quality for increased speed. We
show that the formulation and operators of Sec. 3.2.2 provide a useful conceptual and nota-
tional tool for DRC algorithms. A simple width check is designed and implemented using this

approach. Extensions to other mask operations are suggested.

CHAPTER VI

DESIGN TRADEOFFS FOR RPS-STRUCTURED DA ENGINES

6.1. Introduction

The previous two chapters explored routing and rules checking applications in an RPS
environment. A principle component of the experimental work undertaken there was the
identification of critical performance issues intrinsic to RPS systems. We have attempted to
separate and abstract issues that appear to be generic to all RPS architectures from those
endemic to our experimental hardware. With this background, this chapter proceeds to explore
the architectural design of RPS-structured D A engines. Cost/performance tradeoffs and optimi-
zations are analyzed for routing and design rule checking. As expected, we again partition the
discussion into local design, in this case subarray stage functionality, and global design, particu-

larly tradeoffs among diff erent pipeline configurations.

6.2. Local Design of RPS-Structured DA Engines

This section focuses on the functionality of subarray stages appropriate to support routing
and rules checking tasks. From our experimental systems we have identified several stage func-
tions and subarray-computations needed to accommodate these tasks efficiently on an RPS
machine. The functional inadequacies of a stage manifest themselves as compromises forced
upon us as we attempt to map complex algorithms onto the stage hardware; the sub-optimal
structure of the global router designed in Chapter IV is derived from such compromises. Given
these experimental observations, we might begin immediately the design of an ‘‘optimal’’ stage

architecture. In this section, we reject this approach and argue that to embark upon detailed

146

147

design at this point is necessarily naive for two reasons.

First, we do not yet have a sound, quantitative picture of the tradeoffs involved for RPS
systems. Intuition and experimental data support these ideas: long pipelines are better than
short ones; fast stages are better than slow ones; host overhead is better low than high. How-
ever, pipeline length, rate, and overhead are all parameters influenced by the stage design:
overhead includes stage reprogramming (if indeed the stages are programmable); stage
bandwidth depends on the complexity of stage functionality; pipeline length is influenced by the
cost and size of individual stages. For example, the fastest stage may not be the one we can
afford to use in the longest practical pipeline. Several designs may each suffice to meet a set of

performance constraints, yet each design may incur a radically different cost.

Second, we have not yet specified the range of tasks this stage must handle. A stage for a
routing engine is not necessarily optimal for a DRC engine. A stage to support both tasks
likely represents a‘ compromise. A general-purpose stage (roughly analogous to a bit-serial
array node) is likely sub-optimal for each DA task, but perhaps cost-effective because of its

wider range of applications.

To avoid these problems, we do not propose a single, detailed stage design for these DA
tasks. Rather, we informally catalog those aspects of stage architecture desirable for routing

and rules checking, as deduced from our experiments.

Fig. 6.1 shows again the basic structure of a subarray stage and its components: the
buffering scheme, subarray storage, and subarray processor. Each is treated separately in the

following sections.

6.2.1. Buffering Scheme

The buffers align the serial cell stream into subarrays for processing. A critical parameter
is the datapath width: wider cells are needed to support DRC on several bit-planes, and multi-
layer routing with complex path-functions. It is possible to allow tradeoffs between cell size and
line-buffer length. Although Fig. 6.1 interprets the buffers as shift-registers (‘‘delay” lines), in

practice these are constructed of standard RAMs with access mechanisms to implement the

148

| OUTPUT
LINE BUFFER -Dr = SUBARRAY CELL

STREAM

PROCESSOR

L—HLMBL.FFER"F-’

STORAGE FOR 2 GRID ROWS SUBARRAY STORAGE

Figure 6.1 Basic Subarray Stage Structure

shift-by-one-cell function [Loug84]. With slightly more complex access mechanisms, we might
consider the line buffers as a large collection of bits to be reformatted as necessary. This is a
tradeoff reminiscent of virtual array architectures with large memories resident at each node.
For example, assume 1 M-bit of line buffer memory in a 3 X 3 stage. This suffices to support
grids with 65536 columns of 8-bit cells, 16384 columns of 32-bit cells, etc. It is expected that

the overhead to deal with wider cells will degrade the bandwidth of the stage.

The next obvious constraint here is the external datapath width, i.e., the width the stage
IO ports. Current cytocomputer stages have fixed 8-bit external and internal datapaths. A
straightforward solution is time-multiplexed access to pieces of larger cells streamed sequen-
tially through the narrower external datapath. Pieces of one cell accumulate in a shift register;

when complete, the entire cell is moved into the line buffers.

The shift-register interpretation of Fig. 6.1 handles only rectangular grids. For routing, it
is more desirable to process just the region of potentially expandable cells, which is never rec-

tangular. Referring again to the perfect, unimpeded diamond-shape expansion wavefront in

149

Fig. 4.4, the capability to process only the area of expansion could reduce cell computations by
up to 50%. Extraction of the appropriate polygon in the routing grid to be streamed through
the stages is a standard raster-graphics operation. However, the stage must now know the
shape of this non-rectangular region to handle its ragged edges: a one-cell shift no longer pro-
duces the next subarray at the edges of the region. More accesses to the subarray storage and
buffers are necessary for proper alignment. Overall stage bandwidth may be degraded in order
to handle the more complex alignment. This is a tradeoff that may be justified for a routing

engine, but not for a DRC engine.

6.2.2. Subarray Storage

Subarray storage holds successive subarrays of data from the input grid, and represents
the current ‘‘state’’ of the input for the subarray processor. Although large subarrays have‘
some applications for DRC (see |Seil82]), f.he 3 X 3 structure is the most generally useful. The
width of each cell in the subarray defines the widest cell that can be processed. For small
subarrays, very wide cells are not expensive. The subarray must be accessible by the buffer
mechanism, and by the subarray processor. For non-stateless applications which inject their
results back into the input grid, it must be readable and writable by the subarray processor.
The subarray should play a role analogous to the general registers in a general-purpose CPU:
subarray cells are individually addressable, can function as source or destination for subarray;
computations, and are implemented in a very fast technology. Unlike conventional CPUs, how-
ever, concurrent access to some or all cells is desirable for subarray-computations, especially

with highly parallel subarray processors.

An extension to better support the DRC task is to permit individual bit-plane access to
the subarray. That is, a 3 X 3 X 32 bit subarray accessible as 9 32-bit cells, or 32 9-bit planes.
Individual bit-planes (masks) are the appropriate primitive objects for which we should provide

load /store access in a DRC.

150

6.2.3. Subarray Processor

The subarray processor produces the output cell stream based upon input data in the
subarray storage, and upon any stored or computed data internal to the processor. After speci-
fying the necessary subarray-computations (e.g., well-defined cell expansion or bit-plane DRC
algorithms), cost and bandwidth constraints, several architectural tradeoffs can be made. We
consider separately these four design issues: cell format, instruction set, parallelism in subarray

computation, and global state.

o Cell Format
As mentioned previously, wider cells are desirable to support more complex tasks. DRC
demands several parallel bit-planes for masks and intermediate results. Routing demands
flexible formats, essentially data structures with bits, integers, etc., coexisting within each
cell. Cytocomputer stages are almost entirely table-driven: cell reformatting is accom-
plished by full-width 8-bit table lookup. Because this does not scale to larger cells, we
must consider explicit sub-field access mechanisms. However, experience with the
current hardware suggests that table lookup is an efficient, flexible mechanism for scalar
calculations on small cells. Hence, we suggest a combination of the two: table lookup on
the low-order bit positions of a cell, and a barrel shifter to move the desired bits into
these low-order positions. Note the tradeofl here: larger tables process more bits in a

cell, but require more time to load during stage reprogramming. 10-bit to 12-bit lookup

seems practical.
o Instruction Set

The basic tradeoff here is the choice between a single-purpose, hardwired stage and a pro-
grammable stage. Our experimental hardware has only a rudimentary instruction set con-
sisting of the values of some tables and registers; dataflow is fixed and branch-free, and
each computation is essentially atomic. Unless we must address precisely one, unique
DRC or routing task, it appears that some form of instruction set is unavoidable. The
size and complexity of the instruction set, and the speed at which individual instructions
execute impact overall stage size and bandwidth. If the table-lookup mechanism just

described is available to each instruction, the speed of the table memory constrains the

151

speed of each instruction. It appears practical to incorporate some flexibility in choosing
the source and destination of operations on data in subarray storage, and some special-
purpose instructions to address the needs of individual DA tasks, e.g., a cell-expand
instruction for a particular routing formulation, or a bit-plane pattern-match operation

similar to the mechanism in current cytocomputers.

o Parallel Subarray Computation
Central to one subarray-computation is the process of transforming an input subarray
(extracted from the input stream) into one cell value injected into the output stream. The
issue to be addressed is the amount of parallelism in this computation. In cytocomputers,
the basic mechanism of subarray-computation transforms a 3 X3 subarray into a 9-bit
table address; in our hardware the 9-bit vector is generated serially during minor-cycles of
the stage clock, after ‘which the table operations may be viewed as parallel computations

on the subarray.

There are speed/cost tradeoffs between a single, time-multiplexed datapath with appropri-
ate storage for temporary results, and parallel hardware that performs the computation in
one step. For DRC, a datapath similar to that of cytocomputers suffices. For routing with
general path-functions, we require ALU-type functions and the previously mentioned
sub-field access mechanism. Consider again the simple unit-cost router of Fig. 4.1 in
which free cells are labeled with their distance from the source. Assume now that each
cell stores a penalty value: expanded cells are labeled with the minimum cost of a path to
the source. A cell with active neighbors requires the following sort of computation:
new cost(cell) := minimum { current cost(cell),

cost(north) + penalty(cell),

cost(south) + penalty(cell),

cost(east) + penalty(cell),

cost(west) + penalty(cell) }
Note the implementation alternatives: one general ALU plus temporary storage (serial
processing), two ALUs plus storage (moderate parallelism), four ALUs plus minimum-
detect hardware (fully parallel), etc. Again, the appropriate choice is dominated by cost

and speed constraints.

152

¢ Global State Information
For completeness, we mention again the need to retain internally global information com-
puted as grid cells stream through the stage. We require counters to count specific
events, index mechanisms to record the (z,y) grid address of specific events, and tem-
porary storage to retain computed cell values. An attractive approach is to dup.licate the
subarray storage and its access mechanisms, and to allow any data in either subarray to
participate as a source or destination for computations. This has the advantage of unifor-
mity, allowing the same kinds of data (bit-planes, complete cells, etc.) to be stored in

either subarray.

It is expected that the subarray processor dominates the size and complexity of the stage.

Although treated separately here, the buffers, subarray storage, and processor must be tightly

integrated. Conventional wisdom® suggests four implementation technologies, each embodying
different tradeoffs: microprocessor-based, bit-slice, semi-custom or custom implementation. A
microprocessor-based stage is flexible but slow. A bit-slice stage can be fast, but larger and
more costly; see [RuMA84| for our early ideas about a bit-slice-style stage. A semi-custom
stage can be fast, and less costly due to the integration of functions; moreover, it becomes less
expensive to provide parallel hardware (e.g., parallel ALUs for a router) if the critical function
to be replicated is implemented on a semi-custom chip. Custom implementation is faster than
a microprocessor-based design given custom functionality, and the resulting small stage makes
long pipelines practical. However, design cost is highest here. The following section quantifies
some of the cost performance tradeoffs that must be known in order to make an appropri;me

choice among these implementation alternatives.

1This actually mirrors the hardware learning curve for machines in the cytocomputer family [Loug84|. Early
subarray stages are mostly MSI technology, with some bit-slice components. Later stages use replicated semi-custom
components for speed. Others are fully-custom for density and long pipelines.

183

6.3. Global Design of RPS-Structured Engines

This section explores the impact on performance of variation in three basic global parame-
ters: pipeline length, stage rate, and pipeline overhead. Given the dependence of overhead
upon specific hardware environments and interfaces, we continue the practice of previous
chapters of inserting a single lumped overhead time r,,, at the appropriate places in our
models. Stage cycle time is 7y, , pipeline length is S stages. Only 3 X3 subarray stages are
considered. For simplicity, it is assumed again that each subarray-computation (wavefront
expand, DRC step) requires one atomic 7 4, cycle. The metrics of interest are execution time

and cost/performance, appropriately defined for each task.

Our approéch is to employ the execution time models developed previously to study the
eflects of variation in global parameters. Wherever possible we strive to obtain analytical
eﬁ(pressions for performance. By varying parameters and solving these models, we obtain
hardware configurations embodying different cost and performance tradeoffs. If inflexible con-
straints on size and speed are imposed, we may select just those configurations that satisfy

them. These differing configurations are then candidates for physical implementation.

We shall sometimes study optimization issues with respect to precisely one, single task,
e.g., with respect to the gate array benchmark of Chapter IV. It is not suggested that the
configuration optimal for such a narrow problem is the right one for general use. Rather, it is
suggested that this is an appropriate technique to gain insight into the behavior of RPS systems.
* We expect that the designer of ‘an RPS-structured engine has some @ priort knowledge of the
structure of the class of DA problems to be attacked. Conducting analyses on a famidy of
representative tasks yields data about specific design compromises that best accommodate the

entire range of expected tasks. In the following, we treat routing tasks first, and then DRC.

A starting point for the analysis of maze-routers is the analysis of single wires.
Throughout this discussion, it is assumed that routing time is dominated by expansion time,
i.e., backtrace, cleanup are negligible. Hence, we shall refer to expansion time as simply “rout-
ing time”. The central problem here is optimal framing, treated thoroughly in Chapter IV. In

particular, we have already studied the effects of variation in relative overhead 7,, /74, in

154

Sec. 4.7.2.2 using the dynamic programming solution to the framing problem. To complete this

analysis, we now consider the eflects of variations in 7, .

Consider an experiment similar to the one in Sec. 4.7.2.2 that studied sensitivity with
respect to overhead. Our goal is to study tradeoffs between pipeline length and speed. We

solve the optimal framing problem for the following task and hardware configurations:

L = 32, 256 cells (orthogonal 2-point nets from Fig. 4.13)
S = 2, 8, 32, 64 stages

T ovh = 10ps

T stage = 10ns, 50ns, 100ns, 500us, 1us, Sus, 10us, 50us

This experiment varies wire length, pipeline length, and stage rate over wide regions of feasible
values, and computes the optimal routing time for each set of parameters. The results are
shown in Fig. 6.2. For each wire length, we plot total time versus T stage » Parameterized by pipe-

line length.

As expected, times improve with decreasing 7 ,,,,, increasing S. Long pipelines are use-
ful for long wires, but not for short ones: the curves for § =32, S =28 are identical for a wire
length of 32 cells. The curves shown are very close to straight lines (log log scale), confirming
that for a fixed net geometry, time varies inversely with stages, directly with 74, . (Recall
from the sensitivity studies of Fig. 4.29, however, that the optimal framing strategy that yields
the optimal time is likely to change significantly as 1 ,,, changes.) Hence, we can make some of

the intuitive tradeofls between stage rate and pipeline length.

The next issue to address is the choice of optimal pipeline length for an entire routing

task. Suppose that the routing time for a net of length L is just L’/S, and that a routing task

consists of N, wires of lengths {L, },i'l. Then the total routing time for the task is

N, L s
T constant
Tres = 2 =

= (6.1)

=1
which varies inversely with S. A decrease in routing time with additional stages is expected,
but given our intuition about diminishing returns from stages, we might expect there to be
some best pipeline length. Clearly, there is an upper bound on useful pipeline length at
S =max {L, }X,. No pipeline with more stages than the length of the longest wire is ever use;

ful. An obvious guess is to take S =L, the mean wire length. But it is generally true that

155

NET LENGTH 32: ROUTING TIME VS STAGE CYCLE TIME
ROUTING TIME (SEC)

10s

2 STAGES
o
Is 8 STAGES
- ; -
100ms o 32 STAGES
o
10ms : ‘ :
100us
10us ; ; : :
ins 10ns 100ns 1us 10us 100us

STAGE CYCLE TIME (SEC)

NET LENGTH 256: ROUTING TIME VS STAGE CYCLE TIME
ROUTING TIME (SEC)

1000s 1 2 STAGES
: % : o
100s 8 STAGES
r'
10s 32 STAGES
®
1s
128 STAGES
100ms v
10ms
ims
1ns 10ns 100ns 1us 10us 100us

STAGE CYCLE TIME (SEC)

Figure 6.2 Routing Time Variation with Stage Cycle Time

157

The optimum pipeline length S,;; minimizes this quantity.

We consider the task of gate array routing, which appears to be a viable application for
RPS systems from our experiments of Sec. 4.5.3. This choice is motivated by two facts. First,
maze-routers have been routinely employed for gate arrays, e.g., [High83|. Second, the distri-

bution of wire-lengths has been characterized theoretically for gate array routing. Assuming
that a Rent's Rule relationship®> holds for the placement of logic in a square gate-array,
[Dona81] derives theoretically and verifies experimentally that the fraction f(k) of wires with
length k in a square gate array is distributed as

J(k) = b7 1€ESL

0 E>L o (6.3)

Q

where g, 7, and L ,, are constants. 7 is in the range 1<7<3.

Fig. 6.4 shows the measured distribution of wire lengths for the 900 gate array routed in
Sec. 4.5.3. Also shown is a least-squares fit to the distribution of (6.3), yielding parameters
g~< 1861, 7~ 1.883. Note the good fit except for very short wires, which results from the fact

that our gate array is not actually square as assumed by the theory (itis 18 X 25 blocks).

With a cost/performance metric and characterization of the routing task, we can formulate

precisely the question of optimal pipeline length. We need these assumptions:

e A routing task has N, wires of lengths {L, },:‘;1 distributed as in (6.3). In particular, the

number of wires with length L is N, f(L).

o The time Tgps(L,S) to route a wire of length L < Sis L *r 4, . This ignores latency and
overhead, and assumes a rather rudimentary framing: the wire lies in an L X L square.

8
° The time Tgpps(L,S) to route a wire of length L > S is -I-'—— T stage » 1.€., L passes of L?
S s S

cells through the pipe. Again, no latency or overhead, and only rudimentary framing.

Rent's Rule [LaRu71] relates the number of circuits in a logic graph to the number of IO terminals. It states
that the average number of terminals T per group of C circuits is: T=AC?. A and p are constants, and p is called
the Rent exponent. [Dona81] shows that in the distribution of wire lengths, 7~93-2p. For p in the expected range
1/2 < p <1, we actually bave 1 < 7 < 2.

158

GATE ARRAY NET LENGTH DISTRIBUTION

OCCURRENCES
500

400

300

200

100

7~ - D
0 80 160 240 320 400 480 S60 640
NET LENGTH (CELLS)

CURVE FIT FOR NET LENGTH DISTRIBUTION

OCCURRENCES
10000

4 EXPERIMENTAL DATA
o

1000

1007

Uil o

1 100 1000
NET LENGTH (CELLYS)

Figure 8.4 Net Length Distribution and Curve Fit for Gate Array Benchmark

159

The total time Tgps to route this array is then:

N'
Tres = EITRPS (Li,S) (6.4)

However, it is more useful to sum not over individual wires, but over individual net lengths:

me
Tres =k2lef(k)TRPS(k’S) (6.5)

Recalling that the time to route length L < S is different from the time for L > S, we partition

the sum and substitute for Tgps(k,S), and f(k) accordingly

S Lo 3
k
TRPS =2Nvf(k)kzrstagc + E Nvf(k)? Ts!agc
k=1 k=S4l
S l‘m ks (66)
= E N, gk—"k 2rmga + 2 N, gk-1_‘ T stage
k=] fwmS41)
which simplifies to become:
PR | Lax -7
TRPS =Ncrs¢ageg Zk T+ '§' 2 k™ (67)
= baeS41

Since 7 is a real number, we approximate these sums by their integrals:

S+1

S oaq . T (S+1)*"-1 O A
Sk ~ [k¥Tdk = ~ 22—
ot 1 3-1 3-7
Lot) (6.8)
Lzm:g ka_', ~ f ka—'de _ (Lm'f'l)‘ T_(S+1)4—7 ~ Lu‘:l;x',_ 34-7
k=541 S41 4-7 4-1

whereupon Tgps simplifies to become:

(6.9)

53_7 L 4-'75—1 1
Trps =N, T stage 9 =

(3-7)(4-7) -7 3-7
Substituting (6.9) into the expression for cost/performance (6.2), we obtain finally the desired
result:

§3-7 L,,‘,;,’S"

cost =cp =(a5+ﬂ)7’smegl(3_7)(4_7) + 4-7 B 3_1’7] (6.10)

performance

where we use cp to denote cost/performance.

160

A pipeline is optimal if (6.10) is minimum. To search for minima in the range of feasible

S, |1, L mw), assume S is continuous. The derivative is then:

d
(df:) =T stage §

a - -7TQ-
57 (8771 + o (877 - LaSTY) (6.11)

Note that the derivative changes sign across the interval [1, L p,]:

d(ep) _ T 9B
&5 57 (Flax) <0
(6.12)
d! CP! stage Ja -7 _
as] oy (Lmx' - 1) >0
Next, note that the second derivative is strictly positive in the interval
2
djscg) =T stage § [aS"’" i ast-? 42_’97 La'S7%>0 (6.13)

as this has only positive terms for ¥ <2, which we assume to be commonrly true. “(_d dc.;") is

thus monotone increasing. This monotonicity and the sign change prove that there is a unique
cost/performance minimum (a zero of the derivative) for S in [1, L ny]. Hence, there is

indeed an optimum S.

Unfortunately, these equations are sufficiently complex to preclude a simple closed form
for S,,.. However, it is straightforward to verify empirically the following approximation:
: 4
5-1 =1
Sppt = [A(3-7)] LT for -5 small

(4-7) (6.14)

A

L pay for - large

Thus, Sa,;, increases as a small power of #/a. Using the parameters from our gate array (Fig.
6.4), we illustrate the expected shape of these cost/performance curves in Fig. 6.5. Sopt
increases with increasing f/a, which has a reasonable physical interpretation. « is the cost of
one stage, and f the cost of all other hardware overhead. As a decreases relative to 8 (increas-
ing A/a), the cost of each stage decreases measured against this fixed overhead. Hence, as

stages become less costly, longer pipelines become more cost-effective: S, increases toward

L nxx- Note that for large, complex stages, f/a is small; for highly integrated stages §/a is

161

COST/PERFORMANCE VARIATION
W.R.T. PIPELINE LENGTH, B8/

INCREASING
COST/PERFORMANCE

COST/PERF. MINIMA

INCREASING 8 /

INCREASING >
PIPELINE LENGTH

Figure 6.5 Predicted Shape of Routing Cost/Performance Curves

large.

To verify that the primitive assumptions used in this analysis do not destroy the validity
of the result, we consider again the gate array benchmark of Chapter IV. Fig. 6.6 shows the
cumulative distribution function for net lengths in the gate array, and a quantized approxima-
tion to this distribution. For each of the small number of unique net geometries in the quan-
tized version we solve for optimal routing time as a function of pipeline length. The dynamic
programming solution for optimal framing of Chapter IV is employed to compute these times.
From these results, we estimate the complete routing time for a given pipeline length as a
weighted sum of the individual net routing times. With complete routing times known for vari-
ous pipeline lengths, we construct cost/performance curves. For this experiment, we examine

the following hardware configurations:

S = 1, 4, 16 stages, and 32k stages, k =1,2,...,16
T stage = 1 ps
T ouh = 1 ms

where the large number of S values is chosen to insure sufficient resolution to identify

162

CUMULATIVE NET LENGTH QUANTIZED CUMULATIVE
DISTRIBUTION NET LENGTH DISTRIBUTION
NET COUNT NET COUNT
1400 — 1400 .
1200 1200
1000 j 1000
800 1 800
600 600
i =
400 I 400
200 | S— 200
0 : : 0 &
0 200 400 600 800 0 200 400 600 800
NET LENGTH (CELLS) NET LENGTH (CELLS)

Figure 6.6 Measured and Quantized Cumulative Length Distributions
for Gate Array Benchmark

cost/performance minima.

Fig. 6.7 shows both total routing time and cost/performance variation with pipeline
length. As expected, routing time decreases with additional stages, reaching an asymptote as
pipeline length increases past the maximum net length. Note how the rate of improvement
decreases with large S, confirming our intuition about diminishing returns. The
cost/performance curves for various f/a match nicely the shapes predicted by analysis in Fig.
6.5. Minima are pronounced for small /a, and are almost indiscernible for large f/a as the
curves become flat for large S. As a practical matter then, for §/a large, we do not need to
attain the precise minimum at S,, to obtain good performance; a point slightly past the knee of

the curve where the cost/performance improvement is deemed ‘‘flat enough’’ should suffice.

The design rule checking task admits a similar analysis. It is, however, simpler in the
sense that there are no framing problems, the required processing steps are fewer (some por-
tion of a routing grid must visit a stage for each cell in a routed wire; we expect a DRC to have

fewer processing steps), and processing is homogeneous across the grid.

163

ROUTING TIME VS PIPELINE LENGTH

ROUTING TIME (SEC)
2500

1000

- \\‘__(

10

¢ 128 256 384 512
PIPELINE LENGTH (STAGES)

COST/PERFORMANCE VARIATION WITH PIPELINE LENGTH, 8/ <

COST/PERFORMANCE (STAGES X SEC / NETS)

25000
4

10000
<

x -]
<
1000 B / < VARIES:

1 B/ X=1

OO O O O O a

COST/PERF'?ORMANCE MI!\IIMA B/ <= 10

A

B8/ <= 100
L 4

g/ <= 1000

g / <= 10000
Q

0 128 256 384 512
PIPELINE LENGTH (STAGES)

Figure 8.7 Gate Array Routing Time, Cost/Performance Variation

164

Suppose a DRC requires K subarray-computations. Assume as usual a 3 X3 subarray
stage, and for simplicity, assume that we only process square grids. The time 7,,,(r,S,X) to

process an X X X grid r passes through an S-stage pipeline is reasonably modeled as

e (5,2) =1 [Fon + (S(X42) + X7) 7 (6.15)
where we assume that the overhead 7,, (potentially large for a large mask) is incurred on each

pipeline pass.

It is straightforward to show that the minimum time to process this DRC occurs with a
K-stage pipeline. For simplicity, assume that if S < K, then K is a multiple of S, i.e., exactly
K /S passes are required for the DRC. If the grid size is X X X cells, the ratio of DRC process-

ing times for a K-stage pipe and a shorter pipe is

TDRC(K St'ages) _ rpass(virX)
T, S<K sta o K
DRC(s geS) Tpau(_s- ’S,X)
(6.16)
Ton + (K(X+2) + X‘Z)Tstayu
= X K <1
? Tom + ? (S(X+2) + Xz)rstage

which demonstrates that K stages has the best attainable time.

Cost/performance can be defined as before. We take ‘‘DRC tasks per unit time'’ to be

the performance metric, i.e., Tppc. Assuming cost is again aS + g we find:

cost
performance

K
=Cp =(aS + ﬂ)[?](Tovh + [S(X+2) + Xz]'rstage] (6-17)
It is not always the case that there is a minimum cp for S< K. For some combinations of
parameters, cost/performance decreases monotonically throughout the interval [1, K|; as with
simple execution time, K stages has the best attainable performance. However, examination of
the derivative shows that if the following condition is satisfied:

ertagc
Tovk + XQT sage

1<
@

< K?n where n = (6.18)

then, just as with analysis for gate array routing, there is a unmique S, within [1, K| that

optimizes cost/performance. In this case, the DRC cost/performance curves again resemble

those in Fig. 6.5.

165

Finally, note that throughout this section we have assumed the existence of only a single
pipeline. An architecture with multiple, parallel pipelines is attractive for tasks with separable
sub-tasks. In particular, a DRC is typically a concatenation of separate mask checks, each
requiring only a short pipeline. Short, non-interacting (non-overlapping) nets in a routing task
might likewise be routed in parallel, similar to the manner in which [NHLV82| suggests that
non-interacting nets can be routed concurrently on an array machine. Fig 6.8 suggests a simple
parallel pipeline arrangement. Multiplexors at the end of each pipe allow short pipes to be con-
catenated to form longer pipes as needed, e.g., to route long wires. This architecture requires

only the addition of the multiplexors and a format-processor which takes each pipeline’s output

3

stream and reformats it into one single cell stream®. Conceivably, multiple designers can share

the pipelines in such a machine if the necessary multiple IO channels are provided.

PIPELINE 0

_—— o]

PIPELINE 1

OuTPUT

—

PIPELINE 2

U P

SUBARRAY
STAGE

Figure 8.8 Parallel Pipeline Architecture

3Later machines in the cytocomputer family, while not yet employing parallel pipelines, do have one additional
"combiner” processor for simple dyadic operations on two input cell streams to produce one output stream [Lougs4).

166

We suspect that the previous cost/performance analyses can be extended to the multiple-
pipeline case. We must characterize how the entire DRC is partitioned into individual mask
checks, and can perhaps employ Rent's Rule to determine how non-overlapping nets are distri-

buted across the routing grid.

6.4. Summary

This chapter studies the architectural design of RPS-structured DA engines, and focuses
on routing and DRC tasks. Based on the experimental work of Chapters IV and V, we catalog
informally several aspects of subarray-stage functionality appropriate to support these DA tasks.
Appropriate cost/performance metrics are then formulated and treated analytically. Results
from these studies are intended to be illustrative of those necessary to inform the designer of a
practical RPS-structured DA machine. The models and techniques presented allow us to gen-
erate candidate hardware configurations (by varying model parameters) to meet practical cost or

speed constraints.

CHAPTER VII

CONCLUSIONS

7.1. Summary and Contributions

The increasing complexity of designing VLSI systems makes increasingly attractive the
design of special-purpose computer architectures to attack DA tasks. This thesis proposes the
Raster Pipeline Subarray class as a model for DA engines. DA tasks that are well-represented
on a cellular grid and characterized by strongly local functional dependencies among cells are

candidate applications for RPS-structured D A machines.

The RPS organization is a systolic structure originated in picture-processing applications.
Qur formulation of the RPS class is the necessary abstraction from which to proceed toward
more general problem domains such as DA. To study the viability of RPS-structured DA
engines, we have constructed a complete, experimental RPS hardware/software environment
around existing RPS hardware. This environment allows us to design and debug experimental
RPS-based DA tools. A principal component of our experimental work is the identification of

critical performance issues generic to all RPS systems.

The major application treated in this thesis is maze-routing. Complete, functional maze-
routers have been implemented and optimized in our RPS environment. The successful rout-
ing of several large benchmarks proves the feasibility and practicality of RPS routing engines.
Some of our systems have already exhibited performance superior to their software counter-
parts. This investment in experimental work has allowed us to identify and model several per-

formance issues critical to real RPS systems.

167

168

The other application studied is design>rule checking. We have shown that this task is
particularly well suited to manipulation by mathematical image operators. Again, experimental

benchmarks indicate the feasibility of RPS-based DRC engines.

The significant advantage of the RPS organization is its modularity. Hence, existing RPS
engines, including our prototypes, can be improved incrementally and gracefully: additional
pipeline stages improve execution time; additional cell memory enables larger problems to be
tackled directly. Experiments over a range of pipeline lengths, and extrapolations based on

experimental measurements support this claim.

We also study the design of RPS machines for specific DA problems. Based on our
experimental systems, we have cataloged informally several aspects of subarray-stage func-
tionality appropriate to support routing and DRC tasks. Performance models developed to
analyze the behavior of our experimental systems are useful here as design tools for RPS archi-
tectures. Using these models, we study the sensitivity of performance metrics to changes in the
hardware environment. By varying model parameters, we generate configurations with widely
different cost and performance characteristics. Configurations that meet the necessary con-
straints are candidates for implementation. When appropriate performance metrics can be
defined and problems characterized mathematically, we treat the optimization of pipeline length

analytically.
The major contributions of this thesis include:

° A comparative survey of cellular architectures and DA machines showing that many
engines designed to address grid-based DA problems can be regarded as instances of more

general cellular organizations.

° Abstraction of the RPS class based on the central idea of pipelined serial subarray compu-
tation introduced by machines such as the cytocomputers. This abstraction, freed of
application-specific implementation details, is the right level from which to proceed toward

more general problem domains such as DA.

° Comparative performance analysis of RPS-structured and array-structured machines show-

ing regions of shared performance. In particular, we have analyzed how basic features of

169

the RPS organization address central design issues for practical special-purpose DA
hardware, and we have shown that it is not the case that these desirable engineering pro-
perties necessarily produce a comparative performance degradation of several orders of

magnitude.

. The design and implementation of a layered software environment built around existing
RPS hardware. This experimental RPS environment provides the tools necessary to build

and study real RPS-based D A tools.

. Successful design and implementation of RPS-based maze-routers. PCBs and gate arrays

have been successfully routed.

° Identification and rigorous analysis of the framing problem for RPS maze-routers. An
approximate algebraic solution, and an optimal dynamic programming solution have been
derived; these compare favorably with the experimental measurements of the constant-

increment framing heuristic.

. Characterization of the sensitivity of single-net, fixed-geometry routing time to variations

in pipeline length, stage rate, and pipeline overhead.

. Optimization of cost/performance metrics with respect to pipeline length for mathematical

characterizations of gate array routing and DRC tasks.

° A catalog of several subarray stage functions and subarray-computations necessary to sup-
port efficiently routing tasks or DRC tasks on an RPS-structured engine. In particular, the
stateless stages useful for picture-processing tasks have been shown to be an inappropri-

ate, overly restrictive model on which to base a D A stage architecture.

7.2. Extensions and Future Research

We have already discussed several extensions to our work. These extensions have been
distributed throughout this dissertation and appear in the individual sections to which they are
relevant. These include: tuning and optimization of the current RPS routers; enhancements to
the dynamic programming model for optimal framing; extensions to support 45° mask

geometry; implementation of geometric query processing for IC masks based upon formal

170

image operators; alternative stage architectures to support routing and DRC; multiple-pipeline
machines, and their related optimization issues. Two areas stand out as fruitful candidates for
future research: the design and implementation of a DA stage, and the exploration of new DA

tasks for RPS machines.

The experiments, tools, and techniques developed in this thesis establish a sound, quanti-
tative basis from which to begin design of a practical DA stage. Realistic tradeoffs among cost,
speed, maintainability, upgradability, range of application, etc, can be evaluated by employing
or extending our models. In particular, the success of our maze-routers running in a short-
pipe, high-overhead environment argues persuasively for the design of a production-quality

routing engine.

Exploration of other promising DA problems is another important area of research. Phy-
sical DA is an especially rich area for study. We are particularly intrigued by the idea of parallel
placement [UeKH83, ChBr83| and its realization on an RPS architecture. Clearly, the con-
current local module interchanges can be performed as subarray-computations. We assume that
the grid stores tokens representing individual modules, and that the subarray processor stores
the necessary connectivity information and absolute location of other modules. The serious
problem is how to propagate the necessary information about interchanges to other subarray-
processors, allowing us to employ a pipeline of interchange processors. We are uncertain if

there is a practical resolution to this problem.

We believe it to be a fallacy that special hardware is only suitable for replacing entire pro-
cessing steps (placement, routing, DRC, etc) in the descent-through-levels model of design.
Rather, there are useful functions to be performed by more anonymous machines whose task is
to accelerate, not to replace, portions of critical tasks. For example, Heller has suggested to us
that instead of employing an RPS router to synthesize (route) a layout, we might employ it as
an analysis tool to evaluate placement [Hell83]. Rather than expend effort optimizing an RPS
design to maximize net completions, we might settle for a ‘‘good emough’’ router. This
machine produces now a vector whose components are the wire lengths of each routable wire.
The aggregate extent to which wires deviate from their minimum lengths is known from experi-

mental studies of wireability to be a measure of the quality of a placement. Indeed, part of a

171

standard placement process is a crude routing phase composed of estimates of expected wire
length and channel congestion. The addition of a very rapid, less crude routing phase as as part
of the placement phase could improve placement quality and reduce time spent attempting to
route an inherently bad layout. We suspect that there are other DA applications in both syn-

thesis and analysis for which an RPS-structured machine is appropriate.

APPENDICES

172

173

APPENDIX A

LOCAL ALGORITHMS FOR TWO-LAYER ROUTER

This appendix presents the details of the wavefront expansion and cleanup algorithms that
perform two-layer maze-routing in an RPS pipeline. The backtrace algorithm is omitted, as it is

more similar to the one-layer backtrace, and is also performed on the host.

Let h(cell), v(cell), vis(cell) be the horizontal, vertical, and via symbols respectively in
the 3-tuple representation of a grid cell. The two-layer wavefront expand algorithm, partitioned

into three subarray-computations, is as follows.

Glven: A 3X3 subarray of cells in a routing grid.

Task: Expand subarray center on layer-1, layer-2, possibly introducing a via.
Algorithm: Wavefront_Expand_2_Layers
begin

Subarray_Computation_l:

/* escape on layer-1 from source or via, or extend

* horizontal layer-1 segment starting at source or via

E 3

/

if h(center) = h- free

then begin
it h(north) In { h- sre, A- via, —h0, =40 }
then h(center) := th1
else if i(south) In { A- erc, A~ via, —h0, =40 }
then h(center) := |h1
else If h(west) In { A-sre, h- vis, —Ah0, =40 }
then A(center) := «~h0
else If h(east) In { h- erc, h- via, —h0, =40 }
then h(center) ;= —h0

Subarray_Computation_2:

[* layer-1 jogs not at source or via */

174

else if A(north) = thl

then h(center) := 142

else if h(south) = |A1

then h(center) := [h2

else If h(west) In { 1h1, |h1, 1h2, |h2, —h1)}
then h(center) := «h1

else If h(east) In { 1A1, |A1, th2, |A2, —h1}
then h(center) := —40

end
Subarray_Computation_3:

[* escape on layer-2 from source or via, or extend

s vertical layer-2 segment starting at source or via

*

/

If v(center) = v- free

then begin
if v(north) In { v- src, v-vis, tv, |v, «v, —v }
then u(center) := tv
else If v(south) in { v- sre, v— via, tv, |v, v, =v }
then v(center) := |v
else if v(west) In { v- src, v-via }
then y(center) := «~v
else if v(east) In { v- src, v- via }
then v(center) := —v

end

[* generate via, expand onto alternate layer */

/* from layer-1 to layer-2 */
if (via(center) = via) and (v(center) = v— free)
and (A(center) In { —h0, =540, 1h1, |hl, —h1, —h1, th2, |h2})
then v(center) := v- src
/* from layer-2 to layer-1 /
if (via(center) = via) and (h(center) = h- free)
and (v(center) In { —v, —v, tv, v })
then h(center) := h- sre

end

Backtrace is again done on the host, and is similar to the one-layer version except that a
trace can cross layers at a via. Wire segments are relabeled as blocked on the appropriate layer,

and vias are labeled with the 3-tuple (vis, A-via, v-via).

Cleanup performs the standard removal of extraneous arrow labels, and also enforces via-
exclusion. Cells adjacent in the four compass directions to a newly traced via are marked novis

so that future vias are not embedded too close. This is a common physical restriction for vias

176

in PCB or VLSI technologies. This algorithm requires two subarray-computations.

Given: A 3X3 subarray of cells in a routing grid.

Task: Remove extraneous expansion labels, mark path as obstacle, enforce via-exclusion
around subarray center.

Algorithm: Cleanup_2_Layer
begin

Subarray_Computation_1:

/* remove extraneous labels, mark vias as obstacles */
it h(center) In { «hO, —hO, th1, k1, —h1, —h1, th2, |h2}
then A(center) := k- free
if v(center) In { ~v, —v, tv, lv}
then v(center) := v~ free
if (h(center) = h-via) or (v(center) = v-via)
then begin

then h(center) := h- blocked

then v(center) := v- blocked

then via(center) := via
end

Subarray_Computation_2:

[* test for via in center or adjacent cell */
center_via ;= false

adjacent_via ;= false

for cell ;= center, north, south, east, west do

begin
1If (h(cell) = h-blocked) and (v(cell) = v- blocked)
and (vis(cell) = via)
then begin
if cell = center
then center_cell := true
else adjacent_via ;= frue
end
end

[* via exclusion */
if (adjacent_via and not center_via)
then via(center) := novia

end

176

APPENDIX B

LOCAL ALGORITHMS FOR GLOBAL ROUTER

This appendix presents the details of the local algorithms designed to perform global rout-
ing in an RPS pipeline. The backtrace algorithm is omitted, as we have only implemented
those portions of the router that run in the pipeline. Despite the extreme simplicity of this
router, the physical implementation of these local algorithms is surprisingly complex. This
complexity derives from two sources. First, this router attempts to manipulate some numerical
fields. This processing does not fit well with the template-match architecture of the stage
hardware. Second, information about cell (z, y) appears not only in cell (z, y) but now also in
its neighbors. This is because we are now processing cell boundaries, which are shared among

cells.

In global routing, grid cells represent routing regions with boundaries that admit a max-
imum number of wiring tracks. In this implementation, a cell is a pair of horizontal and verti-
cal track capacities. As shown in Fig. B.1, each cell stores channels capacities for its eastern
and southern boundaries. One cell must consult its west and north neighbors to determine the

other two capacities. Channels admit at most 15 tracks, or as few as 0 tracks.

The first step is to translate the initial grid with integer channel capacities into the binary
capacity grid. In this new grid, channels with non-zero capacity are marked free, others marked
blocked. This is the grid on which wavefront expansion is performed. The translation algo-

rithm, partitioned into two subarray-computations, is as follows:

177

CHANNEL CAPACITIES LABELED IN
ROUTING GRID

3
o

1 |
10 2

CAPACITIES STORED IN
INDIVIDUAL GRID CELLS

Figure B.1 Basic Cell Representation for Global Routing

Glven: A 3X3 subarray of cells in a global-routing grid.

Task: Translate subarray center with non-zero channel capacities into format indicating
admissible channels for wavefront expansion. The term ‘‘binary’’ refers to the fact
that channels are either admissible or inadmissible.

Input Cell Format:
A cell is a pair indicating horizontal and vertical channel capacities:
cell = (h- capacity, v— capacily)
€ 0,1,..,15} X {0,1,...,15}

We refer to these components of a cell as h- capacity(cell), v- capacity(cell).
Output Cell Format:

A cell is transformed into a 5-tuple indicating how a source-pointing arrow on an

expanding wavefront can be attached to a channel in this cell; this indicates how a

wavefront can cross this cell. The first 4 elements of the 5-tuple indicate whether

a channel is free or blocked to an arrow in one of the four compass directions.

The 5th element indicates whether the cell can be expanded during wavefront
expansion, or holds a source-pointing arrow:

cell = (north- ehan, south— chan, west— chan, east— chan,ezpand)
€ {1free, tblocked } X {|free, |blocked }
X { —free, «—blocked } X {—free, —blocked }
x{t, |, «, —, free, blocked }

We refer to these components of a cell as north— chan(cell), ezpand(cell), etc.

178

Algorithm: Translate_to_Binary_Capacity
begin

Subarray_Computation_1:

[* determine which channels have non-zero capacity */

If A capacity(center) > 0
then east_admissible := true
else east_admissible := false

if h- capacity(west) > 0
then west_admissible := true
else west_admissible := false

Subarray_Computation_2:

if v- capacity(center) > 0
then south_admissible := true
else south_admissible := false

If v- capacity(north) > 0
then north_admissible := true
else north_admissible := false

[* mark center as free or blocked to each direction
** of potential wavefront expansion

*/

If east_admissible

then east- chan(center) := — free
else cast— chan(center) := —blocked

if west_admissible
then west- chan(center) := « free
else west— chan(center) ;= «—blocked

if north_admissible
then north— chan(center) := {free
else north- chan(center) := tblocked

if south_admissible
then south- chan(center) := |free
else south- chan(center) := |blocked

/[* now that the channels are marked, the cell itself
*+ is marked free if any channel is admissible,
** else the cell itself is marked blocked.
** Only free cells can ever be expanded and given
*+ an arrow label during wavefront expansion.
*/
if (north— chan(center) = tee) o@
(south- chan(center) = |ee) or
(east— chan(center) = —cc) or
(west— chan(center) = «—ee)
then ezpand(cell) := free

179

else ezpand(cell) := blocked

end

Given the binary capacity grid, wavefront expamsion proceeds by expanding source-
pointing arrows on one conceptual layer, similar to the one-layer RPS router. However, now it
is channels, not cells, that are free or blocked to the expanding wavefront. The limitations of
current cell size preclude an explicit symbol for a source. Instead, we simply ‘mark a channel
bounding the source cell with an expansion arrow. This suffices to make the source actve so
that wavefront expansion will proceed from that point. The expansion algorithm, partitioned

into two subarray-computations, is as follows:

Glven: A 3X3 subarray of cells in a global-routing grid.

Task: Expand subarray center with source-pointing arrow if it has a neighbor on a wave-
front.

Input Cell Format:
Same as output for format for Translate_to_Binary_Capacity. A cell is a 5-tuple,
with four components indicating whether the four boundary channels are admissi-
ble, and one component indicating the status of the cell during a normal one-layer
expansion: free, blocked, or t, |, «—, —. As before, we refer to these components
of a cell as north - channel(cell), ezpand(cell), etc.

Output Cell Format:
Same as input format.

Algorithm: Wavefront_Expansion
begin

Subarray_Computation_1:

/* determine if center is free, and north, west
** peighbors are on a wavefront
*f
it (ezpand(center) = free) and

((west— chan(center) = +free) or

(north- chan(center) = tfree))

then active_center := frue
else active_center ;= false

If ezpand(north) in {1, |, —, = }
then active_porth :== true
else active_north := false

it ezpand(west) In {1, |, —, —}
then active_west := lrue '
else active_west := false

180

/* now choose an arrow label for center.

»x Note: we are not guaranteed that this cell
*« i3 really expandable. We may have an

*+ active neighbor, but the channel to

*+ that neighbor may be blocked. In that case
*+ the center cell is just marked free.

*

/

if active_center and active_north and (north— chan(cell) = t free)
then ezpand(cell) =1

else If active_center and active_west and (west- chan(cell) = «— free)
then ezpand(cell) = «

else ezpand(cell) = free

Subarray_Computation_2:

[* determine if center is free, and south, east
*+ neighbors are on a wavefront
*/
if (ezpand(center) = free) and

((east— chan(center) = —free) or

(south— chan(center) = |free))

then active_center := frue
else active_center := false

if ezpand(south) in {1, }, ~, =}
then active_south := true
else active_south := false

if ezpand(east) in {t, |, ~, — }
then active_east := frue
else active_east := false

[* now choose an arrow label for center.

*+ Note: we are not guaranteed that this cell

*+ js really expandable. We may have an

»* active neighbor, but the channel to

*+ that neighbor may be blocked. In that case

** the center cell is just marked free.

*f

if active_center and active_east and east— chan(cell) = — free
then ezpand(cell) = —

else If active_center and active_south and south— chan(cell) = | free
then ezpand(cell) = |

else ezpand(cell) = free

end

As usual, backtrace is to be done on the host. Similar to the one-layer router, backtrace
appends a special symbol trace to wavefront arrows on a trace path. We omit discussion of this

processing.

181

Given a traced grid, the cleanup algorithm is a translation step which produces another
channel capacity grid. In this A-capacity grid, channels with wiring capacity diminished by one
track due to the newly traced path are marked. In this new grid, each channel is marked as
used or unused for the new path. Subtracting this grid from the initial routing grid gives an

updated grid on which the next net can be routed. The algorithm, requiring only one

subarray-computation, is as follows:

Glven: a 33 subarray of cells in a global-routing grid.

Task: Mark channels in subarray center with capacity diminished by 1 due to traced path
crossing channel.

Input Cell Format:
Similar to format for Wavefront_Expansion. Cells on backtrace path now are
marked trace, whereas other cells are marked notrace. Cells are 6-tuples now, with
the addition of the trace information:

cell = (north; ch‘an, south- chan, west— chan, east- chan,ezpand)
€ {tfree, tblocked } X {|free, |blocked }
X { «~free, «blocked } X {—free, —blocked }
x{t, 1, «, =, free, blocked }

X { trace, notrace }

We refer to these components of a cell as north- chan(cell), ezpand(cell),
trace(cell), etc.

Output Cell Format:
similar to input format for Translate_to_Binary_Capacity. A cell is a 2-tuple indi-
cating which channels have been crossed by backtrace path.

~cell =(A- used, v— used)
€f{o0,1}x{o0,1}
We refer to these two components of a cell as h- used(cell) and v- used(cell).

Algorithm: Cleanup
begin

Subarray_Computation_1:

[* recall that each cell in the original

s+ grid with channel capacities only held

s* channel info for its east and south channels.

** These channels are diminished if neighbors

** are on paths going into the center cell:

*» ezpand(east) = « or ezpand(south) = {
»+ or if the center is on a path going into

** one of these neighbors:

i ezpand(center) == — or ezpand(center) = |

end

182

*/

h- uged(center) := 0
v- used(center) := 0

/* first, check if neighbor cross into center */

If (ezpand(east) = «) and (trace(east) = trace)
then h- used(center) :=1

if (ezpand(south) = 1) and (trace(south) = trace)
then v- used(center) ;=1

[* next, check if center crosses into these neighbors */

if (ezpand(center) = —) and (frace(center) = trace)
then h- used(center) ;=1
if (ezpand(center) = |) and (trace(center) = trace)
then v- used(center) ;=1

BIBLIOGRAPHY

183

[AbLM82]

[Adsh82a]

[Adsh82b]
[Aker67]
[Aker72|
[Anto82]
[Aokis2]
- [ArOu82]
[Bair78]
[Bake80]
[Balds3)
[Barn68]

[Bart80]
[BaST80)

[Batc80]

184

BIBLIOGRAPHY

M. Abramovici, Y. H. Levendel and P. R. Menon, ‘‘A logic simulation machine,”
Proc. 19th Design Automation Conf., pp. 65-73, June 1982.

H. G. Adshead, ‘“Towards VLSI complexity: The DA algorithm scaling problem:
Can special DA hardware help?’’ Proc. 19th Design Automation Conf., pp. 339-344,
June 1982,

H. G. Adshead, ‘‘Employing a distributed array processor in a dedicated gate-array
layout system,”’ Proc. ICCC, pp. 411-414, Oct. 1982.

S. Akers, Jr., “‘A modification of Lee’s path connection algorithm,”’ IEEE Trans.
Electronic Computers, vol. EC-16, pp. 97-98, Feb. 1967.

S. Akers, ‘‘Routing,” in Design Automation of Digital Systems, vol. 1, M. Breuer,
Ed., Englewood Cliffs, NJ: Prentice Hall, Chapter 6, 1972,

D. Antonsson et al., “PICAP - A system approach to image processing,’’ IEEE
Trans. Computers, vol. C-31, no. 10, pp. 997-1000, Oct. 1982.

M. Aoki et al,, ‘‘An LSI adaptive array processor,” Proc. ISSCC, pp. 122-123, Feb.
1982.

M. H. Arnold and J. K. Ousterhout, ‘‘Lyra: A new approach to geometric layout
rule checking,”’ Proc. 19th Design Automation Conference, pp.530-536, June 1982.

H. S. Baird, ‘‘Fast algorithms for LSI artwork analysis,”” Jour. of Design Automation
and Fault Tolerant Computing, vol. 2, no. 2, May 1978, pp. 179-209.

C. M. Baker, Artwork Analysis Tools for VLSI Circusts, M.S. Thesis, MIT, Cam-
bridge, MA, 1980.

J. W. Balde, ‘‘Interconnection costs will be dominant in the 80’s,”” Computer, vol.
16, no. 1, pp. 83-84, Jan. 1983.

G. H. Barnes, ‘‘The Illiac IV computer,’”’ IEEE Trans. Computer, vol. C-17, no. 8,
p. 746, Aug. 1968.

R. L. Barto, A Computer Architecture for Logic Simulation, Ph.D. Thesis, Univ. of
Texas, May 1980.

R. L. Barto, S. A. Szygenda and E. W. Thompson, ‘‘Architecture for a hardware
simulator,”’ Proc. ICCC-80, pp. 891-893, 1980.

K. E. Batcher, ‘‘Architecture of a massively parallel processor,”’ Proc. 7th Annual
Symp. on Computer Architecture, pp. 168-174, 1980.

| BeHHS80]
[BHMLS82]
[BHST84]
[Bird84|
[Blan82]

[Blan84]

[BLMR83]

[BISv81]

[BrFI81]
|BrSh81]
[Burk70]
[Carr81]
[ChBr83)]
[DaGe82]
[DaLe8l1|
[Denn82]
[Dona81]
[Duff78]

[DuLe81]

185

J. L. Bentley, D. Haken and R. W. Hon, ‘‘Fast geometric algorithms for VLSI
tasks,’’ Proc. COMPCON-80, pp. 88-92, 1980.

S. E. Bello, J. L. Hoffman, R. 1. McMillan and J. A. Ludwig, ‘““VLSI hierarchical
design verification,”’ Proc. ICCC-82, pp. 530-533, Oct. 1982.

Z. Barzilai, L. M. Huisman, G. M. Silberman, D. T. Tang and L. S. Woo, ‘‘Fast
pass-transistor simulation for custom MOS circuits,”’ Design & Test, vol. 1, no. 1,
pp. 71-81, Feb. 1984.

P. Bird, Private Communication, University of Michigan, May 1984.

T. Blank, A Bit Map Architecture and Algorithms for Design Automation, Ph.D.
Thesis, Dept. of EE, Stanford Univ., Stanford CA., Sept. 1982.

T. Blank, Private Communication, June 1984.

T. Burggraff, A. Love, R. Malm and A. Rudy, ‘‘The IBM Los Gatos Logic Simula-
tion Machine Hardware,’’ Proc. ICCD-83, pp. 584-587, 1983.

T. Blank, M. Stefik and W. van Cleemput, ‘‘A parallel bit map processor architec-
ture for DA algorithms,”” Proc. 18th Design Automation Conf., pp. 837-845,
June/July 1981.

M. A. Breuer, A. D. Friedman and A. losupovicz, ‘‘A survey of the state of the
art in design automation,’’ Computer, vol. 14, no. 10, pp. 58-75, Oct. 1981.

M. A. Breuer and K. Shamsa, ‘‘A hardware router,’”’ Jour. of Digital Systems, vol.
IV, issue 4, pp. 393-408, 1981.

A. W. Burks, ed., Essays on Cellular Automats, Urbana:Univ. of Illinois Press,
1970.

C. R. Carroll, ‘‘A smart memory array processor for two layer path finding,’’ Proc.
2nd Caltech Conf. on Very Large Scale Integration, Jan. 1981.

D. Chyan and M. A. Breuer, ‘‘A placement algorithm for array processors,’’ Proc
20th Design Automation Conference, pp. 182-188, June 1983.

E. Damm, H. Gethoeffer, ‘‘Hardware support for automatic routing,’”’ Proc. 19th
Design Automation Conf., pp. 219-223, June 1982.

P. E. Danielsson and S. Levialdi, ‘‘Computer architectures for pictorial information
systems,'’ Computer, vol. 14, no. 11, pp. 53-67, Nov. 1981.

M. M. Denneau, ‘““The Yorktown simulation engine,"’ Proc. 19th Design Automa-
tion Conf., pp. 55-59, June 1982.

W. E. Donath, ‘‘Wire length distribution for placements of computer logic,”’ /IBM
J. Research and Development, vol. 25, no. 3, pp. 152-155, May 1981.

M. J. B. Duff, ‘‘Review of the CLIP image processing system,’’ Proc. National
Computer Conf., pp. 1055-1060, 1978.

Languages and Architectures for Image Processing, M. Dufl and S. Levialdi, Eds.,
London: Academic Press, 1981.

[Dunn84]

[EuMu82]

[FrSp81]
[GiCas3)
[Golab5)
[Golab9|
[Gray71]
[Gris82)
[GINES4|
[HaKu72]
[Hell83)
[HFPS82)
[High83)
[HKMRS3)
[Hoel76]
[HoMW83|
[HoNa83|
[HoNS81]

[11if82]

188

L. N. Dunn, “IBM’s engineering design system support for VLSI design and
verification,’’ Design & Test, vol. 1, no. 1, pp. 30-40, Feb. 1984.

R. Eustace and A. Mukhopadhyay, ‘‘A deterministic finite automaton approach to
design rule checking for VLSI,”" Proc. 19th Design Automaton Conf., pp. T12-717,
June 1982,

E. H. Frank and R. F. Sproull, ‘‘Testing and debugging custom integrated cir-
cuits,”’ Computing Surveys, vol. 13, no. 4, pp. 425-452, Dec. 1981.

L. Gindraux and G. Catlin, ‘*“CAE station’s simulators tackle 1 million gates,”
Electronic Design, pp. 127-136, Nov. 10, 1983.

M. J. E. Golay, et al., ‘‘ Apparatus for counting bi-nucleate lymphocytes in blood,"
U.S. Patent 3214574, Oct. 26, 1965.

M. J. E. Golay, ‘‘Hexagonal parallel pattern transformations,” IEEE Trans. Com-
puters, vol. C-18, pp. 733-740, Aug. 1969.

S. B. Gray, ‘‘Local properties of binary images in two dimensions,”” IEEE Trans.
Computers, vol. C-20, no. 5, pp. 551-561, May 1971.

T. W. Griswold, ‘‘Portable design rules for bulk CMOS,”” VLSI Design, vol. III,
no. 5, pp. 62-67, Sept./Oct. 1982.

J. Grinberg, G. R. Nudd and R. D. Etchells, ‘‘A cellular VLSI architecture,”’ Com-
puter, vol. 17, no. 1, pp. 69-81, Jan. 1984.

M. Hannan and J. M. Kurtzburg, ‘‘Placement techniques,’’ in Design Automation of
Digital Systems, vol. 1, M. Breuer, Ed., Englewood Cliffs, NJ. Prentice Hall
Chapter 5, 1972.

W. Heller, Private Communication, October 1983.

J. M. Herron, J. Farley, K. Preston and H. Sellner, ‘‘A general-purpose high-speed
logical transform image processor,”’ IEEE Trans. Computer, vol. C-31, no. 8, pp.
795-800, Aug. 1982.

D. Hightower, ‘‘The Lee router revisited,”” Proc. ICCAD-83, pp. 136-139, Oct.-
Nov. 1983.

J. Howard, J. Kohn, R. Malm, and A. Rudy, ‘‘Using the IBM Los Gatos Logic
Simulation Machine,’’ Proc. ICCD-88, pp. 592-594, 1983.

J. H. Hoel, ‘‘Some variations of Lee’s algorithm,”’ IEEE Trans. Comput., vol. C-25,
pp. 19-24, Jan. 1976.

J. K. Howard, R. L. Malm and L. M. Warren, ‘“‘Introduction to the IBM Los Gatos
Logic Simulation Machine,’’ Proc. ICCD-88, pp. 580-583, 1983.

S. J. Hong and R. Nair, ‘‘Wire routing machines--New tools for VLSI physical
design,”’ Proc. of the [EEE, vol. 71, no. 1, pp. 57-65, Jan 1983.

S. J. Hong, R. Nair and E. Shapiro, ‘‘A physical design machine,”’ in VLSI 81, J.
P. Gray, Ed., London: Academic Press, pp. 346-365, 1981.

J. K. lliffe, Advanced Computer Design, London: Prentice Hall, Chap. 12, 1982.

[loKB83)
[Tosu80]

[JiKo81]

[KaSa83|
[Kido83]
[KISe72]
[KMMN83)
[Kogg81]
[Korn82)
[Kung79)

[Kung84|

[LaRu71]
[Lee61]

[LoMc80]

[LoMS80]

[Losl80)
[LoTh79]

[Loug84|

[Lyon81]

187

A. losupovicz, C. King and M. A. Breuer, ‘A module interchange placement
machine,’’ Proc. 20th Design Automation Conference, pp. 171-174, June 1983.

A. losupovicz, ‘‘Design of an iterative array maze rodter," Proc. ICCC, pp. 908-
911, 1980.

X. Ji-Guang and T. Kozawa, ‘‘An algorithm for searching shortest path by pro-
pagating wave fronts in four quadrants,”’ Proc. 18th Design Automation Conference,
pp. 29-36, 1981.

R. Kane and S. Sahni, ‘‘A systolic design rule checker,’”’ TR-83-13, Computer Sci-
ence Dept., University of Minnesota, July 1983.

M. Kidode, ‘‘Image processing machines in Japan,’’ Compuler, vol. 16, no. 1, pp.
68-80, Jan. 1983.

J. C. Klein and J. Serra, ‘“The Texture Analyser,’”’ J. Microscopy, vol. 95, No. 2,
pp. 349-356, 1972.

J. Kohn, R. Malm, C. Meiley and F. Nemec, ‘‘The IBM Los Gatos Logic Simula-
tion Machine Software,”’ Proc. ICCD-88, pp. 588-591, 1983.

P. M. Kogge, Architecture of Pipelined Computers, Hemisphere Publishing Corp.,
1981.

R. K. Korn, ‘‘An efficient variable-cost maze router, ''Proc. 19th Design Automation
Conference,” pp. 425-431, 1082.

H. T. Kung, ‘‘Let's design algorithm’s for VLSI systems,”” CMU-CS-79-151, Dept.
of Computer Science, Carpegie Mellon University, 1979.

H. T. Kung, Private Communication, March 1984.

B. S. Landman and R. L. Russo, ‘“On a pin versus block relationship for partitions
of logic graphs,’’ IEEE Trans. Computers, vol. C-20, pp. 1469-1479, 1971.

C. Y. Lee, ‘‘An Algorithm for Path Connections and Its Applications,’’ IRE Trans.
on Electronic Computers, vol. EC-10, September 1961, pp. 346-358.

R. M. Lougheed, D. L. McCubbrey, ‘‘The cytocomputer: A practical pipelined
image processor,”’ Proc. 7th Annual International Symp. on Computer Architecture,
pp. 271-277, May 1980.

R. M. Lougheed, D. L. McCubbrey and S. R. Sternberg, ‘‘Cytocomputers: Archi-
tectures for parallel image processing,’’ Proc. IEEE Workshop on Picture Data
Description and Management, Aug. 1980.

P. Losleben, ‘‘Computer aided design for VLSL,"" in Very Large Scale Intergration
VLSI: Fundamentals and Applications, D. F. Barbe, Ed., Springer-Verlag, 1980.

P. Losleben and K. Thompson, ‘‘Topological analysis for VLSI circuits,”’ Proc.
16th Design Automation Conf., pp. 461-473, June 1979,

R. M. Lougheed, Private Communication, April 1984.

R. F. Lyon, ‘'Simplified Design Rules for VLSI Layouts,”’ Lambds, vol. II, no. 1,
pp. 54-59, 1st Quarter, 1981.

[Math75)

[1\1(‘(‘()631

[MeCo80]
[Meye84]

[Moor59]

[MRLAS2]
[MuLT814)
[MuLT81b]

[Nemh66]
[NHLV82]
[NoNMS1|

[Oust84]
[PDLN79]

[Pfis82]
[PfKr82]
[Pres83]

[PrNo72]

188

G. Matheron, Random Sets and Integral Geometry, New York: John Wiley & Sons,
1975.

B. H. McCormick, ‘‘The Illinois pattern recognition computer--ILLIAC I11,”, IEEE
Trans. Electronic. Computers, vol. EC-12, pp. 791-813, 1963.

C. Mead and L. Conway, Introduction to VLSI Systems, Reading: Addison-Wesley,
1980.

W. Meyer, ‘‘Hardware logic simulator alters design process,’’ Design & Test, vol. 1,
no .1, p. 95, Feb. 1984.

E. F. Moore, ‘‘Shortest path through a maze,”” in Annals of the Computation
Laboratory of Harvard University, Harvard University Press, Cambridge, Mass., vol.
30, pp. 285-292, 1959.

T. N. Mudge, R. A. Rutenbar, R. M. Lougheed and D. E. Atkins, ‘‘Cellular image
processing techniques for VLSI circuit layout validation and routing,”’ Proc. 19th
Design Automation Conf., pp. 537-543, June 1982.

T. N. Mudge, R. M. Lougheed and W. B. Teel, ‘‘Design rule checking for VLSI
circuits using a cellular computer,”’ Abstracts of the 1981 ACM Computer Science
Conf., St. Louis, pp. 29, Feb. 1981,

T. N. Mudge, R. M. Lougheed and W. B. Teel, ‘‘Cellular image processing tech-
niques for checking VLSI circuit layouts,”’ Proc. of the 1981 Conf. on Information
Sciences and Systems, The Johns Hopkins University, pp. 315-320, March 1981.

G. L. Nemhauser, Introduction to Dynamic Programming, New York: John Wiley
and Sons, Inc., 1966.

R. Nair. S. J. Hong, S. Liles and R. Villani, ‘‘Global wiring on a wire routing
machine,’’ Proc. 19th Design Automation Conf., pp. 224-231, June 1982.

D. Noice, J. Newkirk and R. Mathews, ‘A polygon package for analyzing
integrated circuit designs,’”’ VLSI Design, vol. 11, no. 3, pp. 33-36, 1981.

J. Ousterhout, ‘‘Corner stitching: a data-structuring technique for VLSI layout
tools,” IEEE Tran. CAD ICs and Systems, vol. CAD-3, no. 1, pp. 87-100, Jan.
1984.

K. Preston, M. J. BDuff, S. Levialdi, P. Norgren and J. Toriwaki, ‘‘Basics of cellu-
lar logic with some applications in medical image processing,’’ Proc. of the IEEE,
vol. 67, no. 5, pp. 826-856, May 1979.

G. F. Pfister, ““The Yorktown simulation engine: Introduction,’’ Proc. 19th Design
Automation Conf., pp. 51-54, June 1982.

G. F. Pfister and E. P. Kronstadt, ‘‘Software support for the Yorktown Simulation
Engine," 19th Design Automation Conference, pp. 60-65, June 1983.

K. Preston, ‘‘Cellular logic computers for pattern recognition,’’ Computer, vol. 16,
no. 1, pp. 36-47, Jan. 1983.

K. Preston and P. E. Norgren, ‘‘Interactive image processor speeds pattern recog-
nition,”’ Electronics, vol. 45, p. 89, 1972.

[PrUR82]

[Rubi74]

189

Multicomputers and Image Processing: Algorithms and Programs, K. Preston and L.
Uhr, Eds., New York: Academic Press, 1982.

F. Rubin, ‘‘The Lee path connection algorithm,’’ IEEE Trans. Computer, vol. C-23,
pp. 907-914, Sept. 1974.

[RuMA83a] R. A. Rutenbar, T. N. Mudge and D. E. Atkins, *‘A class of cellular architectures

to support physical design automation,”” University of Michigan, Computing
Research Laboratory, CRL-TR-10-83, 1983.

[RuMAS83b] R. A. Rutenbar, T. N. Mudge and D. E. Atkins, ‘“Wire routing experiments on a

[RuMA84

[Seil81]
[Seils2]
[Seil84]
[Serr81]

[Sieg81]

[SKOT83]
[SIBM62]

[SNBSg4]

[SoRo81]
[Souk78|
[Souk81]
[Ster79a)

[Ster79b]

raster pipeline subarray machine,”” Digest of Papers, IEEE International Conf. on
CAD, pp. 135-136, Sept. 1983.

R. A. Rutenbar, T. N. Mudge and D. E. Atkins, ‘‘A class of cellular architectures
to support physical design automation,”’ IEEE Tran. CAD of ICs and Systems, to
appear 1984.

L. Seiler, ‘*Special purpose hardware for design rule checking,’’ Proc. of the Caltech
Conf. on VLSI, Jan. 1981.

L. Seiler, ‘‘A hardware assisted design rule check architecture,”’ Proc. 19th Design
Automation Conf., pp. 232-238, June 1982.

L. Seiler, A Hardware Assisted Methodology for VLSI Design Rule Checking, Ph.D.
Thesis, MIT, 1984.

J. Serra, Mathematical Morphology and Image Processing, London: Academic Press,
1981.

H. J. Siegel, et al., *“PASM: A partitionable SIMD /MIMD system for image pro-
cessing and pattern recognition,”’ IEEE Trans. Computers, vol. C-30, pp. 934-947,
Dec. 1981.

T. Sasaki, N. Koike, K. Ohmori and K. Tomita, ‘““HAL; A block level hardware
logic simulator,”” 20th Design Automation Conference, pp. 150-156, 1983.

D. L. Slotnick, W. C. Borck, and R. C. McReynolds, ‘‘The SOLOMON com-
puter,”’ Proc. Western Joint Computer Conf., pp. 87-107, 1962.

D. C. Smith, R. Noto, F. Borgini, S. S. Sharma and J. C. Werbickas, ‘‘The variable
geometry automated universal array layout system (VAGUA),"” IEEE Trans. CAD
of ICs and Systems, vol. CAD-3, no. 1, pp. 20-26, Jan. 1984.

J. Soukup and J. C. Royle, *“On hierarchical routing,’”’ Journal of Digital Systems,
vol. V, no. 3, pp. 265-289, 1981.

J. Soukup, ‘‘Fast maze router,”” Proc. 15th Design Automation Conf., pp. 100-101,
June 1978.

J. Soukup, ‘‘Circuit layout,”’ Proc. of the IEEE, vol. 69, no. 10, pp. 1281-1304, Oct.
1981.

S. R. Sternberg, ‘‘Parallel architectures for image processing’’, Proc. 3rd Interna-
tional IEEE COMPSAC, Chicago, 1979.

S. R. Sternberg, ‘‘Automatic image processor,”’ U. S. Patent 4167728, Sept. 11,
1979.

|GA

g -

[Ster80a]

[Ster80b]
[Ster83]
[SzVW83)

[TYKS80]

[UeKH83]

[Ulam70]

[vanAT71]

[vanB83|
[WeLF82)
[Wilm80]

[Wils83)

S. R. Sternberg, ‘‘Language and architecture for parallel image processing,”’ in Pat-
tern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds., Amsterdam:
North Holland Publishing Co., 1980.

S. R. Sternberg, ‘‘Cellular computers and biomedical image processing,’”’ Proc.
U.S.-France Seminar on Biomedical Image Processing, Grenoble, France, May 1980.

S. R. Sternberg, ‘‘Biomedical Image Processing,’’ Computer, vol. 16, no. 1, pp. 22-
34, Jan. 1984.

T. G. Szymanski and C. J. Van Wyk, ‘‘Space efficient algorithms for VLSI artwork
analysis,”” Proc. 20th Design Automation Conference, pp. 734-739, June 1983.

F. Tada, K. Yoshimura, T. Kagata and T. Shirkawa, ‘‘A fast maze router with
iterative use of variable search space restriction,'’ Proc. 17th Design Automation
Conference, pp. 250-254, 1980.

K. Ueda, T. Komatsubara and T. Hosaka, ‘‘A parallel processing approach for logic
module placement,”’ IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. CAD-2, no. 1, pp. 39-47, Jan. 1983.

S. M. Ulam, in Essays on Cellular Automata, Chaps. 5-6, Urbana:Univ. of Illinois
Press, 1970.

A. W. Van Ausdal, “Use of the Boeing computer simulator for logic design
confirmation and failure diagnostic programs,”’ Advanced Astronautics Science, 29,
pp. 573-594, June 1971.

N. van Brunt, ‘“The ZYCAD logic evaluator and its application to modern system
design,’’ Proc. ICCD-83, pp. 232-233, 1983.

C. Weems, S. Levitan, and C. Foster, ‘‘Titanic: a VLSI based content addressable
parallel array processor,”’ Proc. ICCC-82, pp. 236-239, 1982.

J. Wilmore, ‘‘The use of bit maps in designing efficient data bases for integrated
circuit layout systems,’’ Jour. of Digital Systems, vol. IV, issue 1, pp. 71-95, 1980.

G. L. Wilson, ‘1983 Spring [EEE/ACM Design Automation Workshop,”” ACM
SIGDA Newsletter, vol. 13, no. 2, pp. 4-11, July 1983.

