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Can we improve on nature? “Super molecules” of factor VIII
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Summary. Treatment of haemophilia A requires frequent
infusion of plasma- or recombinant-derived factor VIIL
This regimen is limited due to the high cost and inconven-
ient access to peripheral veins. In addition, patients
frequently develop inhibitory antibodies that limit avail-
able therapeutic regimens. Two major advances in factor
VIII research over the past 15 years were the ability to
isolate homogeneous preparations of factor VIII and the
isolation of the factor VIII gene that provided for a
detailed biochemical and structural characterization of the
factor VIII molecule. With an increased understanding of
the requirements for factor VIII function, studies have
attempted to produce improved factor VII molecules for
replacement therapy. These findings have produced forms

of factor VIII that are more efficiently produced, that are
less immunogenic, and that have higher specific activity.
The future will see the engineering of novel factor VIII
molecules with increased therapeutic efficiency while
minimizing inhibitor antibody development. In addition,
there are now structural models of factor VIII available
that should in the future direct development of novel
peptidomimetics that may eventually overcome the
requirement for replacement therapy with factor VIII
protein.

Keywords: Factor VIII, thrombin, activated protein C,
inhibitor antibodies.

Haemophilia A is an X-chromosome-linked bleeding
disorder affecting 1/5,000 males that results from a
deficiency or abnormality in the plasma protein, factor
VIII. Although the crucial role of factor VIII in haemo-
stasis was realized in 1937 [1), a detailed biochemical and
structural characterization of factor VII was only
initiated within the last 15 years. In the past, treatment of
haemophilia A involved frequent infusion of preparations
of factor VHI concentrates derived from human plasma.
Although this replacement therapy is effective in control-
ling bleeding episodes, significant problems exist. First,
patients are at risk of blood-borne virally transmissible
diseases. The risk of virus infection was significantly
reduced by monoclonal antibody purification of factor
VII from human plasma and the development of recombi-
nant-derived factor VIII. However, these improvements
have greatly increased the cost of treatment. Second, due
to the high cost of factor VIII and the limited access to
peripheral veins, patients are generally treated episodically
on a demand basis as opposed to prophylactically. A
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consequence of this therapeutic regimen is chronic bleed-
ing into the joints leading to tissue damage later in life.
Finally, about 15% of patients develop inhibitory anti-
bodies to factor VIIL It is likely that solutions to the
present limitations in haemophilia therapy will result
from further advances in our knowledge about factor VIIL
Recombinant DNA technology now provides the ability
to design specific changes into the factor VIO gene to
derive novel and improved forms of factor VIII. The
ability to engineer factor VIII with specific alterations has
led to a greater understanding of the regulation of factor
VIII expression and its activity and now provides avenues
to engineer factor VIII to produce improved proteins for
therapeutic use.

Factor VIII structure and function

Factor VIII functions in the intrinsic pathway of blood
coagulation as a cofactor to accelerate the activation of
factor X by factor IXa that occurs on a phospholipid
surface in the presence of calcium ions. The factor VIII
amino acid sequence deduced from the cloned ¢cDNA
identified that the molecule is synthesized as a single-
chain polypeptide having the domain structure A1-A2-B-
A3-C1-C2 [2, 3] and upon secretion from the cell is
processed to a heterodimer consisting of a carboxy-
terminal derived light chain of 80 kDa in a metal-ion
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dependent association with a 200 kDa amino-terminal
derived heavy chain fragment (Fig. 1). The domain
structure of factor VIII is identical to that of the
homologous coagulation factor, factor V [4, 5]. The A
domains within factor VIII have 40% amino acid identity
with each other and to the A domains of factor V, as well
as with the copper binding protein ceruloplasmin [6],
suggesting the A domains may be involved in metal ion
binding. The C domains exhibit 40% identity to the C
domains of factor V, and with proteins that bind
glycoconjugates and negatively charged phospholipids [7].
The B-domain is encoded by a single exon and exhibits
little homology to the factor V B domain [8, 9]. In
plasma, the factor VIII light chain is bound by non-
covalent interactions to a primary binding site in the
amino terminus of von Willebrand factor (vWF).

The observation that haemophilia A offers protection
from ischaemic heart disease [10] and suggestions that
elevated factor VIII may be associated with thrombotic
disease [11] provides an incentive to understand the
mechanism by which factor VIII levels are regulated in
plasma. In plasma, vWF circulates as a heterogeneous
multimer comprised of 2 to 100 subunits. Although each
monomeric vWF molecule contains one factor VII
binding site, in vitro binding studies yielded conflicting
data for factor VIII:vWF monomer ratios of 1:1 [12], 1:4
[13], 1:10 [14] to as low as 1:70 high affinity binding sites
[15, 16]. As different reagents, protein concentrations, and
assays were used for these studies, the source for the
difference remains unknown. However, the ratio of
circulating factor VIII to vWF observed in vivo is tightly
maintained at 1:50 [17]. Any change in plasma vWF level
is coupled with a concordant change in the factor VIII
level. The infusion of vWF into vWF deficient patients
immediately elevates factor VIII levels to above those
observed in normal individuals [17-20]. The presence of
vWF increases the plasma half-life of factor VIII from 2-
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Fig. 1. Domain structure and processing of factor
VI The structural domains of factor VIII are
depicted: Al domain (1-336), A2 domain (372-740),
B domain (740-1648), A3 domain (1690-2020) and
the C domains (2020-2332). Three regions rich in
acidic amino acid residues between domains A1
and A2, A2 and B, B and A3 are indicated by
hashed shading. Intracellularly, factor VIII is
cleaved within the B-domain to generate a 200 kDa
peptide and the 80 kDa light chain. The two
cleavages required for thrombin activation are

APC

indicated by **. Sites of activated protein C
cleavage are indicated by *.

3h to 12-14h [21, 22]. Since factor VIII clearance from
the circulation is dependent on the FVIII-vWF inter-
action, it is unlikely that it will be possible to engineer a
factor VIII molecule that retains both vWF binding
affinity and increased plasma half-life.

In vitro studies demonstrated that vWF regulates factor
VII activity through additional mechanisms: (1) vWF
prevents activation of factor VIII by factor Xa [23],
whereas it has no effect on activation of factor VII by
thrombin {24, 25]; (2) vWF prevents inactivation of factor
VIII by activated protein C [26, 27]; (3) vWF prevents
binding of factor VIII to phospholipids [28, 29] and to
thrombin-activated platelets [14); and (4) vWF is required
to promote stable accumulation of factor VIII upon secre-
tion into the medium when factor VIII is expressed in
mammalian cells in culture [30-32]. Although primary
interactive binding sites within the factor VIII light chain
(residues 1680-1689 [33, 34] and the C2 domain [35, 36])
and vWF (residues 1-272 [37-39]) have been identified,
there are likely multiple contacts that are required to
mediate the multitude of effects that vWF has on factor
VIIIL _

In vivo, factor VIII activity is regulated by proteolytic
activation as well as inactivation. Upon thrombin
activation of factor VIII there is a rapid 30-fold increase
and subsequent first-order decay of procoagulant activity.
The activation coincides with proteolysis of both the
heavy and light chains of factor VIII and release from
vWF (Fig. 1) [40-42]. Cleavage within the heavy chain
after arginine residue 740 generates a 90 kDa polypeptide
that is subsequently cleaved after arginine 372 to yield 50
and 43 kDa polypeptides. Concomitantly, the 80 kDa
light chain is cleaved after arginine residue 1689 to
generate a 73 kDa polypeptide. Thus, thrombin-activated
factor VIII is composed of a heterotrimer of the 50, 43,
and 73 kDa fragments [43-45].

Factor VIII and factor VIIIa are both inactivated by
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activated protein C cleavage after residues 336 [40, 46]
and/or 562 [47], and this mechanism of inactivation
appears physiologically significant since protein C
deficiency is associated with thrombotic events [48, 49].
However, the first order decay of procoagulant activity
for thrombin-activated factor VIIIa observed in vitro does
not correlate with any specific proteolytic event [50, 51].
A detailed characterization of thrombin-activated factor
VIIIa was hampered due to its marked instability. Protein
concentration and pH are important factors for isclation
of stable thrombin-activated factor VIIIa [43, 52]. How-
ever, presently it is not possible to isolate a stable
preparation of human factor VIIa at physiological pH
and concentration that would be suitable for functional
analysis in biochemical and biological assay systems. Most
data support the conclusion that loss of procoagulant
activity after thrombin activation results from a reversible
dissociation of the 43 kDa A2-domain polypeptide from
the heterotrimer which occurs at physiological pH [44,
45, 52, 53]. The specific activity of porcine factor VIIa,
depending on its concentration, is 2-10-fold higher than
human factor VIIIa and this correlates with a lower
dissociation rate constant of the A2-domain polypeptide
with the thrombin-activated heterotrimer [52, 53].

Potential for improved factor VIII molecules
through genetic engineering

DNA technology provides unique
approaches that may yield improved therapeutic regimens
for haemophilia A. These approaches include: (1) altera-
tions that improve factor VIII expression, thereby
reducing potential cost of treatment and making
prophylactic treatment feasible; (2) alterations that reduce
factor VIII immunogenicity, thereby reducing potential
for inhibitor antibody development; (3) alterations that
improve factor VIII specific activity or increase the half-
life of activated FVIII in plasma, thereby reducing the
amount of protein required for therapeutic use; and
(4) development of oral acting compounds that mimick
the action of factor VIII. Each of these approaches will be
discussed in turn.

Recombinant

Alterations that improve factor VIII expression

Although most evidence supports that the hepatocyte is
the cell type that produces factor VIII in wvivo [54-58],
there are no known established or primary cell lines that
express factor VIII. Thus, our knowledge of factor VIII
expression is derived from interpretation of results from
expression of the cDNA from expression vectors in
transfected mammalian cells. Expression of factor VIII in
these transfection systems is 2-3 orders of magnitude
lower than that observed with other genes using similar
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vectors and approaches. Studies have identified at least
three reasons for the low level of expression [59]: (1) the
factor VI mRNA is inefficiently expressed, (2) the
primary translation product is inefficiently transported
from the endoplasmic reticulum (ER) to the Golgi
apparatus, and (3) high levels of vWF are required in the
conditioned medium to promote stable accumulation of
factor VIII.

Factor VIII expression upon transfection or infection of
cells in culture is limited in the ability to produce factor
VIII mRNA and to efficiently secrete factor VIII protein
from the cell. One of the most significant observations
concerning the ability to improve factor VIII expression
was that deletion of the middle 1/3 of the coding region,
the B-domain, yielded a molecule that was expressed at
significantly greater levels than wild-type factor VIII [60].
The increased expression was attributed to a greater
increase in the factor VIl mRNA level and corresponding
factor VII protein synthesis [25]. One of these B-domain
deleted forms of factor VIII (termed Refacto) is now
presently under study in clinical protocols in humans.
Refacto has a 2-3-fold increased specific activity over
wild-type recombinant factor VIII. Results of preliminary
preclinical and clinical studies were recently presented in
August of 1996 [61]. The pharmacokinetic parameters
were indistinguishable from wild-type factor VIII upon
infusion into animal models as well as human patients.
However, there was a slightly greater volume of distri-
bution for the B-domain deleted factor VIII, most likely
due to its smaller size. Preliminary clinical studies
demonstrated an excellent response upon infusion into 87
previously treated haemophilia A patients with no
detectable inhibitor development or adverse reactions. At
the time of reporting, 43 previously untreated patients
were treated with Refacto with an incidence of inhibitor
development not significantly different than studies with
recombinant wild-type factor VII. Although preliminary,
these studies suggest that deletion of 1/3 of the factor VIII
molecule does not significantly change its in wivo
pharmokinetic, immunological, or functional properties
and demonstrates the feasibilty to produce improved
factor VIII molecules. The potential benefits from Refacto
include a formulation that will be human serum albumin
free, a smaller injection volume, infusions containing less
protein, and finally, because of its smaller size, the
potential to develop a continuous delivery formulation
that can be used prophylactically.

Although proteins can fold into correct tertiary
conformations in vitro [62], additional factors such as
protein chaperones are required to assist protein folding
in vivo. Our work over the past 10 years demonstrated
that the inefficient secretion of factor VIII correlated with
interaction with the protein chaperone identified as the
immunoglobulin binding protein (BiP) which is the same

© Blackwell Science Ltd



NOVEL FACTOR VIl THROUGH GENETIC ENGINEERING 373

as the glucose-regulated protein of 78 kDa (GRP78) [63]
within the lumen of the ER [64, 65]. BiP is a member of
the heat-shock protein family which exhibits a peptide-
dependent ATPase activity [66] and for which expression
is induced by the presence of aberrantly folded protein or
unassembled protein subunits within the ER [67, 68].
Factor VIII release from BiP and transport out of the ER
required high levels of intracellular ATP [69]. In contrast,
the homologous coagulation protein, factor V, did not
detectably associate with BiP and did not require high
levels of ATP for secretion [70]. Through expression of
chimeric cDNAs, it was possible to localize the sequences
within factor VIII that inhibit secretion. Exchange of a
110 amino acid region within the Al-domain improved
secretion of the molecule and this chimeric protein
displayed a reduced interaction with BiP [71]. However,
the secreted protein was not active, and this correlated
with dissociation between the heavy and light chains.
Mutation of single residues within this region identified
that a single amino acid change at Phe309 to Ser (the
homologous residue present in factor V) improved factor
VI secretion by 3-fold; however, the secreted protein
had a specific activity indistinguishable from wild-type
factor VII [72]. In addition, the Phe309Ser mutant factor
VII displayed a reduced requirement for ATP for
secretion, suggesting a reduced interaction with BiP.
These results demonstrate that mutation of a single
residue in factor VIII can influence chaperone interaction
to improve the secretion of factor VIII. The findings
provide needed information on what sequences are
responsible for BiP binding, and will also have practical
importance for improving factor VIII expression. The
increased expression will facilitate the eventual goal of
somatic cell gene therapy for haemophilia A.

Alterations that reduce immunogenicity of factor VIII

One of the major limitations with present replacement
thereapy is the development of inhibitor antibodies to
factor VIII. Once inhibitor antibodies develop, several
strategies are available to provide effective haemostasis.
These include the use of porcine factor VI, bypass
therapy with recombinant factor VIIa, and high dose
factor VIII with or without immunosuppressive agents in
order to induce a state of nonresponsive tolerance.
However, it should also be possible to engineer factor
VIII to make it less immunogenic. One particular strategy
could involve the modification of factor VIII to prevent
exposure of antigenic epitopes. For example, covalent
modification by polyethylene glycol attachment to lysine
residues can both reduce immunogenicity and increase
plasma half-life [73]. This is most dramatically demon-
strated for modification of adenosine deaminase for the
treatment of severe combined immunodeficiency disease
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[74]). However, to date there are no reported results on
the successful modification of factor VIII by polyethylene
glycol attachment.

An alternate strategy would be to produce a less
immunogenic factor VIII through genetic engineering.
This first requires identification of the regions within
factor VIII that elicit an immune response and then
selective modification of those regions by mutagenesis.
Studies have established that the most common factor VIII
epitopes that induce inhibitory antibodies are localized to
the A2 domain (residues 373-740) and the C2 domain
(residues 2173-2332) of factor VI [75~77]. An additional
epitope has also been identified that may be localized to
the A3 domain [78, 79]. Since porcine factor VIII can be
used to treat inhibitor patients [80, 81], it is likely that
the epitopes recognized by anti-human facter VII
inhibitory antibodies are not present in porcine factor
VII. This observation provided the impetus for Lollar
and coworkers to prepare human and porcine factor VII
chimeric molecules in order to elucidate what amino acids
are responsible for the antigenic differences between
human and porcine factor VIII. The results identified a
limited number of residues between 484 and 508 within
the A2 domain of human factor VIO that contribute
significantly to the antibody response [82].

Once critical residues are identified that are responsible
for the immunogenicity of human factor VIII, it is
possible to alter those residues in the hope of reducing the
immunogenicity. In particular, residues that present as
strong epitopes for immune response are frequently
surface exposed and either positively or mnegatively
charged. By mutation of those amino acids that have
charged side chains to alanine, an amino acid that lacks
side chains, it may be possible to reduce the
immunogenicity of factor VIII. The feasibility of this
cor:cept was recently tested by mutation of those residues
in the human factor VIII A2 domain that were implicated
to elicit inhibitory antibodies to alanine (Fig. 2) [83].
Resultant molecules retained procoagulant activity, but
did demonstrate significantly reduced inhibition to an
inhibitory monoclonal antibody that reacts with wild-
type human factor VIII. This alanine scanning muta-
genesis approach identified Tyr487 as a residue that is
critical for the recognition by anti-human factor VIII A2-
inhtbitor antibodies [83]. Once all the immunogenic
regions are identified, it may be possible to mutate all the
relevant amino acids and yield 2 molecule with markedly
reduced immunogenicity that retains full functional
activity.

Alterations that increase the specific .<tivity of factor
VIII

The instability of thrombin-activated factor VIII

Haemaophilia (1998), 4, 370-379
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correlates with dissociation of the A2-domain subunit.
Therefore, it was considered feasible to derive a more
active form of factor VIII if it were possible to minimize
dissociation of the A2-domain subunit. To test this hypo-
thesis, experiments were designed to create a form of
factor VII in which the A2-domain was covalently
attached to the light chain.

The basis for this approach relied on two observations.
First, characterization of cleavage site mutant factor VIII
demonstrated that cleavage at residues 372 and 1689 were
the only cleavages required for activation of factor VIII
activity [84]. Cleavage after 372 was proposed to alter the
conformation of the molecule in a manner necessary for
cofactor activity [84], whereas cleavage after 1689 was
proposed to be required to liberate factor VIIla from vWF
[85] and permit factor VIIIa to interact with negatively
charged phospholipids. The second observation was that
deletion of residues 741-1689 yielded a molecule (termed
90/73) that displayed significantly reduced binding to
vWF and displayed procoagulant activity similar to wild-
type factor VIII after treatment with thrombin. Following
cleavage by thrombin, the 90/73 factor VIII yielded the
50kDa/43 kDa/73 kDa heterotrimer that was identical to
wild-type factor VIII [86] (Fig. 3A). These observations
suggested that if the cleavage between the 740-1690
junction in the 90/73 molecule was prevented, then it
should be possible to yield a dimeric factor VIIla through
cleavage by thrombin after residue 372 in which the A2-
domain would be covalently attached to the light chain.
This molecule may not require cleavage at the amino
terminus of the light chain before residue 1690 for
activation because it would display significantly reduced
binding to vWF. However, when the Arg740 at the
junction of the 90kDa and 73 kDa chains was mutated to
Lys, the site was not cleaved by thrombin, however the
resultant molecule was not active. It was then proposed
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Fig. 2. Alanine-scanning mutagenesis of
factor VIII inhibitor epitope.
Mutagenesis and expression of B-
domain deleted factor VIII was
performed and analyzed for inhibition

by five different patient inhibitor
plasmas as measured by Bethesda assay.
For details see [83].

that the A2-domain may require a spacer so as to attain a
conformation that was suitable to develop procoagulant
activity. Subsequently, a 54 amino acid spacer from
residues 741-794 was inserted and it was observed to yield
a molecule that retained factor VIII activity [86]. In order
to further increase resistance to inactivation, the resultant
molecule was made resistant to cleavage by activated
protein C by introducing both Arg336lle and Arg562Lys
mutations. These two mutations were previously shown
to inhibit activated protein C inactivation of factor VIII,
without affecting its procoagulant activity [87]. The
resultant molecule, termed inactivation resistant factor
VI (IR8), had a 5-fold greater specific activity than wild-
type factor VIII when measured in a one-stage clotting
assay using factor VIII deficient plasma (Fig. 3B). In
addition, IR8 displayed 38% of peak activity at 4 hr after
activation by thrombin under conditions in which wild-
type factor VHI that was completely inactivated after 5
min (Fig. 3C). The results demonstrate the feasibility to
produce a form of factor VIII that has elevated specific
activity in an in vitro clotting assay and that is resistant
to inactivation that occurs after thrombin activation and
by treatment with activated protein C.

To further characterize the in vivo activity of IRS, the
factor VIII genetically deficient haemophilic mouse was
used [88]. This haemophiliac mouse cannot survive a tail
bleed induced by a guillaotine device to remove the last
1cem of the tail. When as low as 20 ng of wild-type
recombinant factor VIII was infused into the mouse tail
vein prior to the induced tail bleed, the animal survived
(Fig. 4). The reproducibility in survival detected upon
recombinant wild-type factor VIII infusion is compro-
mised by difficulty in ensuring the injected factor VIII
actually gets into the circulation. However, this model
does provide a stringent test for the ability of a given
preparation of factor VIII to correct a tail bleed in the
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Fig. 3. Inactivation resistant factor VIII. Panel A. Structural domains
of factor VIII wild-type (WT) and B-domain deleted factor VIII
{90/73) and their predicted factor VIIIa heterotrimeric structure after
thrombin (Ila) cleavage. Me+ represents a metal ion necessary for A1l
and A3 domain association. Panel B. A representation of IR8 and its
predicted heterodimeric subunit structure that results after thrombin
activation. *indicates the missense mutation at residue 740 predicting
resistance to thrombin cleavage. b indicates 54 amino acids of B-
domain retained in the IR8 construct. White boxes represent acidic
amino acid rich regions. Panel C. Activation of wild-type and IR8
factor VIII by thrombin. Partially purified proteins (1 nM) were
treated with 1 unit/ml thrombin at room temperature and assayed
over time for factor VIII activity by the activated partial
thromboplastin assay. See [86] for details.

mouse. When IR8 was purified and infused into the
haemophilic mouse model, the mouse was able to survive
the lethal consequences of the tail bleed. Although we do
not know the half-life of IR8 infused into the mouse, it is
likely to be significantly shorter than wild-type factor
VII because of its reduced ability to bind vWF.
Therefore, these functional data strongly support that the
IR8 molecule is at least as effective as wild-type factor
VII in this mouse model system.
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Fig. 4. IR8 displays coagulant activity in vivo. Purified wild-type
recombinant human factor VIII(rFVIII) or IR8 were infused into the
tail vein of anaesthetized genetically deficient mice (factor VIII Exon
16 knockout). One minute following infusion a 1 cm terminal section
of the tail was cut. Mice were then observed for evidence of effective
haemostasis over a 24 h period. Mice that failed to clot received tail
cauterization or, where appropriate, were euthanized. Survivors
achieved effective haemostasis in the absence of tail cauterization.

The ability to isolate a stable thrombin-activated form
of human factor VIIla will provide a crucial reagent to
study the functional significance of VIIIa generation in in
vitro as well as in in vivo studies. The haemostatic
efficacy of the more stable thrombin-activated factor VI
heterodimer (IR8) will next be evaluated in a haemophilic
dog model [89]. These studies will provide important
information concerning the role of the A2-domain dissoci-
ation and vWF interaction for factor VIII function in
vivo. In addition, factor VIII of increased specific activity
may have tremendous therapeutic potential by reducing
dosage requirements thereby reducing cost of therapy, and
reducing the antigenic stimulation to minimize inhibitor
antibody development in patients that occurs as a
response to factor VIII as a foreign antigen.

Development of oral acting compounds that mimick
the action of factor VIII

Our knowledge of the structural requirements for factor
VIII activity has dramatically increased since the original
isolation of factor VIII protein from human plasma and
identification of the factor VIII gene. In addition, a crystal
structure of the homologous plasma protein ceruloplasmin
is now available [90] that was used to predict the structure
of the factor VIII A domains [91]. Additional new insights
have come from mutagenesis studies to identify critical
regions for factor VII function and from biochemical
analyses to identify interacting regions between factor
VII and factor IXa. Peptide and antibody inhibition data
suggest that residues 558-565 and 1778-1840 in factor VIII
comprise two sites that interact with the catalytic domain
and the first EGF domains of factor IXa, respectively

Haemophilia (1998), 4, 370-379
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onospnolipid surface

Fig. 5. Model for factor VIIla interaction with factor IXa. This
figure depicts the factor VIII domains A1, A2, A3, C1 and C2
interacting with a phospholipid surface through the C2 domain and
the specific interaction of the A2 and A3 domains with factor IXa
sites within the serine protease domain and the first epidermal
growth factor-like domain. Factor IXa interacts with the phospho-
lipid surface through its region that contains gamma-carboxy
glutamic acid residues (gla). Adapted from [91].

[92-95]. With elucidation of the structure of factor IXa
[96], it is now feasible to predict how factor VIII may
function to enhance the catalytic efficiency of factor IXa.
These findings have provided a model where the factor
VII light chain is responsible for complex assembly via
the first EGF-like domain in factor IXa, whereas the
interaction site with the A2-domain might induce a
conformational change within the active site of factor IXa
(Fig. 5) [91]. With greater understanding of this conforma-
tional change, it may be possible to derive a small
peptide, or a peptidomimetic, that mediates the same
conformational change. Once a compound is identified, it
may be modified to make it more readily delivered by
oral administration. These strategies provide enthusiasm
for future studies to elucidate the mechanism by which a
complex molecule like factor VIII can mediate a specific
conformational change in the active site of factor IXa.
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