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EDITOR'S NOTE

The reader should note that Appendix F, included in the
Table of Contents in this volume, was not Tisted in the Table of
Contents of Volume 1. This is because the optional fifth wheel
models discussed in Appendix F were implemented into the Phase
IIT computer programs in October 1976, following the printing of

Volume 1.
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APPENDIX A
THE PROGRAMS

The Phase III programs consist of three different digital
computer programs, one each for the simulation of the braking per-
formance of straight trucks, tractor-semitrailers, and doubles
combination vehicles. Each of the three programs consists of a
MAIN program and INPUT, OUTPUT, and FCT1 subprograms, i.e., there
is a different version of each of these programs associated with
each of the three vehicle types. In addition, a group of "support"
subprograms, which include HPCG, ANTLKR, PRINT, BRAKE, TABLE, ROAD,
INPOAT, INP5A6, and INPAIR, are used by these three programs.

A11 the programs are written in FORTRAN IV. The core storage
requirements for the programs are:

Straight truck programs: 89912 bytes
Tractor-Semitrailer programs: 135616 bytes
Doubles programs: 162032 bytes
Support programs: 148656 bytes

A general flow diagram for the Phase III programs was presented
in Section 2.0 (Figure 2.1). To further assist the user in under-

standing the program flow, Table A-1 reviews the various subroutines,
presenting their entry points, the programs from which they are
called, and their functions. Also, Figures A-1 through A-5 present
flow diagrams for various subroutines.
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TABLE A-1 (Cont.)

Subroutine Entry Points Called From Function
ANTLKR ANTLKR INPUT Read antilock parameters.
ANTLKW INPUT Echo antilock parameters.
ANTLK TORQUE Modify brake pressure depending on
antilock performance.
PRINT PRINT ANTLKW Assist in printing antilock
parameters.
BRAKE BRAKE INPUT Read brake module parameters.
BRAKE1 INPUT Echo brake module parameters.
BINIT OUTPUT Initialization calculation for brake
modules.
BCALCU TORQUE Calculate brake torque using brake
modules.
FINAL OUTP For debug purposes.
TABLE TABLE A variety of Handle tabular data.
places
ROAD ROAD FCT1 Accept data describing the sprung
mass.
ROADS ONEOA1l, Calculate axle positions on the
ONES5A6, vehicle.

ONEAIR
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TABLE A-1 (Cont.)

Subroutine Entry Points Called From Function
SUS5A6 FCT Perform dynamic calculations for
the MTRFSS and MTRFSS with spring-
type lower torque rod.
INPAIR INPAIR INPUT Read and echo data and initialize
constant for air suspensions.
ONEAIR FCT1 Perform static calculations for
alr suspensions.
SUSAIR FCT Perform dynamic calculations for air

suspensions.
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APPENDIX B
THE SUSPENSION MODELS

B.1 General Suspension Program Format

In this appendix, the mathematical models used to simulate
each of the optional suspension types available to the user will
be reviewed. In this first section of the appendix, certain
considerations common to various suspension types will be considered.

Because of the variety of options available, all suspension
calculations are performed in suspension subprograms which are part
of the total simulation program. To facilitate the manipulation
of suspension options within the program, all individual forces
(i.e., torque rod, spring, friction, etc.) which a suspension
applies to the sprung mass are summed into a generalized vertical
force, horizontal force, and moment which act through and about the
“Suspension Reference Point.*" These generalized forces and moment
are then passed from the suspension subprogram to the main portion
of the program for the sprung mass calculations. This general
format is employed by the simulation for both static and dynamic
calculations.

For dynamic calculation the generalized forces and moment
are named TSFV (total suspension force, vertical), TSFH (total
suspension force, horizontal), and TSTORQ (total suspension torque).
Sign conventions for these generalized forces are:

TSFV is positive for tensile forces between sprung
and unsprung masses (springs extended from their
static length)

TSFH is positive for forces between sprung and
unsprung masses which tend to accelerate the
sprung mass

*The Suspension Reference Point for each of the suspension options
was defined in Section 2.

11



TSTORQ s positive for moments which tend to produce
a positive pitch of the sprung mass (i.e.,
front up, rear down).

Note that each of these variables is the dynamic component of
the generalized force, i.e., these variables are zero at static
equilibrium.

In the static calculation the variables SSFV and STORQ are
the equivalents of TSFV and TSTORQ, respectively. For any sus-
pension, two constants, SRATIO and SCONST are also defined such
that:

STORQ = SRATIO - SSFV + SCONST (B-1)

These two constants are properties of a suspension which are
calculated using parametric input supplied by the user. The values
of SRATIO and SCONST are determined during the first of two
initialization entries to the suspension subprogram. These values
are passed to the main portion of the program which then calculates
the distribution of static suspension loads about the vehicle
(i.e., SSFV for each of the various suspensions). SSFV is passed
to the suspension subprogram at the time of the second initializa-
tion entry and the static wheel Toads are calculated.

In the Tatter sections of this appendix, the mathematics of
each suspension model will be discussed. These discussions will
be confined to the equations of motion of the unsprung masses and
to the calculation of SRATIO, SCONST, STORQ, TSFV, TSFH, and
TSTORQ.* The manner in which these functions are employed in
sprung mass-related calculations will be considered in Appendix C.

In deriving the equations for the suspension models, the
following assumptions were made: (1) the force in the suspension
is the sum of the forces due to coulomb friction, viscous friction

*Note that SSFV is deleted from this Tist for it is calculated
in the sprung mass portion of the program.

12



and the spring force; (2) the suspension forces are always in

the "z" direction. The differences between results derived using
this assumption and results derived assuming that the forces are
perpendicular to the frame of the vehicle are negligible for small
pitch angles.

Most of the suspension options allow for the inclusion of
coulomb friction. The classic expression usually denoted by the
term "coulomb friction" is

f < uN (B-Z)

where
f is the force of friction,
p is an experimentally derived parameter,
N s the contact "normal force" between two

s1iding surfaces.

Equation (B-2) is empirical in nature, and describes approxi-
mately an observed phenomenon. To illustrate this point, consider
the simple system shown in Figure B-1.

Figure B-1. Mass spring system with viscous damping and
coulomb friction.

13




The equation of motion of the mass M shown is

CF = Mg + F(t) - Kz
(B-3a)
for z =0, |CF|<cF
otherwise,
Mz + Kz + Cz + CF LZ—I- = Mg + F(t) (B-3b)
z

where CF is the maximum allowable magnitude of the coulomb friction
force CF, F(t) is the driving force on the system, K is the

spring rate, C is the viscous damping coefficient, z is the dis-
placement of the mass M (z=0 at the free length of the spring),

and g is the gravity constant.

From Equation (B-3a), it can be seen that no motion is
possible for the system initially at rest until the magnitude of
the quantity Mg + F(t) - Kz becomes greater than |CF|. At this
point, motion ensues, which is described by Equation (B-3b), until
the system again meets the conditions of Equation (B-3a).

In developing a digital simulation of a system with coulomb
friction, Equations (B-3a) and (B-3b) present special problems.
Since the velocity z is known only at discrete points, the time
when z equals zero cannot easily be found. Thus, the actual time
to switch from solution of Equation (B-3a) to solution of Equation
(B-3b) 1is not known. There are a variety of ways to circumvent
this problem, some of which are considered below:

(a) Continuously solving Equation (B-3b). This method
is unsatisfactory (especially for large amounts of
coulomb friction) since the system will "chatter"
around the static equilibrium position. A slightly
negative z produces large coulomb friction, which

14



causes large positive z. When the large positive
z is integrated over a short time, positive 2
results. The cycle then repeats with opposite
signs.. The period of this "chatter" is twice the
integration time step.

(b) Use an "equivalent viscous damping." By this method
an increased value of C is chosen to compensate for
the elimination of coulomb friction. This method
can be useful when the coulomb friction forces are
small compared to the velocity sensitive forces,
but, in general, it cannot yield satisfactory results
in truck dynamics since the forces of coulomb
friction are normally much Targer than those of
viscous friction.

(c¢) Introduce a "dead zone" around static equilibrium.
This method is shown schematically in Figure B-2.
This method has proven quite satisfactory for suspen-
sions in which both viscous and coulomb friction are
present. In the event that the viscous coefficient C
is zero, however, the simulation allows velocity up
to |z| = & with no energy lToss. In digital computa-
tion this can cause the same type of chatter described
in (b) above.

(d) Use a Timiting (saturation) function. A schematic
diaagram showing the function used in the simulation
is given in Figure B-3. This function effectively
eliminates the problems with the methods described
in (a), (b), and (c).

There is no free zone around static equilibrium. Thus, given
large enough &, all chatter is eliminated. The value of § should
be small enough, however, to preserve the character of coulomb
friction. A method for the computation of & is given below:

15




Coulomb Friction

r...\_

No
n
]

o

No

Figure B-2. Coulomb friction with dead zone.

Coulomb Friction
CF(I)-——

No

Figure B-3. Coulomb friction represented by limiting

(saturation) functions.
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6 should be large enough so that if the coulomb friction
were the only force applied to the unsprung mass and the sprung
mass, the velocity in the suspension could not change from § to

a negative value in one integration time step. This precludes
the onset of chatter.

The free-body diagram of a system of sprung and unsprung
masses, which can represent a truck or a tractor, is shown in
Figure B-4. The relative velocity between the sprung mass and
the unsprung mass may be written:

751 F“"'M51 752 F——-'MSZ

Figure B-4. System used in sample calculations of §.
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SD1

SD2
Thus:

]

| A

o] <
1251

1252

281 + Al - 1 (B-4)
282 - A26 - 2 (B-5)
%1- (CF1+CF2) (B-6)
% (CFT(AT)4CF2(A2)) (B-7)
CF]
< ST (8-8)
CF2
< WSD (B-9)

During a time interval, at, the change in suspension velocities

are

[aS1D| < At

[aS2D| < at

:3F1 (e + 7 * %3) v ort (44 (AS)A1>] (5-10)
FFZ (M%§-+ %-+ A§E> + CF? (%,+ (A]3A2 )]

(B-11)

The coulomb friction break points, +6(1) in Figure B.3 for

suspensions 1 and

DEL1

DEL2

In a similar

suspension

2 are set at
= |AS]D| (B-12)
= |aS2D| (B-13)

manner, it can be shown that, for a trailer

18



3

2
EL3 < ot [cF3 (jr + 240)] (8-14)

Since, in the program, the integration time step, At, is
always .0025 second, calculations lead to typical values for the
break points in the neighborhood of 3 inches/second. Thus, the
simulated "frozen" suspension will allow small relative velocities
(1ess than, say, 3 inches/second) rather than holding relative
velocity to zero, and the possibility of numerical instability
due to the coulomb friction is thereby eliminated.

Several of the suspension options include viscous damping
due to the use of shock absorbers. The viscous friction coeffi-
cient is the slope of the force-velocity curve for the shock
absorber. The user may select the slope in rebound and compression
as is shown in Figure B-5.* If no damping is desired, the user
may enter values of zero.**

Velocity

Compression
Slope C(I)

Force
(compression)

Rebound Slope
C(I+1)

Figure B-5. Force-velocity characteristic of shock absorbers.

*To conform with popular shock absorber test practice,
compression is shown positive.

**Further considerations in the use of viscous damping were
referred to in Section 3.
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The spring force at an axle may be denoted by a linear
relationship

F(I) = K(I) = S(I) (B-15)

K(I) is the slope of the force-deflection curve
in pounds/inch

S(I) s the suspension deflection from its static
length in inches.

Alternatively, in the single axle and walking beam suspensions,
a nonlinear force-deflection relationship may be used. An
example is shown in Figure B-6, in which four points are used.
The force in the spring will then be found through Tinear inter-
polation. (Use of spring tables was discussed in Section 2.0.)

Force
(pounds compression)

ther Entered Points

Deflection
(in. compression)

Figure B-6. Nonlinear spring force-deflection characteristics.
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As a final preliminary point to the discussion of the
individual suspension models, mention of the coordinate system
to be employed is appropriate. The fore/aft motion of the unsprung
masses is labeled "X" with the positive direction forward. It
is assumed that the X motions of both the sprung and all unsprung
masses are rigidly coupled. The vertical motions of the unsprung
masses are labeled "ZS" (subscripted by "1" and "2" to denote
leading and trailing axle, respectively, where appropriate), with
the positive direction downward. To simplify the following
presentations, it is assumed that the vehicle frame remains at a
fixed vertical position, however, in the actual calculations of
the Phase III programs, vertical motions of the frame are properly
considered in calculating spring and frictional forces.

B.2 The Single-Axle Suspension

A schematic diagram of the single-axle model appears in
Figure B-7. Table B-1 presents the nomenclature used in association
with this model.

Sprung Mass

K I,cr
C
zsl ,

MS

TN-NS

Figure B-7. Single-axle suspension model.
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Table B-1. Single-Axle Model Nomenclature.

Cl Viscous damping coefficient in jounce
c2 Viscous damping coefficient in rebound
CF Coulomb friction

K1 Vertical suspension spring rate

WS1T  Weight of the unsprung mass

Figure B-8 shows a free-body diagram of the unsprung mass
as applies to the static calculations. As the diagram shows, in
the static condition there can be no moments about the suspension
reference point (axle center) and therefore by definition

STORQ = 0.0 (B-16)

SSFV (equal to static
spring force)

WSI
NS1

Figure B-8. Static free-body diagram: Single-axle suspension.
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From Equations (B-1) and (B-16)

0 = SRATIO . SSFV + SCONST (B-17)

The solution to Equation (B-17) for all values of SSFV is

SRATI0O = SCONST = 0 (B-18)

Also, by summing vertical forces in the free-body of Figure B-8,
the static normal load on the tire is

NS1 = WS1 - SSFV (B-19)

where SSFV is calculated in the sprung mass portion of the
program using SRATIO and SCONST.

The dynamic free-body diagram for this suspension appears
in Figure B-9. From the free-body, and the definitions of the
generalized dynamic suspension forces and moments:

TSFV
/:\-/\A
C-zs K1-ZS CF

A
/-\ » TSFH

TSTORQ

FXI MS1-X
TTI

DNI1

Figure B-9. Dyanmic free-body diagram: Single-axle suspension.
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TSFV = K1 - ZS+C «» 2§ + CF = (B-20)
TSFH = FX1 - MS1 - X (B-21)
TSTORQ = - TTI (B-22)

and the unsprung mass equation of motion is

MS1 - 28 + TSFV + DN1 = 0 (B-23)

B.3 The Walking Beam Suspension

A diagram of the walking beam suspension is shown in Figure
B-10. Nomenclature used in association with this suspension type
appears in Table B-2. It should be noted that the torque rods
are assumed to remain horizontal and the center of mass of the
tandem is assumed to be on the Tine of the wheel centers.

Table B-2. Walking Beam Model Nomenclature.

AA1 Horizontal distance from walking beam pin to
leading axle (in)

AA2 Horizontal distance from walking beam pin to
trailing axle (in)

AA4 Vertical distance from axle to W.B. (in)

AA5 Vertical distance from axle to torque rod (in)

Cl Viscous damping: jounce on rear axle(s) (1b-sec/in)
2 Viscous damping: rebound on rear axle(s) (1b-sec/in)
CF Maximum coulomb friction, rear suspension (1b)

K Spring rate, rear suspension (1b/in)

PERCNT Percent effectiveness of torque rods
WS1 Weight of front tandem (1bs)
WS2  Weight of rear tandem (1bs)

*The narameters X1 and C mav he furctions of 7SPR and Z4PR,
respectively, as discussed in Section A.1, and CF is taken from

the functional relationship analogzus to that shown in Figure B.3.
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Addressing first the static considerations for this
suspension, refer to the free-body diagram of Figure B-11. Since
the suspension reference point is directly above the walking beam
pin, zero moment (about the reference point) will be passed to
the sprung mass in the static condition, i.e.,

SSFV (equal to static
A spring force)

Figure B-11. Static free-body diagram: the walking beam
suspension.

STORQ = 0 (B-24)
Therefore, as for the single-axle suspension

SRATIO = SCONST = 0 (B-25)
To obtain the static tire normal loads, sum forces in the verti-

cal direction and moments about the walking beam pin to obtain,
respectively,
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NST + NS2 - WST - WS2 + SSFV = 0 (B-26)
and
(NST-WS1)AAT - (NS2-WS2)AA2 = 0 (B-27)

Solving for (B-26) and (B-27) for NS1 and NS2 yields

AA2

NST = WS1 = mRTemmz

« SSFV (B-28)

NS2

WST + WS2 - SSFV - NSI (B-29)

where SSFV is known from calculations performed in the sprung
mass portion of the program using SRATIO and SCONST.

A dynamic free-body diagram of the suspension appears in
Figure B-12. Note that the suspension applies forces to the
sprung mass only through the walking beam pin and the torque
rods. Therefore, the generalized suspension forces and moment
are defined by these forces. Since the torque rods are
horizontal, vertical forces are passed to the sprung mass only
at the torque rod pin. Therefore, TSFV is the sum of spring
and frictional forces. That is

TSFV = K1 - ZS +C + 7S + CF (B-30)

where the parameters C and K may be functions of 7S and ZS,
respectively, as discussed in Section A.1, and the dependence of
CF on IS is taken from a functional relationship analogous to
that shown in Figure B-3.

Summing the horizontal forces acting on the sprung mass

TSFH = TRT + TR2 - L (B-31)

but applying Newton's second law in the horizontal direction
yields:

27



T

TRI

TR2

CZS KI'2S CF

TT1 Total CG.

/‘\ of Assembly

Figure B-12. Dynamic free-body diagram: the walking beam
suspension.
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TR1 + TR2 - L - (FX1-MST-X)-(FX2-MS2-X) = 0 (B-32)

From (B-31) and (B-32)

TSFH = FXT - MST « X + FX2 - MS2 « X (B-33)

The walking beam suspension model has two degrees of freedom
which we will interpret in this analysis as the vertical and
pitch motion of the center of mass of the tandem assembly (ZS
and 6T as shown in Figure B-12). The following analysis will
derive the two equations of motion for these degrees of freedom.

Applying Newton's second law in the ZS direction of Figure
B-12:

-(DN1 + DN2 + TSFV) = 7§ (MS1 + MS2) (B-34)

The moment of momentum of MS1 and MS2 about the center of
mass of the tandem is

MST(AA6)2 + MS2(AA7)2 (B-35)
where
MS2
AA6 MST+52 (AA]"’AAZ) (B-36)
AA7 = (AA1+AA2) - AA6 (B-37)

Summing moments about the mass center and employing Equation
(B-30)

DN1(AA6) - DN2(AA7) + (TR1+TR2)AA5 + TSFV(AA3)
+ L(AA4) - TT1 - TT2 = (MST(AA6)2 + MSZ(AA7)2)5T (B-38)

29



Referring now to Figure B-13, which shows the free-bodies
of the individual parts of the suspension, we see that, by
summing moments about the centers of the axle housings,

TT1 - TR1(AA5) - H1(AA4) - V1 « ol - AA4 =0 (B-39)*
TT2 - TR2(AA5) - H2(AA4) - V2 - 02 - ARA = 0 (B-40)*
and by summing horizontal forces on the walking beam
L = Hl +H2 (B-41)
From (B-39) through (B-41), then,
L(AA4) = (H1+H2)AA4 = TT1+TT2 - (TR1+TR2)AA5
= (VI « ol +V2 . «2)AA4 (B-42)

Substituting (B-42) into (B-38)

DN1(AA6) - DN2(AA7) + TSFV(AA3) - (V1 - ol + V2 - o2)AA4

= (MS1 - AA62 + MS2 .« AA72)oT (B-43)

To obtain 6T from Equation (B-43), the terms V1 - «1 and
V2 . o2 must be found (all other terms being known). These
unknown terms are a function of many compliances in the suspen-
sion. Since V may be very large and o quite small, these terms
are very difficult to model analytically. Rather, it is assumed
that

*Small va]ués of al and a2 have been assumed.
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V1 « ol - AAd

1l

P(TR1)AAS (B-44)

V2 - a2 - AA4

P(TR2)AA5 (B-45)

i.e., the moment of V about the axle will be proportional to
the moment of the torque rod force about the axle. With these
assumptions, Equation (B-43) can be rewritten as

DN1(AA6) - DN2(AA7) + TSFV(AA3) - (TR1+TR2)P - AA5

= (MS1(AA6)2 + MS2(AA7)2)eT (B-46)

Equations (B-34) and (B-46) are then the equations of
motion for the suspension, but we still need to determine the
TR forces. By summing horizontal forces on the two axle
housings, we obtain:

STRT + FX1 - MST - X + HI

]
[e)

(B-47)

-TR2 + FX2 - MS2 « X + H2

1]
[e)

(B-48)

By combining Equations (B-39), (B-44), and (B-47) and
combining (B-40), (B-45), and (B-48) we obtain, respectively,

TT1 - AA4(MST - X - FX1)
ARG+ (1+P)ARS

TR1 (B-49)

TT2 - AR(MS2 - X - FX2)
ARG + [1+P) ARG

TR? (B-50)

Lastly, it remains to determine TSTORQ, the generalized
moment which the suspension applies to the sprung mass (about
the reference point). By definition

TSTORQ = - (TR1+TR2)AA5 - L(AA4) (B-51)
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Substituting (B-42) into (B-51)

TSTORQ = -TT1 - TT2 + (V1 - ol + V2 « o2)AA4 (B-52)

Substituting (B-44) and (B-45) into (B-52)

TSTORQ = -TT1 - TT2 + (TR1+TR2) « P - AA5 (B-53)

This completes the walking beam suspension model. By way
of review, the static model consists of the values of SCONST,
SRATIO, and STORQ and the expressions for the static normal
tire Toads as functions of SSFV. The dynamic model consists of
the two equations of motion plus expressions for TSFV, TSFH,
and TSTORQ.

B.4 The Basic Four Spring Suspension

In this section, the model of the basic four spring
suspension will be developed. The section begins with a simpli-
fied discussion of the physical behavior of the suspension
during braking. This discussion is intended to provide an
intuitive basis for certain fundamental assumptions of
the mathematical model.

Figure B-14 illustrates a four spring suspension in its
static Toaded condition. When brake torque is applied to the
axles of this suspension, two mechanisms by which brake torque
is resisted come into play. In Figure B-15 it is shown that
a portion of the brake torque is resisted by moments arising
from horizontal forces. The horizontal forces at points H and
J in the figure are components of the toraue rod reactions.
The horizontal forces at points D, E, F, and G result primarily
from spring/frame contact friction. Figure B-16 illustrates
that the remaining portion of the brake torque is resisted by
vertical force couples, primarily composed of the dynamic com-
ponents of vertical spring/frame contact forces at points D,
E, F, and G.
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The development of the vertical force couples is primarily
responsible for the occurrence of interaxle Toad transfer.
These forces act in opposite directions at either end of the
same spring. Because the leaf spring is a compliant member in
the vertical direction, these forces can only develop as a
result of spring wrap-up as illustrated in Figure B-17.* In
turn, Figure B-18 illustrates that spring wrap-up cannot occur
until some small sliding action between the spring and frame has
taken place at their contact points. (During this action, the
springs slide forward with respect to the vehicle.) In order
for this sliding to occur, friction must first be overcome.
Therefore, we hypothesize that, as increasing brake torque is
applied to the axles, the horizontal forces will develop until
they are of sufficient magnitude to saturate spring/frame contact
friction. Only after this has taken place may spring sliding and
spring wrap-up occur, resulting in the development of the vertical
force couples.

A mathematical model based on the following assumptions
will now be developed.

1. Longitudinal acceleration of the unsprung masses
relative to the sprung masses are neglected.

2. The slight shifts of spring, axle, and torque rod
positions due to the rotation of the load Teveler,
horizontal movement of the spring/frame contact
points, and spring flexture are neglected in
calculating suspension forces.

3. The connection between the Toad leveler and the
frame is considered to be a frictionless pin.

*Figures B-17 and B-18 indicate that as spring wrap-up occurs,
the axle housings rotate around points H and J. This is
because the nearly horizontal attitude of the torque rods
results in the horizontal positions of H and J being virtually
fixed while vertical motions of H and J are not germane to
this part of the discussion.
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The coefficient of friction is assumed to be
identical and constant at all spring/frame
contact points.

Spring/frame contact areas are assumed to be
oriented such that frictional forces are horizon-
tal and normal forces are vertical.

The summation of moments about an axle center due
to the vertical forces at the spring/frame contact
points (of the spring associated with the axle)
can change only at points in time during which the
frictional forces at those same spring/frame
contact points are saturated.

Only vertical forces are significant in the load
Teveler equations. (Justification for this assump-
tion is given at the end of this section.)

Coulomb friction contained in the vertical deflec-
tion properties of the leaf springs are applied
between frame and axle housing.*

Note that it is assumption 6 that follows from the preceding

discussion.

Addressing first the static consideration regarding this

suspension, reference the schematic and static free-body diagrams

of Figures B-19 and B-20, respectively.

From Figure B-20, summing moments on the two axle

assenblies and the load Teveler individually yields

TN1S(AA2A) = TN2S(AAT-AA2A)

TN3S(AAT - AA2B) = TN4S(AA2B)

(B-54)

(B-55)

*The method for calculating these coulomb friction forces was

reported earlier in this appendix.
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TN2S(AA4) = TN3S(AA5) (B-56)

By the definitions of SSFV and STORQ

SSFV = -TN1S - TN2S - TN3S - TN4S (B-57)

STORQ = TNIS(AAT+AA4) - TNAS(AAT+AAS) (B-58)

Substituting (B-54), (B-55), and (B-56) into (B-57) and
(B-58) yields

SSFV = - [AALRAZA 1 o ML (1« ALAEE) T s (8-59)
STORQ = [Aﬂ%i%%gﬁ (AR1+ang) - AALARZE A (AA]+AA5)]TNZS
(B-60)
Now by the definition of SRATIO and SCONST
STORQ = SSFV - SRATIO + SCONST (B-61)

Substituting (B-58) and (B-59) into (B-60)

AAT-AA2A AAT-AA2B . AM _
[T‘?WE?T“ (AAT+AMA) - “=poe= e (AA]+AA5)]TN2$

AAT-AA2A AA4 AAT-AAZB
(B-62)
The general solution for (B-62) for all values of TN2S is
SCONST = O (B-63)
ARARER (ap+ang) - PAIZAAZE AR (antsmns)
SRATIO = -
ARI-ARZR ", "ARL (|, PAT-AAZB,
TRRA ARG ARZB (B-64)
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Simplifying (B-64) yields

(-AAT - AA2A + AA4) + (AAT-AAZB+AAS) ﬂ%%-ﬂﬁéé
SRATIO = ., AT Az 1865
AA5 AAZB

To complete the static calculations we must determine
the static normal tire loads as a function of SSFV.

Summing vertical forces and moments on the entire
suspension yields

SSFV + NST + NS2 - WS1 - WS2 = 0 (B-66)

(NST-WST)(AAT-AA2A+AAL) - (NS2-WS2)(AAT-PAA2B+AA5) - STORQ = 0
(B-67)

Solving these two equations simultaneously for NS1 and NS2

yields:
) STORQ - SSFV(AAT-AAZB+ARS)
NST = WST + TRRT-AAZA+ARA) + (AAT-AAZBARS) (B-68)
NS2 = WST + WS2 - NS - SSFV (B-69)

Turning now to the dynamic suspension model, consider the
free-body diagram of Figure B-21. Note that all the forces
shown in these diagrams are dynamic components only. In the
case of the vertical spring forces, these dynamic components
are expressed as the total force minus the static component,
i.e.,

(TNi - TNiS)

where i = 1,2,3,4. This method is used to facilitate calcula-
tions involving the relationships of leaf/frame frictional
forces and normal forces, i.e., relationships of the form
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TN2—TN2S + TN3 —TN3S

TN2~TN2S TN3-TN3S

FN2 FN3

TN1-TN1S FF1 FN2 + FN3 TN4 -TNAS

TN2-TN2S TN3-TN3S

Figure B-21. Dynamic free-body diagrams: the basic four spring suspension.



FNi < MUS - TN

where MUS is the coefficient of friction and i =1,2,3,4.

Applying Newton's second law in the "X" direction to
each of the axles in Figure B-21 yields

TR1(cosAA7(1)) + FX1 - MST(x) + (FNT+FN2)

1
o

(B-70)

{]
o

TR2(cosAA7(2)) + FX2 - MS2(x) + (FN3+FN4) (B-71)

where x is Tongitudinal acceleration, MST is the unsprung
mass of the Teading axle, and MS2is the unsprung mass of the
trailing axle.

Summing moments about the axle centers yields

TT1 - TRT(ARM1) + TN1(AA2A) - TN2(AA2A) + (FN1+FN2)AA3 = 0
(B-72)
TT2 - TR2(ARM2) + TN3(AA1-AA2B) - TNA(AA2B) + (FN3+FN4)AA3 =0
(B-73)
where all the TNiS terms have been removed by substitution of
Equations (B-54) and (B-55), and where ARMI and ARM2 are the
distances from the torque rod to the axle center, in a direction

perpendicular to the torque rod, for the leading and trailing
axle, respectively.

Now, with KK designated as the sum of the spring rates of
all four leaf springs, the following expression is assumed:

TNT + TN2 + TN3 + TN4 = -KK(¢§) + TNIS+TN2S+TN3S+TN4S = SUMTN

(B-74)
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where § is the average vertical displacement of the axle centers
relative to the sprung mass.*

Summing moments on the load lTeveler and envoking assumption
(7) yields

TN2(AA4) - TN3(AA5) = 0 (B-75)

where the TNiS terms have been removed by the substitution of
Equation (B-56).

At this point, Equations (B-70) through (B-75) represent
six equations in eight unknowns, these unknowns being TN1, TNZ,
TN3, TN4, TR1, TR2, and the quantities (FNT+FN2) and (FN3+FN4).
(Note that (z, TN(1), FX1, FX2, TT1, TT2, and x are known
quantities provided by previous calculations made in the program.)

Assumption (6) can now be used with respect to each of the
two axle assemblies to obtain the two additional equations required.
For example, for the leading axle it is initially assumed that the
forces FN1 and FN2 will not saturate the friction capability of the
spring/frame contact points. It then follows from assumption (6)
that

TN1(AA2A) - TN2(AA1-AA2A) = TN]O(AAZA) - TNZO(AA1—AA2A)
(B-76)

where the subscript (o) indicates "from the preceding time step."
And likewise, for the trailing axle,

TN3(AA1-AAZB) - TNA(AA2B) = TN30(AA1-AAZB) - TN40(AAZB)
(B-77)

Equations (B-70) through (B-77) may now be solved for the
eight unknowns listed above. If, upon completing these calculations,

*The use of this form of equation has been discussed in the Phase I
report [1].
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it is determined that

|(FN1+FN2)|.5 MUS(|TNT| + |TN2|) (B-78a)
and

| (FN3+FN4) | < MUS(|TN3| + |TNG]) (B-78b)

where MUS is the coefficient of friction of spring/frame contact,
then friction is, indeed, not saturated and the solution is
acceptable as calculated. If either criteria indicated by Equation
(B-78) fail, then recalculation of the solution is called for. In
this case, if, for example, Equation (B-78a) is not met, then
friction is saturated at the Teading axle. Equation (B-76) must
then be replaced by

(FNI4FN2) = + MUS(|TNT| + |TN2]) (B-79)

where the appropriate sign is indicated by the sign of (FN1+FN2)
as found by the preliminary calculations just described (i.e.,
using Equations (B-70) through (B-77)).

Similarly, if Equation (B-78b) is not satisfied, Equation
(B-77) is replaced by

(FN3+FN8) = + MUS(|TN3| + |TN4]) (B-80)

Thus, Equations (B-70) through (B-75) plus the appropriate
two equations from (B-76), (B-77), (B-79), and (B-80), as deter-
mined by the criteria of Equation (B-78), will always provide
eight equations which may be solved for the eight unknowns.

With all the suspension forces calculated, the appropriate
accelerations of the sprung and unsprung masses may now be calculated.

Summing forces in the vertical direction on each of the
unsprung masses yields the equations of vertical wheel motions,

viz.:
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-FF1 - TR1 sin(AA7(1)) + (TNI-TN1S) + (TN2-TN2S) - DNI

MS1(Z51)
(B-81)

-FF2 - TR2 sin(AA7(2)) + (TN3-TN3S) + (TN4-TN4S) - DN2 = MS2(ZS52)

(B-82)

where the "FF" terms are the sum of the coulomb and viscous
friction forces, calculated as described in Section B.1, and the
"DN" forces are the dynamic normal tire loads.

To complete the model we must determine the generalized
suspension forces and moments.

By definition

TSFV = -[(TNT+TN1S) + (TN2-TN2S) + (TN3-TN3S)

+ (TN4-TN4S)] + FF1+FF2 + TR1 sin(AA7(1))

+ TR2 sin(AA7(2)) (B-83)
and

TSFH = -[FNT+FN2+FN3+FN4] - TR1 cos(AA7(1))
- TR2 cos(AA7(2)) (B-84)

But from Equations (B-70) and (B-71), we see that the right-hand
side of Equation (B-84) is equal to:

FXT - MS1 + x + FX2 - MS2 - x
Therefore

TSFH = FX1 + FX2 - (MST + MS2)x (B-85)

We can now determine TSTORQ. By definition
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TSTORQ = (TN1-TN2S)(AAT+AA4) + (TN2-TN2S)(AA4) - (TN3-TN3S)(AA5)

(TN4-TN4S) (AAT+AA5) + (FNT+FN2+FN3+FN4)AA3

TR1[ARM] + sin(AA7(1)) (AA1-AA2A+AA4)] (B-86)

TR2[ARM2 - sin(AA7(2)) (AAT-AA2B+AA5)]

CF1(AA1-AA2A+AA4) + CF2(AAT-AAZB+AA5)

By substituting Equations (B-72) and (B-73) and the equations

AA2A - AR2A = O (B-87)
AA2B - AA2B = 0 (B-88)
into Equation (B-86), we can show that
TSTORQ = (AAT-AA2A+AA) [(TNT-TNIS) + (TN2-TNZS) - FFI
- TR1 sin(AA7(1))] - (AA1-AA2B+AA5)
[(TN3-TN3S) + (TN4-TN4S) - FF2 - TR2 sin(AA7(2))]
- 171 - TT2 (B-89)

As a final point in this section, the mathematical justifi-
cation to assumption (7), referred to early in this section, will

be presented.

Consider the summation of moments equation for the load

Teveler (see Fig. B-22):

TN2(AA4)cos ¢ - TN3(AA5)cos ¢ + FN2(AA4)sin ¢
- FN3(AAS)sine = 0 (B-90)

Qualitatively, there are three conditions under which this

equation will generally operate:
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1. Low Tevel brake torque applications during which
forces FN2 and FN3 do not saturate the friction
capability of the spring/frame contacts.

2. Severe brake application in which FN2 and FN3
saturate friction.

3. Moderate conditions under which either, but not both,
FN2 and FN3 may saturate friction.

During condition 1, the preceding discussion would indicate
that, because spring/frame contact friction has not saturated,
very little Toad transfer has occurred. Consequently, it would be
true that the angle ¢ is small and that Equation (B-90) would be
well approximated by

TN2(AA4) - TN3(AA5) = 0 (B-91)

During condition 2 friction is saturated. Designating MUS
as the coefficient of friction at the contact points

N2 = + (MUS) |TN2| (B-92a)

FN3 + (MUS) |TN3] (B-92b)

where, generally, the signs of the right-hand side of Equations

(B-92a) and (B-92b) will be the same. With this Timitation,

substituting Equations (B-92a) and (B-92b) into (B-90) yields
[TN2(AA4)-TN3(AA5) J[cos € + MUS(sin ¢)] = O (B-93)

with solutions

TN2(AA4) - TN3(AAS) = O (B-94)
or

cos ¢ + MUS(sine) = 0 (B-95)
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For a positive sign in Equation (B-95), the solution for e Tlies

in the second or fourth quadrants; this is not in agreement with
observed behavior. If the sign were negative, a solution exists

in the first quadrant but, since MUS < 1, then ¢ > 45 deg. for all
cases, which again does not agree with observed behavior. A solution
also would exist in the third quadrant. This also is not compatible
with observed behavior. Thus, the proper solution is represented by
Equation (B-94) (which is identical to Equation (B-91).

Under the third condition, that of moderate braking, where
friction is saturated at one, but not both, contact points, it may
be reasonably assumed that the angle ¢ would be relatively small.
In addition, the quantity FN2(AA4) - FN3(AA5) would be small.
Consequently,

[FN2(AA4)-FN3(AA5) 1sin e = FN2(AA4)sin ¢
- FN3(AA5)sin ¢ ~ 0 (B-96)

Therefore, Equation (B-91) can be assumed. Consequently, Equation
(B-91) 1is assumed for all cases.

B.5 The Four Spring Suspension with Spring-Type Torque Rods

The mathematical model of the four spring suspension with
spring-type torque rods is virtually identical to that of the basic
four sprina suspension with the addition of the torque rod "spring
force." For this reason, the model will not be reviewed in detail
here; only changes with respect to the basic four spring model will
be noted. To do this, we will develop, from the free-body diagram
of Figure B-23, certain new equations for the subject suspension
and note the equations (of the basic four spring suspension model)
which they replace. Development of the new model would then proceed
analogously to the old. The changes to be described apply only to
the dynamic suspension model. The static model is unchanged from
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TN1-TN1S | FF1 FN2 + FN3 FF2 TNA —TN4S

TN2 — TN2S TN3—-TN3S

FTR2

DN1 DN2

Figure B-23. Dynamic free-body diagram: the four spring suspension with
spring-type torque rods.



that of the basic four spring suspension (i.e., the static torque
rod spring forces are assumed to be small).

Applying Newton's second law in the "X" direction to each of
the axles in Figure B-23 yields

TR1(cos AA7(1)) - FTRI(sin AA7(1)) + FX1 - MS1(x)
+ (FNI+FN2) = 0 (B-97)

TR2(cos AA7(2)) - FTR2(sin AA7(2)) + FX2 - MS2(x)
+ (FN3+FN4) = 0 (B-98)

(replacing Equations (B-70) and (B-71) where the new "FTR" forces
are the "spring forces" of the torque rods.

Summing moments about the axle center yields:
TT1-TR1(ARM1) - FTR1{cos AA7(1) - AA9(1) - sin AA7(1)
[AA6(2) - (AA9(2))tan AA7(2)]1} + TN3(AA1-AAZB)

- TNA(AAT) + (FN3+FN4)AA3 = 0 (B-99)

TT2-TR2(ARM2) - FTR2{cos AA7(2) - AA9(2) - sin AA7(2)
[AA6(2) - (AA9(2))tan AA7(2)]} + TN3(AA1-AAZB)
- TNA(AA1) + (FN3+FN4)AA3 = 0 (B-100)

(Equations (B-99) and (B-100) replace Equations (B-72) and (B-73).

With the substitution of these four equations, the analysis

proceeds basically as it did for the basic four spring suspension
up to Equation (B-81). However, we note that there are now two
additional unknowns. FTR1 and FTR2, in the equation set which is
solved to determine suspension forces. Thus, in effect we have




eight equations in ten unknowns. To resolve this dilemma, the FTR
forces are calculated at the and of each integration time step, to
be used as known values in the calculations for the next time step.
(Prior to the first time step, these forces are assumed to be zero.)
As an example of this calculation, consider Figure B-24 depicting
the leading axle assembly. Note that the leaf spring is assumed to
be symmetric such that one-half of the total spring rate may be
attributed to each half of the spring. Using the notation of the
figure, and assuming that el is small (i.e., cos 61 = 1), we may
write equations for TN1 and FTRI] as:

N1 = - K1/2 - ZS1 + K1/2 « AA2A sin el (B-101)
FTRT = (KTR1-ZS1 - KTR1-AA9(1) - sin o1/cos AA7(1) (B-102)
Solving for FTR1 yields

KTR1 (1 AA9(1)

FTR] = ) ? KTR1 AA9(1) TN1
cosAA7(T) AAZA

VISV - 2 7~ “"RRIE * CosAAT(T)

(B-103)

In completing the dynamic model, the additional torque rod
spring forces alter Equations (B-81), (B-82), (B-83), and (B-89)
(of the basic model), respectively, as follows:

-FF1-TR1 sin AA7(1) + (TN1-TN1S) + (TN2-TN2S) - DNI
- FTR1 cos AA7(1) = MS1(Z871) (B-104)

-FF2-TR2 sin AA7(2) + (TN3-TN3S) + (TN4-TN4S) - DN2
- FTR2 cos AA7(2) = Ms2(282) (B-105)
TSFV = [(TN1-TN1S) + (TN2-TN2S) + (TN3-TN3S) + (TN4-TN4S)]

+ FF1+FF2 + TR1 - sin AA7(1) + TR2 - sin AA7(2)
+ FTR1 « cos AA7(1) + FTR2 - cos AA7(2) (B-106)
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Determining the torque rod spring forces.
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TSTORQ = (AA1-AA2A+AA4) [(TNT1-TN1S) + (TN2-TN2S)
- FF1-TR1 + sin AA7(1) - FTRT - cos AA7 (1)]
- (AA1-AA2B+AA5) [(TN3-TN3S) + (TN4-TN4S)
- FF2-TR2 - sin AA7(2) - FTR2 - cos AA7(2)] (B-107)

B.6 The Four Spring Suspension with Long Load Leveler

This section presents the mathematical and digital computer
models of the four spring suspension with long load leveler (FSS-LLL)
as they apply to the Phase III braking performance programs. The
suspension was illustrated in Figure 2-15.

The mathematical model is similar to the four spring suspen-
sion model of Phase I [1]. As such, it is considerably simplified
as compared to the other four spring suspension model described in
Section B.4.

In particular, spring/frame contact frictional forces of the
FSS-LLL are ignored. Modeling of these forces greatly complicates
the suspension model, and consequently increases the expense of its
use. In the case of the FSS-LLL, the geometry of the suspension
greatly reduces interaxle load transfer and correspondingly reduces
the significance of spring/frame friction. For these reasons, the
model presented does not include spring/frame frictional forces.

The mathematical model is based on the following assumptions:

1) Vertical motions of the axle assemblies (ZS1 and 7S2,
Figure B-24) are the only independent motions of the
suspension (Tlongitudinal motion is coupled to the
sprung mass) in which inertia is significant.

2) The slight shifts of spring, axle, and torque rod
positions due to suspension motions are neglected
in calculating suspension forces.

3)  The connection between load leveler and frame is a
frictionless pin.
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4) Motions ZS1 and 252 (Fig. B-24) are assumed to remain
vertical for all suspension/vehicle motions.

5)  Only vertical forces exist at the spring/frame
contact points.

The equations which follow use the notation presented in
Figures 215 and B-25. The free-body diagrams of Figure B-25
jllustrate only the dynamic components of all forces.

Applying Newton's second law in the "X" direction to each of
the axles yields:

TRH1 MST X - FXI (B-108)

TRH? MS2 X - FX2 (B-109)

where FX1 and FX2 are the brake forces at the leading and trailing
axles, respectively.

In the "Z" direction, Newton's second law yields

(TN1-TN1S) + (TN2-TN2S) + FF1 - TRV1 - DN1 = MS1 « 281 (B-110)

(TN3-TN3S) + (TN4-TN4S) + FF2 - TRV2 - DN2 = MS2 . 282 (B-111)

Forces FF1 and FF2 are the "friction forces" including both
coulomb friction and viscous damping forces for the leading and
trailing axles, respectively. Their method of calculation was
discussed in Section 2.1. Forces DN1 and DN2 are the dynamic
components of the tire-road normal forces.

Summing moments about each axle center and about the Toad
leveler pin (and employing static equilibrium equations to remove
the TNiS terms) yields, respectively:

TT1 + TN1 - AA2A - TN2(AAT-AA2A) + TRH1 - AA6(1)
- TRV1 - AA8(1) = 0 (B-112)
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TT2 + TN3 - (AA1-AA2B) - TN4 - AAZB + TRH2 - AA6(2)
- TRV2 - AA8(2) = O (B-113)

and

TNZ2 - AA4 = TN4 . AAS (B-114)

And by summing moments on each of the torque rods:

TRV1 = TRHT - TAN[AA7(1)] (B-115)

TRV2

TRH2 - TAN[AA7(2)] (B-116)

Now, with KK defined as the sum of the spring rates of all
four leaf springs, the followina expression is assumed:

TNT + TN2 + TN3 + TN4 = KK - § = SUMTN (B-117)

where & is the average vertical displacement of the axle centers.
This assumption is similar to assumptions used in earlier models.
Use of this assumption requires that the difference between spring
rates of leading and trailing axles be small.

In the context of the Phase III programs employing modularized
suspension subprograms, the values of X, FX1, FX2, TT1, TT2, DN1,
DN2, FF1, FF2, and s (i.e., SUMTN) are inputs to the suspension
model, having been calculated elsewhere in the simulations. Thus
Equations (B-108) through (B-117) can be solved for each of the ten
unknowns (TN1, TN2, TN3, TN4, TRV1, TRV2, TRH1, TRH2, Z81, Z82).
These solutions are

TRHT = MS1 X - FXI (B-118)
TRH2 = MS2 X - FX2 (B-119)
TRV = TRHT - TAN[AA7(1)] (B-120)
TRV2 = TRH2 - TAN[AA7(2)] (-121)
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_ 1
NG = [; MG (M- ARR A% ]
ARG ARZA ART-AAZB

M T2 ARG(1) - TAN[AAZ(1)] - AAS(1)
[AAZA * g T ARZR )
AR6(2) - TAN[AAZ(2)] - AAS(2)
+ TRH2 ( e ) + SUMTN (B-122)
. AAS
™2 = TN . 2 (B-123)
3o Tng . 2B [TT2 + TRH2(AR6(2) - TAN[AAZ(2)] - AAS(2)
NG - RAT-AAZB AAT - AAZB
(B-124)
i AAT - AAZA
T = TNe - AALZ SRS
[T TRT(ARS(1) - TAN[AAZ(1)] - ARS(1)) (8-125)
ART - AAZB
: (TN1-TNIS) + (TN2-TN2S) + FF1 - TRVI - DN
281 S (B-126)
sep . (TN3-TN3S) + (TN4-TNAS) + FF2 - TRVZ - DN2 (8-127)

MS2

The dynamic outputs required of the suspension model for use
by the Phase III simulation programs are 751, 752, TSFV, TSFH,
TSTORQ. The accelerations Z81 and 782 have already been solved
for, and by definition

TSFV = TRV1 + FF1 - (TN1-TN1S) - (TN2-TN2S) + TRV2
+ FF2 - (TN3-TN3S) - (TN4-TN4S) (B-128)

TSFH = TRH1 + TRH2 (B-129)
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TSTORQ = TN1 . (AAT+AA4) - TN4 . AA5 - FF1 . (AAT-AA2A+AA4)

+ FF2 . (AA5-AA2B) + TRH1 - AA6(1) + TRH2 . AA6(2)
- TRV1 - [AAT - AA2A + AA4 + AAB(1)] + TRV2
- [AA5 - AA2B - AA8(2)] (B-130)

Consequently, Equations (B-126) through (B-130) represent
the output of the dynamic model.

The static load calculations are similar to the dynamic
model. The variables SSFV and STORQ are the static equivalents
of TSFV and TSTORQ, respectively. The two constants SRATIO and
SCONST are defined such that

STORQ = SRATIO - SSFV + SCONST (B-131)

In the Phase III programs, the suspension model is required
to determine SRATIO and SCONST. With these values, the main pro-
gram determines SSFV and the suspension model in turn calculates
STORQ and NST and NS2 (the static normal tire loads for the leading
and trailing axles, respectively). It can be shown that, for the
FSS-LLL

- (AR - MAZA + ARG) + (MRS - AAZB) M3 AA¢A§2281
SRATIO = | -
[ B o
ARG " FAT-AAZS
(8-132)
SCONST = 0 (8-133)
and
_ 1
NS1 = W1+ [ s+ ATy | [STORQ - SSFV - (m5-AAzs)]

(B-134)
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NS2 = WS2 + WST - SSFV - NST (B-135)

where WS1 and WS2 are the unsprung weights of the Teading and
trailing axles, respectively.

B.7 The Multiple-Torque Rod Four Spring Suspension

A sketch of the multiple-torque rod four spring suspension
(MTRFSS) under discussion appeared in Figure 2-18. The mathematical
model of this suspension which will be developed is, in part, based
on the hypothesis that there are two significant mechanisms by which
this suspension reacts brake torques. These mechanisms are:

1)  The development of couples composed of vertical
forces located at the spring/frame contact points.
These couples develop via "spring wrap-up."

2)  The development of couples composed of tensile and
compressive forces developed in the torque rods.

Conspicuous in their absence are the frictional (horizontal)
forces at the spring/frame contact points. Although these forces
are significant in the basic four spring suspension, we believe
that it is reasonable to ignore them in the MTRFSS. In the basic
model, frictional forces are significant inasmuch as their partici-
pation in the horizontal force couples reduces that portion of the
brake torque which must be reacted by the vertical spring/frame
contact force couples. However, the introduction of the upper
torque rod greatly reduces the importance of frictional forces in
determining the apportionment of brake torque reaction effort. With
the introduction of this new element, the interrelationship between
the torsional compliance of the leaf spring (manifest in "spring
wrap-up"), the torsional compliance of the torque rod assembly* (due
to the use of rubber bushings, etc.) and the geometric constraints
represented by load leveler and torque rod assembly angular positions,
become paramount in determining the apportionment of brake torque

*Herein, the "torque rod assembly" is defined as the four-bar
1inkage composed of the upper and lower torque rods, the axle
housing, and the vehicle frame.
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reaction effort. Frictional forces, then, are relegated to second-
order importance.

A conceptualized sketch of the MTRFSS, showing the dynamic
components and motions of interest, appeared in Figure 2.19%*.
As shown in the figure, each leaf spring has been reduced to four
elements. Namely, a rigid link with angular position, 6K, a Tinear
spring with rate K, a torsional spring with rate KTQ, and a coulomb
friction member which saturates at CF. Note that this coulomb
friction member is assumed to be located between the sprung mass
and unsprung mass. A viscous damping member is also provided. Each
unsprung mass, MS, has a vertical position, ZS, and angular position,
6S. The torque rod assembly is reduced to a massless four-bar
linkage pinned to the unsprung mass at the center of torsional com-
pliance of the torque rod assembly. (The center of torsional
compliance is defined as follows: Consider the torque rod assembly
separately, i.e., remove the leaf springs from Figure 2-18. If the
angle AA7 were held fixed and a moment applied to the axle housing,
a slight rotation of the axle housing would result due to compliance
in the torque rod assembly. The center of this rotation is defined
as the center of torsional compliance. A torsional spring of rate
KTRTQ (a property of the torque rod assembly) is located between
this Tink and the unsprung mass. The angle oSN (read 6S-nominal)
is defined as the nominal angular position of the unsprung mass, i.e.,
" the angular position (defined by the torque rod assembly geometry)
which the unsprung mass would assume, for a given vertical position,
if it were under no load. Therefore, 6SN is a function of ZSP where
the function is established independently by the geometry of the
torque rod assembly. Finally, the load leveler is shown as a rigid
Tink with angular position 6L.)

*In Figure 2.18 and in Figure 2.19, various labels appear with the
subscripts (1) and (2) denoting the leading and trailing axles,
respectively. In the following discussion, wherever it is not
important to distinguish between axles, these subscripts will be
dropped.
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We will now develop a mathematical model of the MTRFSS based
on the conceptual model of Figure 2-19. The model is based on the
following assumptions:

1)  In general, the modeling concepts of Figure 2-19 are
valid.

2) Vertical motions of the unsprung mass are the only
independent motions of the suspension (longitudinal
motion is coupled to the sprung mass) in which inertia
is significant.

3) Displacements shown in Figure 2-19 are the only
suspension motions of significance and are important
only with respect to the development of spring
forces; i.e., slight changes in all other dimensions
(see Figure 2-18) due to motions of the suspension

are ignored.

4)  Motion (ZS) is assumed to remain vertical for all
suspension/vehicle motions.

5) A1l pin connections are frictionless.

6) Only vertical forces exist at the spring/frame and
spring/load leveler contact points.

7)  6SN(1) = NACOEF(1) - ZS(1) (a)
8SN(2) = NACOEF(2) - ZS(2) (b)

where NACOEF(1) and NACOEF(2) (read nominal axle
angle coefficient) are constants.

Assumption (7) represents a further restricting on the
functional relationship between 6SN and ZS discussed earlier. The
value of NACOEF is parametric input to the model.

We will begin with the dynamic portion of the model. Refer
to the free-body diagram of Figure B-26 and note that all forces
shown in the figure are dynamic components. Applying Newton's
second law to each of the unsprung masses, respectively:
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MS(1) - x - FX(1) TRH(1) (a)
(B-136)

MS(2) - x - FX(2) TRH(2) (b)

where FX is the brake force input to the axle. Now, in the Z
direction,

MS(1) - Z5(1) = - FK(1) - FF(1) - DN(1) - TRV(1) (a)
(B-137)

MS(2) - 75(2)

- FK(2) - FF(2) - DN(2) - TRV(2) (b)

where DN is the dynamic portion of the tire normal load and FF is
the total frictional force on the axle (coulomb plus viscous).*

Summing moments on the unsprung masses about the axle
centers:

TRTQ(1) + TKTQ(1) - TRH(1) - AA6(1) + TRV(1) - AAB(1) - TT(1) = 0
)

From the geometry of the suspension model, the various spring
forces and moments can be expressed as follows:

FK(1) = K(1)-128(1) + 55%%%553 sin 6L] (a)
(B-139)
FK(2) = K(1)-125(2) - AA%%%Aﬂg-sin oL] (b)

*See Section B.1 for the technique used in modeling coulomb friction.

68




TRTQ(1) = KTRTQ(1)-[oSN(1) - 8S(1)] (a)
(B-140)

TRTQ(2) = KTRTQ(2)-[6SN(2) - 8S(2)] - (b)

TKTQ(1) = KTQ(1)-[8K(1) - 8S(1)] (a)
(B-141)

TKTQ(2) = KTQ(2)-[eK(2) - 85(2)] (b)

where, assuming small values of eK(1) and 6K(2),

8K(1) = - %%% sin oL (a)
‘ (B-142)

oK(2) = - %—%—sin oL (b)

Consider the "nominal axle position link" free-body diagram
of Figure B-27. Summing moments about point A,

TRTQ + TRH[(1-c)+d + (1-c)-b-tanAA7] - P[b-c-sinAA7
+ (d + (1-c)-b-tanAA7)-cosAA7] =0 (B-143)

where ¢ is a proportionality constant. Rearranging

p = TRTQ + (1-c)+(d+b-tanAA7)-TRH
b.sinAA7 + d-cosAA7

(B-144)

Summing moments about point B,

TRTQ + (1-c)+d-TRH + (1-c)+b+TRV - P+(b-sinAA7 + d-cosAA7) =0

(B-145)
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TRTQ

AA7

Figure B-27. Free-body diagram: the "nominal axle position 1ink."
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Substituting Equation (B-144) into (B-145) yields

TRTQ + (1-c)+d-TRH + (1-c)+b+TRV - TRTQ - (1-c)+(d+b -tanAA7)-TRH =0

(B-146)
or
TRV = TRH . tanAA7 (B-147)
Equation (B-147) applies to both axles and may be written
TRV(1) = TRH(1)-tanAA7(1) (a)
(B-148)
TRV(2) = TRH(2)-tanAA7(2) (b)

Referring again to Figure B-26, sum moments on the spring
Tinks and rearrange to find:

e = -FK(1) AA2A + TKTQ(1) (a)
AA1
(B-149)
AA1
Summing moments on the Toad leveler:
TN2 - AA4 = TN3 - AA5 (B-150)
Substituting Equation (B-149) into (B-150)
[TKTQ(1) - FK(1)-AA2AJAA4 = -AAS[TKTQ(2) - FK(2)-AA2B] (B-151)

Substituting Equation (B-139), (B-140), (B-141), (B-142), and (B-148)
into Equation (B-138) and rearranging
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KTRTQ(I)'GSN(I)-%%%-KTQ(l)-sinﬂL

os(1) = KTQ(T)

+

TRI(1) * [AA8(L) *tanAA7(1)-AA6(1)]-TT(1)
KTRTQ(1) v a

+

+

TRI(2) * [AA8(2) *tanAA7(2)-AA6(2)]-TT(2)

KTRTQ(2) * 8SN (2) - R+ KTQ(2) *sin6L
KTRTQ(Z) )

+

(B-152)

Finally, Equations (B-135), (B-139), (B-141), (B-142), (B-151),
and (B-152) may all be solved for sin oL yielding

sin oL =
{AA]/[AA42{AA2A2'K(1) +k1Q(1) - (1 - KTQ(T§TS(;%RTQ(])>}
+ aas? | M2?(2) + kro(2) - (1 KTQ'EE?(f)mRTQ(z))}]}

! ; KTQ?$§ nggé%Q(]) [KTRTQ(1) -NACOEF(1 - ZSP(1) + TRH(1)
C[AAB(T)-tanAA7(1) - AA6(1)} - TT(1)]

AA5 KTQ(2)
"~ XTQ(2) + KTRTQ(?)

[KTRTQ(2) -NACOEF(2)-ZSP(2) + TRH(2)
- {AA8(2)-tanAA7(2) - AA6(2)} - TT(2)]
- AA4-AA2A-K(1)-ZSP(1) + AA5-AA2B-K(2)-ZSP(2) (B-153)
The necessary suspension model outputs are the total vertical
suspension force (TSFV), the total horizontal suspension force

(TSFH), the total suspension torque about the suspension reference
point (TSTORQ), plus ZSP(1) and ZSP(2).
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Define SFV(1) as the vertical suspension force associated
with axle 1, that is

SFV(T1) TRV(1) + FK(1) + FF(1) (a)

(B-154)

SFV(2) TRV(2) + FK(2) + FF(2) (b)
By definition

TSFV = TRV(1) + FF(1) - TN1-TN2 + TRV(2) + FF(2) - TN3-TN4 (B-155)

Summing vertical forces on the leaf sprina Tinks*

FK(1) + TNT + TN2

]
[en)

(a)
(B-156)

FK(2) + TN3 + TN4

1]
o

(b)

From (B-154), (B-155) and (B-156)

TSFV = SFV(1) + SFV(2) (B-157)

By definition:

TSTORQ = TNT(AAT + AA4) - TN4(AAT + AAS)

- FF(1)+(AAT - AA2A + AA4) + FF(2)-(AA1 - AAZB + AA5)

+ TRH(1)-AA6(1) + TRH(2)-AA6(2)

- TRV(1)-[AAT - AA2A + AA4 + AAS(1)] + TRV(2)

- [AA1 - AA2B + AA5 - AA8(2)] - TRTQ(1) - TRTQ(2) (8-158)

But by summing moments about the suspension reference point for
the free-body diagram of Figure B-27,

*Note that in this model, unlike in the basic four spring model,
the "TN" forces are dynamic components only, not the total force.
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TNT(AAT + AA4) - TNA(AAT + AA5)

FF(1)-(AAT - AA2A + AA4) + FF(2)-(AAT - AAZB + AA5)

+

TRH(T) -AA6(1) + TRH(2)-AA6(2)

TRV(1)«[AAT - AA2A + AA4 + AAB(1)] + TRV(2).[AAT - AA2B
+ AA5 - AA8(2)]

TRTQ(1) - TRTQ(2) - [DN(1) + MS(1)-ZSP(1)]-(AAl - AA2A + AA4)
[DN(2) + MS(2)-ZSP(2)]+(AAT - AA2B + AAS) + TT(1) + TT(2) = 0

<+

(B-159)

Substituting Equations (B-137), (B-154), and (B-158) into
(B-159) yields

TSTORQ = - TT(1) - TT(2)
- SFV(1) (AAT1 - AA2A + AA4) + SFV(2) (AA1 - AA2B + AAS) (B-160)

By definition

TSFH = TRH(1) + TRH(2) (B-161)

From Equations (B-137) and (B-154)

1

75P(1) - [SFV(1) + DN(1)]/MS(1) (a)

(B-162)

7SP(2) - [SFV(2) + DN(2)]1/MS(2) (b)

By way of review, the entire suspension model output can be
represented by:

TSFV

SFV(1) + SFV(2) (a)

TSFH

1]

TRH(1) + TRH(2) (b)  (B-153)

TSTORQ = -TT(1) - TT(2) - SFV(1)(AA1-AA2+AA4) (c)
+ SFV(2) (AA1 - AA2B + AA5)
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ZSP(1) = -[SFV(1) + DN(1)3/MS(1) (a)

(B-164)

ZSP(2) = -[SFV(2) + DN(2)]/MS(2) (b)

where the SFV, TRH, and FK forces are available from Equations
(B-148), (B-154), and (B-139), respectively, and sin oL is
available from Equation (B-143). The values of X, FX(1), FX(2),
TT(1), TT(2), DN(1), DN(2), ZSP(1), and ZSP(2) are calculated else-
where in the program and are input to the suspension model. FF(1)
and FF(2) are frictional forces, also considered input to the model.

Thus the dynamic model is complete and we will now turn to
static considerations. The MTRFSS model, as shown in Figure 2-19,
is indeterminate with respect to static tire normal Toads unless
information describing the "preset" of the various torsional springs
is known. The input parameter PRCTN1 provides this information.
PRCTN1 is defined as the percentage of tire normal Toad (both axles)
carried by the leading axle. Thus it can be shown that the parameters
SRATIO and SCONST, which are defined by the equation

STORQ = SRATIO - SSFV + SCONST (B-165)

are, for this suspension,

SRATIO = -(AAT-AAZA+AAL) pRggg] + (AAT-AA2B+AA5) (1 - E%géﬂlo
(B-166)
_ PRCTN PRCTN
sconsT = (PETM sz - (1 - PRCIND oy g (aat-mazasana)
+ (AAT-AAZB+AAS) ] , (B-167)

SRATIO and SCONST are calculated according to Equations (B-166)

and (B-167) if the user enters PRCTN1 such that 0 < PRCTN1 < 100.
Optionally, the user may enter PRCTN1 outside of this range. In
this case, the program will assume a "preset" of zero in the KTRTQ
springs (Figure 2-19) under which condition the static model of the
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MTRFSS becomes identical to that of the basic four spring
suspension described earlier in Section B.4.

In either case, the static tire normal loads of the leading

and trailing axles may be shown to be

STORQ - SSFV(AAT - AA2B + AA5)

NST = WST + TART-AAZB+ARS) - (AAT-ARZA+AAL)

NS2

B.8 The MTRFSS with a Leaf Spring-Type Lower Torque Rod

(B-168)

WST + WS2 - SSFV - NS1 (B-169)

Figure 2-23 illustrates a common modification of the MTRFSS

in which the lower torque rod function is performed by a leaf
spring member. The addition of this leaf spring torque rod may
be accommodated in the conceptual model of the MTRFSS by a
change in the torque rod assembly model as shown in Fiqure B-28,
where KTR is the linear spring rate of the leaf spring torque
rod.

Torque Rod Assembly

KTR

é!E}hAS

Figure B-28. Conceptual model of the MTRFSS with spring-type
Tower torque rod.
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Mathematically, the use of a leaf spring torque rod results
in changes to Equations (B-143) through (B-148) (of Section B.7),
plus all following equations which are derived from these equations
Equation (B-143) becomes

TRTQ + TRH-[(1-c)+d + (1-c)-b-tanAA7]
-P.[becesinAA7 + (d + (1-c)-b-tanAA7)-cosAAT7]

(1-¢c)+b

-FKTR[2 - CoSAAT |

=0 (B-170)

and (B-145) becomes

TRTQ + (1-c)-d-TRH + (1-c)+b-TRV - P(b-sinAA7

+ d.cosAA7) - FKTR.x = 0 (B-171)

Combining Equations (B-170) and (B-171) to eliminate P and
solve for TRV yields

FKTR

TRV = TRH - tanAA7 + m

(B-172)

From the geometry of Figure B-28 we can show that for small values
of oS

KTR

FKTR cosAA7

(ZSP - AA9 - 6S) (B-173)
Substituting Equation (B-173) into (B-172)

TRV = TRH - tanAA7 + 665;%K7 . (ZSP - AA9 - 6S) (B-174)

Equation (B-174) replaces Equation (B-147) in the analysis
of Section B.7, resulting in appropriate changes to Equations
(B-148), (B-152), and (B-153).
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The static calculations for the suspension are identical
to those for the MTRFSS. (In this case, the entry of PRCTNI
outside the range of 0 to 100 calls for an assumed zero preset
in both the KTRTQ and KTR springs.)

B.9 Air Suspension Model

B.9.1 Introduction. This section is intended to explain
the air suspension model of the Phase III simulation programs.
There are a number of different air suspensions on the market. The
model described here encompasses single and tandem axle designs
using either four-bar- or trailing-arm-type linkages.

The air suspension model is conveniently divided into three
parts:

1) the mechanical linkage system
2) the air spring
3) the air delivery system

These parts of the model will be dealt with successively in the
next three sections. Section B.9.5 considers the interrelation-
ships between the various parts of the model and Section B.9.6
discusses static considerations for the model.

B.9.2 The Mechanical Linkage System. The first linkage

system to be modeled is the tandem four-bar type as illustrated
in Figure 2.25. Dimensions relevant to the problem appear in

the figure. Free-body diagrams of each link, showing all dynamic
forces and moments acting on the links, appear in Figure B-29.

In the free bodies of Figure B-29, the dynamic tire normal
forces (DN), viscous damping forces (FF), the air spring forces
(FS), brake forces (FX), brake torques (TT), longitudinal decelera-
tions (XDD), and their related D'Alembert forces (MS - XDD), are
considered known "inputs" to the linkage, having been calculated
earlier in other portions of the program. All other forces plus
the vertical accelerations (iSP) are unknown reactions to these
forces.
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The assumptions on which the Tinkage model is based are:

1) Masses or moments of inertia are significant only
with respect to vertical and longitudinal motion
of the axle assembly.

2) The Tongitudinal accelerations of the unsprung
masses are identical to that of sprung mass.

3) The mass center and axle center of each unsprung
mass are coincident.

4) The pin connection between the main suspension arm
and the axle housing lies directly below the axle
center.

5) A11 pin connections are frictionless.
6) The air spring may transmit vertical force only.

7) Changes in geometry due to motions of the suspension
and vehicle are ignored.

As outlined in Section B.1, the output of the suspension
model required by subroutine FCT1 are the total vertical suspen-
sion force (TSFV), the total horizontal suspension force (TSFH),
total suspension torque about the suspension reference point
(TSTORQ), and the vertical accelerations of the unsprung masses
(iSP(I), I =1,2). (Note that the suspension reference point is
defined as the leading axle center.) These quantities may be
expressed as:

TSFV = SFV(1) + SFV(2) (B-175)
TSFH = SFH(1) + SFH(2) (B-176)
TSTORQ = TORQ(1) + TORQ(2) + SFV(2) - AAI (B-177)

where SFV, SFH, and TORQ are defined, respectively, as the total
vertical axle force, total horizontal axle force, and the total
axle torque about the axle center, and the subscripts (1) and (2)
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Line of Action of
Torque Rod Force _//// Vi *FF

~ TRH

RV

Figure B-30. Dynamic free-body diagram: Axle assembly
of the four-har linkage air suspension.
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refer to leading and trailing axles, respectively. In the
following analysis, equations for SFV, SFH, and TORQ, as well
as iSP, will be developed. Subscripts will be dropped from all
notations since the analysis is applicable to either axle.

By definition:

SFV. = TRV + RV - FS + FF (B-178)

SFH

1]

- TRH - RH (B-179)
TORQ = TRH - AA5 - RV - AA3
- RH(AA4 - AA3 - tanAA7A) - FS - (AA2-AA3) (B-180)

Consider the free body of an entire axle assembly, Fiqure
B-30. Summing moments about the axle center:

-TRH - AA5 + RV - AA3 + RH(AA4 - AA3 . tanAA7A)
+ FS « (AA2-AA3) + TT = O (B-181)

Then from (B-180) and (B-181)

TORQ = -TT (B-182)

and from the same free body, in the x direction:

TRH + RH + FX - MS - XDD = O (B-183)

Combining Equation (B-179) and (B-177)

SFH = FX - MS - XDD (B-184)

Applying Newton's second law to the main suspension arm in
the z direction:

FS - RV-AV = 0 (B-185)
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and from Equations (B-178) and (B-185)

SFV = TRV - AV + FF (B-186)

Applying Newton's second law to the axle housing in the z
direction:

AV - TRV -MS « ZS - DN - FF = 0
or (B-187)
MS . 7S = AV - TRV - DN - FF

and from Equations (B-184) and (B-185)

-(SFV + DN)
MS

75 (B-188)
It remains to determine the forces TRV and AV. With these

two forces, Equations (B-175) through (B-180), (B-182), (B-184),

(B-186), and (B-188) represent the entire solution for the

required suspension model output variables.

Summing moments on the torque rod and setting equal to
zero leads to

TRH = TRV/tan AA7B (B-189)
Summing moments on the axle housing, first about the axle center
and then about the main arm pin, and setting equal to zero yields

Equations (B-190) and (B-191), respectively.

TRH « AAS + AH - AAA + TT = 0 (B-190)

TRH « (AA4+AA5) + (FX - MS - XDD) - AA4 + TT =0 (B-191)




Rearranging (B-190)

-1T AA4

TH = 5 - a5

AH (B-192)

Substituting (B-189) and (B-192), respectively, into (B-191)
and rearranging yields:

- AA4 - tanAA7B _ tanAA7B

TRV = - (FX - MS « XDD) —ror——Ams L vvavy;
(B-193)
AH = (FX = MS - XDD) ——-PRo Ll (B-194)

AAG + AR5 T AAG + AR5

Now summing moments on the main arm about the body connection
pin:

FS - AAZ - AV - AA3 + AH - AA3 - tanAA7A = 0 (B-195)

Substituting (B-194) and (B-195) and solving for AV

AR2
AA3

tanAA7A

AV = FS G + ARG

+ [(FX - MS « XDD) - AA5 - TT] (B-196)

Substituting (B-193) and (B-196) into (B-186)

M2
AA3

(AAS tanAA7A + AA4 tanAA7B)

SFV = -FS TAG + ARG

(FX - MS - XDD) -

»tanAA7A - tanAA7B
ML e v vy 71

) + FF (B-197)

In summary, the outputs from the suspension model are
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TSFV = SFV(1) + SFV(2) (a)
TSFH = SFH(1) + SFH(2) (b)
TSTORQ = TORQ(1) + TORQ(2) + AAT - SFV(2) (c) (8-198)
55(1) = (SFV(]h)/IS*(P]I))N( )) (@)
55(2) = (SFV(Zr)asZzl))N( ) (o)

where SFV(I), SFH(I), and TORQ(I) (I = 1,2) may be found from
Equations (B-197), (B-184), and (B-182), respectively.

The preceding analysis for a tandem suspension composed
of two four-bar Tinkage-type axles may be easily modified to
account for trailing arm linkages (see Figure 2-26) at either
or both axles.

Equation (B-198) remains applicable regardless of the
linkage arrangement. Further, it can be shown that the equations
for SFH and TORQ (Equations (B-184) and (B-182), respectively)
remain unchanged for the trailing arm linkage. Thus, to adapt
the analysis to the trailing arm arrangement, only the equation
for SFV need be altered.

Using the notation from Figure 2-26 and B-31 (free-body
diagram of a trailing arm axle), and the definition of SFV:

SFV. = RV - FS + FF (B-199)

Equation (B-199) is, of course, identical to Equation (B-178)
except for the omission of the vertical torque rod force, TRV.

Summing moments about the axle center in Figure 2.32
yields:
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MS-Z$

FX—MS-XDD
RH

Figure B-31. Dynamic free-body diagram: Trailing arm
air suspension.
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RV - AA3 + RH - AA4 + FS(AA2-AA3) - TT =0 (B-200)

where, from the summation of horizontal forces

RH = MS . XDD - FX (B-201)

Combining the three preceding equations

AA2
AA3

TT + (FX-MS-XDD)AA4
AR3

+ FF (B-202)

SFV = -FS(7p%) +

Thus, if a trailing arm type axle is to be used, in either
leading or trailing position, Equation (B-202) replaces Equation

(B-197) as the definition of SFV (i.e., SFV(1) for leading axle
or SFV(2) for trailing axle) in Equation (B-198).

Finally, the mechanical linkage analysis can be altered for
a single-axle air suspension simply by setting all terms in
Equation (B-198) with "(2)" subscripts to zero.

B.9.3 The Air Spring. Basic to the model of the air spring,

whose description follows in this section, and to the model of the
air delivery system described in Section B.9.4, is the assumption
that the behavior of the entire air suspension system can be
described as two independent thermodynamic processes. These
processes are:

1. A constant mass, reversible polytropic (i.e.,
py" = const) process which is assumed to describe
the action of the air in the spring at time (t)
over the time period (t) to (t + At) where At is
time step size used in the digital computer
program.
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2. A constant temperature process assumed to describe
the effects of the various air flows in and out of
the spring during the time period (t) to (t + at).

For the sake of semantic convention in the following
discussions, the first process is attributed to the air spring;
the second process is attributed to the air delivery system.

The nomenclature used in the following discussion includes:

h: air spring height

L: air spring load

P: air spring gauge pressure

Pa: air spring absolute pressure

Pat: atmospheric pressure

V: air spring internal volume

( )0: the subscript 0 refers to the nominal

(i.e., operating point) value of the
variable. For example, LO is the nominal
air spring load.

Al ) the prefix, A, refers to a variation from
the nominal value. For example,

AL = L-LO.
AL: the effective air spring area with respect
to load;
_ AL _
AL = 5P - (B-203)
0
Ay: ‘ effective air spring area with respect
to volume;
_ o dv )
AV =l (B-204)
h-h0
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K : air spring constant pressure spring rate;

K = - &= (B-205)

An example of the air spring performance data [19] published
by air spring manufacturers appears in Figure B-32. Example
values of AL’ AV, and Kp which derive from this data are given.
Upon examining such air spring performance data, it is evident
that the following assumptions are reasonable:

L = L(P,h) (B-206)

and

V. = V(h) (B-207)

(Note the absence of P in Equation (B-207) implies that the
internal volume of the air spring is not significantly affected
by pressure. This, of course, is not exact.)

In addition, the statements of at least one air spring
manufacturer [19] support the assumption of:

PV = C (B-208)

where C is a constant, and suggest that

n = 1.38 (B-209)

This value of n will be assumed here.

If it is further assumed that, within the range of interest
about the operating point, linear approximations of Equations
(B-206) and (B-207) are sufficiently accurate, then Equations
(B-210) and (B-211) are applicable.
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oL

AL = Sﬁ’h=h . AP+ Sﬁ.p=p - Ah (B-210)
0 0
AV = av Ah (B-211)
dhi, _
h—h0

Substituting Equations (B-203) and (B-205) into (B-210) and
Equation (B-202) into (B-211) yields:

AL A AP - Kp Ah (B-212)

L

and

AV = AV Ah (B-213)

Substituting nominal values of pressure and volume and a value
of 1.38 for n into Equation (B-208):

1.38

C = (P V0 (B-214)

0 * Pat)

Using this value for C and solving Equation (B-208) for P

(PO + Pat)vol.38

P 738 - Pat (B-215)
and by the definition of AP
(PO + Pat)vo1.38

AP V]‘38 - Pat - P0 (B-216)

From the definition of AV and Equation (B-213)
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AV - Ah (a)

or (B-217)

vV = VO + AV - Ah (b)

Substituting Equation (B-217b) into (B-215) yields:
1.38

t™0
- Ah]

(P, + Pa W

0
[V0 + A

AP

i

T35 " Pat ~ Po (8-218)

v

Equations (B-212), (B-213), and (B-218) constitute a mathe-
matical representation of the proposed air spring model. The
input to the model is ah, the change in air spring height, and
the output is 4L, the change in air spring vertical force. A
graphical representation of this model appears in Figure B-32.
Figure B-32 gives an example of the air spring model performance
characteristics of an example air spring.*

In the figure, the lines of constant oressure and the plot
marked "Vol." represent published data. The various straight
lTines are the model's approximation of this data according to
the values of AV, AL’ and Kp obtained for the arbitrarily chosen

1.38 = Constant" are

operating point. The two plots marked "PaV
the results of applying the empirical data and the model charac-
teristics, respectively, to this equation (i.e., each of these

plots represents a solution to the simultaneous equations:

vV = Vv(h) (a)
PaV]'38 - Constant (b)  (B-219)
L = L(P,h) (c)

*Firestone Airide () , No. 21. [19].
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The lighter plot results when Equations (a) and (c) are solved
using actual air spring data; the darker line comes from
employing the air spring model to solve Equations (a) and (c).

Note that in Figure B-32, the values of AV, AL’ and Kp were
determined by designating the operating point to be identical
to the static condition. In certain situations, improved model
behavior may be obtained by a slight variation of this procedure.
For example, consider the case when this spring is being used on
the rear of a straight truck being studied under braking only.
Assuming that the operating point represents the static loading
cdndition, it would generally be expected that loads on the
spring would always be less than or equal to the nominal load and
spring height would be greater or equal to naminal height. Con-
sequently, the model would operate only to the left of and below
the operating point. By choosing AV to more nearly represent the
slope of the "Vol." plot in this region, significant improvement
in model performance in the same region can be gained. (See
Figure B-33.)

Similar adjustment of AL to more nearly represent the verti-
cal spacing of the constant pressure lines in the region of
interest will also improve performance. For the example spring
considered here, Kp appears to be near optimum as shown. In
general, the goal when choosing the values of AV, AL’ and Kp is
to obtain the most accurate Tinear approximations of the spring
data (both "Vol." and constant pressure plots) as possible within
the expected region of operation.

B.9.4 The Air Delivery System. The discussion of the

previous section assumed no air flow into or out of the air
spring. This, of course, is not the case. Figure B-34 diagrams
the plumbing system of a typical tandem air suspension.* As

*Note that height regulating valves are indicated since this
model is intended for use as a full suspension, not as tag
axles.
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shown, air may enter or exit an air spring via the height
regulator or through its interconnections with the other spring
on the same side of the vehicle.

Air flow through the height regulators is typically quite
slow, but may have an effect on the pitch attitude of the vehicle
near the end of a high-speed stop. More importantly, the inter-
connection between the two axles of a tandem may have a signi-
ficant load Teveling effect.

The same model is proposed for each of the several flow
paths (to be enumerated later). Basic to this model are the
assumptions that (1) during a single time step (At = 0.0025 sec)
temperature in the air spring is constant, and (2) the mass flow
of air in a given flow path may be described by:

dM o _ )
(@, = G (Pei P) (B-220)
where
(%%)i the mass rate of air flow into (positive)
the spring via the particular flow path
P: the gauge air pressure in the spring
Pe : the gauge air pressure at the opposite end

of flow path i (supply pressure, atmospheric
pressure, or pressure in the other spring)

C%: a constant property of the flow path i.

Then for either air spring, assuming the ideal gas law

(PP )V = M-R-T (B-221)

¢)

where
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P is atmospheric pressure
R is the gas constant
V is the air spring volume
T s the absolute temperature in the spring

M is the air mass in the air spring.

Then by differentiating

(P+ P )V L
M _ d at _ E M
T @ [—ﬁ—f—] = (Ri (B-222)

where n is the number of flow paths.

Since R and T are constants, Equation (B-222) may be
written

n
dM B 1 dv dp
> (§) = &1 [“’ tPla Y EE] (B-223)

Combining Equations (B-220) and (B-223) and rearranging:

n
[E C.(P -P)-(P+ Pat)%%] (B-224)

i=1 6

o
—+
<<|—

C; = b+ R-T (B-225)

The time step at which the HSRI simulation program proceeds
(At = 0.0025 sec) is extremely small relative to the expected
dynamic behavior of the air delivery system. Consequently, the
simplest form of digital integration will be adequate for the
solution of Equation (B-224). Therefore, from Equation (B-224)
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(B-226)

where the subscript (AV) indicates an average value over the
time step and the subscript (D) indicates "of the delivery system."

. gy)
Determination of the values of VAV’ PAV’ and (dt v to be
substituted into the right-hand side of Equation (B-226) will be
discussed in Section B.9.5. Suffice to say they will be

approximations to their average values over the time step.

Figure B-28 illustrates all the flow paths available in the
tandem air suspension model. As shown in the figure, there is an
input and exhaust coefficient plus a switching mechanism asso-
ciated with the air spring of each axle. Either of these
requlators may be removed from the model by setting the appro-
priate flow coefficients to zero. A flow coefficient is also
available to describe flow between the axles. Associated with
each switching mechanism is a time lac as described in Section
2.1.8.

The details of the interrelationship between the air spring
and air delivery system models will be covered in the following
section. In general, the value of APD determined by this air
delivery model will be used as a modifier to the value of AP
associated with the air spring model. (See Equation (B-217).)

B.9.5 The Complete Model. 1In this section, the inter-
relationships between the three portions of the air suspension

model will be described. A conceptual flow diagram of the model
appears in Figure B-35. It may be helpful in understanding the
material in this section to refer to this figure. Initially, the
air spring and air delivery system models will be combined to
form a total air system model. To complete the model, air and
mechanical systems will then be combined.
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To this point, the air system has been considered as two
separate systems, the air spring and the air delivery system.
Important to the interaction of these systems is the fact that,
in general terms, the dynamic response of the air delivery system
can be expected to be very much slower than that of the air
spring-tire spring-unsprung mass system. (Indeed, it is this
difference in response which has allowed the separation of the
spring and delivery system.) Since this is the case, it can be
expected that over the short time span of a single integration
time step, the total change in air pressure in the air spring
(APT) will be dominated by the effect of the air spring as indi-
cated by Equation (B-217). (AP as calculated from Equation (B-217)
will be designated APS, i.e., AP of the spring model, in this
section.) By comparison, APD, the change in pressure due to the
delivery system, will be small for any given time step. The more
important effect of APD will be its accumulative effect over a
Tonger period of time.

Now defining,

Pt: air spring pressure at the beaginning of a
time step

pyi average air spring pressure during the
time step.

Then assuming the total air spring pressure change may be written

APy = APS + APD (B-227)
it follows that
APS + APD
PAV = Pt + APT/Z = Pt + — (B-228)

But from the preceding discussion
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AP, << AP

) (B-229)

S

and therefore it may be assumed

P = P

AV + APS/Z (B-230)

T

The average pressure, PAV’ of Equation (B-23) is then the
value to be used in the right-hand side of Equation (B-226) to
calculate APD.

In addition to PAV’ the right-hand side of Equation (B-226)
also requires values of VAv and (dV/dt)AV. These values become
available simply by performing the digital integration to determine
the new positions of the sprung and unsprung masses (via HPCG)
before solving Equation (B-226). With this done, the mass posi-
tions, and consequently the spring heights, are known both at

the beginning and end of the particular time step. Then, ah is
also known for that time step, and from Equation (B-213) aV is

known. By definition

(dV/dt)AV = AV/at (B-231)

and

VAv = Vt + AV/2 (B-232)

where Vt is the volume at the beginning of the time step.

At this point, sufficient information is available to
calculate the total pressure change, APT, which, with ah, is
substituted into Equation (B-212) (replace aP with APT) to
obtain the change in spring force, aL. Note that Equation (B-212)
was derived independently of the assumed equation of operation
(p V1.38

a
Ah.

= Const.) and is valid regardless of the source of AP or
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The final step in the operation of the air system model is
an adjustment of the "constant" in the equation.

PaV]'38 = constant (B-233)

Combining Equation (B-233) and (B-214) yields

1.38
0

1.38

PV = (P, + Pat)v (B-234)

0

Note that the basic assumptions, given in the opening
remarks of Section B.9.3, states that Equation (B-234) holds
over a single integration time step. However, due to the action

of the air delivery system, P0 and V0 must be updated between
integration steps. As the solution according to the model
progresses through a time step, APS is first found according

to an equation derived from Equation (B-233). Next, this
pressure change is altered by the amount, APD, and, thus, is no
longer compatible with Equation (B-233). Consequently, to pre-
pare the model for solution in the next time step the values of

P0 and V0 must be updated. That is,
p = P, + AP (a)
0t+At 0t T
(B-235)
v = V. o4V (b)
Opint 04 '

A more graphical representation of this operation appears
in Figure B-36. The initial condition of the air spring model
is represented by points A and A'. The value Ah is determined
by (1) integration of the dynamic variables to obtain ZSP and
(2) the geometry of the mechanical linkage. APS is determined

by following the "operating line" (PaV]'38 = C]) to point B
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while AV is determined by following the "Vol." line to B'. APD
is then calculated and the final condition of the air spring is
determined by moving from point B to point C, a distance of APD
along a line of constant h. (Constant h because it can change

no more than ah.) The condition of the air spring no Tonger
agrees with the original operating line. Consequently, the values
of P0 and V0 are updated to pressure and volume of points C and
C', respectively (h0 and LO are similarly updated), and a new

operating line is established according to

o138 ¢

where

1.38

c, = (P 0

2 v

0t Pat) (B-237)

using the updated values of PO and VO'

This completes the operation of the air system model. It
remains only to relate the air spring load, L, and height, h,
to the mechanical linkage model. Designating hi and Li as the
jnitial (static) values of h and L, then from the geometry and
notation of Figure B-28

h-hy = AA2/AA3 ISP (B-238)

and

FS = L - Li (B-239)

Equations (B-238) and (B-239) complete the proposed model
of the air suspension system. Equation (B-238) is used to compute
ah for input to the air system model. Equation (B-239) is used
to compute the dynamic spring force needed by FCT to compute the
derivatives for the next integration step.
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B.9.6 Static Considerations. The preceding sections

have described the various portions of the dynamic air suspen-
sion model. It remains to describe the calculations which
determine the static normal tire loads, air spring Toad and air
spring pressure.

Using the definitions given in Section B.1 and rigid body
analysis, applied to the static free-body diagram of Figure B-37,
it can be shown that

STORQ = SRATIO - SSFV + SCONST (B-240)
SSFV. = WS1 + WS2 - NS1 - NS2 (B-241)
STORQ = (WS2-NS2)AAl (B-242)

where WS1 and WS2 are the leading and trailing unsprung
weights, respectively, and NS1 and NS2 are the static normal
tire Toads at the leading and trailing axles, respectively.
Combining these three equations leads to:

NST

SRATIO SCONST
WST + SSFV [ AT ]] AT (B-243)

NS2 WST + WS2 - NST1 - SSFV (B-244)
The values of SRATIO and SCONST are determined in two
different ways, depending on whether the tandem axles are inde-
pendent or dependent. If an air line interconnection exists
between the air springs of the two axles (i.e., the input parameter
CINTR is non-zero), the axles are "dependent" by virtue of the
fact that the static air spring pressure at the two axles is
identical. In this case, it can be shown that
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SRATIO = A/ - AA2(1)/AA3(T) + AL2 - AA2(2)/AA3(2) (B-245)
and
SCONST = (L01 « AA2(1)/AA3(1) + Loy AA2(2)/AA3(2)

* SRATIO - Lj, « AAT - AA2(2)/AA3(2) (B-246)

If the tandem axles are independent (CINTR = 0), then the
static condition of the axles is indeterminate. In this case,
the user must input the parameter, PRCTN1, which is the percentage
of total tire normal load carried at the leading axle. In this
case, it can be shown that

SRATIO = AA1(100-PRCTN1)/100 (B-247)
- . PRCTNI \

For either Teading or trailing axles, the static air spring
load (SFS) and pressure (SP) can be shown to be

AA3

SFS = (NS - WS) Vi (B-249)

SP

0 (B-250)

where the "1" and "2" designations have been dropped since
these equations are applicable to either axle.
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APPENDIX C
THE SPRUNG MASSES

C.1 Introduction

This appendix reviews the mathematical models which are
employed to simulate the motions of the vehicle's sprung masses.
Models for the straight truck, tractor-semitrailer, and doubles
combination vehicles will be considered.

Although a large variety of suspension options are available
for use (at all suspension positions excluding the front), the
sprung mass calculations are not altered by the use of different
suspensions. As explained earlier, in Section 2 and Appendix B,
each suspension model combines the various individual suspension
forces into a common set of generalized suspension reactions
composed of one vertical, one horizontal, and one moment reaction
between suspension and sprung mass. Thus, a single set of sprung
mass equations may be used regardless of the suspension types
being simulated.

In the following two sections of this appendix, static and
dynamic models will be discussed, respectively.

C.2 Static Considerations

The calculation of frequently used constants, including
static loading and the effect of added payloads, must be
accomplished before the actual simulation process begins. The
calculation of static tire loads is accomplished in the suspen-
sion subprograms. These calculations have been covered in
Appendix B. To determine the tire loads, the suspension sub-
programs must have available the static reactions present between
the various suspensions and sprung masses (a generalized vertical
force and generalized moment* about the suspension reference

*Generalized suspension reactions, both static and dynamic,
have been defined in Section B.1 of Appendix B.
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point* for each suspension). This section will develop the

equations by which these static reactions are determined.

As discussed in Section 2, the user may enter parameters
describing the sprung mass of the vehicle chassis and the pay-
load separately, thus facilitating convenient changes in payload
bewteen simulation runs. To enhance the utility of the program,
static calculations are actually performed twice, once for the
"empty" vehicle assuming the payload weight is zero, and once for
the "loaded" vehicle, combining the effects of both chassis and
payload. Thus, the mathematics used to combine the effects of
these two masses will be covered first, followed by the static
loading calculations which may be applied to either of the two
static load calculations.

To illustrate the mechanism for combining the effects of
chassis and payload masses, an empty straight truck configuration
is used as an example; the mathematics for the articulated vehicle
are analogous. Additionally, for the doubles combination vehicles,
the mass of the dolly is treated as a second "payload" on the
second trailer. (This mass is assumed to be located at the king-
pin and to have zero pitch moment of inertia.) The empty truck
and the payload to be added are shown in Figure C-1. The empty
truck has sprung weight, W1, positioned at a point Al inches
behind the front axle as shown, and pitch moment of inertia, J1,
about that point. The payload has weight, PW, and moment of
inertia, PJ, about its center of gravity. If the combined weight
and c.g. locations are designated with barred variables:

Wl = W1 + PW (c-1)

The summation of moments yields

*The suspension reference point for each suspension type has
been defined in Section 2.
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i - (PW)(PX) + WI(A2)
W1

WI1(DELTA1 + ALPHAT) + PW(PZ)
W1

DELTAT =

The new configuration is shown in Fiqure C-2.

Payload

a
Sprung Mass CG.

* Suspension Reference Points

Figure C-2. Total sprung mass c.g.
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The distances a, b, ¢, and d are found using the empty
vehicle information and Equations (C-2) and (C-3).

a = AT - Al (C-4a)
b = A2 - PX (C-4b)
¢ = DELTAT - DELTAI (C-4c)
d = PZ - ALPHA1 - DELTAT (C-4d)

The parallel axis theorem is applied to find the pitch
moment of inertia of the combination of the empty truck plus
the payload:

J1 = J1+gl(a2+c2)+PJ+%B(b2+d2) (C-5)

For the remainder of this appendix, the moment of inertia
and mass center location parameters will appear without bars,
with the understanding that the calculations given in Equations
(C-1) through (C-5) have been completed if appropriate.

We may now determine the static suspension reactions for
each of the three vehicle types. Consider first the straight
truck sprung mass as shown in the static free-body diagram of
Figure C-3. The forces and moments acting on the sprung mass are
the sprung weight (W1), the generalized rear suspension vertical
force (SSFV) and moment (STORQ) and the front suspension vertical
force (SF1). (The front suspension, being a single-axle suspen-
sion, applies no static moment to the sprung mass.) By the
definition of SRATIO and SCONST given in Section B.1 of Appendix
B,
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Figure C-3. Static free-body diagram: Straight truck.

STORN = SRATIO - SSFV + SCONST (C-6)

where SRATIO and SCONST are properties of a given suspension and
are calculated by the suspension programs as outlined in Appendix
B. Summing moments about the front suspension reference point
of Figure C-3 yields:

Al « W1 + (AT+A2)SSFV + STORQ = 0 (C-7)

Combining Equations (C-6) and (C-7) and solving for SSFV
yields:
AT - W1 - SCONST

SSEV. = “RT¥AZ¥SRATIO (C-8)
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And from the summation of vertical forces

SF1 = -W1 - SSFV (C-9)

Equations: (C-6), (C-8), and (C-9) provide solutions for the
static suspension forces and moments.

The static analysis for the tractor-trailer is similar to
that for the straight truck. Refer to the static free-body
diagram of Figure C-4, in which subscripts (1) and (2) have been
added to the SSFV and STORQ notations to designate the rear
tractor and trailer suspensions, respectively. Summing moments
on the trailer about the kingpin and combining the result with
Equation (C-6) (with subscripts added) yields:

A3 - W2 + SCONST(2)

SI() = AT srATIo

(C-10)

Summing vertical forces on the trailer and solving for the
kingpin force results in

VS = W2 + SSFV(2) (C-11)

Then, summing moments on the tractor about the front suspension
reference point and combining the result with Equation (C-6)
(subscripts added) yields:

SsFy(1) = - WL+ A1+ VS(A1+A2-BB) + SCONST(1)

AT+ A2 + SRATIO(T) (C-12)
Finally, from summing vertical forces on the tractor
SFT = W1 + SSFV(1) + VS (C-13)

Equations (C-10) through (C-13) plus (C-6), with appropriate
subscripts added, provide solutions for all the static suspension
reactions of the tractor-trailer.
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The static equations for the doubles combination result
from an analysis analogous to that of the tractor-trailer. As
for the tractor-trailer, the analysis starts with the rear-most
unit and proceeds forward through each sprung mass element. Using
the notation of Figure C-5, the following equations are obtained:

A6-W3 + SCONST(4)

SSFV(4) = - NevATFSRATION) (C-14a)
VS3 = W3 + SSFV(4) (C-14b)
 AB-VS3 + SCONST(3) ]
SSFV(3) = - AgeBB2+SRATION) (C-14c)
VS2 = VS3 + SSFV(3) (C-14d)
 A3-W2+A5.VS2 + SCONST(2) )
SSFU2) = - eaaesrATION) (C-1e)
VST = W2 + SSFV(2) + VS2 (C-14f)
 AT-WT+(AT4A2-BB1)-VST + SCONST(1) )
SSFV(1) = - = ATrao+SRATIO(T) (C-T4g)
SF1 = W1 + SSFV(1) + VSI (C-14h)

In Equation (C-14), the subscripts (1) through (4) refer to the
tractor rear suspension through the rear trailer suspension
(moving rearward along the vehicle), respectively. With the
same subscripts added to Equation (C-6), these two equations
provide solutions for all the static suspension reactions for a
doubles combination vehicle.

It is interesting to note that the static dolly fifth wheel
force (VS3) requires correction if it is to correspond to the
actual compressive force on the face of the fifth wheel of the
real vehicle. Because the dolly mass is treated as a "payload"
for the second trailer (see Section C.1), VS3 is in "error" by
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the quantity W4 (dolly sprung weight). Defining the "real"
dolly fifth wheel force as VS3, it can be shown that:

S3 = VS3 - W4 (C-15)

C.3 The Dynamic Sprung Mass Models

In this section, all the dynamic equations of the doubles
combination vehicle simulation will be outlined. This vehicle
type has been chosen because it is, of course, the most complex
of the three vehicle types which can be simulated with the Phase
IIT programs. The dynamic equations for the tractor-trailer and
straight truck may be derived from the doubles equations simply
by dropping those equations and terms which are not applicable,
or are not defined, for these simpler vehicles.

A1l the dynamic equations of the doubles combination
vehicle, except that for Tongitudinal deceleration, are derived
by applying Newton's second law to the free-body diagram of
Figure C-6 and using the dimensional notation of Figure C-7.
The Tongitudinal deceleration equation is obtained by applying
Newton's second law to the entire vehicle, assuming that all masses
of the vehicle are constrained to have the same longitudinal
deceleration. The equations which are derived are:

Deceleration:
KAXLE
GVW
Wy = YL RX(D) (c-16)
I=1

where GVW is the total weight of the vehicle, FX(I) is the total
brake force at axle I, KAXLE is the total number of axles on the
vehicle, and XDD is the longitudinal acceleration of the vehicle.
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J2:82
M2:XDD

HI M2-72 \
i TsTORQl2) | € H2
vi TSFH(2) v2
TSFV(2)
' Vi
J161 l
\ HI
MXDD_
MI-Z]
TSFH(1)
A TSTORQ(1)
SFI TSFV(1)

Figure C . Dynamic free-body diagram: doubles combination
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Dolly Fifth Wheel Forces:

H3 = TSFH(4) - M3 - XDD

V3 = [H3.D3 - TSTORQ(3) - TSFV(3)-(A8+BB2)

- TSFH(3)-(DD-D3)1/A8

Dolly Hitch Forces:

H2

H3 + TSFH(3)

V2

V3 + TSFV(3)

Tractor Fifth Wheel Forces:

VI = KF-[-Z1 - 01-(A2-BB1) + 72 - 92-A3]

where KF is the rate of the tractor fifth wheel, vertical
spring. See Reference [1] for a discussion of KF.

Second Trailer Motions:

Bounce:
M3.Z7 = TSFV(4) - V3
Pitch:
13-63 = V3-A6 - H3-D2 + TSFV(4)-A7

+ TSFH(4)+DELTAS
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First Trailer Motions:

Bounce:
M2.22 = V2 - V1 + TSFV(2) (C-24)
Pitch:

[2:62 = V1.A3 - H1.D1 + V2-(A5-A3)
+ H2.(DELTA3-DDD) + TSFV(3)-A4
+ TSFH(2).DELTA3 + TSTORQ(2) (c-25)

Tractor Motions:

Bounce:

MI-Z1 = SF1 + TSFV(1) + VI (C-26)

Pitch:

J1-61 = -L1-DELTAT - SF1.A1 - TTI
+ TSFH(1)-DELTA2 + TSFV(1)-A2
+ TSTORQ(1) + (A2-BB1)-V1 - H1.DI (C-27)

Similar to the case in the static calculations, the dynamic

dolly fifth wheel forces which are calculated in Equations (C-19)
and (C-20) vary from the dynamic fifth wheel forces of the real
vehicle due to the combining of dolly and second trailer

inertial properties. We can determine the "real" values of

the dolly fifth wheel forces, which we denote as barred gquantities,
from the free-body of the dolly in which the dolly maintains its
mass (see Figure C-8).
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Figure C-8. Dynamic free-body diagram: The dolly
with sprung mass.

Applying Newton's second Taw in the x and z direction,
respectively, yields

H3 M4-XDD + H2 - TSFH(3) (C-28)

V3

M4.74 + V2 - TSFV(3) (C-29)

Substituting Equation (C-19) into (C-28) and (C-20) into
(C-29)

H3 H3 + M4-XDD (C-30)

V3 V3 + M4.74 (C-31)

Since M4 is Tocated at the connection between the dolly and
second trailer, the vertical acceleration of M4 can be expressed
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as a function of Z3 and 63 and their derivatives. It can be
shown that for small values of 63,

24 = 13 - (D2-03 + A6)63 - D2:032 (¢-32)
Note that it was assumed implicitly in Equation (C-30) that

X4 = XDD (C-33)

This derives from the assumption stated above that all masses
are constrained to have the same longitudinal deceleration.
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APPENDIX D
THE BRAKE MODELS

D.1T Introduction

Calculation of brake torque using the brake modules rather
than tables of torque versus line pressure can be selected by
specifying for NUM(2), the number of points in the torque-line
pressure table for the first axle. Subroutine BRAKE will then
be called to read in the appropriate parameters for the brakes on
each axle. The various brake types the user can specify are:
no brakes, S-cam, single or dual wedge, duo-servo, duplex, and
disc.

D.2 Brake Torque Calculation

th

The brake torque produced at the 1™ axle is calculated by

means of the following equation [1]:

T(1) = pB(I) - Q(I) - BF(I) (D-1)

where
T(I) is the attempted brake torque on the 1th axle

PB(I) 1is the effective line pressure at the brake
minus the pushout pressure

Q(I) s the brake system constant

BF(I) s the brake factor, defined as the ratio of
drum drag to the actuating force of the brake
shoes [2].

For hydraulic brake systems,
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where

Auc

For

For

o(1) = 2A, n.r (D-2)

= area of wheel cylinder
= mechanical efficiency of the brake

= drum radius

air brakes,

(1) = 2A n

LI (D-3)

m

= brake chamber area

= mechanical efficiency between brake chamber and
shoe actuation

= TJever ratio between brake chamber and brake shoe.

S-cam brakes, the lever ratio is given by
)
S
b T F— (D-4)
2£C

= effective slack adjuster Tlength

= effective cam radius.

wedge brakes, the Tever ratio is related to the wedge

p = 2"1711-—7' (D-5)
an(a/2
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If the brakes are in good mechanical condition, the mechanical
efficiencies exhibited by S-cam and wedge brakes range from
0.70 to 0.75 and 0.80 to 0.88, respectively [3].

The value of the brake factor for the various types of drum
and disc brakes required in Equation (D-1) is calculated by means
of analytical expressions in which brake factor is given as a
function of brake type, brake geometry, and the coefficient of
friction between the lining and the drum or disc. Brake factor-
lining friction coefficient relationships for three commonly used
brake types are given in Figure D-1 [1].

Duo-Servo

Two-leading

BF

Leading -
Trailing

BRAKE FACTOR:

0.0 1 1 | ] 1 | L
0.00.1 0.2 0.3 0.4 0.5 0.6 0.7

COEFFICIENT OF BRAKE LINING FRICTION

Figure D-1. Typical brake factor-lining friction
curves for typical drum brakes.




D.3 Brake Factor Calculations

This section contains a description of the brake factor
calculations for the several types of brakes used in the program
[4,5]. Except for disc brakes and duo-servo self-actuating
brakes, the calculations are made for each shoe, and the total
brake factor is the sum of the brake factors calculated for each
shoe. The three types of brake shoes available in the program
are: a pinned leading shoe, a pinned trailing shoe, or a leading
shoe supported by an abutment. The following three equations are
used for calculation of brake factors for these individual shoes:

Pinned Leading Shoe (see Figure D-2)

where
D = HB/RD
ALPH3 = ALPHO + 2.0 - ALPHI

APRIM ALPHO - SIN(ALPHO) - COS(APLH3)

E RO 7.0 - SIN(ALPHO/2) - SINCALPH3/2)
G = 1+ A%glﬂ . COS(ALPHO/2) - COS(ALPH3/2)
u = coefficient of friction of the Tinings

and all other angles and dimensions are as shown in Figure D-2.

Pinned Trailing Shoe (see Figure D-2)

The expression for the brake factor for the pinned trailing
shoe is the same as Equation (D-6) except for a sign change in
the denominator:

BF = El:% (D-7)
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PINNED

. TRAILING
SHOE,

Leading shoe-trailing shoe brake.

Figure D-2.

SHOE, ABUTTED

LEADING

SHOE, ABUTTED

LEADING

Two leading shoe brake.

Figure D-3.
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Leading Shoe Supported by an Abutment

- uD + w2E
BF = v (D-8)

where in this case:

_ C2 AB OH c2
D = [ﬁﬁ gt 0.25 ﬁﬁﬂ - COS(BETA) + 0.25 - RD " SIN(BETA)

_ C2 C2 , AB OH
E = 0.25 - RD " COS(BETA) - gy * ot 0.25 . ﬁﬁl - SIN(BETA)
M ALPHO + SIN(ALPHO)

4.0 - SIN(ALPHO0/2)
_ AB OH

F2 = MM[ﬁﬁ'+ 0.25 Rﬁi

G = COS(BETA) + 0.25 - SIN(BETA)

MM[%%—+ 0.25 M _ (0.25 COS(BETA) - SIN(BETA))

H2 RD

Angles and dimensions are as shown in Figure D-3.

The equations used in the program to calculate the brake
factors are (with the exception of disc brakes) combinations of
the above three equations.

For S-cam brakes, the program sums the brake factors
calculated for the leading and trailing shoes using:

_ D uD
BF = G + EnG (D-9)

where the first term is from Equation (D-6) (a pinned, leading
shoe) and the second term is from Equation (D-7) (a pinned,

trailing shoe).

For each of the shoes of a 2-wedge brake, the program cal-
culates the brake factor using Equation (D-8). The brake is
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assumed to consist of two identical Teading shoes whose ends
are supported by abutments. Thus the total brake factor is:

_ uD + p%E
BF = 2 [F2 e ] (D-10)

For a single wedge brake, the brake factor is calculated
as if the leading and trailing shoes are pinned as in Equation
(D-9).

For the duo-servo self-actuating brake, the program calcu-
lates the brake factor for each shoe separately and then combines
them to solve for the total brake factor. The primary shoe is
considered equivalent to the leading shoe supported by an abut-
ment, whose brake factor can be calculated using Equation (D-8).

uD + u2E

BF1 = F2 - uG + u?H2

(D-11)

The brake factor for the secondary shoe is calculated in two
steps. First, the secondary shoe is assumed to be a pinned
leading shoe and BF2 is calculated using Equation (D-6):

uD2

BF2 7 - 62 (D-12)

Since the brake factor is the drum drag divided by the actuating
force on the shoe from the wheel cylinder, the brake factor, BF2
(for the secondary shoe), must be corrected due to the fact that,
not only is there the actuating force from the wheel cylinder,

but there is also the (tangential) force generated by the friction
between the primary shoe and the drum, which adds to the force
actuating the secondary shoe. In order to give the brake factor

in terms of the actuating force from the wheel cylinder, BF2
must be multiplied by
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Actual actuating force on secondary shoe _ C2 . BFI - RD
Force from wheel cylinder AB AB

(D-13)

The brake factor for the whole brake is given as:

_ C2 , BF1 - RD
BF = BF1 + BF2 w T m (D-14)

For a 2-leading shoe brake, the shoes are assumed to be
supported by abutments rather than pins and the brake factor is
calculated the same as for a 2-wedge brake using Equation (D-10).

The brake factor for a disc brake is:

F .
BF = 2 Ftangent1a1 (D-154)
wheel cylinder

or

uF .
BF = 2 thee] cylinder (D-15b)
wheel cylinder

which reduces to

BF = 2y (D-15¢)

D.4 User Input for Brake Modules

The sequence of data input for using the brake modules is
shown in Figure D-4. The parameter NUM(2) is read by subroutine
INPUT. If NUM(2) has a value of -1, subroutine BRAKE is called
to read the input data for the brake modules.

The parameters describing the brakes are read axle by axle.
The brake type for axle I, IBRT(I), is read first. If this is
zero, signifying no brake, the program moves on to the next axle
without attempting to read any data. If there is a brake on
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NUM(2)*
— I=1,KAXLE ———PIIIBRT(I)

t 1
no brake AC(T)
EM(T)
o e o
] RD(TI)
B ULl(I)
] v ' [} ' [
S-cam 2-wedge single wedge duplex duo-servo disc
ALPHO( 1) AB(1) ALPHO( 1) AB(1) AB(1)
ALPH3(I)' ALPHO( 1) ALPHW(T) ALPHO(I)  ALPHO(I)
APRIM(I) ALPHW(I) ALPH3(TI) BETA(I) ALPH3(1) no
HB(I) BETA(I) APRIM(1) c2(1) APRIM(1) further
RC(I) c2(1) HB( 1) OH(T) - BETA(I) input
SAL(T) OH(TI) C2(1)
HB(I)
OH(T)

*A1i1 input formats are F11.4 except NUM(2) which is I2 and
IBRT(I) which is I1.

Figure D-4. Input data list for brake modules.
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axle I, the five parameters common to all the brake types are
first read. Then the program branches to read parameters
detailing the specific brake type. After all the parameters

for an axle have been read, the parameters for the next axle

are read. When all axles have been dealt with, subroutine BRAKE
returns control to subroutine INPUT.

Definitions of the input parameters are listed in Table
D-1.
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NUM(2)

IBRT

AC

EM
PO
RD

uL
ALPHO
ALPH3
APRIM
HB

AB
BETA
c2

OH

Table D-1.

Input Data Definitions

Number of entries in torque vs. line

pressure table for axle 1.

Set this

parameter to -1 to select the brake module

option.
Brake type identifier

0 = no brake

= S-cam

= 2-wedge

= single-wedge
duo-servo

= duplex

S s W N -
]

= disc

Brake chamber area (in?)

(wheel cylinder area for duo-servo, duplex,

and disc brakes)

Mechanical efficiency
Pushout pressure (psi)

Drum radius (in)

(mean braking radius for disc brake)

u; unfaded lining coefficient of friction

See Figs. D-2, D-3
ALPHO + 2%ALPH1 (degq)
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RC
SAL
AL PHW
KAXLE

Table D-1 (Cont'd)

Cam radius (in)
Slack adjuster length (in)
Wedge angle (deq)

Number of axles on vehicle
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APPENDIX E
THE ANTILOCK MODEL

Three sets of antilock data are listed in this appendix,
accompanied by corresponding pressure and wheel slip time
histories representative of each data set. (Figures E-1 through
E-3.) The time histories which are shown for each data set
reflect the approximate behavior which a user should expect.
These basic characteristics will vary according to the tire data,
brakes, and loads employed.
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Antilock Data Set #1

01 ILOCK
-] IALOPT,

91 OPTION,
e,

3. e
le 1.

1, 1

-16,

2 50,
Q. 54
13, 13, 13,
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6.7 6.7 6,7
P2 » 02

10 . .010

129

104

-1

-

-1

21

N IALOPT?
! TALOPT3
. 725 TINC
A4 TRUCK

Antilock Data Set #2

01 ILOCK
-1 IALOPT]

01 OPTION

=2 -1, . .
?5'. 1"1. -1;6.
-a' .7. .s (]

1. 1,
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3S.
27.
2
21,
1.
ni.
env,
=200,
A
5.
1245
14,

1,
5.

5.
27,
Ca
21,
1,
-1‘
eMd,
-27'.”.
¥e
-‘,'.
B,

D
S
2
109
100
-1
-1

12,
={0,

e

1u2,
'1:‘“.
S50,
2e3
12,5
14,

1,

147,
179,
Sida

Ce5

Ee ]
°

21
.9”!1

36,
36,

12,5

36,
36,

ud,

ni6,
wib,

2,

—
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o 021

« 2258
a0

1,
1o

-m.

IALOPT?
IALOPT3
TINC
TRUCK

'1§o
'16.
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Antilock Data Set #3

01 ILOCK
-1 IALOPT]
01 OPTION

3.

=Ap, -1 A0
an¢a, ) 35

as,

2

47,

3e 1,

1. 1. 36.

=1k,

"13 =84 1.5

o, 1eme -5,
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148
§49
1590
151
152,
152,25
152,5
152.6
152,17

152.8

153
154
155
156
157
158
159
159,25
160
160,25
164
162
163
164
165
166
167
168
169
179
171
172
173
174
1758
176
177
178
179
180
181
{182
183
{85
186
187
189
199
191
194
194,25
194,5
194,6
195
196
197
198
ey
219
220

Sa,
¢35
14,
12,

50,
.35

’ﬂﬂ
219

1o

2,

ae,

36,

36,

23,
23,
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o 25
N0

IALOPT9
IALOPT3
TINC
TRUCK
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APPENDIX F
OPTIONAL FIFTH WHEEL MODELS

The original Phase III Tractor-Trailer Braking Performance
Program employed a somewhat unique model of the fifth wheel
coupling. This model assumes a rigid coupling at the fifth wheel
in the fore/aft direction, but a compliant coupling between tractor
and trailer in the vertical direction. (See Eq. C-21 and
Reference [1].) The purpose of the vertical motion spring is to
mathematically decouple the equations of motion of tractor and
trailer, thus avoiding the need for matrix solution of these
equations. The spring is not intended to model real compliance
in the fifth wheel. Thus, this spring rate is not an input
parameter, but is fixed within the program based on a compromise
between stiffness and system frequency as they reflect on accuracy
and digital integration requirements, respectively.

While employing the Phase III tractor-trailer program for
preliminary ride studies, one user discovered that unrealistic
pitch and bounce motions of the vehicle could be predicted. The
fifth wheel spring, in concert with suspension springs, apparently
contributed to unrealistic sprung mass oscillations in the 10 Hz
range. It does not appear that the problem resulted from the
modeling concept, but rather from the choice of spring rate. In
the original program, the fifth wheel spring rate was a fixed value
established within the program. |

Two steps have been taken to remedy this problem in the most
recent program version. First, the original fifth wheel model
has been altered in two ways. These are: (1) The fifth wheel
spring rate is now calculated by the program. Its value is chosen
(dependent on other inertia and geometric parameters) to be rather
high, but within the Timits acceptable to the digital integration
routine used in the programming. (2) Damping has been added to
the fifth wheel model. The damping coefficient is also calculated
by the program and is approximately 70% of critical.

151



The second change to the program is the inclusion of a
"matrix solution" option. If this option is chosen, the fifth
wheel is no longer modeled as compliant, but as a rigid coupling
in all directions. In this scheme, the pitch and bounce motion
of tractor and trailer are coupled, requiring, at each time step,
simultaneous solution of the four associated equations of motion.
This model, while providing an optional method of problem solution,
also provides a "check" on the fifth wheel spring model.

A comparison of three solutions of the same "problem," using

the three fifth wheel models (i.e., the old spring model, the new

spring model, and the matrix solution) is shown in Figure F-1.

The "problem" involves a five-axle tractor-trailer, freely rolling
at 50 ft/sec, encountering a step (down) of 0.1 ft in an otherwise
smooth road surface. The figure displays tractor bounce accelera-

tion and displacement.

The figure shows clearly that the "old spring" model is very
oscillatory. The acceleration trace is so dominated by the 10 Hz
mode that only peak accelerations have been shown. However, the
new spring model and the matrix inversion solution agree very well
and both eliminate the unrealistic 10 Hz oscillation. Early in
the solution, predictions by these two models disagree somewhat,
but are qualitatively quite similar. Immediately following clear-
ance of the road disturbance by the last axle, the solutions
become virtually identical.

It would be only conjecture to say which solution is "better"
at this point. Fifth wheels are neither rigid, as the matrix
solution assumes, nor as compliant (or viscous) as the spring
solution assumes. Further, for ride considerations, it is very
likely that the rigid body assumptions (no frame compliance) of the
general model introduce greater errors than either of the newer
fifth wheel models.
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The program changes require that the subprograms MINV and
GMPRD be made available. Both of these subprograms are available
in the IBM Scientific Subroutine Package which most users will
have on line. Both subprograms are called from FCT1 when (and only
when) the matrix solution is chosen. MINV is called only once
from the initialization portion (entry point FCT1) of FCT1. GMPRD
is called at each integration time step from the active portion
(entry point FCT) of FCTI.

The new spring model introduces no changes from the user's
point of view, i.e., program manipulation is exactly as in the past.
The matrix solution requires that a negative number be entered for
TIMF, the maximum real time for simulation (sec). For example, if
TIMF is entered as (+3.0), the simulation will run for 3 seconds
real time and solution will be per the new spring model; if TIMF
is entered as (-3.0), the simulation will run for 3 seconds real
time and solution will be per the matrix inversion model.
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