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Abstract

In this paper we present a simpler proof of the result of Tsuchiya and Muramatsu
on the convergence of the primal affine scaling method. We show that the primal
sequence generated by the method converges to the interior of the optimum face and
the dual sequence to the analytic center of the optimal dual face, when the step size
implemented in the procedure is bounded by 323- This paper is in the spirit of Monterio,

Tsuchiya and Wang [10].

Key words: Linear Programming, affine scaling methods, interior point methods.

Abbreviated title: Proof of affine scaling method



1 Introduction

We consider here the linear programming problem:
minimize cfz
Az = b LP
z2>20

where A is a m x n matrix and b and c are appropriate vectors. We also assume that
Assumption 1 The linear program has an interior solution.

Assumption 2 The objective function is not constant on the feasible region.
Assumption 3 The matriz A has rank m.

On the basis of the global convergence analysis by the use of a local potential fuction,
developed by Tsuchiya in the papers [13] and [14] and the analysis of reduction of potential
function developed by Dikin (7], Dikin [6] proved the global convergence of the long step
affine scaling method when the step size is restricted by 7. Stimulated by (7], but inde-
pendently, Tsuchiya and Muramatsu[15] proved that the method converges to the optimum
solution if the step size is restricted by %; and that, in this case, the primal sequence con-
verges to the relative interior of the optimal face of the primal and that dual sequence to the
analytic center of the optimal face of the dual. Hall and Vanderbei[8] present an example
that shows the % is tight in the sense that with a larger step size the dual sequence may not
converge.

This note is written in the hope that it will bring out the basic idea of the proof of [15],
and is written in the spirit of Monterio, Tsuchiya and Wang[10], and presents some of their

arguments.

2 Primal Affine Scaling Method

We refer the reader to Barnes [2], Vanderbei, Meketon and Freedman [16] for more on this
method. The iterative scheme of the method is the following and is known as the long step

version:



Step 0 Let z° be an interior point solution, 0 < a < 1, and let k = 0.
Step 1 Tentative Solution to the Dual:
y* = (AXAT)TAXEe
Step 2 Tentative Dual Slack:
sk =c— ATy*
If s* < 0 then STOP. The solution is unbounded.

Step 3 Min-Ratio test:

k
0y = min{ ”f;:f | t sy > 0}
1 X5
B(Xis)
where ¢(z) = max;z;. If 6y = 1set a = 1.
Step 4 Next Interior Point:

cFt = gk - aek—————-X‘ESk
1 Xks|

Step 5 Iterative Step: If z5*! = 0 for some j, then STOP. z¥*! is an optimal solution.
3 J

Otherwise set k = k + 1 and go to step 1.

It is shown in Vanderbei and Lagarius [17] that if the algorithm is finite, i. e., stops in

Step 5, then an optimal solution has been found.

2.1 Ellipsoidal Approximating Problem

Barnes [2] has shown that this algorithm is generated by solving the following ellipsoidal

approximating problem:

At the kth iterate, given an interior point zF > 0, the direction v¥ = X?s* to the

next iterate zF+!, generated in Step 4, is obtained by scaling the solution to the following

ellipsoidal approximating problem:

T

maximize c'v
Av = 0 EAP
IXtol? <1



2.2 Least Squares Problem

The dual estimate y*, calculated in Step 1, can be readily seen as generated by the following

“least squares” problem:

y* = argmin || Xps|| LSP

s=c— ATy

and we note that this estimate, given a primal feasible solution z*, is chosen to minimize
the complementary slackness violation without the nonnegativity constraint on the dual

variable s.

3 Properties of Sequences

Let {z*}, {y*}, {s*} and {v*} = {X?s*} be the sequences generated by the primal affine
scaling algorithm. If these sequences are finite, then the last point of the first sequence solves
the linear program, or the problem has an unbounded solution. Thus, we henceforth assume

that they are not finite. We now establish some important properties of these sequences.
Theorem 1 zF > 0 and 0; > 1 for all k. Also,

ot = X2 = [ X! = | X720
for all k.

Proof The first part readily follows. To see the second part first observe that, from the
definition ¢7v* = ¢T X?s¥, and
IXist = TX(I - XeAT(AX AT) T AX) X
1P Xl

where P, = I — X, AT(AX,AT)~? AX, is the projection matrix into the null space N'(AXj)
of the matrix AX}, with P, = P? = PT. Now Py Xic = Xi(c— AT(AX AT) 1AXEc) = X

and we are done. a



Theorem 2 {cTz*} is a strictly decreasing sequence with
Tef 1t = cTzk — oy || Xes®).

Either this sequence diverges to —oo, or it is bounded, and thus converges with || X;s¥|| — 0

as k — 0, and 00 > T2, cF(zF — zF+1),

Proof It is readily seen, from Step 4, and Theorem 1 that

T X2s*
1 X k¥
= cT'zF — b Xis*||

Tkt = Tz% — o,

From Assumption 2, || Xis*|| # 0, and so {cTz¥} is strictly decreasing. Hence, it either
diverges to —oo or is bounded. In the later case, since every bounded monotone sequence

converges and af > a > 0, Xzs¥ — 0. Now

)
E CT(xk _ :L‘k+1) — CT.'Z:I —c
k=1

T .k

where lim_,o ¢’ z° = ¢* and we are done. O

We now prove some preliminary results, and then establish the convergence of sequences

{z%}, {y*} and {s*}.

4 Preliminary Results

In this section we prove some preliminary results and two theorems related to the ellipsoidal

approximating problem discussed in section 2.1.

Lemma 3 Let r; and s; > 0 for each j = 1,---,1 be arbitrary real numbers. Then

l
Sl ¢ g

j=15] S;
Proof Let

r T

I _ g

Sk S;

Then for each j = 1,---,1, sj|rk| 2 sk|r;|. Adding all these ! inequalities we have

! ] ]
rel Y55 > sk ) Irj| = sel Dl
i=1 i=1 i=1

and we are done. O



Theorem 4 For every z > 0, the function ||(AX2AT) P AX?%p|| < q(A,p), where ¢(A,p) >
0.

Proof By the Cauchy-Binet Theorem and Cramer’s rule we can write the 1th component

2 Tyo1 gy a(@i T det(Ay)det(AD)
(A A ) = e e el (A7)

where A() is the matrix obtained by replacing the ith row of A by pT, and the sum is over

all possible J which are ordered sets of m elements 1 < j; < -+ < j < n. Since a term
in the denominator is zero only when the term in the numerator is zero, from Lemma 3 we
can use .

[det(A9)

q(A,p) = v/n MaXJ et A

and we are done. a
Given a k x [ matrix @ of rank k, a k vector ¢ # 0 and a ! X | diagonal matrix D with

positive diagonal entries, consider the problem:

maximize ¢! z

2TQDQTz < 1. (1)

The following result establishes a relation between the objective function value and the

solution vector of this problem.

Theorem 5 Let & solve the problem 1. There ezists a constant p(Q,c) > 0 such that
2] 2 p(Q, )1 2]l-

Proof Let ¢,By,--,B_; be a basis for R* with B = (B, --,Bs_;) an orthnormal

basis for the orthogonal complement of the one dimensional subspace spanned by c. Thus,

¢’ B =0 and BTB = I. Expressing the columns of @ in this basis we obtain
Q=ca” + BR

where a is a [ vector and R is a (k — 1) x [ matrix. Since @ has full rank &, so does (a, R).
Also, let
Tt =uc+ Bv

5



where u is a scalar. Rewriting the problem 1 in the variables u and v we get

CT.’L‘ = UCTC

2TQDQTs = (uc’c)®a®Da + 2(uc’c)a’ DRTv + vTRDRTv

T

and if w = ¢ cu, problem 1 is equivalent to

maximize w
w?aTDa + 2wa™ DRTv + vTRDRTv < 1.

Let A be the multiplier on the constraint. Then the optimality conditions for this problem

can be stated as follows:
1+ A(2wa® Da + 24" DRTv) = 0 (2)
wRDa + RDRTv = 0 (3)
and we note that Equation 3 has the solution
& = —w(RDRT)'RDa

and let W be the solution obtained by substituting ¢ into Equation 2. Then, after computing

Z we note that

T: =
& = dc+ Bb
_ v T\-1
= Fc- wB(RDR" )™ RDa.
Thus
2 _ B(RDRT)RDa
T cTe ’
and, noting that || B|| <1 we get
Il . 1 T\-1
—— < —+||(RDR")" RDa
o] < T+ I(RDET) ™ R D

and if, from Theorem 4, ¢(R, a) bounds the second term of the right hand side above, since
both R and a are only functions of @ and ¢, we get our result with p(Q, c) = 1/(”17“+q(R, a)).
a

We now establish an important corollary to the preceding theorem. Given an = > 0,

consider the ellipsoidal approximating problem (EAP) of Section (2.1).

6



Corollary 6 There exists a constant p(A,c) > 0 such that for every z > 0, if O solves the
above problem,

9] < p(A,c)cT.

Proof Let the set of vectors {Q1, -+, @n-m} be an orthonormal basis for the null space
N(A)of A;ie.,for Q = (Q1,  ,Qn-m), QTQ = I. Since, in the above problem, v € N'(4),
we note that ¢’v = ¢Iv where ¢, is the projection of ¢ into the null space of A. Define ¢

and u such that

& = Qc

Expressing the problem in variables u we obtain an equivalent problem:

maximize & u

wTQTX2Qu < 1.

Let u* solve this problem. From Theorem 5, there is a constant p(@Q,c) > 0 such that

chk = ETuk

> p(Q, )|
= p(Q, 9|
since ||[v¥||? = (u*)TQTQu* = ||u¥||%. Since Q, ¢ are only functions of A, c, we are done. O

Let R be an arbitrary r x [ matrix, with rank < r and let b € R(R). Also let z € R" be

any vector. Consider the following problem:

minimize |z — z||?

Rz =%
We can then prove:
Theorem 7 There is a constant q(R) > 0 such that for every z, for the solution z(z) of

the above problem we have

Iz = 2()|| < q(R)|| Rz - b|



Proof Let R be a 7 x I submatrix of R which has full row rank. Since b € R(R),
{z:Rz=1b}={z:Re="b)
for some b. Then, it is readily seen that z(z) solves the problem if and only if for some y,

2z—2(z))-RTy = 0
Rz(z) = b
and the result is readily seen by setting ¢(R) = RT(RRT)™. )
The following simple lemma on the natural logarithmic function is important.

Lemma 8 Let w € R? and 0 < A < 1 be such that w; < A. Then

Jewl®

g
—w)> —eTyy —
gllog(l w;) > —e'w =)

Proof The result follows as a consequence of the following facts: When a < 0, by consid-

ering the function g(z) =log(l +z) —z + ﬁéﬂ’ it is readily confirmed that its derivative

is positive when z > 0, and thus g(|a|) is an increasing function of |a| and thus

2

a
—a)> - — ———.
log(l —a)> —a iy
To see that second fact, let 0 < a < A. Then
2 3
log(l—a) = —a- %— —,% -
laf? _ |af®
S hud I ol
= TR T
a2
- Tt 2(1 —a)
a2
> —q-— .
= Tt on—
The result now readily follows from the above two facts. O

5 Convergence of Primal Sequence

We assume here that the sequence {cTz*} is bounded. We now prove that the primal

sequence {z¥} converges. We prove this in the next theorem.

8



Theorem 9 Let the assumptions 1 through 3 hold, {c'z*} be bounded, and the sequence

*

{z*} be generated by the primal affine scaling algorithm. Then zF — z*.

Proof Consider the approximating problem of Section 2.1. Note that

ab b = zF — zkt!

where 9% = “Tﬁé:ﬂ is the solution to the ellipsoidal approximating problem (EAP) of Section
(2.1). We will now show that Y32, af||9*|| < oo and thus the sequence {z*} converges.

But from Theorem 2 and Corollary 6

(e 2] [o0] [e <]
o >clzt =t =Y (" -2 = 3 abicTok > p(A,¢) Y abi||o*
k=1 k=1 k=1
and thus {z*} converges, say to z*, and we are done. a

6 More on the Sequences
We have seen in the previous section that the primal sequence converges. Let
limpo ooz = z*.

Let
N={j:z;=0}
B={;:z; >0}

and let F be the face of P = {z : Az = b,z > 0} such that z* lies in the relative interior
of the face F; i.e., it is the smallest face of P containing z*. We now prove an important

property of the sequence {z*}.

Theorem 10 There is a § > 0 such that for each k = 1,2, -

T .k * T..k *

cr —c cCT —cC
—'—kZ(S, and £ " 25
LjeNT; Yjes lzf — 7l



Proof Note that using the results of Theorem 2 and Corollary 6 with ¢ = |N|, the number
of elements in N, and M = ¢(A4,c),

Tk = icT(zkﬂ‘ _ g
=0
1 i ki _ kil
> — i gkt
M =
o~k o
1
> __M_ Z +i _ kit “
1 .
= et -]
k _nt
Thus cTzF — ¢* > ”—xﬁ& > %%’—VM—L Also TzF — ¢* > ”ﬂ’ﬁfﬂﬂ > Lie E_le and we have
our result with § = min{m, \/—n_—_q—M} a

The following is a well known result on the convergence rate of the sequence {cTz* —c*}.

Theorem 11 There exists an L > 1 such that for all k > L

e — ¢ < (1 - —=)(Tz* - ¢).

Proof Consider the problem (EAP) of section 2.1. We note that ﬁj(gj;ﬂ solves this problem

and that IT(T(_"—‘L)II is feasible for it. Thus, from the above fact and Theorem 1,

cTzk - z* cF X3sk

IXg* (% = 2=)l| ~ Il Xes*|

= [ Xis"|- (4)

Now || X' (z* —2*)|* = |les — X5 k35| + |lenl|?, and since X5z} — e, thereisan L > 1

such that for all k > L, |les—X5%a5||* < n—q. Thus, foreach k > L, || X (z¥-z*)|| < v/n.

Now, as cTzh+t! — ¢* = Tzk — ¢* — TEFC T X?2s*, we have
chH-l —-c* 1l ”stk”
Tk —cr Tk ¢

and the result follows from the equation (4). a

Now define
D ={(y,s): Agy = cB,Aﬁy + sy = cn, sp = 0}

to be the set of all tentative dual solutions that are complementary to each solution in F'.

We can readily establish the following:

10



Lemma 12 D # 0

Proof From Step 1 and Theorem 4, the sequences {y*} and {s*} are bounded, and thus
have cluster points y* and s* respectively. From Theorem 2, since X;s* — 0, sj = 0. The
result now follows since ATy* 4+ s* = c. O

Consider the sequence {u*} defined by

u = - a0,
CT(Ek —c*

We now state an important result about this sequence. Its proof is given in the appendix.
Theorem 13 The sequence {u*} has the following properties:

1. It is bounded.

2. There is an L > 1 such that for each k > L,

() lu*]1* = [lufo |l + e and TE2p Inel < oo.

(b) eTuk, =1+ 6 and T2, |6x| < 00
(c) 52 (uk) 2 5;
(d) $(u*) = ¢(uy).

7 Local Potential Function

To show the convergence of the dual sequence, it is necessary to control the step size. In
particular, the step size a < 2. This result is achieved by the use of a local version of the
potential function, which we now introduce.
For any z > 0 with Tz —-c“‘ >0and N C {1, --,n} with ¢ = |N|, define
Fn(z) = glog(cTz — ") = Y log(z;).
JEN

For the sequence {z*} we can prove that

Theorem 14 There exists an L > 1 such that for all k > L
26
(&) = Fx(e*) = alo(1 = Ol + 0(2% + ) = 2 lo1 — b
jEN

where why = uf — L, & = &, 0= 2 and D21 16 < 00, T2 Il < oo.

11



Proof Since cTzFt! —¢* = Tzk —¢* - W—auijTXZSk, from Theorem 1 and simple algebra
we see that
et -t _ yQ—— (5)
and, for each j € N
ok
i S .Y 5
xf ¢(u’°) J

From Theorem 13 part 2(a), there is an L > 1 such that for all £ > L,

cTghtt — ¢ @ k| = vk
cTzk — ¢ s(ul)" M B(uk)

Now let k > L, and note that from Theorem 13 part 2(b),

2¢Tuk, 1 1 26
lwhl? = llukll? - =2 + = = Juf | - = - =,
q q
and we have our result by observing that
q . . 26k
——(1 - alfuy]® - ay) =1 - Olwy|® - 6(— + )
q—a q
and
q_&(l—&uf)=l—0wf
and the constant q—}: cancels. d

8 Convergence of Dual Sequence

We are now ready to prove that with the step size of a < % the dual sequence converges
to the analytic center of the optimal face of the dual polytope. Throughout this section we
will assume that the sequence {c7z*} is bounded and we now define the analytic center of

the optimal dual face as the solution (y*,s*) to the following problem:

maximize 3 ;en logs;
(y,s)€D ACP

sy > 0.

12



The solution to (ACP) must satisfy the following K.K.T. conditions:

Aprg+ Ayzy = 0

S;,l +zy = 0
Agy = CB
Af =
NYtSN = cN
sy > 0
S = 0

We now establish a lemma.
Lemma 15 If the analytic center defined by (ACP) exists, it is unique.

Proof The uniqueness follows from the strict concavity of the log function. O

We are now ready to prove our main theorem.

Theorem 16 Let the sequence generated by the affine scaling algorithm be infinite, and the

step size a < % Then
1. zF = z*
2, gk oy
3. s¥ = s*, and s* > 0.

The limits are optimal solutions of their respective problems, and satisfy the strict comple-
mentarity condition. In addition, the dual solution (y*,s*) converges to the analytic center
of the optimal dual face, and the primal solution to the relative interior of the optimal primal

face.

Proof From Theorems 8, 13 and 14 and the fact that for any a < 1, log(1 — @) < —a, we
obtain an L such that for each £ > L

Fyn(z**) — Fy(z)

IN

26 k 1|2
_‘1"9(“ch\!“2 + —qji + ) + H(ewav + 92 ||wy| )

(1 - 0(wh))
= Ollwk|*(-q+ m) — 0(qk + 6&)

a 1
2(1 _ a) ¢(u5¢v)) - 0(q7k + 5/:)

13

= Ollwnll(~g +



From Theorem 13 part 2(c) it can be shown that 6 > o?. Now, as ||w§|| = [|u} — zel, we

note that
1+ ||wk
by > Lkl
q
Thus, we have
Fy (") = Fy(z*) < 0l|wk | (—q + —— 9\ _ (g + 6). 6
M)~ Fule) < oo+ g D) ~dan+ 8. (O
For each a < %, ia) < 1. Hence
q6||w} |
Fn(z**") — Fn(z*) < = 25— — 0(qve + 6&).
)< T3 Tk

From Theorem 10, Y52 ; (Fin(z**!) — Fyn(z¥)) > —o0, and, from Theorem 13 parts 2(a)
and (b), 0 < T2, (q|7] + |6k]) < 0o Thus, we must have ||wk|| — 0, and we get

1
; L
,}gguzv—qe- (7)

Now, consider the sequences {y*}, {s*}, {ZTZ;-??TF} for each j € N and {ZT;;':_:;'F} for
each j € B. Let s* — s* on some subsequence K’ C {1,2,---}. From Theorem 4, Steps
1 and 2 and Theorem 10, these are bounded for each 1 < j < n. Thus, on some common
subsequence K C K'

*

y"—+y‘,sk—+s

gzt
J . .
m —-')G,] foreach] € N
and
k *
‘1(%‘ —mj) :
m — b]’ for each j € B.

In view of (7), a; > 0 for each j € N. Also, since s¥ = i’—:—;,;z”—‘, we note that limgex % =
2

-1

Gj .
Now, AnzX + Apzk = Apz}, we see that
Ana+ Agb=10
and thus s; = aj'l for each j € N and zy = —a, zg = —band sp =0, sy = sy, y = ¥"

solve the K.K.T.conditions for the analytic center problem (ACP). Thus s, converges to

a™!, the analytic center, on each convergent subsequence, and thus parts (2) and (3) of the

14



theorem are established by Lemma 15. We finish the proof by observing that z* is primal
feasible, (y*,s*) is dual feasible and the pair satisfies the complementary slackness theorem
( by Theorem 2 ) and thus are optimal solutions for the respective problems. The strict
complementarity holds as sj > 0. O

The following is a sharp bound on the convergence rate of {c’z* — c*}.

Proof Follows readily from Theorem 13 parts 2 (a), (c) and (d), equation (5) and equation
(7). ]
We now prove another theorem which shows the convergence to optimality for a slightly

larger stepsize than 2.

Theorem 18 Let % <a< %%3 Then, there ezists a subsequence K C {1,2,---} such that

1. limkeK :l:k —z*

2. limkeK yk —y*

3. limgex s* — s*, and s* > 0.
Thus z* and (y*,s*) are optimum solutions of the dual pair. Also, they satisfy the strict
complementarity condition.
Proof As a result of Theorem 10
lim inf( F(z**!) — F(z*)) > 0.
Thus, either on some subsequence K', F(z*+!)— F(z*) > 0 for each k € K’ or lim(F(z*+!)—

F(z*)) —= 0. Thus, on some subsequence, from Equation 6

. . a q

| f(— > 0.
et ST TR 2

Let K C K' be such that as £ € K goes to infinity, gk =z yF -y, sk - s, u’fv - ujy

and ||wk|| = > 0. Then

- q

- —2>0.
It —a)T+6 7
Letting @ < g—:g—g, it is readily confirmed that § < 1. Since [luy — ;e = 6 and eTuy = 1,
we can conclude that u} > 0, and we are done. a

15



9 Appendix

We now prove the Theorem 13.

Proof To see (1), note that from Theorem 1, for any (§,3) € D, || Xss¥|* = ToF =
(AT§ + )Tk = vl = (Xnedn)T(X3hok) < é(ak)lI3n ||| Xksk||. From Theorem 10 we
obtain that ||u¥|| < M||sn|| for M = p(A,c).

To see 2(a), from Corollary 6 and for any (§,3) € D, ||vE|| < |[vf|| £ McTv* = Mayvk <
MIsnllllonll < Me(zi)lIsnllukll. Also, llupll < IX53IvEl < IX5l-Mo(zp)lIsn|llluk -
From Theorem 9, ¢(z%,) — 0, and z% — z} > 0. Thus there exists an Mandan L >1
such that for every k > L

% = llupll® < (MIXRlé(h) ISnllllubl)® < 1, MIXGLISnIlllubll < M.

Since, ||uf||? = ||uk||? + ||uk]||> we are done if T2 ; ¢(zX;) < co. But from Theorem 10 and

Theorem 11, there is an L > 1 such that for all £ > L

lz* — 2|

M(cTeF - ¢

d(zx)

ININ

IN
=
p—
|
Sle
~—
k. o
£~
—_
~
8
(e
(o)
*
~

and thus the sum is finite.

To see part 2(b), let (§*,5*) solve the following problem:

minimize ||s* — s||

(y,8) €D

From Theorem 7, there is a constant N > 0 such that ||3¥ — s¥|| < N||sk]|. Since {s*} is
bounded, so is {§*}, and let ||s*|| < NV and ||§¥|| < NV for each k. Also, since s* solves the
least squares problem (LSQ), we get || X5 xs5||? + || Xn skl < || Xn sk |2

Now,

Isgl? < I X5k XBks5]
< NXGRIPUX NS5 NP = 1 XN gsh )
I X551 (X ik = Xnpesh)T (Xngdy + Xnisy)

16



- . ki~
< NIX5al S5 1185 = swllllsk + swll

< IX5RIPe(zh) 2N N Ish .

Thus, ||3% — skl < 2NN2||X§,1,¢||2¢($’1§,)2. Now, cfzf — ¢t = I(zF —2*) = (5% +

AT§*)T(z* — z*) = 5% 2% Thus, from Theorem 10,

leTuk, —1| = |(s%) =k — (3%) <k
N - CTQIk —-c*
< lsk = siliak
T Mg

< 2MNN|XGHIPo(ah)
Thus, there exists an L > 1 such that for all k > L,
8l = leuk — 1] < 2MNN?|[X5L%6(<R)" < 1.

The required sum can be shown to be finite by the same argument as for the sum in 2(a).
To see part 2(c), using the result of part 2(b), there exists an L* > L such that for all

k> I
1+6k2_}_.

k
$(uy) 2 p %

Also, since 1 — z(—;”;—)-uu',i,ﬂz > 0, we have
N

To see part 2(d), using the results of 2(a) and 2(c), we note that there is an L' > L*
such that for all k > L',

B(ub) < Ilub]l < Ma(at) < % < d(uk)

and we are done with L = max{L, [, L'}, since ¢(u*) = max{d(uk), (uk)}. O
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