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Abstract

Recently, Tsuchiya and Monterio have proposed an implementation of the affine
scaling method that attains , asymptotically, a two step superlinear convergence rate
of 1.3. This is achieved by a step size selection rule under which the affine scaling
method can be viewed as a predictor-corrector method. In this paper, we propose a
different, but related, step size selection strategy that asymptotically, attains a three

step quadratic convergence rate.
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1 Introduction

In this paper we consider the application of the (primal) affine scaling method for solving

the following linear programming problem:

minimize ¢’z
Az = b
z 2> 0

where we assume that the matrix A is an m X n matrix, b is an m vector and c is an n

vector. In addition we will assume that

Assumption 1 The linear program is feasible and has an interior point.
Assumption 2 A has full row rank m.
Assumption 3 The objective function is not constant on the feasible region.

There have been some significant recent developments in the convergence theory of this
method. A notable development is the series of papers Tsuchiya [17], [18], Dikin [6], [7]
and Tsuchiya and Muramatsu [19]. The last of these papers shows that if the step-size at
each iteration, is restricted to % of the step to the boundary, the dual sequence converges
to the analytic center of the optimal dual face, and the primal sequence to the interior
of the optimal primal face. Prior to these results, the convergence of the primal sequence
was known, but the optimality of its limit point was known only under the non-degeneracy
assumption, Vanderbei and Lagarias [22]. Simpler proofs of the 2 result can be found in
Monterio, Tsuchiya and Wang [12] and Saigal [15]. Two-thirds is sharp, ( as is shown by the
example produced by Hall and Vanderbei [9] ), in the sense that with a larger step size the
dual sequence may not converge. The optimality of the limit of the primal sequence with
larger step-sizes is still an open question. In Saigal [15] the convergence to optimality has
been shown for a slightly larger step-size of %—%, where ¢ is the number of variables in the
limit at 0. This fraction can be easily increased to ?;'ET’ and it appears that this may be the
largest constant step-size under which the convergence to optimality can be established.

In another recent paper, Tsuchiya and Monterio [20] have achieved another milestone.

By establishing a connection between the affine scaling step and the Newton step, they have
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devised a strategy of adjusting step sizes under which the dual sequence converges to the
analytic center of the optimal face and the primal sequence to the interior of the primal
optimal face. Their method, asymptotically, attains a two step super-linear conv'ergence rate
of 1.3, and can be viewed as a predictor-corrector method. They show that asymptotically,
one can take large step sizes ( predictor steps ) provided the step-size at the next step is
restricted to % ( corrector steps ). In this paper we build on their work and generate a
different step selection strategy, which also can be viewed as a predictor-corrector method.
This step selection strategy asymptotically attains a three step quadratic convergence rate.
In this method, we take two corrector steps between each pair of predictor steps. We also
show that the primal converges to the interior of the optimal primal face and the dual to
the analytic center of the optimal dual face.

This paper is organized as follows. Besides the introduction it has 9 other sections. In
Section 2, we introduce the affine scaling method, and state some of its known properties. In
Section 3 we investigate the affine scaling step with a view to relating it to Newton’s method.
In Section 4, we study an analytic center problem, and the application of Newton’s method
for computing it. In Section 5, we relate the affine scaling and Newton directions for this
center problem, and in Section 6 we the relate centers of two polytopes. We introduce the
accelerated affine scaling method in Section 7, and in Section 8 we establish the preliminary
results required for proving the three step quadratic convergence of the method, which is
established in Sections 9 and 10. Finally in Section 11, we compare the theoretical efficiency
of this method a two step quadratically convergent method and the superlinearly convergent

method of Tsuchiya and Monterio [20].

2 The Affine Scaling Method

In this section we present the method and known results ( generally without proof ) about
the sequences generated by this method. We now present the affine scaling method we will

deal with in this paper:

Step 0 Let z° be an interior point solution and let & = 0.



Step 1 Tentative Solution to the Dual:
yF = (AXPAT)'AX e
Step 2 Tentative Dual Slack:
sF=c— ATy
If s* <0 then STOP. The solution is unbounded.

Step 3 Min-Ratio test:

1 X ks
7;5]

|| Xes®|
$(Xes*)

9y = min{ L5 > 0}

where ¢(z) = max;z;.

Step 4 Step Size Selection: Choose, by some rule, the next step size 0 < a < 1. Also, if
O =1 set ap =1.
Step 5 Next Interior Point:

Xis*

k+1
[ X

T = xk - akﬁk

Step 6 Iterative Step: If xf“ = 0 for some j, then STOP. z*+! is an optimal solution to
the primal, y* the optimum solution to the dual. Otherwise set k = k + 1 and go to
step 1.

Assume that the method presented above generates infinite sequences {z*}, {y*} and
{s*}. Then the following can be shown for these sequences, and the proofs can be found in

the references cited:

Theorem 1 Let the sequence {c'z*} be bounded.
1. {cTz*} is strictly monotone, decreasing, and thus converges, say to c*.
2. XkSk — 0.

3. {z*} converges, say to z*.



4. Thereis an L > 1 and a § > 0 such that for all k > L

T, .k *
czf—-c
> 6

==l ="

Proof: The proof can be found in Tsuchiya [17], Monterio, Tsuchiya and Wang [12]
and Saigal [15]. ]
Given that the sequence {z*} converges, let the limit of this sequence be z*. Then we

can define:
N={j:2;=0}, B={j:z; >0}, ¢=|N]|
. X sk Tk —
k _ v k .k _ k _
d —)ka , U —m,’v —m.
The following is a corollary to Theorem 1(4).
Corollary 2 There exists an L > 1 and &; > 0 and 63 > 0 such that for all k > L

izl < Taf — ¢ < &yl

Proof: Readily follows by applying Theorem 1(4). [ |

We now investigate the properties of the sequences {s*}, {d*}, {uf} and {v*}.
Theorem 3 The sequence {d*¥} converges to 0.

Proof: Follows from Theorem 1. Can also be found in Vanderbei and Lagarias [22]

and [15]. ]
Theorem 4 There is an L > 1 and a § > 0 such that for all k > L
Job < 8(cTt —
Proof: The proof follows from Corollary 2 and results found in [12] and [15]. [

Theorem 5 Consider the sequence {u*}.
1. It is bounded.

2. Thereisan L > 1 and § > 0 such that for all k > L



(a) eTuk, =1+ 6 where |6 < 6(cTz* - )2
(b) $(u*) = $(uf).
(c) luf]® > 5.
Proof: The proof can be found in [15]. |

Theorem 6 Thereisan L > 1 a § > 0 such that for every k > L, |v| <.

Proof: Readily follows from Theorem 1 part 4 and Corollary 2. ]

3 The Affine Scaling Step

We will study the affine scaling step with a view to relating it to a Newton step for computing

an analytic center of a certain polyhedal set. Towards this end, define
D ={(y,s): Afy = c, ALy + sn = cn}

as the set that represents all dual estimates complementary to z*; i.e., 27 > 0 implies s; = 0.
Please note that in the definition of D, we have relaxed the non-negativity condition on sy

required for dual feasibility. The following can be readily established:
Theorem 7 The sequences {y*} and {s*} are bounded, and thus D # 0. Also, for every
primal feasible pair z and & and every (y,3) € D

Tz—cli= Eﬁ(wN —IN).

Proof: The proof readily follows by substituting ¢ = 5 + AT§ and noting that mem-

bership in D implies 55 = 0; and A(z — &) = 0. [
As is now well known ( see for example, Barnes [2] ) the affine scaling direction
Xis"
[ Xes® I
used in Step 5 of the method, is generated by‘solving the following Ellipsoidal Approximating
Problem:
minimize Tz
Az = b

X7z -2F) < L



Substituting p = 2* — & we obtain the equivalent problem:

maximize  ¢lp
Ap
I1X Pl

<

0
1

Now cTp = 5Tp = 5% py for (§,5) € D. Thus, for some fixed (7, 5), the above problem can

be written as
maximize 34PN

Avnpy  +  Asps

phXikpN + PEXiEpB <

0
1

By noting that the solution of this problem is on the boundary of the ellipsoid ( i.e., the

second constraint is at equality ), the K.K.T. conditions for this problem are

SN — Aq,:,y - ‘29)(,;1%,171\/
—Apy — 20X s
Anpn + ABpB

X5 pll

(1
(2
(3
(

)
)
)
4)

Now, let the sequences {u*} and {v¥} be as defined in Section 2. Letting, for some given

k, u and v represent u¥ and v* respectively, we define A = AV and § = V3, where V is

the diagonal matrix whose jth diagonal entry is v; for each 7 =1,.--,n. Now consider the
system:
UnN AT ~ p .
— — AT — SN =0 (5)
[ T
AT~ Sg (6)
T T
~  UN
An——=+ Agpy = 0 7
N||u||2 + ARpp (7)
.§ﬁUN _ (8)
Jlull®

The following theorem establishes a connection between the conditions represented by

the above systems.

Theorem 8 Consider the systems represented by the equations (1) - (4) and (5) - (8).
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1. (1) - (4) have a unique solution which generates a solution to (5) - (8).

2. The solution to (5) - (8) is unique upto a choice of pg; and, there is a value for ply
for which the resulting solution also solves (1) - (4).

3. When Ap has full column rank, the two systems of equations are equivalent.

Proof: Since the Equations (1) - (4) represent the solution to a strictly convex problem,

they have a unique solution. Using this solution, define the vectors

i = ~y(cTz* - ¢*)
28]l
(T = )]
p= 29
' - PB
PR = (Tak — ]’

It is now readily confirmed, by simple algebra, that u, § p and pp solve the System (5) -
(8). Thus we have proved Part 1.

From Part 1, it follows that (5) - (8) have a solution. Considering gy = e P = e
y and pg as variables, this system is linear in these variables. If Ag has full column rank,
the solution to (5) - (8) is unique, and Part 3 follows. Otherwise, since (5) - (8) can have
a solution only if sp lies in the row space R(AL) of Ap, the third condition must have
redundant constraints readily identified by choosing any full column rank submatrix of Ap.

To see Part 2, let Ay = (Ac, Ap) where A¢ has full column rank and spans the range (

or column space ) R(Ag) of Ag. Thus, for some unique matrix A, Ap = AcA. Replacing
equations (6) and (7) by

_uTio 5B )
ST
and
‘“IP+Amb 0 (10)

respectively, we obtain a new system that has a unique solution. By setting p%s = (pg, D),
and letting p, = 0, the solution to Equation (10) generates a solution to (7). Now,
let (gn,7,p,pg) be any solution to (5) - (8). This then generates the unique solution
(N, ¥, pype — App) to (5) and (8) - (10). Since only the vector ply is modified in any
solution to (5) - (8). Part 2 is established with the required pj = =P |

(cz®=c*)llul|



4 Newton’s Method and an Analytic Center Problem

In this section we consider the application of Newton’s method for finding the analytic
center of a certain polytope. By interpreting the affine scaling step with a step-size of % on
this polytope, a close connection can be established between the two steps. This connection
plays a central role in the accelerated implementations of the affine scaling method. We
now introduce this polytope.

Consider the sequence {*} generated by the affine scaling method. From Theorem 1,
it converges to, say «”, and as in Section 2, let N = {j : 2 = 0} and B = {j : z} > 0}.

Also, define the sequence

\ ok —
U = e———
cTak — ¢

and note that for every k, Av* = Ayvk + Agvly = 0. Also, if (7,3) € D, then from Theorem
T

§ﬁ’c’fv =clzF - ¢
and thus §5v% = 1. Now define the polytope:

P = {'U : Ayvy + Agvg = 0,511\,‘01\/ =1,ony 2 0}

and its projection
Py = {uy:v € P}.
Its analytic center is the solution v* to the following problem:
maximize ey log(v;)

Anvy + Agvg = 0
§£,vN = 1.
UN > 0

The K.K.T. conditions for this problem are:

Vile— ARy —3nv0 = 0 (11)
~Agy =0 (12)
ANun + Agvg = 0 (13)
oy = 1 (14)

vy > 0



The solution to the K.K.T. conditions is unique, if it exists. The analytic center problem
has a feasible solution, but the set may not be bounded, and thus the center may not exist.
Indeed, it can be shown that, for a given N, the center exists if and only if z* is an optimal
solution of the primal linear program. Since we have not shown this fact, we cannot claim
the K.K.T. conditions have a solution. However, we will, in this section, assume that the
center exists. Thus the results established as a consequence of this assumption can only be
used when this existence has been shown.

We now apply Newton’s method to the system of equations (11) - (14) to determine its
zero. The Newton direction (Av, Ay, Af) at (v,y,8) is obtained by solving the following

system:

—VyAvy — AL Ay —5yA0 = —Vile+ ALy +5n0 (15)
~ApAy = Agy (16)
AnAvy + AgAvg = 0 (17)

§shAvy = 0 (18)

Defining y = y + Ay, 0 = 6+ A and substituting wy = Vy'Awvy, AN = AnyVn and

$n = Vy3n we can rewrite the system (15) - (18) as:

wn+ AL+ b = e (19)
ARj =0 (20)
Anywy + AgAvg = 0 (21)
Shwy =0 (22)

We are now ready to prove an important result:

Theorem 9 Let wy solve the system (19) - (22). Then

1. eTwy = w%wN.

2. |lwn|| < /4, where q is the number of elements in N.

Proof: (1)isobtained by multiplying equation (19) by w% and substituting wIT\,/iITV'y =0

obtained from equations (20) and (21), and equation (22). (2) can be obtained by considering
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the problem

maximize z'z

and noting that z = e solves this problem. [ |

The system (19) - (22) is linear in the variables wy, Avg, § and 0, with the underlying

matrix: ) )
I A,TV sy 0
0 Ag 0 0
M(v) = | |
Ay 0 0 Ap
I 37,\", 0 0 0

It can be readily verified that, when Ag has full column rank, this matrix is non-singular
for every vy > 0. In the other case, just as was done in Theorem 8, it can be shown that
the solution to the system (19) - (22) is unique upto a choice of Avy.

Now, consider a sequence {vk} in Py that converges to v}, the analytic center of Py.

Also, let
B=IMy)"l
We state, without proof, the following standard result on the convergence and convergence

rate of Newton’s method.
Lemma 10 There is an L > 1 and py > 0, p; > 0 such that for all k > L

1| M(vg)~' < 28.

2. ||‘F—M—,I,'ji;lv|” =1 + & where |6x] < p1|lv — vyl

3. |lvks + Avk — vil < pallvf — vx

Proof: Can be found in standard texts in numerical mathematics. ]
Now consider the affine scaling step as determined by the system (5) - (8). We note that
if we consider “—’;ﬁ%, P, § and erle as variables, this system is also linear with the underlying

matrix M(vy). Thus we can prove the following theorem:

Theorem 11 There exists an L > 1 and p > 0 such that for all k > L,

k
k UN AF

e-—wN—W—
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with ||A*|| < pllcTz* = ||,

Proof: Consider the systems (5) - (8) and (19) - (22). By selecting possibly-a submatrix
of Ap, we assume that Ap has full column rank in these systems. In the later system, make

the change of variable w); = ¢ — wy. Then 35 w) = 1. Now, by defining vl = vg — Avp

and
- UN
Vit = o -
il
ag = §—1y
p A
ay = —F — 0
[[u?
/ /
a4 = Pp—Vp
generate the system M (vy)a = (0, _Il_ffl?’ 0,0)7. This system is readily seen, with sf = “:u’-“%,

as the K. K. T. conditions of the following optimization problem:

minimize sg'Tay
Anaq + Agay = 0
shay = 0
IV aalf? < rh

for some r > 0. Consider the first constraint. Since Ap has full column rank, by using the

formula
ag = —(ALAp) ' AL Ana,
we can eliminate a4 to generate the following equivalent problem:

. T
maximize S m

7\/(11 =0
5%(11 = 0 .
Vi'al* <1

where s = AL Ap(ALAp) ‘sl and Ay = Ay — Ap(ALAp)~*ALAy. This is an affine
scaling problem. It is well known that the K.K.T. multipliers (as,as) of this problem are
bounded by a function of the form q(A%,3n).||sp|| independent of the diagonal matrix

Vn > 0 and r. ( See for example, Theorem 4, Saigal [15] ). Thus, for some g(A4,3n),

(A, 3n)|sBll
flufl?

(a2, a3)|| <

11



Thus ||Vy'ai]| < ||Vv(AKas + 3nas)|| < ﬂ%}ﬂﬂ By using Theorems 4 and 5 part 2(c),

and that the bound is independent of ay. |

5 Affine Scaling and Newton Directions in P

In this section, we show the connection between the Newton direction Avk = Vi ywk at vk
determined in Theorem 11, and the affine scaling direction as interpreted in P. Consider
the sequence {v*} in P generated by the affine scaling algorithm. Then we can show the

following result:

Theorem 12 The affine scaling direction at vk in P is

k k
S I S agd(u”) ko Un
NN S T e N T R k)

k

where §(uf) = ¢"u 7 Also, the Newton direction Av, at vk in P is:

~

k
u
Avg = vy — vk,Nm,ﬁ—V'F + VinAF

where A* is as in Theorem 11.

Proof:  Since vl = V,yAvf; the formula for the Newton direction follows from

Theorem 11. To see the affine direction note that:
k+1 k
k+1 koo TN TN
UN - vN =

B
a Vi nuly
vy — $(uF) k
| edgE N
#(u")

okl I .

_ $(u*) k Uy
= o TEE N T VN,kW) (23)

b=y
and we are done. [
Using Theorem 11, if ay is chosen such that the scaler term in the formula for the affine
scaling direction is 1, the directions taken by Newton’s method for computing the analytic
center of P will be very close to the affine scaling direction. It is this observation that allows
the interpretation of this step as a corrector step. We now present a relationship between
two analytic center problems, and the version that exploits this property of the affine scaling

step.
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6 Relation between two analytic centers

Consider the analytic center problem for DN {s: sy > 0}

maximize Y ey log(s;)

Aq]\}’y +Sy = ¢N
ARy = ¢CB
SN > 0
and its K.K.T. conditions:
Syle—vy = 0 24

Anyvy + Agvg = 0

A{,y-{-sN = ¢N 26
ALy = ¢cp 27
sy > 0

The following relates the two analytic centers defined by systems (11) - (14), and (24) -
(27).

Theorem 13 (y*,s*) is an analytic center of D N {s : sy > 0} if and only if v* is an
analytic center of Py and
quy = S;,-le
Proof: It is readily confirmed that if vy is the analytic center of Py, then for some
§ = 0* > 0 and y = u*, equations (11) -(14) are satisfied. Thus

1 1 1
SN = 5;A1Tvu* + SN0 = 9—*v*,y =y- 5‘;“‘

satisfy the equations (24) - (27). Also, if (y*,s*) is the analytic center of D N {s: sy > 0},
then for some v* equations (24) - (27) are satisfied. Thus

v= (—Iv*,y=—q(y‘—y),9=q

solve equations (11) - (14). We are now done by equation (24). [
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7 Accelerated Primal Affine Scaling Method

In this section we present a step-size selection strategy that asymptotically behaves as a

predictor-corrector strategy for computing the analytic center of P. This method follows:

Step 0 Let z° be an interior point solution, 0 < a < 1 ( normally between 0.95 and 0.99 )
and let k = 0.

Step 1 Tentative Solution to the Dual:
y* = (AX}AT) T AXEc
Step 2 Tentative Dual Slack:
s = c— ATy

If s* < 0 then STOP. The solution is unbounded. Otherwise, define

dk = stk
Step 3 Min-Ratio test:
dk
b = min{lﬁ—Il : sf > 0}
J
4]
¢(d*)

Also, if 6 = 1 set ar = 1, and go to Step 7.

Step 4 Tentative Non-Basic set:

Ny = {j: 2k < ¢(d))}

v = leTdy, |
Step 5 Estimate of Newton Step:
k k
T d
R = N _ X, N N
M e Gk
& = [kl

14



Step 6 Step-size calculation:

1. Normal Step: If 44 > 1 then set

O =«

2. Predictor Step: If 45 < 1 and €}7® < 74 then set:
ar = 1 — max {7, 2%}

3. Corrector Step: Otherwise, set

2

a —min{——lk_ =}
£ 26, ||d*||" 3

Step 7 Next Interior Point:

X2s*
:Ek+1 = ;L‘k - akﬂkk—

[ Xes*||

Step 8 Iterative Step: If 25! = 0 for some j, then STOP. z**! is an optimal solution to
the primal, y* the optimum solution to the dual. Otherwise set k¥ = k + 1 and go to
step 1.

We will show that the above implementation is three-step quadratically convergent.
Before we prove this, some comments are in order.
As a consequence of Theorem 3, ¢(d*) converges to 0. Thus, asymptotically, N will

become some constant N. Also, at Step 5

hk "BI;V de
N = T ~2kNy7T%me
Tdy T N
k k
'UN UN
—_ - 28
T, N (%)

and using the Theorems 5 and 11, is readily seen as a very good estimate of Avf;.

We wish to apply the predictor step when ||2%|| = O(cTz* — ¢*)%. Since eTd}; goes to
zero; asymptotically the acceptance condition for the predictor step will be satisfied. Since
the resulting constant in this relation is unknown, a predictor step may be performed with a
lower order of cTz* — ¢*. This will result in a lower convergence rate than two. We will show

that this error can be corrected by taking three corrector steps following the first predictor

15



step selected by the rule. After this, two corrector steps after each predictor step can be

taken to achieve two-step quadratic convergence. The corrector step chooses the step size

T _ o(uk,)eTuk,
Wl - 2

(29)

which approaches % We are now ready to establish the preliminary results before proving

the two step quadratic convergence of the sequence.

8 Preliminary Results

In this section we will establish the preliminary results for the proof of the convergence of

the sequence generated by the above implementation.
Proposition 14 There ezists an L > 1 such that for every k > L, Ny = N.

Proof: As ¢(d*) — 0, there exists an L > 1 such that for all £ > L, :1:;‘ > ¢(d*¥) for
each j € B and we are done. [ |
Let L be generated by Proposition 14. We henceforth restrict our attention to the

sequence {xk}Z‘_’_.fJ.
Proposition 15 There is an L > L and an o > 0 such that for all k > L,
Wy = Ao < afcTek - ).

Proof: From equation (28) and Theorems 12 and 5 we obtain

5.0k
hk _ A k — kYN _ V k
N v +6 N
and the result follows from the above theorems and Theorem 6. n

Proposition 16 There is an L > L and B > 0 such that for every k > L

T k41 _ ¢ k112
I SHg=F=1- aké(u’fv) where S(va) = %}7%—)

2. 1=l = 164] < 8(u) < 1 with |6 < B(ca* - ).
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Proof: From Steps 3 and 7 we obtain

T
bt = Tak — ¢ XES:
¢(Xis*)
and thus
Tkt ot . aklluk|l2 0
cTak — c* B(uk)’

Because of Theorem 5, we have (1). Since (1) is true for every ax < 1, by setting ax = 1

we obtain the upper bound of (2). Now, from Theorem 11,

o(uk uk
= A
¥ [l
= e+ wy - AY)
< 1+ |og| + 6 (31)
where ||A*|| = 6; and we have our result from Theorem 11. n

Proposition 17 Let w§ — 0 on some subsequence K. Then, on K

eTus¢(u’,°\,)

ST R

1
—_ -
2
Proof: From Theorem 5 and Proposition 16, 2p; > eTuk, = 1 — 6, From equation (31)

1+ 0

5—(1+ llonll + 1A])

Pr <
and we get the result as & and ||A¥|| go to zero. n
Proposition 18 There is an L > L such that for all k > L
0.50(cTz* — ¢*) < eTd < 1.5(cTzk - &)

Proof: Note that eTdk, = (cTz* — c*)eTuk;, and so the result follows from Theorem 5.

We are now ready to prove the optimality of the limit point z* of the primal sequence
generated by the accelerated method. The convergence of the primal sequence follows from

the Theorem 1.
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Theorem 19 z* lies in the relative interior of the optimal primal face.

Proof Let L be as in Proposition 14. In case the predictor step is only taken a finite
number of times, there is an L > L such that for all £ > I:, ay < % Thus the result follows
from Theorem 1.1 of Tsuchiya and Maramatsu [19] ( see also Theorem 16 of Saigal [15]).

Now, assume the predictor step is taken an infinite number of times, and let K be the

subsequence of such iterates. Let k € K. Then, from Steps 4, 5 and 6 Part 2,
IR < (€7 Xevsh)F < (7 Xis")?
and, from Theorem 1, Part 2
hk — 0 for k € K.
Also, from Proposition 15, Avk — 0, for k € K as
1AvR[] < AN+ [[Avy = Ry
But, vy € Py is the only vector for which Avy = 0. Thus

v,’i,——»v}'{, for ke K.

As Avk — 0, w§ — 0 for k € K. Thus from Theorem 11

uk

.W—)efork‘EK,

and, from Theorem 5 Part 2(a),

! for k € K.

lf)? — -
q

Thus
1
uk, — (—Ie for k € K.

The sequences {y*} and {s*} are bounded and so, on some subsequence K’ C K, they
converge, say to (y*,s*). So

1
Vinsy = -

Also, as v}, is the analytic center of Py, from Theorem 13, (y*,s*) is an analytic center

of DN {s: sy >0}, and we are done. ]
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9 On Predictor and Corrector Steps

In this section we will establish the asymptotic rate of convergence of the sequence {c?z* —
¢*} generated by the accelerated affine scaling method. We will show that this sequence
converges three-step quadratically to 0. Because of Theorem 19, the analytic center v} of
Pn exists, and thus Newton’s method, when initiated close to the center, will converge to
it. Thus, there is a sufficiently large L > 1 for which the following properties hold:

For all k > 1,

1. vy > (cTzF —c*)>® for all i € N.

2. From Lemma 10 Part 2, related to Newton’s method, there is a # > 0 such that

(cTzk — ¢*)0%5 < 9; and, for all |luy — v}l < 0

1 . 3 ]
sllow =7l < lAv]] < Sllow = vyl

3. The conditions of Lemma 10 related to Newton’s method; and, Proposition 14, are

satisfied.

Such an L exists as v: > 0 for each 4, # > 0 and ¢Tz* — ¢* — 0. We can then prove the

following straight forward lemmas:
Lemma 20 There is an L > L such that forallk > L
0.50(cTz* — ¢*) < eTdk, < 1.5(cTzF - z*).
Proof From Theorem 5 Part 2(a), there is a L' > L and a 6 > 0 such that for all k > L
eTdt = (14 6;) (T2 - ¢)
where [6¢| < 8(cTz* — ¢*)?. Thus, there is a L > L' such that [é] < 0.50 and we are done.m

Lemma 21 Let vk — vi|| < B(cTz* — ¢*)P for some B > 0 and p > 0.25. There is an

L>1L and a0 >0 such that for all k > L
lwill < 6(cTz* — )P0,
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Proof Consider
ok > v — o — 0| > (Ta* — )0 = BTk — &)
and thus thereis a L > L such that for all k > L
vf > 0.5(cT 2 — )02,

Thus, ||[Vyill < G L, and since wf, = Vy+Avk, we obtain our result from Lemma

ok —c*)

10. |
We are now ready to investigate the predictor step and the corrector step of the ac-
celerated method. The next theorem investigates the predictor step, Step 6, part 2 of the

accelerated method.

Theorem 22 Assume that for some k > L and 8 > 0, ||[vk — vi|| < B(cTz* — ¢*)? for

some 0.50 < p < 1. Then

1. There is a § > 0 such that
0.50(cTzF — ¢*)? < Ta*+! — ¢ < (T - ).
2. There is a 6 > 0 such that
o =l < B = e

Proof To see (1), note that from Step 6, part 2; Lemmas 20, 21 and Proposition 16,

we get
0.50(cTzF —¢*) < €Tdf
< -
DR s
S l—-a
B(ufy)

T phtl — o
T Tk — o
< 1-(1-max {”, % })(1 - 2[wi])
< max {&%, 1} + 2w |
< 0Tk - )
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To see (2), from Theorem 12 Part 3

2ak5(u’°) -1
1- aké(uk)

k+1 *

vE — oy = ok + Avf — vy + (vl = Vivg—o=) — Vi p Ak,

lu ’°||2

From Propositions 15, 16 and Theorem 8, after some simple algebra, we obtain

2ap —

o™ = vl < llog + Aoy — vl + 5 IIhNII+ﬁ( 7t~ )’

Choosing k > L and substituting the formula for oy from Step 6, Part 2; Part 1 of this

theorem, and the Lemma 10

okt —vill < Gulloly — vxl2 + (T2t — )P

IN

p ey

S é(CT.'L'k+1 _c*)g

where 6; > 0, g > 0, and ,3 > 0 are appropriate constants. We have used

20 — lek < 1—2max {e) 50,7k}
l—ar 7 max {2y}
0.50
< 7.

We now investigate the corrector step.

Theorem 23 Thereis an L > L and a > 0 such that for some k > L , assume |[vk —v} || <
a(cTzF — c*)P where 0.25 < p < 0.50.

1. Let p=0.50. Then two iterations of the corrector step, Step 6, Part 3, can be taken,
and for some 6 > 0,

loa? = o ll < 8(cTa*? — ¢")?.

2. Let 0.25 < p < 0.50. Then three iterations of the corrector step can be taken, and for
some 6 > 0,

”vk+3 _ v;\l“ S 9(6T$k+3 _ C*)2.
Proof From Lemma 21, we note that for all £ > L
okl < BT a* - 7)o,
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Let L > L be such that for all k > L, 0(cTz* — ¢*)P~925 < 0.25. Now, consider k > L. Then

from Proposition 16

5 = Yk _ eTu’f\,gb(u’,‘;,)
SPYATP ¥
1
< S+ 8L+ [lwill + )
< 2
3

where 6, and 4 are positive and of the order O(cTz* — ¢*)2.

Thus, during the corrector step, ar = éx, and thus, from Proposition 16 Part 1 we get

Tkl _ o eTus

cr = g
cTok —c* 2

and thus from Theorem 5, Part 2(a), for all £ > L

0.25(cTzF — ¢*) < Tz — ¢ < 0.75(cT 2% = ¢). (32)

For the first corrector step, after substituting ax Theorem 12, we get

k+1 k el uf k ufy
W= g b Ve

Thus. by simple algebra and substitutions we get:

o™ = vill < llok + Av = il + 5 15, |||Vlc1v wyll + = |5k|||Vk.NAk||
< plloy = vnll® + B(cTzF - ¢7)?
< pal(cTah - )+ B(cTa - &)’ (33)
< py(Fak — )

IN

(4)2pp(cT$k+1 _ Cx)Zp_
Applying the same argument as above to one more corrector step, we obtain
lon*? = vy ]| < ag(cTa*? — ) (34)

Now, if p = 0.50, then 4p = 2 and we have part (1). Otherwise after one more corrector

step, we obtain
okt — x| € ag(cT2¥ 3 — )8 4 B(cT 2k — )2 (35)
Since 8p > 2 for 0.25 < p < 0.50, we obtain part (2) and we are done. [ |
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10 Rate of Convergence of the Accelerated Method

We are now ready to prove the main theorem.

Theorem 24 Let the sequences {z*}, {y*} and {s*} be generated by the accelerated affine

scaling method. Then

I$S)
<
E
L
*

where x* lies in the relative interior of the optimal face of the primal, (y*,s*) is the analytic
center of the optimal face of the dual. In addition, asymptotically, the sequence {cf =¥ —cTz*}
converges three-step quadratically to zero; i.e. , there isan L > 1,0 >0 and K = {L,L +

3,L+6,---} such that the subsequence {cTz* — cTz*} ek converges quadratically to zero, or
Te®+) — T < 9(Ta* — Ta*)? for k' € K.

Proof Using equation (32) and Lemma 20 we note that, during corrector steps, asymp-
totically the sequence {74} decreases linearly in c7z* — c*. Also, using equations (34), (35),
Lemma 10 and Proposition 15 asymptotically, if no predictor step is taken, the sequence

{ex} decreases at least as fast as O(cTz* — ¢*)?. Thus, for some large k, we must have
&’ < (36)

and a predictor step must be taken. The first time the condition of equation (36) occurs, if
€x > 77 then we enter the predictor step with 1 > p > 0.50; and, after the predictor step we
enter the corrector step with p < 0.50 and thus three steps may be required to guarantee, by
Lemma 10 and Proposition 15 that we enter the next predictor step with p = 1. Then every
subsequent corrector step will be entered with p = 0.50, and will thus require at most two
corrector iterations to satisfy the conditions for the predictor step, i.e, enter the predictor
step with p = 1. Thus, if during the first corrector step, three corrector iterations are taken,
from Theorem 23, we guarantee that the predictor step is initiated with p = 1, and the

three step quadratic convergence of {cfz* — ¢*} follows.
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It is readily confirmed from Theorems 22 and 23 that
log = vxll — 0

and thus v§ — v}. But this can only happen, by Theorem 13, if (y*, s*) converges to the

analytic center of D N {s: sy > 0} and we are done. [ ]

11 Relative efficiency of Three Step Method

Ostrowski [14] section 6.11, introduced the following measure to compare algorithms achiev-
ing different rates of convergence. As is evident, greater rates of convergence can be achieved
by increasing the work. The simplest way to get order four convergence of a sequence gen-
erated by quadratically convergent Newton’s method is to drop each odd element of the
sequence. Ostrowski’s measure is invariant under such manipulations. For a method which
requires w units of work per iteration and achieves a convergence rate of p, the measure of

efficiency is defined as

log(p)

w

In the table below, we summarize the efficiency of three methods.

Algorithm Rate | Work/Iter | Efficiency | Factor
Tsuchiya and Monterio | 1.3 2w 013181 0.5678
Saigal 2 3w 023102 1.00
Two step Quadratic 2 2w Q24051 1.50

The two step superlinear algorithm of Tsuchiya and Monterio [20] is about 44% slower

than the algorithm presented here, which is 50% slower that a two step quadratic algorithm.
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