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Abstract

In this short note, we consider the problem of computing the inverse of a sym-
metric positive-definite matrix after several rank one updates have been subtracted
from a similar matrix. We give a generalization of the Sherman-Morrison-Woodbury
formula for a single rank one modification. We also present a scheme which generates
this inverse in m2r + mr? + ﬂ%—u multiplications where m is the size of the matrix
and r is the number of rank one updates. In case these updates are of the identity
matrix, the resulting multiplications is mr? + ﬂr;—ll As an application, we present
an alternative implementation of the simplex method that uses only positive definite
symmetric matrices, and may be suitable for parallel/vector/distributed computing
environments. This also results in a unification of the implementations of interior

point methods and simplex method.
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1 Introduction
In this paper we derive the following formula for a symmetric positive definite matrix:
(A= EET) = A7+ GDGT (1)

where E, and G are m x r matrices, A and A— EET are m x m symmetric positive-definite
matrices; and, D is a diagonal matrix with positive diagonal entries. The matrix appearing
on the left hand side of formula (1) can also be viewed as r rank one modifications of A,
with

A-EE" = A—XT:EJE]T

j=1
where £ = (Ey, Ey,- -+, E,). The formula (1) is a generalization of the following Sherman-

Morrison-Woodbury formula, Hager [4], when r = 1:
(A—uu”)™ = A7 4 vDoT (2)

where Av = wand D = (1 — uT A=2u)~! which is positive if the resulting matrix after the
rank one modification has a positive determinant.

Matrices of the form A—UD™'V are called Schur complements, and an excellent review
and applications of such matrices can be found in Cottle [2]. We deal here with situations
that generate a symmetric and positive definite Schur complement. Examples of such forms
arise during (“holesky factorizations of large symmetric positive definite systems, George
and Liu [3]. and partitioning techniques for interior point methods, Saigal [6].

In this paper, we derive formula (1) for symmetric positive definite case. We do this by
an algorithm which, inductively, uses the formula (2) and generates the required matrices
D and G using m*r + mr? + r—(r%l multipliéations. When A is the identity matrix, this
number is mr? + r—(’;—ll In addition, we present an implementation of the simplex method
that uses only symmetric positive definite matrices. This is done in an attempt to unify
the implementations of interior point methods and simplex method. This implementation
contrasts with the standard implementation of Cholesky factorization for simplex method,
see for example Bartels, Golub and Saunders [1].

This paper consists of four sections. The introduction section 1 is followed by section 2



which presents the inductive scheme. Section 3 gives an alternative formula A is the identity

matrix and r > m. Section 4 presents the alternative implementation of the Simplex method.

2 The Inductive Scheme

We will now show that there are matrices G and D which satisfy the formula (1). For this

purpose we introduce the following: Define

A if k=0

Biy1 =
Bk—EkEE lf ISICST'

and note that B,.; = A— EET. Also, for each k=1, ,r, define
B.EY = Ey.
We can then prove:

Theorem 1 There exist matrices G and D such that D is diagonal with positive diagonal
entries, and

(A— EET)™' = A7 + GDGT
where, for each k =1,---,r, Gy = E,(ck) and Dy = (1- < E,(Ck),E;c >)~L,

Proof: Since A— EET is positive definite, for each k = 1,---,r By is positive definite.
Also, det(Bgy1) = det(Bi)(1- < B,:IEk,Ek >), and so for each k = 1,---,7, Dgx > 0.
From the formula (2), the theorem holds for r = 1. Thus, assume that the theorem holds
some for r = { — 1, [ > 2. We now show the result for » = [, and thus the theorem follows

by induction. Now

By = B - EET

thus from the Sherman-Morrison-Woodbury formula

Bl =B+ B E(BE)T.

I-< E[,BI_1E1 >

From the induction hypothesis,

-1
1 N (AT
Bil'=A"+) s—EEY
’ S1-<E,EY >
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and our result follows. W
Given EJ(-j ) for J=1,--,k, Ek (:+1) can be readily computed by using Theorem 1, which
gives

Bil,=A" 4 G pk) gk)T
with G® = (E{Y, EY -+ E®) and DB = (1- < E;, EY )1, and

Eﬁi’il = A B + G(k)D(k)G(k)TEkﬂ- (3)

We can then prove:

Theorem 2 Given A™!, G and D can be generated by m*r + mr? + ﬂ’;—ll multiplications.

In case A is the identity matriz, the number of multiplications is mr? + ﬂ%—-ﬂ

Proof: Since By = A, generating E(l) requires m? multiplications; and none when A
is the identity matrix. It takes m multiplications to generate D;,. Given E1 through E(k)
using the formula (3), it is readily seen that it takes m? +2mk + k multiplications. In case A
is the identity matrix, this number is 2mk + k. Also, it takes m multiplications to generate

D41 k41- Thus, the number of multiplications required is

-1
mr+2‘?mk+k)+mr—mr+mr+ r(r )
k=1

The result when A is the identity matrix follows by the same argument. M

The inductive procedure used in the proof of the Theorem 1 may not exist when the

T T

matrix A — EET is indefinite. As an example consider I — uu” — vvT where uTu = 1 and

vTe = 1 with uTv # 0. In this case both the matrices I — uu” and I — vvT are singular,
but the matrix after two rank 1 updates is non-singular and thus has an inverse. It may
have the form of the inverse stipulated by formula (1), but it cannot be generated by the

procedure developed in this section.

3 Rank One Updates of the Identity

In many applications, like Saigal (5] and [6], several rank one updates of the identity matrix

are involved, i.e., the matrix to be inverted is

I - EET



where E is an m x r matrix. In case 7 < m, the result of Theorem 2 shows that the inverse of
this matrix should be of the form given in formula (1). Otherwise, one can use the following

standard identity, Hager [4],
(I-EE"Y'=1+E(I-ETE)'ET.

Since I — EET is positive definite if and only if I — ETE is, the result of Theorem 1 gives,
in rm? 4 ﬂmT“ll multiplications, the following identity

(I1-ETE)'=1+G"DG

where GG is an m X r matrix. Thus we obtain an alternative formula for the inverse that

follows

(I - EETY"' =1+ EET + EGTDGE".

4 An Application

An application, of the formula developed here, to interior point methods for solving the
linear programming problem, can be found in Saigal [5] and [6]. In this section we show
how the formula can be used to implement the simplex method. This can be a framework
for unifying the implementation of these two methods.

We consider the following linear programming problem:

minimize ¢!z
Ar = b (4)
r >0

where A is an m x n matrix of full rank m, and, b and ¢ are appropriate vectors. We will
assume that a feasible basis B is available, and familiarity with the simplex method will be
assumed. Let N = {j1,72, ", Jn-m} be the set of indices of the non-basic variahles. We
now generate an implementation that uses the Cholesky factorization of the matrix AAT.
For large and sparse matrices, a sparse factor can be generated by using the techniques of

George and Liu [3].



Let L be a lower triangular matrix which is the Cholesky factor of AA7, i.e.,
AAT = LIT.
Then, for the given basis matrix B, we have

BBT = AAT -} A;AT. (5)

JEN

where A; is the jth column of the matrix A. Thus,

BBT = L(I- Y A;ANLT

JEN
where LA; = A; for each j € N. Defining
D=1-Y A;A] (6)
JEN
we can write
BBT = LDL". (7)

Our aim is to use the decomposition (7) during the steps of the simplex method, and to
update this decomposition during the iterations of the method. This involves updating D
when one column in B is replaced by one indexed in N.

During the application of the simplex method, two linear systems, the primal system
Ba=a (8)
for some give vector a, and the dual system
BTy = cpg (9)

where cp is the cost vector of the basic variables, are solved. In addition, the reduced costs
for each nonbasic index j € N

&=~y A (10)
are also computed. It is readily confirmed that, using the decomposition (7), system (8) is

solved by the following sequence of steps:

Step 1 Compute a such that
Di=L""a



Step 2 Compute a such that

Step 3 Compute the solution @ by

=Y}
I
o]
bﬂ
[=%3

Also, the system (9) can be solved by the following:

Step 1 Compute  such that
Dy = L_lBCB

Step 2 Compute the solution y by
y=L"jg.

And, we note that

Cj=¢j — yTAj =cj— gTL—lAj =cj— gTA_j,

and step 2 of the dual system can be eliminated.
We note that at Step 1 of both the primal and dual systems, the inverse of matrix D is
required. In that sense, we will consider this implementation as an application of the main

formula presented in this paper.

4.1 Updating D!

We now show" how the formula for D~! can be updated when the column A;, leaves
the basic set, and the column A;, enters. That is, the new non-basic index set is N =

{71,-** 1 Js=1+Js+1+"*»JryJu}. Thus, if the updated matrix

then

I
a-
I
5



and

IN
V)
|

[y

_ B 1 < k
B, =
Bk+]+E3EZ S S k

IN
-

with
By =B,y + E,ET - E,ET.

From the above definitions, and section 2, we readily see that for each 1 <k < s—1
Bi'=B;' =1+ GWFWHGHT,
Now, consider s < k <r — 1. Defining BkE_’,(Ck) = F, we have
(Bis1 + E.E] )El(ck) = Bk

or

k
F(k) _ p(k+1) < Es, El(c:;l) (k+1)
Ek Ek+1 - (k+1) E
1+ < E,, Es

We now show how this can be obtained. Define a = GTES, which has been obtained during

the ‘column updating’ phase of the simplex method, and let a*) = (ay,---,ax)T. Then
E (k+1) E + G (k)
and

<ELEY > = < E, B, > +ETGRFRGWTE,

k
= JEJP+ Y Fuc?

1=1

and thus

EW) — pl+l) _ Akt E, + G® p®) k)
S T TN LS S
and
-1 _ g 3 (k)

_ - Qk+1 T (k) (k) , (k)
= 1-F + < Eyp1,Es > +E, G F™al™),
k+1,k+1 1 HE ”2 Z F,‘,'a?( k+1 k+1 )

For the case k = r, we obtain

B.E" = E,



or

(Brs1 + BE[)ED = E,

and thus

B0 = pr+1 _ S Ey B3 > oo
TS TI{<E, B

where

E'*' = E,+ GFGTE,

and the formula for

F,=1-<E, ED>

can be readily obtained.

The above formulae have been developed for updating in a parallel computing environ-
ment, where each processor, for k > s works on generating G and Fi. For computing onva,
single processor, using the above results, a simpler and inductive formula can be developed,
Le., E,(cl:;l) is generated after E',(ck) has been generated. In case the number of non-basic
indices is larger than m, the above representation is not suitable, and we should use the
formula of Section 3. The updating formula for this case is also generated in a similar

manner.
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