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Abstract

In this paper we consider an alternative implementation of the interior point meth-
ods. In the popular implementations, a variant of sparse Cholesky factorization is
intregrated with a congugate gradient type iterative method. In contrast, we set up
the problem as an infinitely summable series of vectors. This series is then, iteratively,
summmed. At each iteration, a procedure based on “least squares” is used to obtain
an estimate of the “tail” of the series. In addition, using Chebychev approximations,
we show how to accelerate the convergence of this procedure. In this alternative ap-
proach, besides finding cholesky factors of some simpler matrices, only multiplications
by some matrix are involved. This may be an advantage since in the later part of these
methods, the linear system to be solved has a tendency to become ill-conditioned. We
present some evidence ( for the case of the dual affine scaling method applied to the

assignment problem ) which supports this conclusion.

| Key words: Linear Programming, interior point methods, iterative methods, inifinitely
summable series, Chebychev approximations.

Abbreviated title: Implementation of interior point methods.



1 Introduction

In this paper we consider the following linear programming problem:

T

minimize ¢ @
Ar = b
z > 0

where A is a m x n matrix of full rank m; b is a m vector and ¢ is a n vector, and
consider the recent interior point methods, a study of which was started by the seminal
work of Karmarkar [4]. Most of the material on these methods can be found in the following
references Barnes [1], Kojima, Mizuno and Yoshise 5], Vanderbei, Meketon and Freedman
[10] and the recent book Fang and Puthenpura [2]. We leave the reader to browse through
these and many other works for an introduction. Our starting point is the implementation
of these methods, which requires, at each iteration, the solution of a m x m linear system

of equations
Cz=d (1)

where C = ADAT for some n x n diagonal matrix D which has positive diagonal ele-
ments, and d is some vector generated by the matrices A, D and vectors b, ¢, the exact
form depending on the particular interior point method being implemented. The popular
implementations to date all use some version of the sparse Cholesky techniques, George and
Liu 3], integrated with the congugate gradient method. The goal of this paper is to present
another implementation methodology for solving (1).

The first approach for solving (1) as an infinite series was presented by Puthenpura,
Saigal and Sinha [7] ( this can also be found in Fang and Puthenpura [2] ), where the
solution to (1) is generated as a sum of an infinite series. In section 2 we give some details
of this proposa,l.v Another recent approach for implementation of large sparse or structured
problems is presented by Saigal [9]. Here the rows of A are partitioned into two parts,
with each part treated sepa.rately. In section 3 we give some details of this proposal. Our
approach here builds on both these approaches, and the problem is reduced to solving‘the

system
(I-N)y=gq (2)
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where IV is an r x r symmetric positive semi-definite matrix, with spectral radius less than

1. The variation in this implementation is to solve (2) by the “power expansion”
(I-N)'=I+N+N*+... (3)
and then write the solution to (2) as the infinite sum:
y=q+Ng+Nq+ - (4)

An apparant advantage of (4) is that its implementation involves only multiplications by
~ N. But. as we shall see later, in applications to interior point methods, the spectral radius
of NV is close to 1 ( and gets closer to 1 as the algorithm proceeds to the solution ). Thus

the convergence rate of the sequence {s*} could be very slow, where

s* = q+Ng+:-+N'g

= g+ Ns.

As is easily seen the convergence rate of s* is bounded by the spectral radius of N; i.e.,
| 8 — 8 ||< p(N) || 857! — 8 || where s* is the limit of the sequence {s*} and p(IN)
is the spectral radius of N, in our case, the magnitude of the largest eigenvalue ( see, for
example, [7] ).

In this paper we present two methodologies for summing (4). The first approach is to

generate 8, and an estimate #* of the tail
tk=Nk+1q+Nk+2q+"'

and to declare §* = % + #* as an estimate of the sum (4). This estimate is generated
by a linear model, which is solved using “least squares”. This model establishes a linear
relationship between the coeflicients of a polynomial whose roots contain certain eigenvalues
of N. It is based on the following: given the number of “similar classes” of eigenvalues of N
( i.e, number of classes of eigenvalues behaving similarily when raised to increasing powers)
the model estimates the coeﬁ"lciénts of a polynomial whiéh includes eéch class within its set of
roots. One class easy to identify is of small eigenvalues. These all go to zero rapidly as they

are raised to higher powers, and also contribute little to the tail. Qur model distinguishes



these classes of eigenvalues by functions (I — N)'N*, of N, for some integers [ and k. The

series

(I- N)'N*q,(I - N)'N*q,--.

is then used in the estimation and is generated by finite-differencing of the original series
I+k I+k
anqv""N+ QvN+ +1q7""

This model has the interesting property that the residual vector of the least squares problem
is the same as the error vector when the estimate 9/ is used in place of the “true” solution
-y in (2). Using the formulation (2) for the assignment problem ( presented by Saigal [9]
), we show here some limited computational experience which compares a model with two
classes to the one with at most 14 classes. This experience suggests that the model, for this
problem, will perform well.

The second approach, which accelerates the convergence of the one presented above, uses
N'q,r=0,1,--- K, to generate, 3" a lower order Chebychev polynomial approximation
to 8%, k > k’; and then uses §* = 8 + #* as an estimate of the sum (4), where $* is the

estimate of the tail defined earlier. Here, the series,
p(N)=I+N +N?+...+ N*

is approximated by

g(N)=A + AN + .. + ALN*

and the approximation 8¢ = q(N)q of s* is added to the estimate #* to obtain a better
estimate of the solution. A’ are constants determined so that ¢ is a Chebychev polynomial
approximation to p.

After presenting, in sections 2 and 3, two formulations that convert equation (1) into the
form (2), we develop the basic model in section 4. In section 5, we show how the estimated
parameters are used to generate an estimate of the tail, and an estimate of the solution.
In section 6 we present a method to modify the eigenvalue structure, while in section 7 we
present an acceleration scheme based on Chebychev polynomials. Finally, in section 8, we
present some computational justification for this model when used in the context of the

assignment problem.



2 LQ Factorization

In this section we show how the system (1) can be transformed into (2) with an appropriate
matrix N. We use the methodology of Puthenpura, Saigal and Sinha [7] to show this
transformation.

For this purpose we will assume that A is an orthonormal matrix, i.e., AAT = I. We
can assume this because of the following standard theorem, and the implied transformation

of the linear program that follows the statement of the theorem.

~ Theorem 1 Let A be a m x n matriz of rank m. There exists a unique lower triangular
matriz L and a unique orthonormal matriz Q such that A = LQ. The uniqueness is upto

a choice of the signs of columns of L and the corresponding rows of Q.

Proof: See, for example, Wilkinson [11]. W
A consequence of this theorem is that, without loss of generality, we may assume the

matrix A is orthonormal. This can be guaranteed by the linear transformation
L 'Az=L7"b

of the system in the lineér program. In this case then, @ = L™' A is the required matrix.
We note here that the matrix Q is dense, even when A and L may be sparse. In [7], it is
shown how all the iterations can be carried out without explicitly requiring Q.

Now consider C = ADAT, where A is orthonormal, and let a > 0 be a large positive

scalar. Then

C=oI-A(I- éD)AT)
has the required property provided a > max;D;;. In this case then
N = A(I- %D)AT
q = —1—d.
a
The following theorem appears in Puthenpura, Saigal and Sinha [7].

Theorem 2 For an orthonormal matriz A, ||All; < 1, |AT|l; = 1 and thus, for a >

maz; D;;, N defined above has spectral radius less than 1. Here || A||; = mazg)=1]| Az|2.



3 Matrix Partitioning and Special Structures

In this section we present another example in which system (1) can be transformed into
system (2). This derivation is due to Saigal [9].

Assume that the rows of A have the partition:

b= ° (5)
H

where E and F can be readily identified. Examples where this happens include the trans-

E
F

~ portation problem, the generalized upper bounded problem, and the block-diagonal linear
programming problem. See, for example, Lasdon [6] for more on these special linear pro-
grams. This partition could also be generated to preserve sparsity of the Cholesky factors.

The following theorem is from Saigal [9]:

Theorem 3 There ezist a lower triangular matriz Ly, a matric L, and D = FDFT —

L,LT, such that

ADAT = LDL”
EDET = L, LT
L,LT = EDFT
with
L, 0 . I0
L= |1, D= j
L, I 0 D

We now show how Theorem 3 can be used to reduce (1) into the appropriate form.

Partitioning

to correspond to the partition of A, the following can be easily proved:

Theorem 4 FEquation(2) can be readily solved by the following steps:

Lz = d (6)



Proof: See Saigal [9]. W
Note that (6) and (8) are triangular systems, while (7) has the form

(FDFT — L,L])2* = d° - L,?! (9)
To reduce equation (7) into the form (2), define a lower triangular matrix Ls such that
FDFT = L,LT
and the system (9) becomes
(I - L7'L,LTL;T)LT2? = L3;\(d® - L,2Y). (10)
Letting N = L3'L,LTL;T, the following is proved in Saigal [9].

Theorem 5 N is a symmetric positive semi-definite matriz, with spectral radius less than

1.

An advantage in partitioning A into two parts is that the Cholesky factorization EDET =
L,LT and FDFT = L;LYT can be found separately, and can thus be very sparse and struc-
tured. The price paid is in solving (10). For the assignment problem, both EDE” and
FDFT are diagonal matrices, and the complexity of solving this problem is reduced to that

of solving (10).

4 The Model

In this section we develop a model that will generate information useful for estimating the
tail, t*. For example, if the eigenvalues and eigenvectors of N are known, the estimate of
the tail can be readily obtained by using the results of the corollary to the standard theorem
that appears below:



Theorem 6 For every r x r symmetric and positive semi-definite matriz N, there exist an

orthonormal matriz P, and a diagonal matriz A, with non-negative diagonal elements, such

that N = PAPT. The diagonal entries of A are the eigenvalues of N.

Proof: See Wilkinson [11]. W

Since P in Theorem 6 is orthonormal, the following corollary readily follows:

Corollary 7 For some matriz P, and allk = 1,2,---, N*q = PA*e, wheree = (1,1,---,1)7,

is the r-vector of all ones.

 Proof: Using Theorem 6, Nqg = PAPTq. Let § = PTq and P; = §;P;, where P; is the
j* column of P. Since P is orthonormal, it is readily confirmed that N*q = PA*PTq,
and the result follows. W

Using the result of the Corollary 7, we can rewrite the tail * = P(A**' + A¥2 4. )e,
and as the diagonal entries of A are non-negative and less than 1, the infinite series in the
above expression sums to A**'(I — A)~!, and we have a formula for the tail.

Since calculating the eigenvalues and eigenvectors of N is as difficult as solving the
original system, this result is of little value. Our starting point towards thinking about the
model is that a good estimate of the tail can still be obtained if only the larger eigenvalues
are known. This is so because the smaller eigenvalues approach zero rapidly, as k becomes
large. This is the basis of the model developed in this section. The model developed here
generates estimates of coefficients of a polynomial whose roots are certain eigenvalues of N,
generally the larger ones. These, instead of the eigenvalues themselves, are used to calculate
the estimate, ik, of t* ( as is done in.the next section ).

We now develop the fundamental ideas of the model. Using the result of Corollary 7, we

note that

and, allowing for multiplicities in the eigenvalues,
P o P P
Ng=3 > MP;=} A} P;j=} \Q
1=1 j€S; =1 JES; =1

where S;, 1 =1,---,p is a partition of {L,-+-,r} with \; = ); for j € S;, i.e., S; represents

the indices of eigenvalues that have the same value \;.
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In addition, since

for sufficiently large k, the contribution, to N¥q, of “small” ); will be minimal. The
partition of the eigenvalues into “similar” groups, and the previous statement about “small”
eigenvalues, forms the basis of our model. Since the terms in the tail are associated with
large values of k, we note that the contribution to it of “small” eigenvalues will be minimal.
We now develop a model which attempts to estimate the contribution of other classes of
eigenvalues.

For this purpose, consider the function (I — N)'N* of N for some [ > 1 and k > 1. We

then have:

Theorem 8 The eigenvalues of (I—N)'N* are {(1=X;)' A} where {\;} are the eigenvalues
of N.

Proof: Since N = PAPT, using the orthonormality of P we can write (I — N)N* =
P(I - A)\'A*PT, and we have the result. W

We note that for [ = 1 and large k, the eigenvalues of (I — N)N* corresponding
to eigenvalues of N close to 1, and small, are small. Thus the function concentrates on
relatively large eigenvalues of IN. It is this observation that will be used to identify the sets

S;. We now investigate this function in the next theorem.
Theorem 9 The function (1 — z)'z* is mazimized at z* = k/(k +1).

Proof: We have the result as this function is concave, and its derivative vanishes at z*.
|

To understand further the relation of the function (I — N')'N* to the original sequence
q,Nq,N%q,---, and to see how to translate the sequence into the above functional form,
we introduce the following finite difference operator on an ordered sequence of vectors
To, @1, Th:

oz; =x; — Tjy1.

Then,

Oz, = 0(9*;) = OFx; — O x4,

8



is the same as the operator 0 applied k + 1 times. The following result relates this operator

to the required form.

Theorem 10 Givenq,Ngq,---,Ntq, 0°(Nq) is well defined for all s+j < t, and (Niq) =
(I- N)Niq.

Proof: This is clearly true for s = 1. Assume it true for some s and consider §°+'(N7q),
s+j+1 <t. But this is, by definition, Bs(qu) — 0°(N'*'q) with both terms well defined.
Using the induction vhypothesis, we see that 9*t'(N’q) = (I-N)*N'q—(I-N)’Nitlq =
(I - N)**'N’q and we are done. M

Using Theorem 10 one can readily develop an algorithm for generating the required
functional form from the original sequence. Thus, generating (I — N)'N*q requires an
- fold finite differencing of the original sequence, which only involves vector subtractions.
Since this is self evident, we omit the details.

We are now ready to develop the linear model that will enable, at iteration k, the
estimation of the tail # from the given sequence q,Nq,---,N¥q. To do this, assume the
eigenvalues fall into the classes Si,S5,, -+, S, ( which form a disjoint partition of {1, ,r}
); and for each class, assume that the functional from (I — N)*N7q, s; > 1, distinguishes
the class S; from the others. Based on this information, we now develop the linear model.

Let s; +t < k, and define

A = 9%(N'q)

= (I-N)"N'q
p - .

= 'E:IPJ'(I—A]')S‘Aze
]:

Here P;, A; are the corresponding matrices associated with S;, and, as mentioned earlier,
Agi) is known, and can be generated from the original sequence by finite differencing.
Under the assumption that s; distinguishes the eigenvalues of S; from the others, we can
write:
AP = PyI-A) Ale+el) (11)
where we treat egl) as the “error” of ignoring the terms pertaining to the eigenvalues not in

Si.



For each ¢, let s; +t; < k. t; is the number of eigenvalues in S;. Define the r x ¢; matrix:
A(i) = (Agcils.'—t,'-H’ e ’Agls.')' (12)
Using (11), it can be readily shown that
AV = Py(I - A Altty, 4 )

where

(1A 8 e e

is a t; X t; Vandermonde’s matrix. Here, /\gi) are the eigenvalues of N indexed in S;. One
would expect Y to be small only when such distinguishing s; exist. We do not expect
them to exist in all such systems, but believe that they will exist when these systems are
generated by an interior point method. We provide some preliminary evidence of this later
in this work.

Thus, for each 7, we can write
P; = AOVIATEott(p _ py-s 4 y(®), (13)

Now, N*g = PA*e = 77! PiAfe+ P,,A’;e where we will assume that S, contains the
indices of all the small’ eigenvalues. Substituting (13) into the above, we get
p-1
Nfqg = Y AOVIIASH YT _A) %e+ 0. (14)
i=1
Defining, for each 7 = 1,-++,p— 1, o) = V7IASH=1(T — A;)~%e, and A© = N*q,
we obtain the linear model

-1

A0 ZA oD 4@ (15)

where (¥ is the deterministic error’, and o) are the parameters to be estimated.
A comment on this model is in order here. The parameters a*) are complicated functions

of the eigenvalues of IV, but by a simple analysis, can be shown to generate, through a
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linear transformation, coefficients of a polynomial which has )\y) as roots ( besides others ).
Fortunately, we do not need to compute /\Y), and need only estimates of a(*) ( see the next
section ). Also, the data, AW for i =0,---,p—1 in the model is known, and is generated
by finite differencing of the original data.

In pedagogical terms, this model sets up a linear relationship between the most recently
generated data N¥q and the past data q,Ngq,---, N*"!q. In estimation of the tail, this
linear relationship is assumed to hold for all future data ( to be estimated ) and the past
data ( assumed known ).

This model now allows us to estimate the parameters by the “least squares” procedure,

requiring the solution of the normal equation:
ATAa = ATAO), (16)

where A = (AW ... AP o = (a®,... o)) and is a u X u system of linear

equations, with u = Y°7] ¢;.

1=1

5 Estimating the Tail and the Solution

Let & be the estimate of the coefficient «, and be obtained by solving the model (15) by the
method of least squares, i.e., by solving (16). We now show how this estimate can be used

Ak— . .
to compute, ¢ l, an estimate of the tail
-1 = ) Nk+ig,
~

Please note that the “known” term N¥q has been included in the tail and the reason
for this inclusion will become clear later.

Using Corollary 7, we can write
p-1

LS - P,-Af”e-{-e(s)
0 1=1

8

= S

-1
P AT —A) e +e®

1=1

where £®) is the error vector.

11



Our approach now is to obtain an expression for P; in terms of A;, such that its sub-
stitution into the above expression can be readily identified as some function of o). We
could use formula (13), but it is unsatisfactory ( the final terms involve both ! and A, in
the simplification ). We now desire an expression for P; that does the trick.

Define
AY = 51 (Ntg) (17)
Using (17), fort =k —s; —t; +1,--+, k — s;, we can define
AY = P Al -t ([ _ A )51V 4 YO,

As before, A" is obtained from the original data by finite differencing, and is known.

Defining P;, as in (13), and substituting in above, we get

p-1 .
1 = S AVVIIAS T (T A) e+ 6@

i=1
= Z AWl 4
and we can use
' = Aa (18)
( where A = (A(l), e A(p—l)), and &7 = (&Y, .-, &PV} is the “least squares” estimate

of a in (15) ) as an estimate of t*=1. There is clearly a relationship between A and A.

Using the estimate ik_l, defined in (18), we set

Qk — 8k—1+ik‘1

= s+ Ad
and use this as an estimate of the solution to (2). Of interest is the error in the equation

(2) when this estimate is used. Define the vector

Indeed, a good estimate of the solution to (2), results in a smaller error €*, and a good
model (15) would generate a lower residual error in the least squares setting. The next
theorem asserts that these two errors, are the same, and also justifies the inclusion of N¥q

as a part of the tail.
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Theorem 11 Let §* be the estimate of the solution to (2) as computed above using &, the

least squares solution to (15). Then

Proof:

g-(I-N)ij* = q-(I-N)(s"+As)
= ¢-(I-N)(g+Ng+--+N*"'q+Ad)
= N*q-(I-N)As.

But (I - N)Aii) = 9(0% (N'q)) = A and we have our result. M

This is an important theorem, since it connects the error in the solution of (2) with
the residual vector of the least-squares solution. Thus, if the residual is large, the resulting
error in the equation will also be large. Hence a large residual would indicate a model
modification which is defined by the number of sets S; eigenvalues are partitioned into, the

number of eigenvalues, t;, in each set, and the “distinguishing” power s;.

6 Separating Eigenvalues

The “goodness of fit” of the model developed in section 4 is also effected by the “separation”
of the eigenvalues of N into classes that behave similarily when raised to powers. Thus
for systems with well separated eigenvalues, our models will exhibit better perform. We
present here a technique for enhancing the separation of eigenvalues of N. This separation
is acheived by rewriting the series involving higher powers of N, and the fact that the
eigenvalues of N*, for k > 2, are “further apart” than those of IN.

Consider the sum of (4).

Theorem 12 For each | > 1, there exist a vector @ and a symmetric positive semi-definite
matrizc N such that
y=q+Ng+N'g+--

where the eigenvalues of N are (I + 1) powers of the eigenvalues of N.

13



Proof: For each given [ > 1, the sum of (4) can be rearranged as
y=(g+Ng+ - +N'q)+ N (g+Ng+:--+N'q)+ N* (g + Ng+---+ N'g)+---

and we obtain our theorem by letting g=q+ Ng+---+ N'gand N = N'*'. m

Implementation of the result of this theorem requires generating the partial sums:
N'g= Nittg 4 Nit+D+1g o 4 NilHDH g

from the original data, q, Nq, N?q,---. In any computational analysis, this “overhead”

~ must be compared to the resulting savings.

7 Acceleration by Chebychev Polynomials

Chebychev Polynomials, ( see for example, Rivlin [8] ), provide a convenient and efficient
mechanism for making a best lower order polynomial approximation, over a range of values
of the variables, to a given polynomial. In this section we show how these polynomials can
be used to accelerate the convergence of the techniques developed in this paper. Before we
do this, we present a brief introduction.

The Chebychev polynomial of degree n is defined as
Tu(z) = a((,") + agn)x 4+ aMgn (19)

for all z € [—1,1]; and, the relationship between these polynomials is defined by the differ-

ence equation

TQ(I) =1
Ti(z) = =
Toiri1(z) = 22T,(z) — Thoi(2).

This difference equation can be used to generate coeflicients of T}, and the formulii for these
coefficients can be found in [8], and other references.
Given a polynomial p(z) of degree n, a lower order approximation ¢(z) of degree m,

m < n, is generated by first expressing p(z) in terms of Tj(z); and then dropping the terms

14



involving the higher order Chebychev polynomials. Thus, to get a m degree approximation

q(z) to p(z), we first define Ao, - - -, A, such that
p(z) = AoTo(z) + A1 Th(z) + -+ + A Tu(2) (20)
and then define
q(z) = AgTo(z) + AlTl(;r) 4+ ApTn(z). (21)
The following is well known:
- Theorem 13 |p(z) — ¢(z)| < L5, 41 |45] for all z € [-1,1].
In our application, we will apply Chebchev approximations to the series
p(N)=I+N +N*+...+ N¥! (22)
of matrices N by the lower order series
¢(N)=Ag+ AAT7y(N) + -+ ApTw(N) (23)

where k' < k — 1. A caution is in order here. For the ease of exposition, we have abused
notation, and used the same symbols, p, ¢ and T', having the set of reals ( as in (19) - (21) )

or the set of matrices ( as in (22) and (23) ) , as their domain and range. We can show that
Theorem 14 For every k
IT(N)l2 < mazi|Ti(X)] < 1.
Proof: Using the fact that N = PAPT for some orthonormal matrix P, we see that
Tk(Nj = P(a{'T+ aPA + - + dPA¥)PT
and thus

ITe(N)le < NlafT + a7+ +af A
= maxi|(al” +aPA + - + PN
= max,-|Tk(/\,-)|

IN

1

15



and we are done. W

In the estimation of the solution to (2) we will use

instead of sF~1.

Since p and ¢ are polynomials in IV, the error calculation of Theorem 13 will involve the
eigenvalues A; of N. This follows from the fact that |[p(N) — q(N)|| < 574 |4 T3 (V)| )2
and, from Theorem 14, ||T;(IV)||; < max;|T;(\i)|. Since \; € [0,1], we need to modify the

definition of the polynomials so that the corresponding domain of interest is [0,1]. This is

readily done by a change of variables to obtain

To(z) = 1
Ti(z) = 2z-1 (24)
Toti1(z) = 22z — 1)To(z) = Tp-r(2).

We now compute the coefficients of T, ().

Theorem 15 Let T; be defined by (24). Then for eachn > 1 and j <n

—1)ti +i ) .
()Q__( 1)41_

Proof: Using (24), we can readily establish that for each n > 1 :

D = sl

ag’”'l) = 4a£n_)1 - 2a1(1")

a§-n+1) = —2a§~”) + 4a§-'1)1 - agn_l), 0<j<n
a(()n+1) — _2a(()n) _ a(()n—l)-

The result now follows by a simple induction hypothesis using a((,o) = 1, and agl) = 2,
a(()l) =-1. N
To generate the approximation (23) we need to determine the coefficients, Ag-k_l), =

0,---,k—1, such that

p(N) = Z AFTITY(I). (25)

16



It can be readily established, using the form (19) of T}, that Ag-k_l) solve the following

triangular system of equations:

A J0 . agk—l)’ Agc—l)‘ 1]
(1) (k-1) (k-1)
a eeoa A 1
1 1 1 — (26)
k- k-
_ a0 LA | (1)

Theorem 16 The solution to the system (26) is: For j > 1,

i (a0
A=) ( v )4 1)

1=0 ?

with

k-1
AP =14 3 (1) AR, (28)
j=1
Proof: The (26) can be rewritten as

ago) (17} 1
L e

for the appropriate upper triangular matrix L, vectors Ag, @ and e = (1,1,---, 1)T. After

Ao
Ao

substituting the result of Theorem 15, we can obtain the solution of (27) by solving
SLAo =T (29)

where

17



A=D ] !
2441 24-1
110 = , P =
k—1)A¢Y k- 1)dk+2
k-1 L J

Using the standard identity

-0

it can be readily shown that

where

11 — rowj

1 1]
which specifies that columns, starting with the j*, be successively added. Since L' is
triangular, we can define

o[

v

#
r= + Pe—1Wk—1
0

where uz_; = (0,0,---,1)T ( the (k — 1)st unit vector ),

and; if we define

A

L = + -1 L ugy
0

- j;'l

S
L 7+riu

Te-1V
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Using the last identity, the result of the theorem can be established by a straightforward
induction on k. W
Theorem 16 can now be used to derive the coefficients of the approximating polynomial
(23). If
gN)=A),+ AN +-.- + A,N*

then
A =LA
where A’ = (Af, -+, AL)T, A= (Ao,---, Ap)T and
[ ) e o)
o agk’)

L'=

8 Validation of the Model

In this section, we present some computational results validating the model of Section 4.
This is done by its application to the system (4) generated by an assignment problem. This
problem has an optimum solution which is highy degenerate, and can thus present special
problems for interior point methods. In several examples we tested this model on, the
spectral radius of N approaches 1, as the algorithm proceeds to the solution ( see Table 3 ),
thus, making the summation of the series (4) very hard. This happens when the optimum
solution is unique, and thus a highly degenerate vertex of the assignment polytope. In the
case when the algorithm converges to an interior solution, our model performs exceptionally
well ( see Tables 1 and 2 ). These computational results are with the dual affine scaling
method, see, for example, Vanderbei, Meketon and Freedman [10] for the specifics.

We now derive the matrix N used for the validation. The assignment problem is the

following linear program: given n? positive real numbers ¢; ;, i = 1,---,n, j = 1,---,n; find
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z;; that solve the following linear program:

min 37, 2T €T

n — y —
i=1Tij =1 1=1,---/n
n i y —
i:lxivj_l ]—1,"‘,”
x,-,jZO i=1,---n,j=l,---,n.

For this problem, the vertex optimum solutions are known to be highly degenerate. The

dual to this problem is the linear program:
max iy Ui+ Xjo v
Ui + v+ 8 ; =Cij 1= 1,-~n,j =1,---,n.
S,',]‘ZO i=1,---n,j=1,---,n.
where u;, v; are the dual variables and s; ; are the dual slacks.

We apply the dual affine scaling method, starting with the interior dual solution u; = 0,

matrix with the diagonal entries, D; ; = 1/3;{]- fore=1,---,n,j =1,---,n; and the matrix

A has the partition (5) of section 3 with

[T 0 0 |
0 €T 0
E = ,F:‘(I7I, aI)?
i 0 0 eT_

where e is a n-vector of all 1's, and I is a n x n identity matrix. Thus, EDE” and FDFT
of section 3 are diagonal matrices with positive diagonal entries. L, and Lj are also diagonal
matrices, with Ly = L7 FDE”. The matrix N = L7'L,LTL3!, is a n x n positive and
positive semi-definite matrix with spectral radius less than 1, see, for example Saigal [9].
Computational testing of the model is performed on three sets of randomly generated
assignment problems, i.e, the positive constants c;; are determined randomly. Each set
consistes of two similarily behaving problems, one of size 200 x 200 and the other 300 x 300.
These problems are solved by the dual affine scaling method adopting the methodology of
Saigal [9] presented above, and present increasing degree of difficulty to the affine scaling

method and the estimation model presented in this work. On the first set of problems, the
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method converges to a solution on the boundary of the primal polyhedron with a very few
positive variables at value 1; on the second set the method converges to almost a vertex,
with about 75% of positive variables at value 1; and, on the third set the method converges
to a vertex, with all positive variables at value 1. The “step-size” in the affine scaling
method is given the following values: during the first 20 iterations the values, respectivelly,
are 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.9,0, 90,0, 93,0.93,0.94,0.95, 0.95,0.97
and remains at 0.97 for the 21st and higher iterations. Thus the method approaches the
boundary gradually.

The matrix IN for testing the model is generated by the affine scaling algorithm. The
estimated solution ¥y generated by the model is not used in the method, but (2) is solved by
the technique proposed in Saigal [9]. This is done to guarantee that the same matrix IV is
used in testing of different parameters. During each iteration of the affine scaling method,
the model is tested on the resulting IN with p = 2 and p < 14. In the later case, the
iterative method automatically increases p as more entries N”q of the series are generated.
The values s; =1 and ¢; = 5 are used with p = 2, and for p < 14, s; and ¢; are given in the

table below:

1123|456 | 7|89 10f11]12]13
131212122 (212|222 (2]2]2
$;|1]1416|8|10]12 |14 (16|18 20|22 |24 |26

The results of this test are presented in Tables 1 and 2. At each iteration of the dual
affine scaling method the matrix N is used to recursively generate Ngq,---,N Kq. This
sequence is then used in the model to estimate the solution to the system (2). This system
is considered adequately solved when either the error “ERROR” ( reported in Tables 1 and

2 ) of this estimate satisfies
ERROR < min{107%,||q]| x 107*}.

or N°®q has been generated.
As can be verified from the Tables 1 and 2, the problem complexity greatly effects the
model performance. The first set of problems ( converging to the interior of a face ) is

solved quickly; i.e., a good estimate of the solution is obtained for small K. Solving (2), for
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example requires, ( at iteration 14 ) 44 or 23 matrix multiplications for the 200 x 200 and
44 or 24 for 300 x 300 case, instead of the inversion of I — N. From the tables, it appears
that the second class of problems is easier to solve than the third; and for these problems,
the model performs well at the earlier and the later iterations.

This limited experience suggests that the performance is enhanced when p is increased.
It can be verified from Table 3, that the spectral radius of the matrix N approaches 1,
specially for the harder problems, and that the model performance improves in the later
iterations. This may be because the model performance is effected by the number of sets
- of “similar” eigenvalues, and not necessairly by the magnitude of the largest one. This
phenomenon is under investigation.

We expect this experience to carry over to the general problem as well. To date no

computations that confirm this have been performed.
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200 x 200 ASSIGNMENT PROBLEM

Interior Facet Almost Vertex Vertex
Iter no p=2 p<14 p=2 p<Ll4 p=2 pL14
Error K| K | Error Error K| K Error Error K| K Error
1 .23E-06 4|4 | .23E-06 | .21E-07 515 21E-07 | .38E-05 7 38E-05
2 .66E-06 4 |4 | .66E-06 | .87E-07 55 87E-07 | .15E-07 818 15E-07
3 .22E-05 4 |4 | .22E-05 | .66E-06 515 .66E-06 | .84E-06 88 84E-06
4 .17E-06 515 | .17E-06 | .85E-05 515 .85E-05 | .10E-05 | 10| 10 | .10E-05
5 .30E-05 515 | .30E-05 | .25E-05 6|6 .28E-05| .10E-05 | 11| 11 | .10E-05
6 .32E-05 6|6 |.34E-05 | .62E-05 718 .58E-05 | 44E-06 | 16 | 16 | .44E-06
7 .99E-06 819 | .21E-06 | .57E-05 9110 |.14E-05 | 41E-05 | 19|19 | .41E-05
8 .26E-05 99 | .48E-05| .53E-05 | 12 |12 | .20E-05| .85E-05 | 26 | 21 | .35E-05
9 J36E-05| 11|11 | .22E-05| .38E-05 | 17 |14 | .87E-05 | .71E-05 | 41 | 33 | .50E-05
10 JB1E-05| 14 | 13 | .11E-05 | .92E-05 | 25 | 18 | .71E-05 | .95E-05 | 65 | 47 | .12E-05
11 42E-05| 16 | 14 | .32E-05 | .76E-05 | 30 { 20 | .73E-05 | .92E-05 | 97 [ 70 | .72E-05
12 16E-05 | 20 | 16 | .10E-05 | .87E-05 | 43 | 23 | .91E-05 | .59E-05 | 117 | 79 | .50E-05
13 J1E-05 | 25 | 18 | .64E-06 | .91E-05 | 58 | 29 | .98E-05 | .82E-05 | 183 | 110 | .75E-05
14 78E-07 | 44 | 23 | .12E-06 | .66E-05 | 127 | 61 | .89E-05 | .91E-05 | 475 | 367 | .86E-05
15 J72E-08 | 19 |15 | .70E-08 | .99E-05 | 268 | 136 | .10E-04 | .20E-02 | 500 | 500 | .32E-03
16 95E-09 | 60 | 29 | .10E-08 | .19E-05 | 282 | 147 | .18E-05 | .66E+00 | 500 | 500 | .52E-02
17 .33E-10 | 18 | 15 | .18E-10 | .17E-05 | 500 | 500 | .67E-06 | .13E+00 | 500 | 500 | .25E-01
18 STE-11| 81 |39 | .57E-11 | .30E-05 | 500 | 500 | .12E-05 [ .37E-01 | 500 | 500 | .15E-01
19 J9E-12 | 18 | 15 | .11E-12 | .85E-06 | 500 | 500 | .28E-05 | .40E-02 | 500 | 500 | .29E-02
20 22E-13 | 115 | 52 | .36E-13 | .62E-07 | 500 | 500 | .92E-06 | .90E-04 | 500 | 500 | .72E-04
21 JA3E-14 | 22 | 17 | .81E-15 | .20E-08 | 500 | 500 | .20E-08 | .31E-05 | 500 | 500 | .20E-05
22 223E-15 | 215 | 95 | .23E-15 | .81E-11 | 500 | 500 | .81E-11 | .29E-07 313 29E-07
23 .60E-17 | 18 | 15 | 43E-17 | .12E-11 | 177 | 79 | .11E-11 | .42E-09 212 42E-09
24 85E-18 | 77 | 36 | .11E-17 | .23E-12 | 500 | 319 | .87E-13 | .16E-11 212 16E-11
25 .60E-14 | 187 | 86 | .60E-14 | .68E-14 212 68E-14
26 59E-15 | 500 | 276 | .41E-15 | .31E-16 212 31E-16
27 30E-16 | 239 | 110 | .29E-16 | .20E-18 212 20E-18
28 24E-17 | 410 | 210 | .25E-17 | .62E-21 212 62E-21
29 .27E-23 212 27E-23
10 .20E-25 212 20E-25
31 A11E-27 212 11E-27

Table 1
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300 x 300 ASSIGNMENT PROBLEM

25

Interior Facet Almost Vertex Vertex
Iter no p=2 p< 14 p=2 p< 14 p=2 p<Ll4

Error K | K | Error Error K|K Error Error K| K Error
1 .16E-06 4|4 | .16E-06 | .44E-07 515 A44E-07 | 43E-05 6|6 43E-05
2 44E-06 4 |4 | 44E-06 | .49E-07 515 49E-07 | .26E-06 |7 26E-06
3 .20E-05 414 | .20E-05 | .43E-06 515 43E-06 | .89E-07 919 89E-07
4 .11E-06 515 | .11E-06 | .61E-05 515 .61E-05 | .66E-08 | 11 | 10 | .44E-06
5 24E-05 515 | .24E-05 | .10E-05 6|6 J1E-05 | .23E-05 | 10 | 10 | .23E-05
6 .11E-05 6|6 | .12E-05| .67E-06 7 .60E-05 | .39E-05 | 12 |12 | .39E-05
7 .86E-06 717 | .69E-05 | .67E-05 819 97E-06 | 47E-05 | 16 | 16 | .47E-05
8 42E-05 819 | .98E-06 | .51E-05 | 11|11 | .21E-05| .38E-05 | 24 | 24 | .38E-05
9 49E-05 | 10| 11 | .58E-06 | .91E-05 | 15|14 | .30E-05| .35E-05 | 37|37 | .35E-05
10 52E-05 | 12| 11 | .93E-05 | .58E-05 | 21 | 17 | .20E-05 | .81E-05 | 58 | 42 | .20E-05
11 44E-05 | 14 | 13 | .24E-05 | .69E-05 | 26 | 19 | .43E-05| .98E-05 | 84 | 84 | .98E-05
12 35E-05 | 16 | 14 | .33E-05 | .99E-05 | 33 | 22 | .54E-05 | .69E-05 | 139 | 67 | .38E-05
13 20E-05 | 23|17 ) .16E-05 | .81E-05 | 51 |27 | .67E-05| .83E-05 | 185 | 107 | .87E-05
14 42E-06 | 44 | 24 | .31E-06 | .82E-05 | 125 | 63 | .90E-05 | .99E-05 | 354 | 226 | .91E-05
15 B1E-08 | 24 | 17 { .90E-08 | .77E-05 | 213 | 119 | .96E-05 | .51E-03 | 500 | 500 | .38E-04
16 .29E-08 | 100 | 36 | .26E-08 | .39E-05 | 488 | 288 | .38E-05 | .12E+00 | 500 | 500 | .46E-02
17 ATE-10 | 16 | 14 | .33E-10 | .37E-05 | 500 | 500 | .25E-05 | .14E+00 | 500 | 500 | .73E-01
18 14E-10 | 150 | 50 | .16E-10 | .52E-05 | 500 | 500 | .43E-05 | .89E-01 | 500 | 500 | .56E-01
19 B9E-12 | 21|17 | .12E-12 | .18E-05 | 500 | 500 | .15E-05 | .32E-01 | 500 | 500 | .22E-01
20 97E-13 | 138 | 57 | .91E-13 | .21E-06 | 500 | 500 | .57E-05 | .79E-02 | 500 | 500 | .52E-02
21 20E-14 | 20| 16 | .15E-14 | .16E-07 | 500 | 500 | .27E-06 | .27E-02 | 500 | 500 | .15E-02
22 40E-15 | 116 | 57 | .35E-15 | .39E-10 | 124 | 31 | .38E-10 | .20E-03 | 500 | 500 | .25E-03
23 24E-16 | 41|23 | .23E-16 | .30E-11 | 77 | 28 | .38E-11 | .11E-04 | 500 | 500 | .67E-05
24 21E-17 | 125 | 53 | .22E-17 | .20E-12 | 41 | 21 | .13E-12 | .88E-07 | 500 | 500 | .34E-07
25 25E-18 | 67 | 28 | .24E-18 | .22E-13 | 69 | 27 | .21E-13 | .27E-08 | 32 | 17 | .24E-08
26 J1E-14 | 77129 | .71E-15| .19E-10 | 53 | 17 | .14E-10
27 93E-16 | 49 | 23 | .27E-16 | .55E-11 | 39 | 17 | .23E-12
28 S51E-17 | 250 | 40 | .11E-17 | .83E-12 | 61 | 19 | .99E-13
29 J73E-18 | 96 | 33 | 41E-18 | 45E-13 | 57 | 17 | .57E-15
30 44E-14 | 77|19 | .37E-14
31 A7E-15 | 43|18 | .67E-18
32 21E-16 | 37 | 17 | .15E-18
33 J2E-17 | 71|17 | .57E-19

Table 2
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