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Abstract

We consider here a linear programming problem whose rows of the constraint ma-
trix can be partitioned into two parts. Such natural partitions exist in several special
linear programs, including the assignment problem, the transportation problem, the
generalized upper bounded variable problem, the block diagonal linear program; and
can also be used to induce sparsity patterns in Cholesky factorizations. In this paper
we propose a matrix partitioning method for interior point algorithms. The proposed
method independently generates Cholesky factorizations of each part, and reduces the
complexity to that of solving generally, a dense linear system involving several rank
one updates of the indentity matrix. Here, we propose solving this linear system by an
inductive use of the Sherman - Morrison - Woodbury formula. The proposed method
is easily implemented on a vector, parallel machine as well as on a distributed system.
Such partitioning methods have been popular in the context of the simplex method,

where the special structure of the basis matrix is exploited.
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1 Introduction

We consider here the linear programming problem

min ¢’z

where A is a m X n matrix of rank m, b is a m vector and ¢ is a n vector. We assume that

the matrix A has the partition

A= , b= : (1)
H h

where G and H, respectively, are m; Xn and my Xn matrices, and; g and h are, respectively,
my and m, vectors, with m; + my = m. We also assume that such a partition is determined
either by the structure of the problem or has been induced by sparsity considerations.
Specially structured linear programs that have this natural partition include the assignment
problem, the transportation problem, the generalized upper bounded variable problem and
the block diagonal linear program. Such partitions may also be considered to arise in
situations where rows are added, iteratively, to a linear program, and one of the set of rows
G or H may be considered to be the ones added.

Many variants of the simplex method exist which exploit the induced special structure
of the basis matrix. We refer the reader to Lasdon [6] for a background on these variants.
Our goal, in this paper, is to consider the application of the recent interior point methods
to this partitioned linear prdgram. The study of these methods was started by the seminal
work of Karmarakar [4]. Some notable papers that are related to this work are Barnes [1],
Kojima, Mizuno and Yoshise [5] and Vanderbei, Meketon and Freedman [8]. The reader is
encouraged to browse through these, the recent book Fang and Puthenpura [2], and many
references therein, for an introduction to these methods. Our starting point in this paper

is the implementation of these methods, which requires the solution of a linear system

Cz = d (2)



where C.= ADAT for some diagonal matrix D; and d, as a function of A, b, ¢ and D, is
determined by the particular interior point method employed. In this paper, we reduce (2)

to solving a ms X m, system of the form
(I-EE")u = g 3)

where E is a m; X my matrix. If E; is the jth column of the matrix E, it can be readily
seen that

my

I-EE"=1-) E;ET, (4)

i=1
and we view (4) as m; rank one updates to the identity matrix I. We solve the system
(4) by an inductive version of the Sherman - Morrison - Woodbury formula. This inductive
method requires O(mgm?) multiplications, and is advantageous over inverting I — EET
when my > m;. Another advantage of this method is its ready implementation on a vector
and a parallel/distributed computing environment.

In section 2 we present partial Cholesky factorization, the basic idea behind the par-
titioning technique; and, in section 3 we present a technique to handle several rank one
updates. In section 4 we present the variant to handle the transportation and assignment
problems, in section 5 the GUB and in section 6 the block diagonal linear program and the
multicommodity flow problem. Finally in section 7, we give some preliminary computational

results comparing the transportation variant with LOQO, Vanderbei [9].

2 Partial Cholesky factorization of ADAT

In this section we generate the general theory we will use to exploit the partition (1) of A.

The main result we need for this purpose is the following theorem:

Theorem 1 Let C be a m x m symmetric positive definite matriz. Then there ezists a

unique m X m lower triangular matriz L with positive diagonal entries, such that C = LLT.

In case C is dense, zm® + 2m? — Em multiplications are required to compute L.

Proof : See George and Liu [3].



The matrix L in the above theorem is called the Cholesky factor of C. Given that C is
sparse, we refer the reader to George and Liu [3], an excellent reference on the methodology
that preserves sparsity of L. We now use this theorem to exploit the partitioﬁ (1) of the
rows of A.

Assuming this partition, it can be easily seen that

ADAT = (5)

GDGT GDHT
HDGT HDHT |

Then we can prove:

Lemma 2 There ezist lower triangular my; X m; matriz Ly and my X my matriz L3 such

that GDGT = L,LT and HDHT = L,L!.

Proof : Since A is full row rank so are G and H. Since D has positive diagonal entries,
GDGT and HDHY are symmetric positive definite matrices, and we have our result from
theorem (1).

We now use the lower triangular matrices L; and Ls, guaranteed by lemma (2), for
solving (2) when A has the partition (1). This is done in the next theorem, which generates

a partial Cholesky factor of ADAT.

Theorem 3 Let the my; x my matriz L, and mq, X my matriz L3 be defined as in the lemma

(2). Then, for the my x my matriz Ly and my X my matric D with

D = Ly(I-L;'L,LTL;7)LE, (6)
L,IT = GDHT, (7)
L, 0] . Io
= ,Dz _ ;
L, I 0 D
ADAT = LDIL".



Proof : Can be readily verified by a direct multiplication of L, D and L”.
As a result of this theorem, the solution of the equation (2) can be expressed in terms

of the matrices Ly, Ly, and Lz. This is done in the next result.

d
d=|
d;

conform to the partition (5) of C ( = ADAT ). Here, d;, z, are m, vectors and d;, z, are

Assume that the partitions

mq vectors.

Theorem 4 Let the my X m; matriz E be defined so that LsE = L,. The equation (2) can

be solved by the following sequence of steps:

Step 1 Find 2} by forward solve
Ll Z’l = dl

Step 2 Define

2’2 = d2 - ngll

Step 3 Find 2z by forward solve

L3Z,2/ = Z;
Step 4 Solve
(I-EE")z; = z (8)
Step 5 F'ind z, by backward solve
LIz, =2

Step 6 Find z, by backward solve
LTz =2, — LTz

Proof : Using the structure of L and D ( of theorem (3)) the following equations can be

readily derived:
lell = d1
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T / T
Liz, = 2] -L;z,.

The theorem now follows from the structure (6) of D.

The result of theorem (4) requires the Cholesky factors of GDG? and HDH?, which
are expected to be less dense than the factor of ADAT. The price for this enhanced sparsity
is paid at Step 4 of the theorem. Here, generally, a dense system of equations has to be
solved. In the next section, we will present a procedure that solves this system in O(m2m,)
multiplications. If 'this system were solved by Cholesky factorization, calculation of EET

would require m;m?2 multiplications, and the calculation of the Cholesky factor another

3

2my. In the case my; > m;, solving directly is more expensive.

1,2 1,2
§M2 T 3™M2 —

For a dense matrix C, system (2) can be solved, using Cholesky factors, in %mS + g‘-mz —

gm multiplications. Using the technique of this section with a partitioned matrix A, it
requires 3(m3 + 9m? 4 6mIm, — 3m) multiplications, and is not competitive.

We now establish a basic property of the matrix EET, encountered in Step 4.

Theorem 5 Let E be defined as in theorem (4), Step 4. The spectral radius of EET is less
than 1.

Proof : Since ADAT is positive definite, so is LIDLT ( see theorem (3) for definitions ),
and thus D is positive definite. Using the structure of D,Dis positive definite. Thus, from
equation (6), zT(I — EET)z > 0 for all z. Thus 2T EETz < 27z for all 2, and we have

our result.

3 A method for system with several rank one updates

In this section we develop an inductive version of the Sherman - Morrison - Woodbury
formula for solving the system (8). For each j = 1,---my, let E; be the jth column of the
matrix E, and

_un
Em1+1 —_ 22.



Also, let By = I, and foreach k=1,---,m,
Bi,, = B, — E4EY
and, note that B,,,,; = I — EE".
Now, foreach k=1,---,m;+1and j =1,---,m; + 1 define
B.EV = E;.
Thus, foreach k=1,---,;myand j=k+1,---,m; +1,
Bin EFYY = E;
or,

(B, - E,E])E¢Y = E;

J
or,
(I-EPEDEFY = EW, (9)

Using the Sherman - Morrison - Woodbury formula, we can write the solution to equation
(9) as
Ek+) E® 4 < F;j, Efck) > E®
d P 1< E.EW> "
< E, BV >

1I-< Ek,Esck) >

where < .,. > is the usual inner product of two vectors.

= EW 4 EP.

We can prove the following result about the above procedure:

Theorem 6 The solution z' of the equation (8) is Ef:lfll).

Proof : This is readily seen since by definition,
+1
Bm1+1E£::1+1 ) = En i

substituting the identities B, 1 = I — EEFT and E,. 1 = 2}, we obtain the theorem.
The above inductive procedure ( on k ) suggests the following algorithm in a vector and

a distributed/parallel environment:



Step 1 1. Communicate E; to processor j = 1,---,my + 1.
2. At processor j, set Egl) = E;.

3. set k= 1.

Step 2 From processor k, communicate Efck) , By and < Ek,E'gc) > to each processor

F=k4l,-,m 41

Step 3 At processor j, 7 =k+1,---,m; + 1 compute

< Ek,Eg-k) > (k)
® E,”’.
1"' < Ek, Ek >

(k+1) _ (k)
EXY = g 4

Step 4 Set k = k+1. If £ < my, then go to Step 2, otherwise declare ng:rll) as the solution

zy' of equation (8).

A careful count of the number of multiplications needed are summarized in the following

theorem:

Theorem 7 The number of multiplications required by the algorithm to solve equation (8)
is mimgy + 2mym,. In the vector and parallel environment, the number of vector operations

required is 3m;.

Proof : Can be readily verified by a careful counting.

There is a considerable advantage in keeping m; < m; while solving equation (8), a
m, X m; system, by the above strategy. Otherwise, it would require m;m2 multiplications to
obtain EET, }(m3+3m%—9m,) to obtain the Cholesky factor of I — EET and ma(ma+1) to
solve the system using the Cholesky factor. The method of this section is less advantageous

if my < my; and to use it effectively m; and m; should be re-defined.

4 Transportation and Assignment Problem

The transportation problem is the following: given m supply depots, with s; (> 0) as the
units of supply of some good at depot i for each i = 1,- - -, m; n demand centers with d; (> 0)

as the units of demand of the good at the center j for each j = 1, -+, n; and ¢; ; (> 0) the cost
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of shipping one unit of good between depot : and center j foreach: =1,---,m, 7 =1,---,n;
find the least cost quantity of good shipped between each depot and center. We assume
here that the transportation problem is balanced, or ¥, s; = Yo dy; e, fhere is just
enough quantity of good available at the supply depots to meet this demand. In this case
it is well known that the transportation problem has an optimal shipping schedule, and it
can be found by solving the following Transportation Linear Program :

min i i Ci ;T ;

=1 7=1
n

Zx,‘,j = $,1=1,---,m
i=1
m

Zw,-,j = dj,j=1,--,n
1_1331-,_,- > 0,e=1,---;m; 3=1,--+,n.
where z; ; is the number of units of good shipped from depot ¢ to center j, for each ¢ and ;.
The Assignment problem is the following: given there are n individuals that can do
any of the n tasks; and, assigning the individual ¢ to the task j costs ¢;; (> 0) for each
t=1,---,n,7 =1,---,n, find the least cost assignment of individuals to tasks. It is also
required that each individual perform exactly one task, and that each task be performed
by exactly one individual. This problem can be cast as a balanced transportation problem,
with each individual associated with a supply depot with exactly one unit of supply, and
each task with a demand center with exactly one unit of demand. The only difference is
that the variables z; ; are required to take on values 0 or 1. As is well known, because of the
total unimodularity property of the constraint matrix, setting s; = 1 and d; = 1 for each
it =1,---,nand § = 1,...,n and solving the transportation linear program suffices finds
the optimal assignment.
The dual of this linear program is the following:

m n
max Z S;u; + Z djvj
Jj=1

i=1

Ui +v;+8i; = Cij for all i=1,-~m,_j=1,--',n

sij > 0 forall i=1,---m, j=1,---,n



where u; and v; are the dual variables and s;; are the dual slacks for each ¢ and j.

The constraints of the (primal) linear program fall naturally into two sets, the supply
constraints and the demand constraints. It is this partition that we will exploit in the
algorithm. As is well known, the rank of the constraint matrix is m + n — 1, which is one
less than the number of constraints. Thus one constraint must be discarded to ensure that
the constraint matrix has full row rank. We will discard the supply constraint associated

with the depot m, and use the following constraint matrix:

el 0 0 0

0 e 0 0
A=

0 0 ---ef o0

I I I I

where €T = (1,1,---

Thus we define,

,1), a n vector, and I is the n X n identity matrix.

el o 0 0
0 e 0 O

G = 1H=(1317 ,1)3
0 O el o

where G is a (m — 1) X mn and H is a n X mn matrix. The diagonal matrix D has mn

entries along the diagonal, and has the partition

[ p)
0

0

0
D®

0

D™

where D is a n x n diagonal matrix, and its jth diagonal entry Dg) is the ijth diagonal
entry of D, which corresponds to the entry of D associated with the variable z;;. The

exact form of this entry depends on the particular interior point algorithm implemented.



It can now be readily confirmed that

-

eTDWe

eTDWe
GDGT =

eI D™-Ve

a (m —1) x (m — 1) diagonal matrix; and
HDHT =) DY
=1
a n xn diagonal matrix. Thus L; and L3 are diagonal matrices, with the jth diagonal entry

of L, and L3 being (X %_, D,(ci))';' and (30, DJ(-;-))%, respectively. Also

eI pt)
T eI DB
GDH" = ,
eI D™=
J
and
L, = (DWe,DWe¢,... D™ Ye)L !
Thus

= L;'(DWe, D%e,..., D™ V)L
which is a n x (m — 1) positive matrix.

Theorem 8 Each iteration of the interior point method requires nm? +6nm+2(m—n+1)

multiplications for the partitioned assignment problem.

Proof : Using the structure of Ly, L, and L3; and solving (8) by the method of section 3,

and carefully counting the multiplications at each step, we get the theorem.
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5 Generalized Upper Bounding Problem

The generalized upper bounding linear program is the following:

minimize cyxo + cf:cl + cga:g + e 4+ cfa:,,
Aoz + Az + Az + - + Ay, =0b
elz, =1
egzg =1
ele, =1
x9 >0 x>0 xz, >0 z, >0
where, for each j = 0,---,p, A; is a m x n; matrix, ¢; and @; are n; vectors; and for

j=1,---p, e; ais a n; vector of all ones. Transportation and assignment problems have
this structure as well, but in important applications, m << p ( i.e., m is much less than p
). We make the usual assumption that the constraint matrix has the full row rank m + p.

As is evident, the constraints of this problem have the natural partition (1) with

G=(AOyA17"°’Ap)

0 e 0 -0

00 e ---0
H= ,

00 0 - €

and the diagonal matrix D has the partition ( corresponding to the partiton of A )

DO
DY

D

L -

where DY) is a n; x n; diagonal matrix corresponding to columns of &; in A, for each

]=177p
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Here
T z ) 4T
GDGT = Y A;DV A?
7=0
efD(l)el

eI D@e
HDHT 2 2

e,:,rD(”)ep

=

with HDHT a diagonal matrix. Thus Ls is a diagonal matrix, and Ly, the Cholesky factor

of the m X m matrix
P

> A;DWAT = L, LT.

1=0
In applications, even when A; are sparse, we would expect their sum to be considerably

more dense, and thus we expect L, to be relatively dense. Also
GDH" = (A;DWe,, A,DPe,, .., A,DP)e,).

Thus if Ly, = (4,1, +,1,),
Lil; = A;DVe;

and we can expect the p x m matrix L, to be dense. In addition, E = L;'L,.

Theorem 9 Fach step of an interior point method requires %pm2 + im + 1%pm + %m2 —

%m + 2p when applied to the partitioned GUB problem.

Proof : Can be obtained by a careful calculation of the work at each step of the algorithm.
The multiplications required to obtain the Cholesky factor L; are included in the above

formula.
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6 Block diagonal linear program

The block diagonal linear program is the following:

minimize ctey + cfe; + Lz, + + cf:c,,

Ajzg + Ay + Az + + Az, =b

Az, =b

Az, = b,

Az, =b,

x>0 2,20 x>0 z, 20

where, for each j = 0,---,p, A; is a mg X n; matrix, ¢; and ; are n; vectors; and, for each
j=1,---,p, A; is a m; x n; matrix. Let m = mg and M = my + - --+m,. The constraints

of this problem have the natural partition (1) with

0 A; O 0

00 A, 0
H =

00 0 - A,

and the diagonal matrix D has the partition ( 10). It can be verified that

p :
GDG"T = Y A;DYAT;

§=0

and,

A,DWAT

A,D?® AT
HDHT 2 2

A,DWV ;1;{

is a block diagonal matrix. As in the GUB case, the factor L, of GDGT will be relatively

dense. Lj, the Cholesky factor of HDHT is block diagonal, and each diagonal factor can

13



be computed independently. Thus, we can assume that

L31

L
L= 32

L
3pJ

When A; is sparse, we can preserve the sparsity of Ls; ( the Cholesky factor of A; DU ),;-1?
) by the techniques of sparse Cholesky factorization, George and Liu [3]. Also

GDH" = (A, DVA4],...,4,DP A])
is a m x M matrix. If LT = (LT ,. --,Lgp),
N 2T
L,L};= A;DYA;.

We expect L,; to be, generally, dense.
Let E = (E(l),E(z), cee E(”))T which conforms to the partition of L3, Then, for each
j = ]_, 2, N
L3, EVY) = L,;

and we can readily establish the following theorem:

Theorem 10 For a dense problem,it takes : Y% o(m? + 3m2 — 9m;) + Mm(m + 1) +
2yt 1 mj(m;+1) multiplications to generate Ly, Ly, L3 and E; and, takes Mm*+4Mm+
m? + m + YF_; m? + M multiplications to solve the systems of theorem (4). If m; = m
for all j = 1,---p, the above forms reduce to 3(m® 4+ 3m? — 9m + pm® + 3pm? — 9pm) +
iomm(m+1) + ipmm(m+1) and pm?m 4 4pmim 4+ m? +m + pim® + pim respectively. Thus,

in this case, the computations grow linearly in p.

Proof : This can be readily proved by a careful counting of the required multiplications.
One specially structured, and important problem which shares the block-diagonal struc-
ture is the Multi-commodity flow problem. In its node-arc formulation, p is the number of

commodities, A; = I for each i = 0,---,p; and A; = R, where R is a node-arc incidence
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matrix of the directed network through which these commodities flow. Thus,

p
GDG" =3 DY)

i=0

is diagonal, and the sparsity pattern of A;D(i);{?, for each ¢ =1,---,p, is the same. Also,

A;DYAT = DORT,

Thus
p . 1 .
Lé’l — (Z D(J))‘;D(’)RT
=1
Ly, EY = RDY(3>" D)3, (11)

j=1
L3; is the Cholesky factor of RDYRT, and, for each ¢, has the same sparsity pattern as
that of the factor of RRT. It is readily confirmed that , in the notation of George and Liu
[3], the graph associated with RRT is the unordered network on which the commodities
flow. This facilitates considerably the use of their techniques for generating sparse Cholesky
factors Ls;. Since each column of R has only two nonzero entries, E®) will be sparse; and
will have the same sparsity pattern for each i.

For a network with m nodes, n arcs and p commodities, L, is a n X n diagonal matrix,
for each ¢ = 1,---,p, L3; is m X m matrix, Ly; is m X n and E is pm x n. Also, assume
that it takes § multiplications to get a sparse Cholesky factor of RRT; and note that
6 < 2(m® + 3m? — 9m); and that the number of non-zero elements in this factor are 7.

Then, the following can be shown:

Theorem 11 Given Ly, Ly, Ly and E, it takes pmn? + 4pn + 2n + pn multiplications to
solve all the systems of theorem (4).

7 Computational Experience

In this section, we present some computational experience of solving assignment problems

by the procedure suggested here and by the state-of -the-art code LOQO, Vanderbei [9].
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LOQO is a state of the art interior point code based on the primal-dual homotopy
method, and implements a predictor-corrector strategy for tracing the path of centers. The
per iteration times of this code are compared with the per iteration times of a specialized
transportation code, implementing the dual affine scaling strategy. The LOQO per iteration
times may be a little larger because of the step size selection in the predictor-corrector
strategy. The per-iteration times and their ratio are given in Table below. We point out
that for these special problems, the specialized version was about 3 to 4 times faster than

the general purpose code, LOQO.

Assignment LOQO Ratio
Problem Size | iter | time * | iter time | iter | time | iter time | Loqo/Asgn
1 200%200 | 14 | 20.78 1.48 15 | 75.72 | 5.048 3.41
2 200200 | 17 | 25.09 | 1.476 17 | 85.30 | 4.911 3.33
3 200200 | 21 | 31.02 | 1.477 | 20 | 96.61 4.830 3.27
4 300300 | 14 | 65.72 4.69 18 | 301.07 | 16.72 3.565
5 300%300 | 19 | 88.80 4.67 19 31416 | 1653 | 3.540
6 300%x300 | 21 | 98.06 4.67 21 | 418.5 16.86 3.61

* This time is the total time for all the iterations, without the input/output time. All

times are in seconds.

The three problems of size 200 x 200; and, of size 300 x 300 are generated randomly, and
present increasing difficulty to interior point methods. On the first problem, these methods
converge to a solution in the interior of a face, with very few variables at value 1. On the
second problem, these methods converge to a solution with more that 75 % of the variables
at value 1, while on the third problem they converge to a vertex, with all variables at value
1. For the first problem, LOQO found a solution to the accuracy of eight significant figures,
but for the second and third, it was unable to find this accurate a solution. For these

problems it found a solution to 7 digits of accuracy.
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