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Abstract

We consider here the primal-dual affine scaling method with a fixed step size o to
the boundary. We show that for all @ < 1, the primal and dual objective function
values are monotone and the generated sequence of primal and dual solutions converge
to a solution on the boundary of the respective polyhedrons. Also, when a < 5%1,
the limiting primal and dual solutions either converge to an optimum solution, or a
non-optimum solution where no pair of variables satisfy the strict complementarity
condition. The proof of this result uses a modified version of the potential function of
Tanabe, Todd and Ye; and, Mizuno and Nagasawa used in the study of the potential

reduction strategy for investigating this method.

Key words: Linear Programming, primal dual affine scaling methods, interior point
methods.
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1 Introduction

We consider here the linear programming problem:

minimize cfz

Az = b (1)
x>0

where A is an m X n matrix and b and c are appropriate vectors; and its dual:

maximize b7y
ATy + s = ¢ (2)
s>0

We also assume that

Assumption 1 The primal and the dual linear programs have interior solutions.

Assumption 2 The objective functions of the primal, (1); and, the dual, (2), are not

constant on their respective feasible regions.
Assumption 3 The matriz A has rank m.

In this paper we consider the primal-dual affine scaling method, and investigate its
convergence properties. This method was presented in Section 3 of Monterio, Adler and
Resende [9]. In their work they established its convergence for a small step size. Recently,
Mizuno and Nagasawa [7] have developed a potential reduction method, and proved its
convergence for a larger step size. The step size at each iteration is selected so that the
potential function will not increase.

In this paper, we investigate the convergence properties of this method. We show that
the objective functions are monotone along the generated sequence. This result has also been
obtained by Todd, Tuncel, and Mizuno [13]. Also, the sequences are shown to converge for
an arbitrary choice of step size, a < 1. When the fixed step size « is strictly less than 5@,
we show here that the sequences converge to the respective optimum solutions or to non-
optimum solutions for which no pair of variables satisfy the strict complementarity condition.

It is generally believed that some “centering” is needed in the primal-dual methods. Our



result does not contradict this. We give two proofs of the main result in the hope that these
will help in the construction of an example to demonstrate this need.

Besides the introduction, this paper has 6 other sections. In section 2 we present the
primal-dual affine scaling method. In section 3 we prove the convergence of the primal
sequence, while in section 4 we investigate the dual sequence. In section 5, we prove some
important properties of the primal-dual sequences, and in section 6 we prove that if the step
size is required to be strictly less than 5@’2‘—1, the sequences converge to optimum solutions or
to non-optimum solutions for which no pair of variables satisfy the strict complementarity
condition. Finally, we conclude the paper with a conclusions section and an appendix

presenting another proof of the main theorem of section 6.

2 The Primal Dual Affine Scaling Method

From the complementary slackness theorem, vectors z, and y, s are optimal for the primal

(1) and the dual (2) respectively, if and only if the following conditions hold:

Az = b
ATy + S = ¢
) (3)
Xs =0
(x20)  (s20)

At a given interior point > 0 of the primal and (y,s), s > 0 of the dual, we derive the
primal-dual affine scaling step by applying Newton’s method to the nonlinear system (3).

The Newton step (Az, Ay, As) is generated by solving the following system:

AAzr = 0
ATAy + As = 0 (4)
SAzx XAs = —Xs

The primal-dual affine scaling method that thus results follows:
Step 0 Let (2°,y°, 5% be an interior point solution, 0 < o < 1, and let k = 0.

Step 1 Compute the direction (Az*, Ay*, As*) by solving the system (4). If AzF = 0,

Ay* =0 and As* = 0 then stop. The last solution found is an optimum solution.
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Step 2 Minimum Ratio Test: Define
¢ = max{¢(—X; ' Az*), ¢(— 57 As*)}
where ¢(u) = max;u; for a given vector u.

Step 3 Next Interior Point:

"t = xk+2—Amk
Pk
a
yk+1 — yk+_;Ayk
()2

Step 4 Iterative Step: Set k = k + 1, and go to Step 1.
We now show that the minimum ratio test in Step 2 is well defined.
Theorem 1 Let AzF #0 and AsF #0. Then ¢ > 1.

Proof: From system (4), it is easily established that (Az*)TAs* = 0. Thus, under the
hypothesis of the theorem, there is a j such that AmfAsf < 0, and so ¢ > 0. Also, using

the system (4), we obtain
4+ Ak = —STIXAS
sF+ A = —Xk"lSkAxk
and thus (Tf + Axf)(sf + Asf) = A:):fAsf < 0. Thus, there is a 0 < px < 1 such that
% + (A% > 0 and s* + ppAsF > 0. Our result follows by noting that ;—k = ;. 0
Since the conditions of Theorem 1 are satisfied at non - optimum solutions of the pair of

linear programs, we will henceforth assume that the algorithm generates an infinite sequence

satisfying the conditions of the above theorem.

3 The Primal Sequence {x*}

Define a diagonal matrix D = S~!'X. Then the system (3) can be written as
AAr = 0
ATAy + As = 0 (5)
DAz As = —s



which is readily seen equivalent to the following system:

— — DAz + AT§ = 0
AAz = 0.

(6)

where § = y+ Ay. The system (6) represents the K.K.T. conditions of the following convex

quadratic programming problem:

minimize Az + %AzD‘lA:v

AAz = 0

(7)

where § is the Lagrange multiplier associated with the constraint of the quadratic program

(7). Also, consider the following ellipsoidal approximating problem:
maximize —clv

Av = 0 (8)
D70 < 1

We now prove a simple lemma:

Lemma 2 The direction Az* generated by the quadratic program (7) is a positively scaled
multiple of the direction v* generated by the ellipsoidal approzimating problem (8).

Proof It is readily seen that the solution to the quadratic program (7) is
j = (ADAT)'ADc
Az~ = —D(c— ATy)
and the solution to the ellipsoidal approximating problem is

y' —(ADAT) ' ADc
D(c+ ATy')
ID3(c + ATy')|

and we have our result. W
We now show that the sequence {c¢’z*} is strictly monotone decreasing. This result also

appears in Todd, Tuncel and Mizuno [13].

Theorem 3 The sequence {cTz*} is strictly monotone decreasing and is bounded, and thus

converges, to say c”.



Proof: Note that

a
bt = To* + —cT Ak

Pk

and

Azt = —TDF(I— Di AT(ADyAT)AD?)Dic
= ~|BDc|’
= -lIDi(c- AT,
where Py is the projection matrix into the null space R(AD,%). From Assumption (2), ¢
does not belong to the row space R(AT) of A, and so Dé ¢ does not belong to the row space
’R(D,%_AT) of AD,%; thus PkD;Ec is not zero, and we are done. W

Before we prove the convergence of the primal sequence we will need the following result

related to the ellipsoidal approximating problem (8).

Theorem 4 There exists a constant p > 0 such that for every k =1,2,---
0¥ < —peTot

where v* is the solution to (8) with D = S;'X.

Proof: See Corollary 6, Saigal [10]. W

We are now ready to show that the sequence {z*} converges.
Theorem 5 The sequence {z¥} converges, say to z*.

Proof: From Step 3, Lemma 2 and Theorem 4 we note that for each k = 1,2,---, there is

x> 0 such that

ok — M = ot
Thus
T e e] oo 1 o0
x> ==Y (2" - 2*) Z p Z wx||o¥|| = Z |zt — ¥
k=0 k=0

and thus the sequence {z*} is a Cauchy sequence and converges, say to z*. ®
We now prove an important result that is needed in the proof of convergence to opti-

mality.



Theorem 6 There exists a 6 > 0 such that for each j such that z7 = 0, and every k =
1, 2’ Y

Proof: Let k be arbitrary. Then, from Step 3, Lemma 2 and Theorem 4

Tk oa = Ty k4l k< L gL gkt 1 kgl ) .
oo>ca:—c=§c(:v —z Z—E —T —||§: H——-||x |
=k p =0 p =0 p

and our result follows. W

4 The Dual Sequence ({y*}, {s*})

From system (4), it is readily seen that
Ay = (ADAT)™"b.
Ay can also be obtained by solving the following quadratic program:

maximize b Ay

) (9
AyTADATAy < 1.

The following theorem relates the solution vector of this quadratic program to its objective

function value.

Theorem 7 There exists a positive constant, p > 0, which is only determined by A and b,
such that
1Ay[| < pb" Ay.

Proof: See Theorem 5, Saigal [10]. W
We can now prove that the dual objective function is strictly monotone increasing on

the sequence {y*}. This result also appears in [13].

Theorem 8 The sequence {bTy*} is strictly monotone increasing and thus converges, say

to b*.



Proof: The result follows from the fact that

o (64 -
bT(yk+1 _ yk) — abTAyk — abT(ADAT) lb

and that ADAT is a positive definite matrix and from assumption (2), b # 0. Our result
now follows since the sequence {67y*} is bounded ( by the weak duality theorem ) and every
bounded monotone sequence converges. W

We are now ready to show that the dual sequence also converges.
Theorem 9 The sequences {y*} and {s*} converge, say to y* and s* respectively.

Proof: From Step 3 and Theorems 7 and 8, we see that

00> b —bTyF =S by —yF) =) — bTAy > Z IIAy | = pE Iy = ¥
= k=0 =0 k=0

and thus {y*} is a Cauchy sequence and thus converges, say to y*. But s¥ = ¢ — ATy*, and
thus {s*} also converges, to s* =c— ATy*. W

The following theorem plays an important role in proving convergence to optimality.

Theorem 10 There exists a 6 > 0 such that for each j with s7 =0, and every k =1,2,---

b*_bT k
il S
S

Proof: Follows exactly as the proof of Theorem 6 and the fact that ||s* —s*|| < ||AT(y* -

VIl <plly* =y m

5 The Primal-Dual Sequences

We have seen that there exist vectors z* > 0. y* and s* > 0 such that

Define

B = {j:2;>0}
N = {j:s; >0} (10)



We do not assume here that BN N = ) nor that BUN = {1,---,n}. We will obtain some
important results in this section. These will be used in the next section to establish the
optimality of the limit points.

We now prove two simple lemmas:
Lemma 11 The sequence {(z*)7s*} is monotone decreasing.

Proof We note that using system (4) and Step 3, we obtain

($k+1)T8k+1 — (xk+_;[_kAxk)T(8k+%Ask)
= (1- 2)(ak)Tst (11)
o

and our result follows from Theorem 1. W

Lemma 12 For every k=1,2,---

1X, 7 SE A < )Tk
1XES7 FAs] < (2" sk,

Proof: This lemma readily follows from the following facts: for Dy = (XxS;!)?, from
system (4), we obtain
Di'Azk 4+ DyAsk = —(XkSk)%e,
and
(D7 AZHT(DpAsk) = (Az)TAsk = 0.

Thus || D7 Az¥|| < ||(XkSk)Zel| = y/(+%)Tsk. We are done, as the other result {ollows by
the same argument. W
We now establish an important property of the sequences {Az*}, {As*} and {(2F)Ts*}.

This theorem also appears in Ye, Guler, Tapia and Zhang [16].

Theorem 13 There exist constants 3, > 0 and By > 0 such that for all k =1,2,---

1AZH] < By (2F)Ts*

lAsH] < Bofah)Ts*.



Proof: From definitions and weak duality theorem we derive the following inequalities:
($k)T5k — chk _ bTyk
> gk — Tz
— (S* _ ATy*)T(:L‘k _ .’L'*)
= (s3)Tak — (2T
From Lemma 11 (z¥)Ts* > (2*)Ts*, Thus, there is a y; > 0 such that
(a)"s" > 2Rl
Also, from Lemma 12,

ARl < I XEnSkalllISEn X fAzy]

IN

1 1 1
ﬂ2I|XIc2,Ne|,“SI?,NXk,I%/'Ax;C\/’”

IN

< pg(ak)Tsk
and; from Theorem 4, for some p > 0,

|AzF|| < —pclAL*
— _p(sx«_*_ATy*)TAxk

= —p(si)" Ay

IN

1Az ]

*
SN

p

For some 3, > 0 we have our first result. The second result follows in a similar manner,
with the use of Theorem 7. M

The next theorem characterizes the convergence property of the sequences:
Theorem 14 (z*)Ts* — 0 if and only if
XinvAzhy — —e (12)
S;:‘;;ASZ — —e. (13)

Proof: Let (z¥)Ts* — 0. Then BN N = . From Theorem 13, Az*¥ — 0, and As¥ — 0.
Also, from system (4), X; pAzk + S;pAsk = —e. Thus 2 > 0 implies (13). Similarly,
from (4), X; yAzh + S,;}VAsf\, = —e. Thus sy > 0 implies (12).

9



We complete the proof by noting that if the conditions (12) and (13) hold, then Ask, — 0
and Az% — 0. Thus, if there is a j € BN N then

Aw? As
—L+—L -0
Z; S;

which is a contradiction. W

We now establish an important property:

Theorem 15 For each j=1,---,nand k=1,2,---

lA:cAs i<y
_¢k S

Proof: Let k be arbitrary. From systern (4), foreach j =1,---|n

Azk  As
24 + 2% = 1. (14)
J J

Thus, either Amf < 0 and Asf < 0; or, Afosf < 0. In the first case, by the definition of

®k, we have
Azk Ask
0>—%>-land 0> —% > -1.
¢ka]' ¢k3j

Thus their product satisfies the required inequality. To see the second case, without loss of

. As*
generality assume that A:E;-C > 0. Then 0 > Ekisl’? > —1, and so
J

A:rf 1 Asf
kT, Ok OS;

and we are done. M

We now state a technical lemma on the natural logarithm function.

Lemma 16 Let w an n vector and 0 < A < | be such that w; < X. Then

n o\ 2
Zlog (1 —w;) —eTw—Q(I#_ILE.

i=1

Proof: See Lemma 8, Saigal [10]. W
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6 On Convergence to Optimality

We are now ready to investigate the limits z*, y* and s* as optimal solutions of their
respective problems. We note that there is a j such that either z7 = 0 or s} = 0 or both.

With such a 7, we define the following potential function:
Fi(z,s,5) = (2r + 1)log(z"s) — log(z;s;).

where r is a large positive constant. This function is a specialization of the one considered
by Tanabe [12], Todd and Ye [14] and Mizuno and Nagasawa [7]. We can then prove the

following about this function.
Theorem 17 Let (2F)Ts¥ £ 0. Then F,(z*,s*,5) — 0.
Proof: Since z}s} = 0 from Theorems 5 and 9

xfsf — 0

and thus, under the hypothesis of the theorem, F;(z*, s¥,) cannot be bounded above. W

We now establish our main theorem.

Theorem 18 Let a < 5@{—1 Then, there exist vectors x*, y* and s* such that

where eractly one of the following holds:

1. x™ is an optimum solution of the primal, and (y*,s*) is an optimum solution of the

dual.

2. B =N, ie, 2" and (y*,s*) are non-optimum solutions where no pair of variables

satisfy the strict complementarity condition.

11



Proof: The convergence of the sequences, and thus the existence of the required vectors

a

follows from Theorems 5 and 9. Let « satisfy the hypothesis of the theorem, and let oy = -

-
Also, let

a o

o) = l-a +2(1—a)(1—a—a2)'
Either B = N or there is a j such that either 27 = 0 and s} > 0 or s} = 0 and z] > 0.

Let the potential function F,.(z*, s*,j) be defined for this j, with some . Now
P J J

o o
BT = G A+ g ad)
(0] o

First assume that 27 = 0 and s7 > 0. The analysis of the case when z7 > 0 and s7 = 0 is

similar. Let » > 0 be sufficiently large such that there is an L > 1 and for every k > L,

|Ash| |Ask|?
ax £(@), —2—£(a)} < 2.
ey
l‘k Sk
Such an r exists from our choice of a and Theorems 9 and 13. Define wy = Axki . Bya

J
simple substitution of above and Identity 11, we obtain

Fo(a® M 5) = F(2%,6%,5) = (2r + Dlog(1 — ax) — log(1 — ay + a2wy)

2
= 2rlog(l — ax) — log(1 + % W).
1-— (673
Using the fact that log(l — a) < —a and Lemma 16, we obtain
: ot i

. . . Q.
FT(Ik+1!3k+l’]) - FT(IkaSLa]) < _27‘0‘\‘ + 1 1\0 lwk| +
k

From Theorem 15 we have

’ Ask
o (131l
Pk 85 ok

\
and, from Theorem 1, a; < a. Thus, substituting the above expressions in (15), we obtain

alAst] o®|Ask|?
(1- a)sf 2l —a)(l —a— a2)(s’*’)2)

J

Fr($k+173k+laj) - FT(mk’Skaj) S Ok(—27‘ +

and for the chosen r, the expression in the bracket remains strictly less than zero. Thus,
{F,(z*,s*,j)} cannot increase, so from Theorem 17 (z¥)7s* — 0 and our theorem follows.

12



7 Concluding Remarks

It is generally believed that the primal-dual methods will not converge to optimality without
“centering” steps. Our Theorem 18 does not contradict this. Another proof of this theorem
is given in the appendix, which gives more insight into the non-convergence to optimality.
Also, convergence to optimality follows readily if the sequence {Ay*} converges.

So long as at least one pair of complementary variables satisfy the strict complementarity
condition, convergence to optimality is guaranteed. Adler and Monterio [2] show that for an
infinitesimal step size, Part 2 of Theorem 18 cannot occur. This paper is written in the hope
that strong believers in centering will look for an example where convergence to optimality

for large steps sizes does not occur.

8 The Appendix

We now give another proof of Theorem 18, which does not make use of a potential function,
and gives further insights into non-convergence to optimality. It also indicates that conver-
gence to optimality occurs if the convergence rate of the sequence {c¢?z* —c*} or {b* —bTy*}
is at least linear. We now prove a simple lemma before proving the main theorem in this

section.

Lemma 19 Let o = % for each j =1,2,---. Then
[ (a¥)T sk 7+ 0 tf and only if 3752, log(1 — ;) > —o0.
2. Yot log(1 — aj) > —oco if and only if 352, a; < o0.

Proof: Note that

(8k+l)T.’L'k+1 — (1 _ Ok)(sk)T.’L‘k — ﬁ(l . aj)(SO)T.’EO

and our Part 1 follows by taking logs of the above expression. To see the only if part of

Part 2, since log(1 — ;) < —a;, note that
—o0 < Y log(l—aj) <= a;
=1 3=1

13



To see the if part, we note that from Lemma 16,

o 0 o aZ
log(l—qj) > =) oj— I— > -0
J'Z—‘;J ! j§0 ! j§)2(1_a1)

and we are done. M

The next theorem gives another proof of Theorem 18.
Theorem 20 Let 322, log(1 — ;) > —oco and z}st — 0 for some j. Then, for that j
1. l‘f — 0

2. sf——>0

AzkAsk

3. — 5t — —©
Ty

AzkAsk .
Proof: Let af = —x*. Then af +# o00. Thus assume the sequence {af} is bounded.
1%

Then, for some R > 0, we have |a¥| < R. Thus, there exists an L > 1 such that for all
k> L, 2R < 1. Now

k+1_k+1 _ (1 _ 2 ky, k
s;7 2T = (1 — o + ajaj)zss
zk+rsk+r
Let bg‘k = 54— Then
JJ
,

b;fl = H(l — gy + aiﬂ-af“).

1=0
Thus
log(bgf;l) = Z]og(l — apyi + ai+iaf+l)
=0
> T a? .
> Y log(l —a;) + Y log(1+ 1 —a;)
i=k i=k Bt
= -M+ N
where,
N> o
r > 1 _ 1 R
> log(1 - 25h)
and using Lemma 16,
o0 02 R? 4 1
N>-Y(——R+ Q’Z ).
s l-a (I-ai)2(1 - 20 R)

14



Since a; — 0, there is an L > 1 such that for all ¢ > L o; < % and 1 —a; —a’R > % Then

Q; <1 d a?
1 —o 9 0 l1—o;—a?R

L1 o? R*a! 1
- : R+ : 2 - +
2(1 o (I-a)g1-2op) Hl-e (L-a)91- 2R

. 1-o;
> —N; — RN, — R*N;

= -M

> —00.

Thus, for every r > k,
log(bg’”,tl) >-M—-M > —00.

Thus, as r — oo, 1! 7 0, and this contradicts the fact that z¥s% — 0. Thus 2(c) follows.
To see 2(a) and 2(b) note that

|Azk| |

. .o |Ask . . .
Thus, — — oo if and only if — — oco. Since the numerator of these expressions is
J %1

bounded, the denominators must go to zero, and we have parts 2(a) and 2(b) from part

2(c). W
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