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SUMMARY 
We present expressions in a spherical harmonic framework for the gravitational 
potential of discrete point, surface, and volume mass elements located at any depth 
within a sphere. Through analysis of the spherical harmonic spectrum, insight is 
gained into the properties of the potentials arising from a variety of mass 
distributions. A point mass at the surface of a sphere displays the richest harmonic 
spectrum in all degrees; spectra become increasingly reddened as the source mass is 
distributed through larger elements of area or volume, or is located at greater 
depths below the surface of the reference sphere. The spectra of dipolar distribu- 
tions, useful in representing compensated masses, are depressed, especially in the 
low harmonic degrees, relative to  the spectra of monopole elements. 
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1 INTRODUCTION 

In this paper we develop the spherical harmonic framework 
for expressing the gravitational potential of several discrete 
mass elements located arbitrarily within a sphere. These 
include a point mass, a point dipole, a spherical cap and a 
spherical rectangle, as well as the radial extension of the 2-D 
elements through some volume. We also discuss aspects of 
the use of these elements in modelling the potential field of 
the earth. In an accompanying paper (Jackson, Pollack & 
Sutton, this issue, paper 11) we carry out forward models of 
the Earth’s potential spectrum, using these discrete 
anomalous mass elements. 

Numerous workers have used point masses as elements in 
models of planetary density structure (Chase 1979; Chase & 
McNutt 1982; Crough & Jurdy 1980; Lowrey 1978; 
Reasenberg et al. 1981; Sjogren, Bills & Mottinger 1984). 
As an alternative or complement to point masses, workers 
have also commonly used distributed mass elements. The 
literature of applied geophysics cantains a plethora of 
formulae within a Cartesian or ‘flat earth’ system for the 
gravitational potential or attraction of a great variety of 
distributed masses, many of which are summarized by 
Talwani (1973). 

For planetary-scale models of gravitational fields, 
analogous expressions for the potential or attraction of 
distributed mass elements within a framework of spherical 
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or ellipsoidal coordinates are both more useful and less 
readily available than the equivalent expressions in 
rectangular coordinates. Takin & Talwani (1966) and 
Bowin, Simon & Wollenhaupt (1975) modify the scheme of 
Talwani & Ewing (1960) for the attraction of an arbitrary 
solid in Cartesian coordinates to obtain corrections leading 
to an approximation of the attraction due to a similar body 
in a spherical system. Johnson & Litehiser (1972) develop a 
more direct method for computing the gravitational 
attraction of a 3-D body represented by a set of polygonal 
spherical laminae. They obtain the attraction via a mixture 
of analytic and numerical integration. Hellinger (1983) 
further refines this approach. 

Purely analytic solutions for the potential of distributed 
bodies in a spherical harmonic framework are quite useful. 
Once computed, the coefficients of a spherical harmonic 
expansion allow relatively simple determination of the 
gravitational potential at any point outside the reference 
sphere. Direct computation of the spherical harmonic 
coefficients also facilitates spectral analysis of a disturbing 
potential. Pollack (1973) presents expressions in a spherical 
harmonic framework for the potential of a point mass, a 
spherical cap, and a spherical rectangle located at the 
surface of a planet, and discusses the spherical harmonic 
spectra associated with these mass elements. In a similar 
fashion, McAdoo (1981) develops the spherical harmonic 
expression for the potential due to a great circle ring source, 
and examines its spectral properties. In this paper we extend 
the 2-D elements of Pollack (1973) through the radial 
dimension to obtain their respective 3-D analogues, the 
spherical cone and the spherical block, and analytically 
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derive the spherical harmonic coefficients for the external 
potential due to these distributed sources. 

2 ANALYSIS 

2.1 Introduction 

The following symbols, mostly following those of Pollack 
(1973), will be used in the analytical development. 

distance from coordinate origin to field point 
colatitude of field point 
= COSG 

longitude of field point 
distance from coordinate origin to point 
mass, point dipole, infinitesimal mass ele- 
ment, or pole of spherical cap or truncated 
cone 
colatitude of point mass, point dipole, 
infinitesimal mass element, or pole of 
spherical cap or truncated cone 

longitude of point mass, point dipole, 
infinitesimal mass element, or pole of 
spherical cap or truncated cone 
radius of sphere in which discrete masses are 
located 
generating angle of spherical cap or 
truncated cone 

solid angle, with respect to the centre of a 
sphere of radius a, subtended by any mass 
element 
areal density of surface mass distributions 
volumetric density of masses distributed 
through an element of volume 
gravitational potential 
total mass of an ensemble of mass elements 
mass of the ith mass element in an ensemble 
of mass elements 
gravitational moment of a point dipole 
oriented radially 
Newtonian gravitational constant 
fully normalized associated Legendre func- 
tion of degree n and order rn (absence of 
overbar indicates unnormalized function) 
fully normalized surface spherical harmonic 
functions of degree n and order m 
coefficients of fully normalized spherical 
harmonic expansion of gravitational 
potential 
variance of harmonic coefficients of degree n 
= (2n + I)”~u,, 

= cos 4’ 

= cos cr 

The potential of a spherical body of radius a and total 

mass M containing an ensemble of discrete mass anomalies 
can be represented by 

v = ( G M / ~ ) [  1 - c c ( a / r ) n [ J n m f i n m ( p ,  0) 
m n  

n = l  m = O  

(3) 

The potential coefficients J,,, and Knm represent the 
integrated effects of the mass anomalies. These coefficients 
are given by the sum of the coefficients for each of the k 
elements comprising the ensemble: 

(4) 

Here the coefficients for an individual mass element are 
subscripted by the index i ;  the coefficients for the entire 
ensemble are not so indexed. Each coefficient ,Jn, or ,Kn,  
is a function of the size, shape, mass, and location of the ith 
anomalous element. We may take 

M = M , + Z  Mi ,  

where Mi is the mass of the ith disturbing element. The sum 
may be zero or even negative. M, is the central mass added 
to the sum of the disturbing masses in order to yield a total 
mass M. If M is the mass of the Earth, the disturbing masses 
Mi will generally be several orders of magnitude smaller. 

Pollack (1973) presents expressions for the coefficients of 
the potential due to a point mass, a spherical cap, and a 
spherical rectangle at the surface of a sphere. Fig. 1 
illustrates these elements. Those results for mass elements at 
the surface of the sphere can easily be generalized for a 
mass element at any radius r‘  within the sphere. The 
coefficients for the potential of a point mass, spherical cap 
and spherical rectangle of mass M, at arbitrary depth are 
given by 

k 

i = l  

point 

(7) 

2.2 Extension of results for elements of volume 

Integration of the potential of a surface element over some 
range of depth yields the potential of a volume element with 
the same surficial shape. Fig. 2 illustrates a spherical ‘cone’ 
and a spherical ‘block’, the respective volumetric analogues 
of a spherical cap and rectangle. 
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Figure 1. Mass and field coordinates for spherical cap (left) and sphencal rectangle (right), situated arbitrarily on reference sphere. Although 
the elements are illustrated at the surface of the reference sphere, they may be situated at any radius r' < a .  

Note that the expressions (6) and (7) for the coefficients 
of surface elements both contain a term which we may 
define as 

:/3,, = (MJM)(r; /a)".  (8) 
The function fPn completely describes the mass and radial 
dependence of the degree n coefficients for the ith surface 
element; its association with 2-D surface element is denoted 
by the superscript s. 

The mass of a surface element is Mi =p,Q,(r,?'. The 
relationship of surface density to volume density a, = pi  dr' 
yields 

Mi = piSi(ri')2 dr' 

as the mass of the ith surface element. We may then rewrite 

:fin = (piS2i/M)(r~)"+2/a" dr'. 

The potential coefficients ;Jn, and ;En,,, are composed of 
orthogonal functions of radius, colatitude, and longitude. 
Because all of the radial position dependence of the 
coefficients for a surface element (spherical cap or rectangle) 
is contained in :fin, integration of :/3,, over a range of the 
radial coordinate r' yields a term t"fi,, which accordingly 
describes the radial and mass dependence of the coefficients 
of a mass element distributed through a volume, as denoted 
by the superscript v: 

(8) as 

F i i  2. Spherical cone (left) and spherical block (right), obtained 
by the respective extension of spherical cap and spherical rectangle 
through the range of radius r, < I' < r,. 

The inner and outer radii of the volume element are r, and 
r,, respectively. Carrying out the integration, extracting the 
term for the element's volume, vi = (1 /3)Qj(r ;  - r;), and 
noting that Mi = p p i ,  yields 

(9) 

Because (M,/M)(r , /a)" in (9) is just sBn with r ' = r z ,  we 
obtain 

with :I,,,,, and :K,,,,, the potential coefficients of a surface 
mass element at radius r,, and Yj,,,,, and ,%,,, the 
coefficients of the volume element with the same surficial 
shape as the surface element but extending between the 
radii r, and r,. This important result shows that the potential 
coefficients of a volume element are related to the potential 
coefficients of the corresponding surface element by a simple 
function of the radial range which it occupies. In general, we 
denote the coefficients of the potential of any mass element 
by ij,,,,, and ;En,,,. The use of the superscripts s and v ,  
denoting the potential coefficients for elements of surface 
and volume, respectively, is a temporary expedient designed 
to increase the clarity of this section; the use of these 
superscripts will be dropped in the remainder of this paper. 

Expression (10) allows the simple computation of the 
spherical harmonic coefficients of the volume element with 
the same surficial shape as some surface element. Hence the 
application of (10) to the potential coefficients of a spherical 
cap (6) yields the potential coefficients of a spherical cone 
extending between radii rl and r,. Similarly, we may convert 
the potential coefficients of a spherical rectangle (7) to the 
potential coefficients of a spherical block of the same 
surficial shape. 

Figure 3 shows a few of the ways in which spherical 
volume elements lend themselves to use in modelling 
tectonic and convectional features within the Earth. A 
spherical cone can represent a plume, and an appropriately 
shaped block can model a sheet-like vertical limb of a 
convection cell. Individual elements may be grouped in 
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Figure 3. Volume elements defined by spherical coordinates as 
models for tectonic features. (a) Spherical cone representing a 
mantle plume beneath a hotspot; (b) several elongate spherical 
blocks assembled to model a subducted slab; (c) elements with 
masses of opposite sign stacked vertically to model compensation; 
(d) long thin spherical block representing a sheet-like zone of 
vertical upwelling associated with mid-ocean spreading ridges. 

ensembles to model more complex features, such as a 
subducted slab or a compensated body, as shown in Fig. 3. 

2.3 Point dipole 

The potential of a point dipole may provide a useful 
approximation for the field of a compensated mass anomaly. 
An anomalous mass M,' at radius r,!, compensated by an 
anomalous mass M; lying a distance h directly below, such 
that M; = -Mi+, may be approximated by a point dipole 
with a radial dipole moment 

The vertically oriented dipole with moment iMr is the most 
relevant geophysically. As Dahlen (1982) points out, several 
definitions of isostasy are possible, each implying a 
somewhat different distribution of anomalous mass and 
corresponding differences in the potential fields generated. 
However, the point dipole should provide a reasonable 
first-order approximation to an isostatically compensated 
body. 

Hurwitz (1960) gives the potential of a point magnetic 
dipole at arbitrary radius r,! within a sphere of radius a. As 
modified for a gravitational rather than a magnetic dipole, 
and in terms of the symbols and normalizations used in this 
paper, the spherical harmonic coefficients for the disturbing 
potential of a point dipole at arbitrary depth are given by 

dipole 

The expressions (5) and (12) for the coefficients of the 
disturbing potential of a point mass and a point dipole are 
quite similar, differing in only two respects. (i) Expression 
(12) is scaled by -n/ (2n + l), rather than -1/(2n + 1) as in 
(5). Hence a point dipole tends to have greater strength in 
its high-degree potential coefficients than in its low-degree 
coefficients, whereas a point monopole has greater strength 
in the low-degree coefficients. (ii) The coefficients for the 
disturbing potential of a point mass are weighted by the 

mass ratio ( M J M ) ,  whereas for a point dipole the 
coefficients are weighted by the ratio of 'moments' 
iM,/(Mra. Using the definition (11) for radial dipole 
moment, we may rewrite the ratio of moments as 
( M , / M ) ( h  / rJ .  In most geophysical applications concerning 
mass distribution in the mantle, h <<r/ and we see that the 
disturbing potential of a point dipole has considerably less 
strength than that of a point of mass ,M,/h,  particularly in 
the low-degree harmonics. 

3 SPECTRAL REPRESENTATION OF 
GRAVITATIONAL POTENTIAL 

The size, shape, mass, geographic location, and depth of a 
single mass element determine the values of the individual 
coefficients ijnm and il?nm given in (9, (6), (7), (lo), or 
(12). The degree variance 

id = E (zJfrn + i R L )  (13) 

provides a collective measure of the strength of these 
coefficients. Similarly, the degree variance u: of an 
ensemble of disturbing elements is given by the sum of the 
squares of the ensemble coefficients j,,,,, and Enm. The set of 
values for the degree variance is independent of the 
geographic location of the mass element in question; for 
example, changing the location of a given spherical cap 
would not change the values of the degree variance 
associated with it. However, any change in that cap's size, 
mass, or depth would generate a set of degree variances 
with different values. 

Pollack (1973) defines the spectrum 

an = 4 2 n  + 1)l" (14) 

which has the property that a point mass at the surface of 
the sphere ( r ' = a )  has equal spectral strength at every 
harmonic degree, i.e., @,, = constant for all n, as shown in 
Fig. 4. 

HARMONIC DEGREE n 

Figure 4. Spectra Q n  of unit point masses located at various depths: 
Surface: surface of the earth (r' = 6371 km); UIL Mantle: boundary 
between upper and lower mantle (r' = 5701 km); CMB: the 
core-mantle boundary (r' = 3486 km); OII Core: outer-inner core 
boundary (r' = 1217 km). Spectra progressively attenuate with 
depth of point source; point mass at centre of sphere (r' = 0) has 
spectral strength only at n = 0, with strength at all higher degrees 
identically zero. 
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The degree one spherical harmonic coefficients jl, and 
Klm describe the displacement of the coordinate origin from 
a body's centre of mass. Because models of the Earth's 
potential assume the origin at the centre of mass, the n = 1 
harmonic coefficients of the Earth's potential are zero 
(Heiskanen & Moritz 1967). Although an isolated mass 
element does develop some spectral strength at n = 1, we 
display values of the harmonic spectrum in the degree range 
2 5  n 5 20. Of course data from surface gravimetry and, 
over the oceans, geoid heights obtained by satellite 
altimetry, provide more detail for studying regional and 
local features, such as the relationship between gravity and 
topography, as in Watts ef af. (1985). However, the degree 2 
to 20 range is quite appropriate for examination of 
large-scale patterns of the global field. 

Also shown in Fig. 4 are spectra of point masses located 
below the surface of the sphere; they have less high-degree 
strength and hence have spectra which are 'reddened' 
relative to that of a point mass located at the surface. The 
spectra of masses distributed over a spherical surface, such 
as a spherical cap or rectangle, also redden when located at 
greater depths. A cap or rectangle also has less high-degree 
strength than the same mass concentrated in a point at the 
same depth. This reddening occurs because the centre of 
mass of any portion of a spherical shell lies below the radius 
of the shell. As the size of a cap increases, the centre of 
mass moves downward, and in the limit of a complete 
spherical shell, it has the potential of a point mass at its 
centre, V = G M / r ,  with non-zero spectral strength only in 
the n = 0 term of the potential. Hence all distributions of 
mass over some area or volume on or within a sphere may 
be understood simply as cases intermediate between the 
concentration of that mass in a point at either the surface of 
a sphere or at its centre. The spectrum generated by any 
distributed mass element will be intermediate between the 
flat 'white' spectrum of a point mass at the surface and the 
zero-valued (for all degrees except n = 0) 'red' spectrum of a 
point mass at the sphere's centre. Fig. 5 illustrates some of 
these reddening effects. 

Figure 6 illustrates the extent to which a point dipole 
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F i r e  5. Effect of geometry and depth of distributed unit masses 
on spectra. The spectra are generated by the following mass 
elements: (a) point mass at surface of Earth; (b) small spherical cap 
at surface of earth with generating angle a = 4"; (c) volume element 
with same surficial expression as small cap in (b) but extending from 
the surface to a depth of 200 km; (d) larger cap with generating 
angle (Y = 8" at surface; (e) same small cap as in (b), but located at 
loo0 km depth. Spectra progressively redden with both increasing 
depth and extent of mass elements; differences due only to extent of 
the elements are best discernible in the degree range n 2 10. 

lo-' 
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Figure 6. Spectra 0" of point dipoles and their approximation by 
monopoles of opposite sign and finite separation; all generate equal 
dipole moment. (a) Spectrum generated by an ensemble consisting 
of two point masses of opposite sign, one at the surface of the Earth 
and the other directly below it at a depth of 40 km; in the degree 
range shown, the spectrum of a point dipole of equal dipole 
moment and located at a depth intermediate between the two point 
masses is essentially identical. (b) Spectrum generated by two point 
masses of opposite sign, one at the surface of the Earth and the 
other 670 km beneath it. (c) Spectrum of a point dipole of dipole 
moment equal to distribution in (b), and located at depth mid-way 
between the two point masses. Further depth-dependent attenua- 
tion of dipole spectra a,, is illustrated by curves (d) and (e); each 
represents spectrum of a point dipole having the same moment as in 
(a), (b), and (c) above, but situated respectively at depths of 670 km 
(base of mantle transiton zone) and 2885 km (core-mantle 
boundary). 

approximates a compensated distribution of mass. Curve (a) 
is the spectrum of an ensemble consisting of two point 
masses, one of positive mass located at the Earth's surface 
and the other of negative mass, located at 40km depth 
beneath the first mass. A point dipole having the same 
dipole moment and located halfway between the two point 
masses generates a spectrum which, at the scale of the 
illustration, is identical to that produced by the pair of point 
masses. Hence, at least through degree 20, the point dipole 
can provide a convenient and accurate model of crustal scale 
compensation. 

Curve (b) of Fig. 6 is the spectrum generated by two point 
masses of opposite sign, one at the surface and the other at 
the base of the mantle transition zone at 670 km depth; for 
comparison, curve (c) is the spectrum of a point dipole 
located mid-way between. Both spectra (b) and (c) are 
generated by distributions having the same dipole moment 
as that which produced spectrum (a). The two opposite 
point masses generate a spectrum which is quite similar in 
degrees 2-10 and differs only slightly in higher degrees from 
the spectrum of the point dipole. Hence a point dipole 
provides a satisfactory approximation in the lower degrees 
of the spectrum of mass distributions which are compens- 
ated across the thickness of the upper mantle. Note also that 
the spectra (b) and (c) are attenuated by depth at all 
degrees. Curves (d) and (e) in Fig. 6 are the spectra 
generated by identical point dipoles located at still greater 
depths. As is the case for the spectra of the other elements 
considered, the spectrum of a point dipole becomes 
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increasingly attenuated, especially in the high degrees, as 
the dipole is located deeper in the earth. 

5 CONCLUSIONS 

We have generalized for arbitrary source depth the 
expressions of Pollack (1973) for the gravitational potential 
due to a point mass, a spherical cap, and a spherical 
rectangle, and have developed similar expressions for the 
potentials of elements of volume defined in the spherical 
coordinate system. We also have modified Hurwitz’s (1960) 
result for the potential of a magnetic point dipole, to  enable 
computation of the coefficients for the gravitational 
potential generated by a gravitational dipole representing 
compensated mass distributions. The spectrum Qn provides 
a useful summary of the properties of the gravitational 
potential generated by either an isolated mass element o r  by 
an ensemble of elements. 

The spectrum Qn of a point mass a t  the surface of the 
Earth has equal strength in all harmonic degrees; a t  the 
opposite extreme, the spectrum of a point mass located at  
the centre of the Earth has spectral strength only in the 
degree 0 term. These two spectra serve as a convenient and 
instructive pair of references t o  which other spectra may be  
compared. In general, mass elements which are of limited 
areal or radial extent, or are located close to the surface of 
the Earth, generate relatively flat spectra, similar t o  that of 
a point mass located at  the surface of the Earth. Conversely, 
mass elements which are of large areal o r  radial extent, o r  
which are located at substantial depth, generate relatively 
steep, reddened spectra, i.e., spectra which are progres- 
sively attenuated in the higher degrees. Compensated 
bodies, whether represented by a point dipole or  by an 
ensemble of positive and negative mass elements, generate 
spectra with depressed low-degree strength, and high-degree 
strength which rises toward that which would be generated 
by an uncompensated body of mass M J h  and located at  the 
outer radius of the compensated body. 

In the following paper (Jackson et al., paper 11) we make 
use of the analytical results presented here t o  model the 
observed spectrum of the Earth’s gravitational field, and 
infer some general characteristics of the distribution of 
heterogeneity within the Earth. 
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