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Abstract

In this paper we present a variant of the affine scaling method. This variant is
defined by choosing a real r > 0.5, and is similar to the power barrier variant of the
primal-dual homotopy methods, considered by den Hertog, Roos and Tarlaky and
Sheu and Fang.

Here we analyse the variants f(;r r > 1. The analysis for 0.50 < r < 1 is similar,
and can be readily carried out with minor modifications. Under the non-degeneracy
assumption, we show that the variant converges for any choice of the step size a. To
analyse the convergence without the non-degeneracy assumption we define a power
center of a polytope. We use the connection of the computation of the power cen-
ter by Newton’s method and the steps of the variant, to generalize the 2/3rd result
of Tsuchiya and Muramatsu. We show that with a constant step size a such that
H—_%W < Fﬁ-’i; and with a variable asymptotic step size o uniformly bounded away
from 5;2;1—, the primal sequence converges to the relative interior of the optimal primal
face, and the dual sequence converges to the power center of the optimal dual face.

We also present an accelerated version of the variant. We show that the two step
superlinear convergence rate of the variant is 1+ -1, while the three step convergence

rate is 1 + T%fg Using the measure of Ostrowski, we note that the three step method



for r = 4 is more efficient than the two step quadratically convergent method, which

is the limit of the two step method as r approaches infinity.

Key words: Linear Programming, affine scaling methods, interior point methods,
power barrier method, power center, merit function, superlinear convergence, efficient ac-

celeration.

Abbreviated title: Variants of affine scaling method



1 Introduction

We consider here the linear programming problem:

minimize 'z
Az = b (1)
z > 0
with its dual
maximize bTy
ATy + s = b (2)
s 20

where A is a m x n matrix and b and c are appropriate vectors. We also assume that
Assumption 1 The primal linear program has an interior solution.

Assumption 2 The objective function is not constant on the primal feasible region.
Assumption 3 The matriz A has rank m.

In this paper we consider the application of the affine scaling method and its variants
for solving this problem. The first ( the primal method ) was proposed by Dikin [6] in
1967, who subsequently proved its convergence under the non-degeneracy assumption, Dikin
[7]. This method was rediscovered, Barnes [2], Karmarkar and Ramakrishna [12]; and,
several of its variants like the dual and primal-dual, Vanderbei, Meketon and Freedman
[25], were generated in the process of implementing the projective transformation method
of Karmarkar [11]. The convergence of this method has been shown when the step size
a < 2, Tsuchiya and Muramatsu [24], and simpler proofs of this result have been developed
by Monterio, Tsuchiya and Wang [13], and Saigal [16]. In addition accelerated versions of
this method, which attain superlinear convergence, have also been developed by Tsuchiya
and Monterio [23] and Saigal [17]. In the convergence rate analysis, a connection between the
iterates of Newton’s method applied to computing an analytic center of certain polyhedron
is exploited. A local potential function, which is the objective function of the analytic

center problem, is investigated in the proof of convergence. And it is shown that the primal



sequence converges to the relative interior of the optimal primal face while the dual sequence
to the analytic center of the optimal dual face.
For each r > 0.5, we will consider here the variant based on the following approximating
problem:
minimize ¢’z
Az b (3)
X7 -9 < 1

fl

where 2 > 0 is a given interior point of the linear program (1). When r = 1, the above
approximating problem generates the ( primal ) affine scaling method. The variant thus
generated by choosing r > 0.5 is analogous to the power barrier variant of the primal-dual
homotopy ( barrier ) method of den Hertog, Roos and Terlaky [5] and Sheu and Fang [19).
Under the non-degeneracy assumption on the primal, we prove the convergence of the primal
and the dual sequences to respective optimal solutions for any step size o < 1. To prove
convergence under degeneracy, we introduce the concept of the power center of a polytope.
We define two polytopes, and their power centers are defined by the maximization of concave
functions. These functions are related to each other in the same manner as the “dual norms”
are. By using the connection of the iterates of Newton’s method applied to computing the
power center of the polytope associated with the primal problem, we prove two results. In
the first result we consider the case of constant step size, and prove that if the step size a
satisfies ﬁ; < 51'—2—_1_ , the primal sequence converges to the relative interior of the primal
optimal face, and the dual to the power center of the optimal dual face. In the second result
, which gives the same convergence behavior of the sequences as the first, we consider the
case of the variable step size, and implement the step size oy at iteration k. We choose the

sequence {ax} such that it is, asymptotically defined by {2 < 52=; and the sequence is

required to be uniformly bounded away from %H, which is 2/3 for r = 1. Our result can
thus be considered as a generalization of the 2/3rd result of Tsuchiya and Muramatsu [24].
In both these cases, the proof is obtained by considering a merit function ( which is the
objective function of the center problem related to the primal ), which plays the same role
as the local potential function used in the analysis of the affine scaling method, Tsuchiya

[21], Dikin [9] and Tsuchiya and Muramatsu [24].



By exploiting the relationship between the Newton and the affine iterates, we present
here an accelerated version of the variant, which generalizes the accelerated version of Saigal
[17]. We prove its convergence, and show that the primal sequence converges to the relative
interior of the optimal primal face while the dual sequence converges to the power center
of the optimal dual face. In addition, for each r > 1, we obtain the two-step superlinear
convergence rate of 1 + -X=; and the three-step rate of 1 + T3+—’2 Using the measure of
Ostrowski [15], we investigate the efficiency of each of these methods, and note that for each
r > 1, the three-step version is more efficient than the two step version.

In this paper we restrict our attention to the values of r > 1, and note that with
minor modifications in several formulae as well as the objective functions of the power
center problems, our analysis carries over to the values of 0.50 < r < 1 as well. Besides
the introduction, this paper has 15 other sections. In section 2 we present the variant,
in section 3 we prove the convergence of the primal sequence, in section 4 we prove some
properties of the dual and the primal-dual sequences. In section 5, we prove the convergence
of the sequences to optimality with the primal non-degeneracy assumption. In section 6 we
introduce some translated sequences and prove some of their important properties. In section
7 we introduce the two power centers, and establish a connection between them. In section
8 we investigate the properties of Newton’s method when computing the power center, and
in section 9 we re-interpret the affine scaling steps in the same polytope. In section 10 we
relate the Newton and affine iterates. In section 11 we introduce the merit function and
prove the convergence to optimality without the primal non-degeneracy assumption and
with a constant step size, while in section 12, we prove the same result with a variable
step size. In section 13 we present the accelerated variant, and prove its convergence. In
section 14 we derive the convergence rate of the accelerated variant while in section 15 we

investigate its efficiency. Finally, we end the paper with concluding remarks in section 16.

2 The Variant

We now present the variant generated when 7 > 0.5.

Step 0 Let z° be an interior point solution, 0 < a < 1, and let k£ = 0.



Step 1 Tentative Solution to the Dual:
= (AXT AT AXE C
Step 2 Tentative Dual Slack:
st =c— ATyt
If ¥ < 0 then STOP. The solution is unbounded.

Step 3 Min-Ratio test:

XML

0 = min{-———:s; >0}
(z§)2r-13§ j
X"l
(X 'sk)
where ¢(t) = max;t;. If 6y =1set a = 1.
Step 4 Next Interior Point:
F = 2k _ 08 Xi's*
=T = U1
1X ¥l

Step 5 Iterative Step: If z§*! = 0 for some j, then STOP. z**! is an optimal solution.
Otherwise set £k = k + 1 and go to step 1.

Let the above variant generate the infinite sequence {z*}, and let the sequence {cTz¥}
be bounded below. In the contrary case, we can conclude that the dual of the linear program

(1) is not feasible. We can then prove:

Theorem 1 The sequence {cz*} is monotone strictly decreasing; and thus converges, say

*

to c*.

Proof: From Step 4, we note that

cT X7 sk
1XEm sk

As can be readily established from the definitions, ¥ > 0 and ) > 1. Also,

Tkt = Tk — of,

CTX:rSk — CTXZr(C_ATyk)
= TXI(I - X[AT(AXZ AT) 1 AXT)XCe
= [|PXic|?



where P, = I — X[ AT(AX} AT)~' AX] is the projection matrix into the null space N'(AX])
of the matrix AX}y. Now, by a simple calculation, we see that || P.X]c|| = || X}s*| and thus

we have
| Xis*|

T
———— 4
XS @

Tt = Tk — af,

From Assumption (2) the subtracted term in the above formula is non-zero, and we are

done since every bounded monotone sequence converges. M

3 Primal Sequence

In this section we consider some important properties of the primal sequence {z*} and also
establish its convergence.
Consider the approximating problem defined, for k£ = 0, by (3). Setting p = z¥F — z, we

obtain the equivalent problem:

maximize c’p
Ap 0 (5)
IXcpll < 1L

The following result is stated without proof, which can be found in the cited reference.

Theorem 2 Let p* solve the approzimating problem (5). There is a p > 0 such that for
eachk=1,2,---,

T > pllp®||

Proof: See Corollary 6, Saigal [16]. H

We can now prove the convergence of the primal sequence.
Theorem 3 Let {cTz*} be bounded below. Then the sequence {z*} converges, say, to z*.

Proof: It is readily seen that the solution to the approximating problem (5) is

pk — lersk
| XEs* |l




For each k, define v, > 0 such that zF*! — z*¥ = v,p*. From Theorem 2 we obtain the

relation
T — T/ k k+1 = k = k
00> 2l =t = Y (et ) 2 Yl = Y o+ - 24,

From the above relation, we see that the sequence {z*} is a Cauchy sequence, and thus
converges to some vector z*, and we are done. W

The following simple corollary is a consequence of Theorem 2.

Corollary 4 There is a p > 0 such that for allk =1,2,---

cTzk -

—> .
Iz —o] =

Proof: Let k be arbitrary. The following relation is a consequence of Theorem 2 and the
triangular inequality:
w . . w . .
cT:Ek —c = ZCT(JJH] - xlc+y+1) > pz ”wk+J+1 _ Ik+]” > p“zk _ I*H
j=0 j=0
and we are done. W

Given that the sequence {z*} converges to z*, define

B
N

{j:z; >0}
{j:z; =0}

4 Dual and Primal-Dual Sequences

In this section we consider the dual sequences {y*} and {s*} and the primal-dual sequence
{Xks*}. We now investigate their properties.

The following result is well known and its proof can be found in the cited reference.
Theorem 5 The sequences {y*} and {s*} are bounded.

Proof: Follows from Step 1 and Theorem 4 of Saigal [16]. W

Now consider the sequence {X;s*}. We now prove that it converges to 0.

Theorem 6 X;s* — 0.



Proof: From Theorem 1, {cTz*} converges, and thus from relation (4), we note that

1XEs®]?

ab, ————
IXTTsk|

— 0,

where & > 0 and 6; > 1. Since {z*} converges and {y*} and {s*} are bounded, the

denominator of the above expression is bounded, thus
Xist — 0.

But this is only possible if X;s* — 0, and we are done. W

5 Convergence of Dual Sequence

We now show that if the primal is non-degenerate, the dual sequences also converge, and

the limit points are optimal for the respective problems. We do this in the next theorem.

Theorem 7 Let the Assumptions (1) - (8) hold, and let the primal be non-degenerate. Then
1. zF — ¥,
2. yF — v,
3. sF — s*,

where =* is an optimal solution to the primal linear program, (y*,s*) is an optimal solution

to the dual linear program.

Proof: Using Theorem 5, let (3*,s*) be a cluster point of the sequence {(y*,s*)}. From
Theorem 6, sz = 0. Thus

ALy = cp.
From the non-degeneracy assumption, Ap has full row rank m, and thus the above system
has at most one solution. But each cluster point y* of {y*} solves this system, thus the

sequence has only one cluster point y*, and so

yk__)y*



and thus s* — s*. Now assume that for some j € N, s; < 0. Then there is an L > 1 such
that for all k > L, s¥ < 0. Thus, from Step 4

s

o(Xi ™ 'sk)

k+1 k

CEJ = zj—a

k
> I

and thus zf # 0, and we have a contradiction. Thus s* > 0 and so (y*, s*) is dual feasible,

and the theorem follows from the complementary slackness theorem. W

6 More on Sequences

Our aim is to investigate the convergence without the non-degeneracy assumption, as well
as the convergence rate of the sequences generated by the variants, and, if possible, to
accelerate the asymptotic convergence rate by controlling the step size selection, as per
Tsuchiya and Monterio [23] and Saigal [17]. For this purpose we derive some important

properties of the sequences generated by the variant. Consider the translated sequences:

'Uk . _zk_gp*
= Tk
~ k
® = (7
k X7 sk
u = "
(cT'zh—c*)r
pk — XETSk.

The following are simple consequences of the results already established.
Proposition 8 The sequence {v*} is bounded.
Proof: Follows from Corollary 4. W
Proposition 9 The sequence {u%} is bounded.

Proof: Follows from definition of u¥, and Corollary 4. W
Proposition 10 For every k =1,2,---, Ap* = 0.

Proof: Readily follows by substitution of definitions. W



Given B and N as defined by relations (6), we define the set of all possible dual estimates

that are complementary to z* as the polyhedron:
D={(y,8): ATy+s=c,s5=0} ~ (8)
We can then prove:
Proposition 11 D # {).

Proof From Theorem 5, the sequences {y*} and {s*} are bounded, thus on some common
subsequence K, ¥ — y* and s — s*. Using Theorem 6, it is readily established that
(v*,s*)€ED. N

Consider (g,3) € D. We can show that
Theorem 12 For eachk=1,2,---

1. Tk — ¢t = 342k,

2. There are constants a > 0 and 8 > 0 such that

oz(cT:z:’c -c*) < ||fo|| < ﬂ(cT:v" -c%).

8. k=1
Proof Part 1 of the theorem follows from the following identity:
Tk — ¢t = 57 (ak — z*) = 55,2%. (9)

The upper bound of Part 2 follows from Corollary 4, and the lower bound from Part 1. Part
3 readily follows from the identity (9). ®

As a consequence of Theorem 12, we can define the polyhedron
P= {’U : Ayvy + Agug =0, 51&1)1\{ =1l,oxy 2 0} (10)

and we note that the sequence {v*} C P.

We are now ready to prove two important results.

Proposition 13 There ezist p; > 0 and py > 0 such that for every k=1,2,. -

10



L[| XEs®] < pig(a)”
2. |Ip5 1l < P20z R) 1 X Wil

Proof: Using the argument of the proof of Theorem 1 and Proposition 10 , for (7, 3) € D,

we obtain:

IXesk? = Tp*
= (ATg+3)Tp*
= Syl
-r _k

= (Xl:,NgN)T(XIc NPN)
15wl ¢(2h) | Xk nsil

IN

and the Part 1 follows with p; = ||3y||. To see Part 2, note that from Theorem 2 for some

p>0, o5l < lIp*]l < pc™p* = 33wk < pllswllo(z%)" | Xk sk and the result follows from
Part 1 with po =pp; B

Proposition 14 There are constants py > 0, po > 0 and L > 1 such that for all k > L

L |lufyll < pr(cTz® = e) iy
2. |Iskll < pa(cTz® — ).

Proof: Since z¥ — z* and z} > 0, there is a p > 0 and an L > 1 such that for all k > L,
| Xe5ll < p. Let k > L. Part 1 follows from Corollary 4, Proposition 13 and

o < 1Xeallzb
Bl = (chk _ c*)r'

To see part 2, not that

“ kBSB” (C zk _ c*)r — “X

Ishl < Il ol — ey

Substituting Part 1, our result follows from Proposition 9. H

11



7 Two Power Centers and their Relation

In this section we consider the situation when r > 1, and the polytopes P and DN {s : sy >
0} defined by (10) and (8) respectively. We define the power center of P as the solution to

the following concave maximization problem:

. -2(r-1)
maximize — 3 jenV;

Ayvoy +Agvg = 0

L un =1 ()
UN > 0
where the K.K.T. conditions defining the center are:
Ar—=1)Vy® Ve—ATz 05y = 0 (12)
~ATz =0 (13)
Ayvy +Agvg = 0 (14)
sooy = L (15)

We also define the power center of DN {s : sy > 0} as the solution to the concave

maximization problem:
2(r-1

Syt 2r-1
maximize  jen S;

Afy+sy = cn (16)

Agy = (B

SN > 0

where the K.K.T. conditions defining the center are:
2(r—1) -5

v Sy te—uy = 0 (17)
Ayuy + Agug = 0 (18)
AY(y-9)+(sn—3ny) = 0 (19)
ARy-9) = 0 (20)

where (7, 5) is an arbitrary element of D, with 55 = 0.

There is an intimate relationship between these two centers, and we explore this in the

next theorem.

12



Theorem 15 (v, z*,0*) is a center of P if and only if (s*,u*,y*) is a center of DN {s:

sy > 0}, and
2r—1__
f* K»I$T+1 '

Sy =

Proof: Let (v*, 2*,0*) be the solution to system (12) - (15). Then it can be verified that

2r -1

SN = T AN
S
y y - 9*
2(7”-*1) 27‘—1_1 X
= 2r—
U 27"—1( g~ ) v

will solve the system (17) - (20).
Now let the center of DN {s: sy > 0} exist and the system (17) - (20) have the solution

(s*,u*,y*). Then it can be verified that the transformation

-1
vy = eTS*f}(,‘le
2r—1
b = 2y(r=1)
0 = 2(r—1)y"!
z = —b(y" -79)
v = fu*

will solve the system (12) - (15). Here we have used 3uy = shuy, which is readily
N N

established using equations (18) - (20). ™

8 Newton’s Method and Power Center of P

In the previous section we have seen that the power center of P is determined by solving
the system of equations (12) - (15). This is a non-linear system of equations, to which we
can apply Newton’s method to find its zero. The purpose of this section is to investigate
this application.

Given v,y, 0, with v € P, the Newton direction Av, Ay, Af is given by:
—2(r=1)(2r - YVyTAv - AL Ay — M85y = —2(r — 1)Vy¥ e+ ATy + 05y (21)

13



—AgAy = Agy (22)

AnAuy + AgAvg = 0 (23)

Consider the change of variables:

Q — Yty

2(r-1)

g —  8+A8

9 - 2(r-1) (25)
Avg = —1)Avg

(2r
wy = (2r—1)Vy Auy.

Substituting this change in the system (21) - (24), we can derive the following equivalent

system with Ay = AyV} and sy = V33w,

wy + ARG+ snd = Vg Ve (26)
~Agg = 0 (27)
Aywy + AgAvly = 0 (28)
Fwy = 0 (29)

We can then prove the following result:

Theorem 16 Upto a choice of Avlg, the solution to the system (26) - (29) is unique. Also,
1. eTVIQ(T—l)wN = whwy.
2. |wn|? < TV Ve,

Proof: The uniqueness follows from the fact that when the columns of the matrix Ap are
linearly independent, the system has a unique solution. Otherwise, it is readily confirmed
that a unique solution can be found by replacing Ag with a submatrix spanning the column
space R(AL) of Ap. This only changes the value of Avj.

Multiplying equation (26) by w% we obtain

T

AT ~ A A —-(r-1
whwy + whALG + whsnd = w%VN( Je.

14



The second and the third terms of left hand side of the above expression, from equations (27)
- (29), are readily seen as zero, and we have Part 1. To see Part 2, consider the optimization

problem:

maximize =7z

L ~(r-1
whose solution is z = V" Ve, ®

By an appropriate choice of a submatrix of Ag, we can guarantee that the system (26)
- (29) is defined by a non-singular matrix, for every v > 0. In that case, the following is a
well known result relating to the rate and the convergence of Newton's method, which we
state without proof.

Assume that the sequence {v*} in P is converging to the power center v*. Then the
following can be proved about the Newton steps taken at the iterates v*:
Theorem 17 There is an L > 1 and constants p; > 0, py > 0 such that for all k > L,

|Avy |l

k
1 IRl — 1 4 6 with |6 < ol — vy
”vN UN“

2. [[vk + Avk = oyl < pallvy — vyl

9 Affine Scaling Step‘ in P

The affine scaling step is defined by solving the optimization problem (5). Using Part 1 of

Theorem 12 we can restate the problem (5) as:

minimize 3\ py

Avon  + Agps =0
PR Xi¥on + pEXiEps < 1

The K.K.T. conditions for the above problem are

Sv = Ayy - 20X oy = 0 (30)
—ALy—-20X;5pg = 0 (31)
Anpny +Apps = 0 (32)
Xl = L (33)

15



Using the definitions of u* and v* given in (7), and setting u = u*, v = v* and

k

/ _ p
PB = [T —eyTal

17 _ —'(CTIk—C')ryk
20 (34)
g (Tzk—c)|u
0 20
= 1
we can rewrite the system (30) - (33) as:
UN AT“' N é
N A j—iy—— = 0 35
I E e (%)
k
~ATj = —%B 36
o = (%)
~ uN
AN||UH2+ABplB =0 (37)
T UN
=1 38
¥ Tul? (58)

where Ay = ANV} and §y = V{5n.

Theorem 18 Consider the systems represented by the equations (30) - (33) and (35) -
(38).

1. (30) - (83) have a unique solution which generates a solution to (35) - (38).

2. The solution to (35) - (38) is unique upto a choice of pl; and, there is a value for plg
for which the resulting solution also solves (30) - (83).

3. When Ap has full column rank, the two systems of equations are equivalent.

Proof: Since the Equations (30) - (33) represent the solution to a strictly convex
problem, they have a unique solution. It is now readily confirmed, by simple algebra, that
u, § p and pg, defined by the change of variables (34), solve the System (35) - (38). Thus
we have proved Part 1.

From Part 1, it follows that (35) - (38) have a solution. Considering gy = 147, 5 = .
§ and ply as variables, this system is linear in these variables. If Ap has full column rank,
the solution to (35) - (38) is unique, and Part 3 follows. Otherwise, since (35) - (38) can
have a solution only if sz lies in the row space R(A%) of Ap, the third condition must have

redundant constraints readily identified by choosing any full column rank submatrix of Ap.

16



To see Part 2, let Ag = (A¢, Ap) where A¢ has full column rank and spans the range (
or column space ) R(Ap) of Ag. Thus, for some unique matrix A, Ap = AcA. Replacing
equations (36) and (37) by

_ S'fs

and
Ay ZN +Acply =0 (40)

respectively, we obtain a new system that has a unique solution. By setting p/y = (pl;, p)p),
and letting pp, = 0, the solution to Equation (40) generates a solution to (37). Now,
let (gn, ¥, p,pg) be any solution to (35) - (38). This then generates the unique solution
(gn, 9, B, v — App) to (35) and (38) - (40). Since only the vector py is modified in any
solution to (35) - (38), Part 2 is established with the required p/y = (?TEE%‘EW |

We can also prove the following important property of the sequences.
Theorem 19 There ezists a p > 0 and an L > 1 such that for all k > L
eTik, =146
where &, < p(cTzF — c*)7.

Proof Multiplying equation (35) by eTV,;}&,T D we obtain

..k -
€ Uy T T~ € Vk,NSN
Vi NANG — ———— = 0.
k]2 = 5N EE

Substituting Ayvy = —Apup, and equation (36), we obtain
eTak +vlsk —1=0.

The theorem now follows from Propositions 8 and 14. W

By making the change of variables

—(r-1
wy = Vet Ve-wy

~ /
A’UB = ’UB—A’UB

17



in the system (26) - (29), we obtain the equivalent system:

wy —A%j -5y = 0 (41)
—ALg = 0 (42)
ANw§v+ABA®B =0 (43)
gy = 1 (44)
Comparing systems (41) - (44) and (35) - (38), we note that if py = T
ay = Viy(wy—pn)
a2 = Y-y
- 1
a3 = - —
ul|?
ag = Adp—pp
and b= (0, *4,0,0)7
M@a=5b (45)

where )

Vin —AL 3y
0 -4% 0
An 0 0 Ap
| 5 0 0 0 |

o o
J

M(v) =

We now prove an important result relating solutions of the two systems.

Theorem 20 There is an L > 1 and 3 > 0 such that for allk > L
ulIcV __yy—(r-1)

k k
—_— = e—wy+A
ke =

k
with | A% < A1
Proof It is readily confirmed that the system (45) represents the K.K.T. conditions of

the following quadratic programming problem:

. Ty/r T Sk
minimize a; Viya1 + aqph

ANa1 + A3a4 = 0

T

§Na1 = 0

18



where we can assume, because of Theorems 16 and 18, that the columns of Ap are linearly

independent. Thus, we can substitute
as = —(ApAp) ' ApAvay
in the above optimization problem to obtain the equivalent problem

" Ty/r T zk
maximize ajV{ ya1+a;Sp
ANa1 =0

Syay = 0

where Ay = Ay — Ap(ALAg) AL Ay and 8 = ~ AR Ap(A5A) ™' 5y,
The above problem is a quadratic programming problem, and thus, its KKT multipliers

are independent of the diagonal matrix Vi y. Thus

(a2, as)l| < q(A) |13

Since
(r-1) k u’fv T
-7 —\r—= -
VinVin 'e—wy - ) = Ayag + Snas

(ks

by defining

AF = —Vk',N(AITVag + 5yas).

we obtain out result. W

10 Affine Scaling Step and Newton Step

We now investigate the Newton step and the affine scaling step in the projected polyhedron
Py = {vn:v € P}
Consider the sequence {v§;} € Py generated by the affine scaling method. Then

Theorem 21 The affine scaling direction at v%; is

~ -1,k
Ak g VN Uk
on = Vo o)

k+1 _ __Kk
1—ay

Un Uz’:/ =

k2
~ u
where Qp = ak¢—(‘—/”(,—_-‘%17).

k
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Proof: We note that

L+ k
ohFl ko _ Ty TN

Uv —Uy = -
chlc+1 —c* CT.'L'k —c*

ok — ok Vi uk
R /) o
- __ogfluk]? N
1 ¢'(Vkr_ uk)
akluk 2
—\—r“—_ T k
PV, ™ uk) ViNUN

k

= (UN - )
A

and we are done. H

We can also define the Newton step at v

Theorem 22 The newton step at v%; is

1 V

Avy = " k||2

Proof: The result follows from the change of variables (25), and Theorem 20. W

11 On Convergence of Dual Sequence

We now investigate the convergence to optimality of the primal sequence and the convergence
of the dual sequence, without the non-degeneracy assumption. We now prove a lemma and

a proposition:
Lemma 23 There is an L > 1 and §; > 0 such that for allk > L
||u'fv|| > 01.

Proof: From Theorem 19 and definitions, u% = V{3'dk, and for some L' > 1 and all
k> L, eTak = 1+ 6 with 6 < p(cTz* — ¢*)?. Thus, there is an L > L' such that for all

k>L

1+ b >__1_

qg ~ 2q

Now assume that, on some subsequence K, ||uX;|| — 0. Then, for k € K

(k) >

V,;;,la’;, —0
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or

U;—1~§ — (O forall j € N.

Let af = o(ufy) > 2—1‘1 Thus on some subsequence K’ C K, I = 1. Now, for k € K', we
note that af > 5. Thus

vF — 0.

But if = vfsf. Thus sf — 00, a contradiction, as the Theorem 5 implies that the dual

variables s are bounded, and we have our result. MW

Proposition 24 There is an L > LB>0and v > 0 such that for every k > L

1 SFrms =1 ab(ufy) 2 0 where 5(ufy) = a‘%’uﬁ

2. 1 |lwk || — 6] < 8(uk) <1 with |6] < B(cTzk — ).
3. $(Vi™'u¥) = $(Viy'u)-
4. (uy) 27 >0.

Proof: Part 1 follows readily by substitution, results of Theorem 8 and Proposition
14, Part 1. Now, to see Part 2, from Theorem 20,

¢(VTN uf) _ VN fufy
e - O
= ¢le—wy +A°)
< 1+ |lwk | + 6 (46)

where HA’“H = 0x; and the lower bound follows from Theorem 19, Lemma 23 for each real

a> -1 > 1 —a. The upper bound follows from the fact that part 1 holds for every

! 1+a
a < 1. Part 3 readily follows from Propositions 8 and 14 and Part 4 from Lemma 23 and
the Propositions 8 and 9. H

We now show that, at least asymptotically, the sequence {c7z*} converges linearly. We

do this in the next lemma.
Lemma 25 There is an L > 1 and 0 < 8 < 1 such that for each k > L
(chk+1 _ C*) S ﬁ(CTJJk _ C*),
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and thus
o0
Z crzk —c') < oo.

Proof: Follows from Proposition 24 Parts 1 and 4. ®

When r = 1, the convergence to optimality is proved by using a merit function, called a
local potential function, which is shown to decrease locally. This merit function also defines
the analytic center. Here, we will use

Fy(z) =Y (v;)7%Y
jEN

as the merit function in our analysis, and is the negative of the objective function of the
power center problem on P.

We now prove a simple lemma related to this function:

Lemma 26 Let w and v > 0 be arbitrary p vectors with V the diagonal matriz generated

by v.

1. Let ¢(—w) < 0. Then

QT———_—QwTVw).

(14 w)" 2D~ 1) < =2(r = 1)(e"Vw - 5

M'Mws

2. Let 1> ¢(—w) > 0. Then
(2r-1)
2(1 - ¢(-w))>

v;((1+w;) 2D — 1) < =2(r — 1)(e"Vw - wTVw).

M

j=1
Proof: Part 1 follows from the following identity obtained by using the mean value version
of Taylor’s formula, and noting that w; > 0 so w; > 0. This implies that the last term in

the expression below is non-negative.

2r—1)(2r-1) , 2(r-1)2r-1)2r
2 Yi 3l

(1+’U)j)—2(r-1) = 1—2(1‘-— 1)w,+ (1+1ﬁj)'(2’+1)w§-’

Part 2 follows from the following relations, obtained by again applying the mean value

version of Taylor’s formula, where w; > —¢(—w):
2(r-1)(2r-1) ,
- w;
21+ )
2(r —1)(2r - 1)w2
2(1 = ¢(-w))>r 7

(1 + wj)‘2("1) = 1- 2(7‘ — l)wj +
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and we have our result. W

We are now ready to prove the main theorem related to the decrease in the merit function:

Theorem 27 Leta = a;(lgr—ﬂt}) and 0% = (2r — 1)V, yAvk. Then, there is an L > 1 and

an B > 0 such that for every k > L

_2(r - 1)07(1 (2r — 1)a

F k+1 - F k < _
A L B 2(1- o)

() Ve bk + ).
where |u| < B(=¢(=vk)) "I (T Tk — ¢y

Proof: From Step 4 and Theorem 20, for each j € N,

k+1 -1,k
I ) O
Z; $(Vi k) [lu|?
k\r-1, k
_ oY

]2

1-a(1 - of + Ak,

il

where AF = Vi AF. From the above, definitions and Proposition 24 Parts 1 and 3 we

obtain
k1 k1
vyt gt Tk — ¢
vk gf Tkl — ¢
a R
_ -k _ Ak
= 1+ l—d(wJ i)

k+1

Let 6% = L — 1 = ;& (i - A¥), and note that 6% > —1. First, consider the case when
7

1 > ¢(—6*) > 0. Then, from Lemma 26, Part 2 we obtain

FN(Q:H-I) _ FN($k) - Z((U;_c+1)-—2(r—l) _ (,U;p)—2(r—1))
jEN

2a(r -1 —2r— R
2B D) ey e af, - A

_ (2r-1)a
2(1 - a)(1 — o(-0%))>

Using Theorem 20 and Proposition 24 Part 3, we obtain

(@ — ARV 3D (k- A)).



= %(1 — ag(e - uv’;V + A%))

l-a
1-a IIU’°H2
_1l-a
Cl1-a
Thus, from Theorem 16, as 1 — & < 1, we obtain
2a(r — 1 2r —1)a(1 — a)r-! -
Ao - Fulet) < - - BRI oy et 1)
26(r — 1) (2r-1)a,. _9(r=1) -
S -Hog - Ve ok + ) (47)
where
caren ik (2r = 1a(l - a)xr-! _ e
w = v - B U gy va - @YY
- (2r - 1a(l-a)r!
= TV VAR - a2k - (ANTAY).

Now consider the case when ¢(—8*) < 0. Then Lemma 26 Part 1 must be used to

calculate this change. By an identical analysis as above, in this case we obtain

261(7'—1) (27'—1)& —2r 1)
k+1 _ k < — _ k /
where

/ T (rl k_(27"'1)5‘ ENT Ak _ (AK\T Ak

Asa < 1, & < a it is readily seen that the bound obtained by Part 2 of Lemma 26 is larger.

As —¢(—v§) = v¥, = minjenv¥ we see using Theorem 16, Part 2

IN

eTVew VAR < q(uh)m-D) Ak
(wh)TAF < gk ) DAk

and our result follows from Theorem 20 and Lemma 23. W

We are now ready to prove the main convergence theorem.
Theorem 28 Let =% < 5=, and assumptions (1) - (3) hold. Then,
1. 8 — 1
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2. yk SN y*
3. sk — s

where z* 1s an optimum solution of the primal, and (y*,s*) is an optimum solution of the
dual. In addition, (y*,s*) is the power center of the optimal dual face, and thus strict

complementarity holds between this pair of optimum solutions.

Proof: We see from Proposition 24 Part 4 we see that there is a y > 0 such that &, > va.

Thus
2(r—1ax _ 2(r - lay
— >
1 — o 1-ay

=91>0

and from Proposition 24 upper bound in Part 2, a > a4. Thus

(2r — 1)ay S (2r - Da
21—a) = 21 -a)

Assume that on some subsequence K,

1- =02>0.

ko i ok
vj, = minjenv; — 0

and let this be the largest and thus the only such subsequence. Then, from Theorem 20,
w¥ — 1; and so there is an L > 1 such that for all k > L, wk > 0.50. Thus
(@ ) V—Q(r-—l) Algl > 0_25(1);1)—2@—1)'
Thus, from Theorem 27
Fu(@**) = Fn(a¥) < ~61(62 + ex) (@) Vi 0

where

I/"’kl r-1 k *\2r
€Ll = ﬂ —-C
| kl ( )TV"2(T 1 - k > ( Jk.) ( )

and from Proposition 8, ¢, — 0. Thus there is an L > L such that for all k> L

Fu(eh*) — Fu(e) < -T2 (@4) Vil Vi

Now, from Corollary 4, there is a p > 0 such that

~k |12
Ty, ~2(r— 1) “'WN”
(@) Ve 0k 2 BE)2D
T ..k
> [k (Cfl”k“ Cyar-)

> Py
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Thus for each ¥ > L in K

Fy(zFY) = Fy(z*) < -

0162 54—y
5P

From the definition of K, there is a § > 0 such that for each k ¢ K

1

Thus, from Theorem 27 there is a 3’ > 0 such that |u| < B(cTz* — c*)* where § = 36"

and

Fy(z*1) = Fy(z%) < —01(0% D8, % |12 + ).

Thus for each & > L there is a o, > 0 such that

00 . 1. )
S (En() ~ Fy(@) < 000 (Y Skl + X [a510) - 6 X
k=L keK kgK kgK
< —ZUkHwNH -6 Zﬂk
kgK

From Lemma 25,

|2 el < 3 el < 3 B(ea = ) < 0.

kgK kgK kgK
From Corollary 4 Fy(z*) is bounded below by zero on this sequence. Thus ||@%| — 0. As
= (2r — 1)V, yAvk;, from Proposition 8,

Avk — 0

and, from Theorem 20
Ven Vk,N UN UN
—e.
NS

Since the only vector in Py for which the Newton step Avy = 0 is its power center v}y, we

must have,

vk — vy

Let K be such that for k € K ( it exists since all these sequences are bounded )

PLI

-y

26



and, so
Vv ul . iy uy _ _
(e Jlur®

Using Theorem 15, it is readily seen that (y*,s*) is the power center of the optimal dual

(48)

face; and our result follows from the complementary slackness theorem. W

We get the following sharp bound on the linear convergence rate of {cTz*}.

Theorem 29 Let —2 Then

lazr 21'1

chk+l c

lim ——=1-aq.
k—oo cTxk —c*

*

Proof: Follows readily from Proposition 24 Part 2 and Equation (48). W

12 Convergence of Dual with Variable Step Size

In the previous section, the step size implemented at each iteration was a constant «. In
this section we will allow the stepsize to vary, and in iteration k, we will choose the stepsize
ay by rules described below. This increases the step size implemented, which will be shown,
asymptotically to be given by the formula

O 2
< .
l—ak 2r—1

We obtain this increase by using the following estimate of §(u*) ( of Proposition 24)

_ IXEs*P(=*)Ts
¢(X2r lsk)

The lemma that follows is useful in understanding the above estimate.

(49)

Lemma 30 There exists an L > 1 and a 8 > 0 such that for allk > L

(ZBk)TSk

TS 46
ch-k_Ct k

where |6 < B(cTz* — c*)¥ L,

Proof: Since (zF)Ts* = (z%)7sk + (z%)7s%, from Proposition 14 Part 1, and the fact
that &% — 2% > 0, there is an L > 1 such that the first term is bounded by 8, (c7z* —c*)*
for some f; > 0. Our result now follows from Theorem 19. W

We now establish the goodness of the estimate (49).
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Proposition 31 Let 7, be defined by Equation (49). There is an L > 1 and a 8 > 0 such
that for all k > L

S(uk) = 7 + 6k

where |6 < B(cTzk — c*)r-1,

Proof: This result follows readily from Lemma 30, Proposition 14, Part 2 and the
upper bound of Part 2 of Proposition 24. W
Since 7 is, asymptotically, a very good estimate of §(u%), in place of using —1—_9‘5)7; as an

(
9.—((—11%))2;;—1 in the relations (47), we will use the estimate 6, of & in the above

estimate of
formula. Also, from Proposition 24, Part 2 whenever ||wX || — 0, 6(u%) — 1. Thus, in
this case 7, — 1, and the new estimate approaches :2-. We now present this step selection
strategy.

Define a* such that
a* < 2
(1-a*) 2r—-1

Let & > 0 be very small and at iteration k choose the step size a; by the following strategy:

Step 1 Let o be such that

7o/ (1—na/)t 2
(1-a)r  (2r-1) 6. (50)
Step 2 Define
o if o>a*
ok = (51)

*

Qa otherwise

The above choice guarantees that the estimate is not smaller than one obtained from
Theorem 28. The next lemma establishes a relationship between the o/ computed in (50)

and the related expression in system (47).

Lemma 32 Let o/ be computed by (50) and let & = §(uk;)o/. Then, there is an L > 1 and
a B> 0 such that for allk > L

&(1 - &)21--1 = Tkal(l - Tka/)2r—-l + 6k
where || < B(cTzk — )L,
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Proof: Follows readily from Proposition 31, and the fact that for small € > 0, (1 +
O l<1l+4e N

We are now ready to prove the main theorem of this section.

Theorem 33 For each k, let oy, be generated by the above rules and let the assumptions

(1) - (3) hold. Then,
1 zF —1*
2. Yk — oyt
3. sF—s*

where =* 1s an optimum solution of the primal, and (y*,s*) is an optimum solution of the
dual. In addition, (y*,s*) is the power center of the optimal dual face, and thus strict

complementarity holds between this pair of optimum solutions.

Proof: Assume that o = o* for each k. Then this theorem follows from Theorem 28.
Otherwise for each k for which ax = o’ > o*, using the same argument of Theorem 28 , it

is readily shown that for some 8 > 0
Fy(z**1) = Fy(2*) < —Bllwi |I® + pe

where u < y(cTzF — c*)¥. The proof is completed in the same was as in the Theorem 28.
|

We now obtain the asymptotic behavior of .

Corollary 34 o — o where

«a 2
1-a_2r—1"9‘

Proof: As a consequence of Theorem 33, we obtain the fact that ||w%|| — 0. From

Proposition 24, §(u%,) — 1, from Proposition 31, 7, — 1, and we have our result. H
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13 Accelerated Variant

We will now use the connection between the Newton and the Affine Scaling step to accelerate
the convergence of the algorithm. We now present the accelerated version of the method

and then investigate its convergence rate.

Step 0 Let z° be an interior point solution, (—1_;2)77 < %, 6>0,r>1;and, let k =0.

Step 1 Tentative Solution to the Dual:
yF = (AXFAT)TAXPc

Step 2 Tentative Dual Slack:

s =c— ATy
If s* < 0 then STOP. The solution is unbounded.

Step 3 Min-Ratio test:

Xtk .

(zk)Zr—lsk - 8j > 0}

_ X
e(XsE)

If 6, = 1set o =1, and go to Step 5.
Step 4 Step Size Selection: If €7 Xs* > 1, set oy = a and go to Step 5. Otherwise, define

Q defined by (51)

Ne = {j: :zf < ef X, 5"}

YT = eTXk,NkSIICVk
)L 1 Xew, _ erﬁklslx’k)
Me ™ or -1 e |IXESH|2
€ = Ilh’,‘ka

log(ex)
o = :

log(vx)

1. Predictor Step: If pr > 1.5r then
ap = 1 — max{e, v2**}.
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2. Corrector Step: Otherwise,

WXk
= , O}
o= e o)
Step 5 Next Interior Point:
k+1 _ ok Xis*
T =1 — oy
1XE"" ¥l

Step 6 Iterative Step: If z¥™! = 0 for some j, then STOP. z**! is an optimal solution.

Otherwise set k = k + 1 and go to step 1.

Some comments are in order here. This acceleration scheme is identical to the three step
acceleration scheme of Saigal [17). hX, computed in step 4 is a very good estimate of the
Newton step Av%,, and its magnitude ¢ is used to estimate the distance to the power center
vy of Py N {vn : uy > 0}. Asymptotically, we apply a predictor step when the size, ¢ of
the Newton step is of the order O(cTz* — c*)%; and the corrector step otherwise. As is well
known about the Newton step, || Avk|| is a very good estimate of |v% — v |. During the

corrector step, ay is chosen so that
ot =l = Ak + O(cTak - )

and thus the affine scaling step behaves like a Newton step. We now establish some prelim-

inary results and prove the convergence of this accelerated method.

Proposition 35 There is an L > 1 and a subset N of {1,---,n} such that for all k > L,
N.=N.

Proof: From Theorem 6, 44 — 0; and by definition z; > 0 for each j € B. Thus for
some L>1andall k> L
a:f>'yk for all j € B

and we are done. B

Let L be generated by Proposition 35. We now prove a series of results using the property

A

of L.

Proposition 36 There is an L > L and an a > 0 such that forallk > L
||hfv — AV < afcFz* - e,
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Proof: We note that by substitution of the results of Theorems 19 and 22 and definitions,

we get
N or — 1eTak  |juk|?

1 k Vkr,Nu}fv r Ak

1N T e YR

Ok
_ Vr Ak ok k
27,_1( k,NB 1+5kUN)

= A - EF

As v is bounded by Theorem 8, our result follows from Theorems 19 and 22. W

Proposition 37 Let wX — 0 on some subsequence K. Then, on K

_wp(Xen'sk) 1
Pk = X2 or
Proof: From Theorem 19 and Proposition 24 Part 2, 2rp, > eTﬁ’fv =1+ 6. From

equation (46)
1+ 6
2r

and we get the result as §; and ||A*|| go to zero. W

o < (14 Jlwk |l + 1A%

Proposition 38 There is an L > L such that forallk> L
0.50(cTz* — ¢*) < 1 < 1.5(cTz* - ¢*)

Proof: Note that T Xy v, sk, = (cTz¥ —c*)eTa, , and so the result follows from Theorem
19. =
We are now ready to prove the convergence to optimality of the limit point of the primal

sequence generated by the accelerated algorithm.

Theorem 39 Let assumptions (1) - (8) hold. There ezists a subsequence K such that for
ke K

1.zt —2*
2. ylc___,y*
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3. sk — 5%,

where x* and (y*, s*) are optimal solutions of the primal and the dual problems respectively.

Also, (y*,s*) is the power center of the optimal dual face.

Proof: Let L be as in Proposition 35. In case the predictor step is taken only a finite
number of times, then ay is selected by the variable step size selection strategy, and our
result follows from Theorem 33. Thus, let there exist a subsequence K such that for each

k € K, a predictor step is taken. Then, for k € K
15N < %
But, from Theorem 6, v, — 0. Thus, as
1AvEI < 1A% + [ Avy — Rl

Avk, — 0; and the result follows by an argument identical to the proof of Theorem 28. W

14 Convergence Rate of Accelerated Variant

We will now investigate the convergence rate of the variant. This rate is a function of the
choice of 7, and approaches 2 step quadratic as r approaches infinity. From Theorem 39,
we can conclude that the power center of P exists. We investigate now the application of

Newton’s method to compute this center.
Proposition 40 There is a § > 0 such that for all |luy — vy < 9,
0.50||vy — vy || < ||Avy]|| < 1.50|jvy — v}l

Proof Follows from Theorem 17, Part 1. W

The following is a consequence of the above proposition:

Proposition 41 There is an a > 0 such that for every 0 < § < 1, there is an Ls > 1, and;
ifk > Ls, 3> 0, p> 15 and ||[vk — vy|| < B(cTzF — c*)P then

wk || < a(cFzF = c*)P.
N
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Proof Since vy > 0, for every 0 < § < 1, there is an Ls > 1 such that for all k > Lj,

minjv; > (CTIk _ C*)1.51‘.

a =

Thus for some v > 0,

k k
vi 2 v = |vj = vj| > a.

and our result now follows by observing that [[w}|| < (min;v¥)~||Avf||, and the result of

Proposition 40. W

Lemma 42 Assume that for some k > Ls and 1.5r < p < 2r, ||vk, — v}|| < B(cTzF — c*)P.

Then, there is an a > 0 such that
1%l < ol = ).
Proof: From Proposition 40 ||Av% || < 1.58(cTz* — ¢*)P. Also, by Theorem 36
kg1l < Avy ]l + A — Avgll < 158(cTz* - )P +4(cTz* — )™

and we are done. W

We are now ready to investigate the predictor step.

Proposition 43 Assume that 0 < § < 1, k > Ls, 8 > 0, 1.5r < p and |jvk — v}y| <
B(cTzk — c*)P. Then

1. There are 0 < 6, < 8, such that
By (cTz* — )P < (T*t — ) < By(cTzh — )10,

2. There is a 03 > 0 such that

(1-8)p,

okt — vl < B(Tak! — ) T

Proof: From Lemma 42, we obtain a § > 0 such that

& < ﬁ(chk-H _ c*)p.

34



We note the following sequence of inequalities which follow from the Propositions 38 and

24:

Spk

(O.E')O)‘S"k(cTz’c - c*)é”" Ve

IN

IN

1- g
[l
¢(Vkr_luk)
(CT.’I)k+1 _ C*)

(ch-k — ct)
1 — (1 - max{e}, %*})(1 — [[wkl| - |6])
max{e}, 1™} + [[will + |6

(1.5)6‘* (cT:l:’c - c*)a”k,

IN

l—ak

]

IN IA

IN

and we have part 1. Now, from Theorems 21 and 22, and some simple algebra, we can write
vkt — ok = Avk + EF

where
rapd(uk) -1 1 1 Sk 1
E* — N Bk ky _ r Ak
1 — ab(uk) 2r—1( N 2r—11+6ka) 21*—1V'°’NA

Using the facts that §(uk;) <1, ax < 1— €}, we obtain, for some 83 > 0

|B¥) < (e — 7)o

and the Part 2 follows. W

We are now ready to investigate the corrector step of the algorithm.

Proposition 44 Assume that for some k > Ls and 8 > 0, ||v, — vy < B(cTz* — c*)P.
Then

1. %ﬁ < p < r. One iteration of the corrector step will be taken, and for some 6, > 0

”’UII:I+1 _ ,U;J” < 01(CT$k+1 _ c*)2p.

2. %’5 < p < 5. Then at least one corrector step will be taken, and after at most two

steps, for some 65 > 0
”,v]l:,+2 _ v;v“ < 091(CT.’Bk+2 _ c*)4p_
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Proof: From Theorems 19 and 20 and Proposition 41, we can write

1 ’Yk¢(X1§er 1
-1 k < —
o 1< =5 IXrsk2 = 2r * ol
where |6 < 8(cTzF — ¢*)? and |pg| < 6'(cTz* — c*)P. Thus, as o, approaches m — ¢ for

some small € > 0 , for all sufficiently large k,

o = ’Yk¢(X£rN:3Nk)
T or| XTSI

Thus, from Proposition 14 Part 1, Theorems 21, 22 and simple algebra we see that

146 u§
k+1 _ ok _ k r _UNn
Y Un 2T—'1—6k(v kN”uk”g)
= Avk - E*
where

2(r — 1) + 62 uk 1
k k k r _UN r Ak
= - - - Vi v AF.

(2r—1)(2r — 1= &) (o = Vew ||u’°||2) or—1 &N

Using Propositions 8, 9 and Lemma 23 we can show that
“Ek” < ,B(CT.’Bk _ c*)2r.

Thus, after one step with oy, we see that ( using Theorem 17 ),

“,vk+1

IN

oy + Avg = vyl + | E¥|
pllvk = il + Blc"a" = c)*

(CTJ:k c*)2p.

- vyll

IA

IN

From, Proposition 24

and using Theorem 19 we see that for all sufficiently large &

T, k+1
oW - B
2r cTgk —c* 2r

Substituting the above inequality, we obtain part 1 of the theorem for 6, = (1 — —-—)2”a.
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To see part 2, we note that after one corrector step, either 2p becomes greater than 1.5r
and we stop the corrector iterates and go to the predictor step; or, after one more corrector
step the desired result is obtained. W

We are now ready to prove the main convergence theorem.

Theorem 45 Let the sequences {z*}, {y*} and {s*} be generated by the accelerated variant

with r > 1, and let assumptions (1) - (8). Then
1 5 —z*
2y syt
3 & —s*
where T* lies in the relative interior of the optimal face of the primal, and (y*,s*) is the

power center of the optimal face of the dual. In addition, asymptotically, the sequence

{cTzk — cTz*} converges to zero as follows:

1. For b= ﬁ)-, the convergence 1s two-step superlinear at the rate 1 + 5.

2. Foré= 5(—5‘;2—), the convergence s three-step superlinear at the rate 1 + ;?—:—2

Proof: Assume that only a finite number of predictor steps are taken. Using the argument

of Theorem 28 it can be shown that there is a subsequence K along which
Avk, — 0.

Using Theorem 17 Part 2, we can show that there is an L > 1 and a 6 > 0 such that for all
k>Landke K

loy + Avg — vyll < 6lloy — vyl
For each k € K, sufficiently large, using an argument similar to that of Proposition 44, we

can show that for some 6; > 0

luy = vill < Bulloy — oll*

and from Proposition 40, || Av5H!|| < 6,]|Av%||%, and a corrector step can also be performed

at the step k + 1, and we will obtain ||Av%?|| < 82||Avk||*. Repeating this argument we

contradict the fact that only a finite number of predictor steps are taken.
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Let k be an index, sufficiently large at which a predictor step is performed. To investigate

the convergence rate of the two-step method, assume p; > 1.5r, and let § = 2=2-. After

pr(r+1)°
one corrector step, from Propositions 43 and 44, we obtain
2(1-6)py
[0+ — vy ]| < B5(cTx*+2 —¢) iy :
where %}% = 2r, we obtain part 1 as
) ! h 2
= when p = 2r
o(r + 1) P
and the convergence rate
r
l1+6pr =1+ ——.
Pr r+1
For the three step method, let § = ;%;;2— After two corrector steps
(1-5)
[0 — v < (e - )
where %}L = 2r. Part 2 now follows since § = 1f pr = 2r and the convergence rate
, — 3
1+ 5pk 1+ 7 _:2 |

15 Efficiency of Acceleration

Ostrowski [15], section 6.11 introduced the following measure of efficiency for algorithms
achieving different rates of convergence, involving different amount of work per iteration.

He suggested the following measure

log(p)
w

where p is the convergence rate of the algorithm, and w is a measure of the work per iteration.
The larger this measure, the more efficient the algorithm. This measure has been used by
Brent [4] who investigated the hybrids of Newton’s method proposed by Shamanskii; and,
Saigal and Todd [18] who investigated the hybrids of fixed point computing methods with
variants of Newton’s method.

The convergence of the accelerated variant depends on the choice of r and the two-step

or three-step method. The table below shows these calculations for several choices.
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Two - Step Three - Step

rate | efficiency | rate efficiency
r=10|15"| %X 1202 Ll
r=15|16 | 2% 122857 | &2
r=20|167 2% 250 03054
r=40|180| 288 130° 23962

1. Tsuchiya and Monterio (23] obtain a rate of 1.3.
This can be established by the method of Saigal [17].
2. This is obtained in Saigal [17].

3. The efficiency of three step cubic is larger than the two-step

quadratic, which is 2:3166,

16 Concluding Remarks

In this paper we have shown that for every r > 0.50, there is a variant of the affine scaling
method. The usual method is generated when r = 1. We have analysed the convergence of
these variants for r > 1. The analysis for 0.50 < r < 1 is analogous, with a few changes
in the formulae to account for the sign changes; and, the objective functions of the power
center problems.

Under the assumption of non-degeneracy, convergence to optimality of the primal se-
quence is shown for any step size less than 1. To investigate the convergence without the
non-degeneracy assumption, the concept of a power center is introduced. The power centers
of the primal and the dual optimal faces are related in an intimate way, and the objective
functions defining these centers are related in the same sense as the “dual norms” are. In
this case, it is shown that if the step size a is chosen such that (—1—_%—);; < 5;2:7, for r > 1,
the primal sequence converges to the relative interior of the optimal primal face and the
dual sequence converges to the power center of the optimal dual face. Also, a variable step

selection strategy is presented where the sequence {ay} of step sizes, asymptotically is se-

2
2r-1°

lected by 1—2‘{;: < 2r—2_1- This sequence is required to stay uniformly away from from

Thus, o, < Erl+‘1’ and thus this result is a generalization of the 2/3rd result of Tsuchiya and
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Muramatsu [24] for r = 1.

An accelerated variant is also presented. This variant achieves superlinear convergence,
and the rate is higher for larger values of r > 1. This generalize the work of Saigal [17] and
Tsuchiya and Monterio [23].

This work opens up the study of hybrid variants of the affine scaling method in which
different values of r are implemented at different stages of the method. From Theorems
12 and 14, it is evident that the rate of convergence of ||z%| is O(cTz* — ¢*) while that of
s is O(cTz* — ¢*)*. Implementing 0.50 < r < 1 in the early iterates will reduce this
disparity between the accuracy of the primal and the dual sequence, and thus make the
method behave more like the primal-dual methods where the accuracy of the two sequences
is similar. In the later iterations ( when v < 1), a value of r > 1 (say r = 1.5 or 2.0 ) can
be implemented to get a higher rate of convergence. These hybrids have not been studied

yet, and we expect to report computational experience on them at a later date.
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