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1 Introduction

Dynamic sequential decision problems are an important class of optimization problems. Applications include
production and inventory control, capacity expansion, and equipment replacement. In some cases the decision
variables are continuous, allowing a mathematical programming formulation with a continuous solution space.
Often, however, a problem calls for a model with discrete decisions as, for example, in the choice between the
various pieces of equipment available to replace one currently in use. A great majority of these problems share
the characteristic of an indefinite horizon. The economy, firm, or government involved has no predetermined
moment of extinction. To appropriately model these problems, it is necessary to assume that the problem
may continue indefinitely.

The traditional and most commonly used solution approach for such problems is to assume some finite
horizon, T, and simply proceed as if the world ended there. The hope is that information beyond T will
have little or no effect on the optimal solution, for at least the first few decisions, since those first decisions
will be implemented immediately. A finite horizon with this guarantee is known as a forecast horizon. This
solution method is known as a solution or forecast horizon approach (Lundin and Morton [1975]; Charnes,
Dréze and Miller [1966]; Modigliani and Hohn [1955]).

Nearly all forecast horizon existence results require a unique optimal initial decision (see Bean and Smith
[1984]; Hopp, Bean, and Smith [1984]; Bés and Sethi [1986], Schochetman and Smith [1987a]). Ryan and
Bean [1987] show that in finite choice problems, such a requirement may be difficult to meet. In this paper,
we allow that more than one optimal initial decision may exist, and develop an algorithm to select one such
decision.

Forecast horizon approaches solve increasingly long finite horizon problems to approximate a sequence
of decisions that is optimal over the infinite horizon. A common algorithm is to lengthen the horizon until
the optimal initial decision stabilizes. When more than one optimal initial decision exists, it may happen
that such a decision is optimal for some finite horizons but not others, no matter how long. In that case,
the optimal initial decision may never stabilize. In this paper we describe conditions under which each
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infinite horizon optimal initial decision is optimal for every sufficiently long finite horizon. For some types
of problems, we can then select one optimal decision using a simple tie-breaking rule.

Section 2 includes a mathematical statement of the problem and assumptions. Section 3 is a discussion of
the convergence of closed sets in a general compact space, and Section 4 discusses how closed set convergence
can lead to an algorithm for infinite horizon optimization. In Sections 5 and 6 we present two alternate sets
of conditions under which the sets of finite horizon optimal initial decisions converge to the set of infinite
horizon optimal initial decisions. We illustrate the conditions with various capacity expansion models.
Finally, Section 7 contains conclusions.

2 Problem Definition and Assumptions

Suppose we are faced with making a sequence of decisions over a continuous or discrete time frame. Each
individual decision, denoted 7;, will be called a policy, and a sequence 7 = (my, 72, ...) of policies constitutes
a strategy. Let II,, be the set of policies available after n — 1 decisions have been made. We assume policies
may be indexed so that I, C {0,1,2,...} and, for any 7} and 72 € I,, |7} — 72| < M < oo, where
M is uniform over n. Let I C x52,1I, be the set of all feasible strategies. Let § = 0 = (0,0,...). The
strategy & may or may not belong to II. Associated with each strategy, , is a cumulative net cost function
Cx(t). In order to compare costs incurred over time, we continuously discount them to time zero. Hence
Cr(r) = [;° e7™dCx(t) is the resulting infinite horizon discounted cost as a function of the discount rate,

r. Also, Cr(r,T) = fOT e~"'dCx(t) is the discounted cost over the finite horizon T. Bean and Smith [1984]
showed that infinite horizon discounted costs converge if r is larger than

. In|Cr(t
4 = sup limsup M
x€ll t—oo t

The set {r|r > v} is called the range of convergence for interest rates.
We keep the assumptions of Bean and Smith [1984]; in particular:

Cx(t) = the cumulative net cost for strategy = up to time ¢
= Kx(t) — Rx(1),

0<K,(t)<Be

where 0<Ry(t)<Be™

}Vt > Ty, B,%,T; independent of ,

Kr(t), Rx(t) nondecreasing.

The functions K»(t) and Ry () represent cumulative pure cost and cumulative pure revenue, respectively.
Without loss of generality, we can assume Ty = 0 (if not, replace B by Be?™e).
We define a metric similar to that of Bean and Smith [1984]: for 7, # € I,

o0
p(m,7) =Y B"|mn —
n=1

where 4 < M—1'+1 This metric has the property that, for any L, any two strategies which agree in the first L
policies are closer than any two strategies which do not. This metric induces a topology on II.
Given an interest rate, r, the problem we wish to solve is:



frnelrl%c’r( r).

As shown by Bean and Smith [1984], subject to an assumption that II is complete, the minimum exists since
IT is compact and Cx(r) is continuous in .
The forecast horizon approach involves solving finite horizon problems:

min Cx(r,T).

In the remainder of the paper we assume r is fixed, and omit it from the notation. We define C’*( ) to be
the minimum finite horizon value and C* to be the minimum infinite horizon value. A strategy 7 is termed
infinite horizon optimal if it minimizes Cy and finite horizon optimal or T—optimal if it minimizes Cj (T)
for some T'. Let II* and II*(T') be the sets of optimal strategies for the infinite horizon and finite horizon
problems, respectively. An optimal initial policy is an initial policy included in some optimal strategy. The
sets of optimal initial policies for the infinite and finite horizon problems, respectively, are denoted II7 and

H(T).

A specific forecast horizon is a time, T, such that for T > T, O3(T) = I3, with |I}| = 1. A general
forecast horizon is a time, T', such that for T > T, II3(T") C II}. Most forecast horizons found in the literature
have been specific ones. In this paper, we seek a general forecast horizon.

3 Hausdorff Convergence

Bean and Smith [1984] derive a specific forecast horizon from the convergence of 7*(T) to 7*, assuming 7}
is unique. In this paper, we allow II] to contain more than one element and seek a general forecast horizon
from the convergence of II*(T") to II*. In this section we describe the nature of the convergence we seek for
the optimal sets of strategies. First, we present results concerning the convergence of closed sets in a general
compact space. The next definitions are adapted from Schochetman and Smith [1987b].

The space (I, p) is a compact metric space. Let C(IT) be the set of all non-empty closed (hence compact)
subsets of II. Define

d(r,P) = min p(m,¢), for 7 € I, P € C(I),

h(Q,P) = maxd(vr P), for @, P € C(I).

D(Q, P) = max(h(Q, P),h(P,Q)), for @, P € C(I).

The function D is known as the Hausdorff metric on C(II). The space (C(IT), D) is a compact metric space.

Let {P;} be a sequence in C(IT). As in Schochetman and Smith [1987b], define lim inf P; (resp. limsup P;)
to be the set of all 7 in II such that every neighborhood of 7 is eventually (resp. frequently) intersected by
P;. In general, liminf P; C limsup P;. A selection on C(II) is defined to be a mapping S : C(II) — II such
that S(P) € P for P € C(II). Let p be an arbitrary point in II, and, for P € C(II), let Sp(P) be any point

7 € P such that
p(p,m) = d(p, P).

The function S,(P) is called the nearest-point selection defined by p. If p is such that there exists a unique 7
in P as above, then p is a uniqueness point for P. In this case, 7 uniquely minimizes p(p, ¢) over all ¢ € P.
Let P! denote the unigueness set for P, i.e., the set of all uniqueness points for P. If p € P! and S, is a
nearest-point selection defined by p, then Sp(P) is uniquely determined in P.

Schochetman and Smith prove the following theorem:



Theorem 1 Let {P;} be a collection of closed sets in 11, and P be a closed set in II. Then the following are
equivalent:

(i) P =liminf; o P; = limsup;_,, Pi.

(i) limsup;_ ., P; C P and for each w € P, 3n* € P; for all i such that 7 — 7 as i — co.
(iii) P; — P in the Hausdorff metric.

(iv) Sp(B;) — Sp(P) as i — oo for all nearest-point selections Sp on C(II) defined by p € P*.

To apply Theorem 1 to our problem, set P equal to IT*, the set of infinite horizon optimal strategies, and
let P(T;) be the set of strategies that are optimal in some sense (to be defined below) for a finite horizon
T;. Assume T; — oo. In this context, limsup;_,, P(T;) is the set of algorithmically “optimal” strategies, or
“optimal” strategies which can be identified by solving finite horizon problems. Whether or not they are truly
optimal depends on the definition of P(T;). Results (i) and (ii) state that the algorithmically “optimal”
strategies are optimal and, further, each optimal strategy can be approximated by solving any sequence of
increasingly long finite horizon problems. Result (iii) states that finite horizon “optimal” sets converge to
the infinite horizon optimal set. This result is similar to one found by McKenzie [1976]. Finally, result (iv)
suggests an algorithm for choosing one out of the possibly many optimal strategies. For p € (II*)?, S, selects
a sequence of finite-horizon “optimal” strategies that converges to the corresponding infinite-horizon optimal
strategy. From (iv), we can derive a forecast horizon by using the p-metric as in Bean and Smith [1984].
Convergence in this metric implies agreement in early policies. Therefore, since a convergent sequence of
strategies eventually share the same initial policy, a forecast horizon can be identified by extending the
sequence far enough.

4 Application to Infinite Horizon Optimization

In this section we lay some groundwork for applying Theorem 1 to infinite horizon optimization. We show
that the finite horizon and infinite horizon sets of strategies involved in solving an infinite horizon problem
are closed. Next we establish that the point # = 0 is a uniqueness point for any closed set of strategies.
Finally, we demonstrate that any set of strategies can be ordered according to their distance, measured by p,
from 6. The ordering can be determined simply by examining the sequence of policies which compose each
strategy.

Definition: Let P(T) C II. We say that P(T) is a T—horizon set if membership in P(T) is determined
by data up to time T (inclusive).
Lemma 2 The sets II* and P(T), where P(T) is any T—horizon set, are closed.

Proof: II* is closed since Cy is continuous in 7 and II is compact. For II(T), note that there are a finite
number of partial strategies up to time T. If P(T) is finite then it is closed. Suppose that P(T') is
infinite and that = is a cluster point of P(T). Let {#"}3, be such that 7" € P(T) for all n and
7" — 7 in p. Then {7"}32, is Cauchy, which implies that for some N, {z", n > N} are in agreement
with one another and with 7 up to time 7. Therefore # € P(T'). Thus P(T) contains all its cluster
points. Therefore P(T') is closed. m

Lemma 3 For any closed set P CII, § = 0 is a uniqueness point for P, that is, § € P,
Proof: We will show that:

1. p(6, ) attains its minimum on P,



2. The function p(f, 7) of 7 is one-to-one.
(1) and (2) imply that p(6, ) achieves its minimum at a unique point of P. Therefore, 6 € P!.
1. We begin by showing that p(6, 7) is continuous on 1. Suppose 7™ — 7. By the triangle inequality,
p(6,m) < p(6,7") + p(x", ),
and
p(8,7™) < p(8, 7) + pl(a™, 7).
Therefore,
lo(6,7) — p(0,7")| < p(x", 7) — 0.
Hence, p(#, ) is continuous on II. Now, since P is closed and P C II, it follows that P is compact.
Therefore, p(6, ) attains its minimum on P. B

2. Suppose 7!, 72 € II and 7! # 72. Then
o(6,7) (0,7 Eﬂ"(w

Since 7! # 72, there e)clsts n such that 7} # 2. Let ng be the smallest such n. Assume without

lost of generahty that =} 0> 72 . Then 2 o -2 » 2 1. By assumption, 7l =72 > =M for n > no.
Then

p(8,7) = p(6,7%) = Y B*(mk — 72)

n=ng

>p% -M Z /" = ﬂ"°<1—-y—'8—)>05mceﬁ<

o B M+1

Hence, p(f,7) is one-to-one on II. ®

Lemmas 2 and 3 imply that we can apply Theorem 1 to the question of whether any T—horizon set,
"), converges to II*. We can use # as a uniqueness point for a nearest-point selection. The next result
rprets the selection Sy(-) as a simple tie-breaking rule, similar to one used for resolving degeneracy in

linear programming (Murty [1983]). For finite choice infinite horizon optimization problems, we can define
a lexicographic ordering of strategies, and use it to distinguish between alternate optimal strategies.

Definition: Let a = (ay,a2,...) and b = (by,bq,...). We say that a < b (a is lezicographically smaller

than b) if and only if a # b and, if ng is the smallest n such that a, # by, then ap, < by,.

Lemma 4 For any closed set P € I, Sy(P) is the lexicographic minimum element of P.

Proof: We will show that p(d,7!) < p(6, 7?) if and only if 7! < 7%, Suppose 7! < 72. Then for some ng

we have
mi =72 for n <ng and 7}, < 72,
Then
[e e}
p(6,7%) = p(6,7') = Y (w2 — m3)
n=ng



Mﬂ""'H
1-4

> - > 0 since 8 <

M+1

Hence,
7l <7 = p(8,7) < p(8, 7%).

Now suppose 7' £ 72, Either 7! = 72 or 7' » #%. If #! = 72 then p(6,7') = p(d,7%). Suppose
7! > 72 Then by the same argument as above, p(6, ') > p(f,72). Hence

xl A 72 = p(6, 7)) > p(9, 7). w

Thus the nearest-point selection defined by 6 is simply the lexicographic minimum strategy. To summa-
rize, we have:

Theorem 5 If{P(T)} is some collection of T—horizon sets, then P(T) — II* iff the lezicographic minimum
element of P(T') converges to the lezicographic minimum element of II*.

Proof: Follows from Theorem 1 and Lemma 4. &

Assuming P(T') — II*, theorem 5 suggests the following algorithm: solve increasingly long finite horizon
problems, identifying for each T', P(T') and its lexicographic minimum element. The sequence of strategies
thus generated converges to the lexicographic minimum infinite horizon optimal strategy.

5 Weakly Reachable Problems

Having established that Hausdorff convergence is equivalent to the existence of a tie-breaking algorithm,
we would like to establish conditions under which Hausdorff convergence takes place. Then we can exploit
the equivalence to derive an algorithm with a tie-breaking rule for identifying a forecast horizon and an
optimal initial policy. To establish Hausdorff convergence, we define the finite horizon sets {P(T)} and
specify assumptions on the problem’s structure. In this section, we give a rather broad definition for P(T)
and a condition under which P(T) — II*. In the following section, we discuss a more restricted class of
problems in which a tighter definition of P(T") allows a stopping rule for the tie-breaking algorithm. In that
section we also give a necesary and sufficient condition for Hausdorff convergence to take place.

We now turn from our focus on strategies to consider the dynamic programming network defined by the
problem. In modeling a problem, we may consider states to be defined by strategies. In the extreme case,
there may be a distinct state at time T for each different strategy up to that time. Often, however, more
than one strategy will reach the same state at time 7'. If there is only one possible state at time T', that is,
the state depends only on the time and not on the sequence of decisions up to that time, the state is called
a regeneration point. Alternatively, we can define strategies in terms of states. For deterministic problems,
strategies can be viewed as paths through the dynamic programming network, where a path is a sequence of
states.

The concept of reachability of states has been used to prove forecast horizon results (McKenzie [1976)],
Lasserre, Bés, and Roubellat [1984], Bean and Smith [1986]). Loosely speaking, a state is reachable if it
is not too far from an optimal path. Assume that states can be numbered so that states associated with
later decision epochs have higher numbers. Let there be a root node for the dynamic programming network,
representing the initial state. A strategy covering the infinite horizon can be represented by the infinite
sequence of states it traverses from the root node through the infinite horizon, and its discounted cost
represented as the length of that path. The following definitions are adapted from Bean and Smith [1986]: -



Definition: C(s) = the shortest distance from the root node to node s.
C'(s) = the shortest distance from node s through the infinite horizon.
C(|s) = the length of a shortest path from the root node covering the infinite horizon which passes
through node s.

The principle of optimality may be stated as:
C(ls) = C(s) + C'(s).

Definition: A sequence of states {s,}3%,, sn — 00, is weakly reachable from an optimal path if for all
€ > 0, there exists an N such that for n > N, there ezists a j(n) and an s}, such that there is a path from
3}(1:) to sh at cost ¢, with

Cllsn) < C(lsn) + e,

where 85(n) is a state on some path {s;} optimal for the infinite horizon problem, s;(n) — 00, and ¢, — 0
as n — 0.

Bean and Smith [1986] prove the following:
Theorem 6 C(s;) — C* if and only if {s;} is weakly reachable.

To apply Theorem 1 to finite choice infinite horizon optimization, we need to define a finite horizon set
of strategies for each finite horizon, T. Let S(T') be some set of dynamic programming states at time T'. Let

' (T) = {x|r is optimal for some s € S(T) at time T}.
We would like to establish result (ii) of Theorem 1. We accomplish this in two steps.

Lemma 7 limsup IT'(T') C II* if and only if all infinite horizon state paths composed of states in {S(T)}
are weakly reachable.

Proof: By definition, 7 € lim sup IT' (T) if and only if there exists {T;}32,, T; — oo, and 7 € I (T}) such
that 7* — 7. Say 7' passes through state s; at time T;. By Theorem 4.5 of Schochetman and Smith
(1987a], Cri(T;) — Cx. We have C(s;) = Cri(T;). Therefore, by Theorem 6, we have

C’,a(fl‘;) =C(si) = C* =Cx
if and only if {s;} is weakly reachable. m
Lemma 8 If S(T') is the set of all possible states at time T, then I1* C liminfﬁ*(T).

Proof: Suppose 7 £ II*. Then, by the principle of optimality, = _i_g optimal for its state at each time
T. Thus, 7 € Il (T) for all T > 0. Hence, there exists 77 € I (T) such that 77 — 7. Therefore,

7 € liminf T (T). n
We now have the following theorem.

Theorem 9 If S(T) is the set of all possible states at time T' and if all infinite horizon state paths composed
of states in x S(T) are weakly reachable, then T (T) — II*.



5.1 Capacity Expansion Illustration

In this section we give an example in which all dynamic programming states are weakly reachable. The
problem is therefore amenable to solution by the algorithm suggested by Theorem 5.

Consider the problem of optimally deploying facilities to meet growing demands for capacity. As in Bean
and Smith [1985], assume we are given a cumulative continuous demand, D(t), for capacity at time ¢. Demand
can be satisfied by any of a finite set of distinct replicable facility types indexed 1,2,...,n. Installing facility
j incurs a discrete fixed cost F; > 0 and provides X; units of capacity. Assume that X; < X3 < ... < X,
and, without loss of optimality, that F} < F3 < ... < F,;. No undercapacity is allowed, and we assume for
convenience that variable operating costs are unaffected by the choice of facilities. The problem is to choose
an optimal sequence of facilities to meet the demand for capacity over an infinite horizon.

We can assume without loss of optimality that a new facility is never deployed until all existing capacity
is exhausted. A point in time when it is necessary to add capacity is called an installation epoch. Bean and
Smith [1985] show that, for this problem, installation epochs are regeneration points. We define a dynamic
programming state to include the time, 7', and the amount of excess capacity at 7. At an installation epoch,
excess capacity equals zero.

The cumulative cost function for any strategy is a step function with a discontinuity at each installation
epoch. Assume this function is left-continuous so that the fixed cost for a facility is added just after its
installation epoch. Also note that if T; and T are two installation epochs (possibly for different strategies)
and T} < Ty, then the optimal cost for T} is less than or equal to the optimal cost for T;. Otherwise, the
cumulative demand up to T; could be satisfied by the decision sequence leading up to T5 at lower cost.
Finally, assume D(t) is continuous, nonnegative, and eventually bounded by an exponential function with
rate g. Bean and Smith [1985] prove that if costs are discounted at a rate » > g, then infinite horizon
discounted costs are finite.

Lemma 10 If states are defined as (T, excess capacity at T'), then all paths are weakly reachable.

Proof: Choose a state path {s,}S%;. Let N be such that for n > N, C'(ss) < € (N exists for interest
rates r > g). Then C'(s) < ¢ for all s at times beyond T' where T is the time associated with s,,. Let
tn be the last installation epoch leading to s, and t,41 be the first installation epoch after s, on a
strategy that goes through s,. Given some optimal path {s}}, let

j(n) = max{le,;, < tn, 5} an installation epoch}

sp, = min{s,|Tys < tny1, s, an installation epoch.}

(See Figure 1). Then
¢n = c08t(8](n), 8n) = 0

by the convergence of f. Hence
C(lsn) = C(Is) = C(sn) = C(sp) + C'(sa) = C'(sp).
But ~ ) B } _
C(sn) — C(s},) < 0 since C(s5) < C(tn41) < C(sh,),

and ) )
C'(sn) — C'(s,) < € by the choice of N.

Therefore {s,} is weakly reachable. m
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Figure 1. Weak Reachability in Capacity Expansion Problems.

Bean and Smith [1985] present an algorithm for identifying a specific forecast horizon for this problem
assuming nondegeneracy. By Theorem 5 and Lemma 10, we have an approach for identifying a general fore-
cast horizon even in the presence of more than one optimal initial policy. In this instance, weak reachability
follows from the regeneration point properties of optimal strategies. We first had to establish, by insight into
the problem’s structure, that it is sufficient to consider only strategies in which capacity is added only when
all existing capacity is used up. A weak reachability result could be established similarly in a Wagner-Whitin
type of production planning problem, in which production occurs only when inventory is zero. We expect
that proving weak reachability for other problems will require some measure of insight into special problem
characteristics.

6 Regeneration Point Problems

In this section we address Hausdorff convergence for problems with regeneration point structure. We give
an algorithm with a stopping rule which is guaranteed to settle on an infinite horizon optimal initial policy
in finite time. This is the first implementable algorithm guaranteed to converge in finite time without the
restriction that 77 be unique. Next we present a necessary and sufficient condition for Hausdorff convergence
to occur in regeneration point problems. This condition is a type of reachability stronger than those defined
by Bean and Smith [1986] and McKenzie [1976]. Finally, we illustrate the reachability condition by means
of two examples. The knapsack problem solved by Shapiro and Wagner [1967] satisfies the reachability
condition. The Shapiro-Wagner algorithm is actually a special case of our tie-breaking algorithm. We also
present an example of capacity expansion under exponential demand which has regeneration points but fails
to pass the reachability test.

Recall that a decision epoch is a regeneration point if the optimal strategy beyond T is independent of
the sequence of policies up to time T'. A problem has regeneration point structure, or is a regeneration point
problem, if the decision epochs for optimal policies are regeneration points. We can draw two conclusions
which will be useful for proving results in this section. First, suppose T is a regeneration point for 7* € II*.
By the principle of optimality, 7* is optimal to its state at time T" and optimal from its state at time T
through the infinite horizon. It follows that (i) any strategy truncation ending at T which is T—optimal can



be continued by 7* beyond T'. Otherwise, since optimality implies feasibility, the optimal strategy beyond
T depends on the policies before T. Also, (i) #* € II*(T). If not, there is a less costly sequence of policies
up to time T which can be continued by 7* beyond T'. This strategy has lower cost than =*.

6.1

Tie-Breaking Algorithm

For regeneration point problems, we define the finite horizon set P(T) for each T' to be II*(T), the set of
T—optimal strategies. Assume that II*(T") — II* in the Hausdorff metric. The following algorithm can be
used to solve any regeneration point problem. Let 7 be the maximum duration of any policy.

Algorithm

1.
2.

Let {T}5%, be the sequence composed of all decision epochs for all strategies. Set n — 1.

Solve the T,,—horizon problem to obtain [Sp(II*(7}));], the initial policy of the lexico minimum
T,—optimal strategy.

If [So(IT*(T)))1 = [Se(IT*(T%))]s for all k such that T,, — 7 < T < Ty, then stop. Otherwise, set
n «—n+ 1 and go to step 2.

Theorem 11 If the algorithm is applied to a regeneration point problem then

(1) The algorithm will stop in finite time.
(ii) When the algorithm stops, [Se(II*(T,)))1 = [Se(II*)];.

Thus, the algorithm selects an optimal initial policy in finite time.

Proof (i): Since IT*(T') — II*, we know that S¢(IT*(T')) — Sy(II*). Hence there exists T such that for

T > T, p(Se(II*(T)), Sp(11*)) < B. Therefore, for T > T*, [Se(I*(T))]1 = [Se(II*)];.
(i1): Suppose not, i.e., suppose the algorithm stops at the finite horizon T}, and
[Se(II*(Tn)))1 = [Se(IT* (T )1 for al T, — 7 < Ti < T,

but
[Se(I1*)]1 # [Se(IT*(Tn)))s.-

For any 7* € II*, 7* has a decision epoch in [T, — 7,7,]. Call it T'. Now, II}(T”) C II} by the
regeneration point property. Then [Sp(II*(T"))}y € I}. Hence [Sp(II*(Tn))1 € II}. Then, since
[Se(T1")]1 # [So(I*(T0)))1, we have

[Se(T)]1 < [Se(IL*(Tn))s-

But Sg(II*) has a decision epoch T” € [T, — 7,T,]. Then Sp(II*) € I*(T"). Therefore, Se(I*) 4
Se(IT*(T")). Hence,
[So(II*)]y A& [So(I*(T"))]1 = [So(1*(T))]:.-

This is a contradiction. ®

10



6.2 Necessary and Sufficient Condition for Hausdorff Convergence

Let LII* be the set of truncations of strategies in II* to the first L policies. Let LII*(T) be the analogous
set for II*(T). Since pII* and pII*(T) are finite, they are compact. To prove the main result in this section,
we need the following lemma.

Lemma 12 II* C liminf IT*(T") <= for every L there exists Tt such that for T > Ty, II* C II*(T).

Proof: Suppose IT* C liminf IT*(T'). Then for each 7 € II*, for each T, there exists 77 € II*(T) such that
7T — 7. Choose L and consider the truncation 7 of # € II*. Since 77 — =, there exists T, such
that for T > Ty, 7% = 7. Thus p7 € LII*(T). But 7 was an arbitrary element of II*.

Now suppose II* € hmmf II*(T). Then for some 7 € II*, for some € > 0, for every T, there exists
T' > T such that p(r,7T") > ¢ for each 7rT € II*(T"). Then for some K, for every T, there exists
T' > T such that for every 77 € I*(T"), #T' # =, for some n < K. In other words, for some K, for
every T, there exists 7" > T such that g ¢ kII*(T"). The result holds by contraposition. &

Our necessary and sufficient condition stipulates that for any pair of infinite horizon optimal strategies,
there exists, indefinitely far into the future, a sequence of policies that connect the two strategies optimally.
That is, one can follow the first strategy up to an arbitrary decision epoch, then implement a sequence of
policies to arrive with optimal cost at a decision of the second strategy. A rigorous definition follows. The
terminology “T" on #” means T is a decision epoch for strategy .

Deﬁnition A strategy 7r is optimally connected to a strategy 7 if for any T on 7', there exists
T >T on 7! and S on 7%, S > T, such that there exists a sequence of policies (#1,%2,...,7y) with
C’,,a(S) =Cn(T)+ {dzscounted cost of (71,7a,..., ) when implemented at time T'}, where (%1, %2,...,7p)
continues at least up to S when implemented at T". :

We assume that, in the event that (#1,#2,...,#,) continue beyond S, the policies of 72 which would
be implemented starting at S may still be implemented at S. An example is capacity expansion (Bean and
Smith [1985]), where (#;, %9, ..., #,) may install more capacity than is actually needed up to time S. In that
case, we assume the excess capacity is ignored, and a new facility can be installed at time S. We say that
all strategies are optimally connected if every strategy is optimally connected to every other. The following
is a statement of our necessary and sufficient condition for Hausdorff convergence.

Theorem 13 For a regeneration point problem, I1*(T') — II* if and only if all strategies in II* are optimally
connected.

Proof: As shown by Schochetman and Smith [1987b], limsup II*(T") C II*. We will show that optimal
connectedness is necessary and sufficient for II* C liminf H*(T)
Suppose II* C liminf II*(T'). Then by Lemma 12, for any 7* € II* and any L, r7* € II*(T) for all
T sufficiently large. In particular, there exists Tf such that for any # € II*, (II* € LI* (T;) where
T; is a decision epoch for #, T} > T7. Now suppose that not all strategles are optimally connected.
Then for some 7* and # € II*, for some T on =*, for every TV > T on 7* and every S > T on 7,
C#(S) < Cr+(T")+ {cost of any sequence of pohc1es startmg at 7" and contlnumg at least up to S.}
Suppose T is the (m + 1)® decision epoch. Then n,7* ¢ II* (T;) where T} is a decision epoch for #,
T; > T. This is a contradiction.

Now suppose every optimal strategy is optimally connected. We will show that for every L, there exists
Tt such that for T > T, (II* C I*(T). Then I*(T) — II* by Lemma 12.

Suppose not. Then for some L, there exists {T£}32,, Ti — oo, such that ([O* ¢ I*(TF), ie., for
each i, there exists ;7' € LII* such that 7' ¢ II*(TF). By compactness, there exists a convergent
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subsequence of { L7r‘}, call it { L7}, such that tm — pm. Thatis, 7/ = rr for j sufficiently
large and- pr € II*. Let # be some continuation of ;7 which is contained in II*.
For each j choose an element of H*(TJ-L), call it #7. There exists a convergent subsequence {#*} of

{#7} such that #* — # € I*. We have 4% = r# for k sufficiently large. Summarizing, we have,
cie (I* pig [ITF), V)
and
i€ ', pre [I*(TF), Vk,
where {T£} C {TJL }. There exists some Ty, on # such that L policies have been implemented by #
before T7,. By assumption, there exists T on #, T > Tr,andTon#, T > T', and a sequence of policies

(73,75, ...,7 ) which, when implemented at 7", extend at least up to T and satisfy Cx(T) = Ca(T")+ )+
{ cost of (7}, 73,...,7;) when implemented at T' }. We can form a new strategy: follow 7 up to T,
then (7},73,...,7%) between 7" and T then the policies of # from 7 up to

T = min{TE |k such that T¢ > T}.

This strategy is optimal for T. Then p# € pII*(T), which is a contradiction. m

6.3 Examples

The knapsack problem solved by Shapiro and Wagner [1967] is one example in which a forecast horizon
exists regardless of degeneracy. Their paper gives an algorithm together with a stopping rule for solving
infinite horizon problems which is guaranteed to be satisfied in finite time. They make no assumption
concerning the number of optimal initial policies. In fact, the knapsack problem is an example of Hausdorff
convergence in a regeneration point problem and the Shapiro-Wagner algorithm is a special case of our
tie-breaking algorithm. We can show, by extending the results of Shapiro and Wagner, that the knapsack
problem satisfies the necessary and sufficient condition for Hausdorff convergence. Therefore, the tie-breaking
algorithm is guaranteed to converge.

First, we define the problem. Some of the notation and conventions from Shapiro and Wagner [1967] are
altered to harmonize with the rest of this paper. In particular, we reverse the policy indexing order. At
any point in time, the same set of n policies, {u1, u1,...,un}, are available. Policy j incurs cost F; and has
duration 7;. Expressed as a dynamic programming recursion, the finite horizon problem is

- . o -
G(T)= {j=112!1‘1'¥3'71‘ST} Fj+a"G(T - 1)),

where a = e™" and G(0) = 0. Let

TJ‘,
The infinite horizon problem can be expressed as

gE(l—a)G—J min ;.

Any policy minimizing 7; is called a turnpike policy. Then II* is the set of turnpike strategies, or the set
of all possible sequences of turnpike policies. Let {uj,us,...,u;} be the set of turnpike policies. Assume
policies are indexed in order of increasing v;. In the event of a tie, the lowest index is given to the policy
with the smallest 7j. Thus, u; is the turnpike policy with the smallest duration.

12



As in Shapiro and Wagner [1967], let a; and b; be relatively prime positive integers such that
ajt; = bjmy, for j=1,2,...,¢.
Let M* be the smallest integer such that

B gtemy ¢ (1 op)

1—-an 1—am
for all L > M*, where k* is such that

Fre F; F; 13

1—am —m}n{l—a"i 1-a% > l—am |
Let .
N* = Z(a,- - l)Tj
j=2

and

t

*— . .

L* = ZGJTJ‘
j=2

Shapiro and Wagner show that for T > M* + N*, there exists a strategy = in II*(T') such that m = u;.
Therefore, for any T' > M* + N*, there exists a strategy = € [I*(T') such that m; = u; up to some epoch in
T -M*-N*T—M*-N*"+m).

Lemma 14 In the knapsack problem, all infinite horizon optimal strategies are optimally connected.

Proof: Consider any 7' and 72 in II*. We will show that 7! and 7% are optimally connected. Choose some
decision epoch T for 7!, Up to time T, 7! includes NY, replications of policy uj, for j =1,...,t. Let

m = min{i > 0, integer |ia; > N, Vj € {1,...,t}}.

Let S be a decision epoch for 72, S > M* + N* + mL*. Then there exists a strategy # € II*(S) with
#; = up up to some S’ € [S— M* — N*,§ — M* — N* + ;). We have S’ > mL*. In strategy #, we
can replace mb; repliqations of u; by ma; replications of u; with no difference in cost. In so doing,
we include at least N} replications of uj, j = 1,2,...,t. Rearrange the initial policies so that they
agree with 7! up to time T'. The resulting strategy is optimal for S and has a decision epoch at T'. Its
policies between T and S form an optimal connecting path between 7! and 2. Therefore 7! and =?
are optimally connected. m

The Shapiro-Wagner algorithm solves increasingly long finite horizon problems, identifying an optimal
initial policy for each horizon. If two policies tie, the one with the smaller index is chosen. The algorithm
terminates at T if the optimal initial policy is u; for all T € [Ts — 7, Ts] where 7 = max;=1 2, . 7j. Thus
their algorithm is identical to our tie-breaking algorithm.

One instance of the knapsack problem is capacity expansion with linear demand. The policies represent
available facilities to augment capacity. The problem is to choose an optimal sequence of capacity additions,
subject to the constraint that cumulative demand for capacity up to time ¢, D(t) = dt, be satisfied for all ¢.
Facility j incurs a fixed cost F; and adds X; = 7;d units of capacity.

13



An extension of this problem is the case where D(t) = Doet, as in Smith [1979]. The extension preserves
the regeneration point property. In the case of exponential demand, however, Hausdorff convergence is not
guaranteed. In the following example, Hausdorff convergence fails to take place.

Nonlinear D(t) implies that policy durations are nonstationary. Smith shows that for exponential demand,

is the duration of policy j when installed at time ¢. Also, the cost of installing facility j forever starting at

time ¢ is - /
_ -t nX; e
Ci(t)=e ’Z‘BF,- (HW) )

where 7 is the interest rate used to discount costs. Let

rF;
%0 = =

This is a nonstationary version of the v; defined by Shapiro and Wagner [1967).

Example: Let facility 1 add capacity X; = 1 and incur fixed cost F; = 2. Facility 2 adds capacity
X5 & 0.1052 and incurs fixed cost Fy &~ 0.3314. The values of X, and F, are designed so that m(0) = 1
and Fy = C1(0) — Cy(1). Let 7! = (1,1,1,...) be the strategy of installing facility 1 indefinitely. Let
72 =(2,1,1,1,...) be the strategy of installing facility 2 once, then facility 1 indefinitely. Then 7! and =*
have the same infinite horizon discounted cost. See Figure 2. Also, one can verify that y2(72(0)) > v1(72(0)).
By Theorem 3 of Smith [1979], it follows that 7' and 7% are superior to all other strategies. Note that
decision epochs for 7! and 72 never coincide: decision epochs for 7! occur when D(t) = Xpn for some
integer n and those for 7% occur when D(t) = 0 or X; + Xom for some integer m. We claim that each
strategy is optimal to its own decision epochs and suboptimal to the other strategy’s decision epochs. It
follows that limsupp_,., I*(T) = {r!,7?} = II* but liminfr_co I*(T) = 0. Therefore, by Theorem 1,
II*(T) A II*.
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Capacity
D(t)

ﬂ/

T

1

Time

Figure 2. Example of Capacity Expansion under Exponential
Demand with no Hausdorff Convergence.

Proof of Claim: At a decision epoch T for 7!, D(T) = X,k for some k. Since X, < X, the cumulative
capacity installed by 72 up to time T must be at least X5 + X k. Let T} be the installation epoch for
the (n + 1) facility of 7!, Then

k-1
Cr(T) =) Fre™ ™
n=0

k-1 -r/g
X
=R T (1 + —"—>

k-1 -r/g
Z nX1
n=0 Do

and

- k-1 nX; -r/g
Crs(T) = Fa+ Fre™™ Y (1+ Doeg)

n=0

k-1 -r/g
nXy
=F2+F1§ (69+E>

n=0

By algebra, Cr1(T) < Cra(T).
Similarly, up to a decision epoch S for 72, 7! has installed facility k + 1 replications of facility 1 and

15



72 has installed one replication of facility 2 and k of facility 1. Then

. k -rlg
C,,l(S) =R Z (1 + ﬂ)

and

From algebra, Cy1(S) > Cra(S). W

7 Conclusions

In this paper we have abandoned the common assumption of a unique optimal initial policy in infinite
horizon optimization. Instead, we have addressed the question of whether the set of finite horizon optimal
strategies converges to the set of infinite horizon optimal strategies as the horizon is lengthened. We presented
two alternate reachability conditions which are sufficient for set convergence. The second condition, for
regeneration point problems, is also necessary for set convergence. We have shown that convergence of the
optimal sets leads to a simple tie-breaking algorithm, and have given a stopping rule which is guaranteed
to be satisfied in finite time. The Shapiro-Wagner algorithm for solving knapsack problems (Shapiro and
Wagner [1967]) is a special case of our tie-breaking algorithm.
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