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ABSTRACT

Propagation of electromagnetic waves through a homogeneous aniso-
tropic column of a medium of infinite length is considered. The anisotropy of
the medium is characterized by the dyadic form of the permittivity ¢ and per-
meability 4 . This anisotropic column is surrounded by a coaxial homogeneous
isotropic medium characterized by scalars € , and u, , this complete structure
being enclosed by a perfectly conducting metallic circular cylindrical wave -
guide. A magnetic current ring source is inserted symmetrically in the iso-
tropic medium, Throughout the analysis the strength of the source is con-
sidered to be an arbitrary function of the polar angle 6. For this general
problem the complete expressions for fields (due to the source), power flow,
and the dispersion relation have been studied.

To solve a source problem, dyadic Green's functions for both point
electric current source and point magnetic current source have heen con-
structed in a formal way from the source free solutions of the appropriate
Maxwell's equations. These dyadic Green's functions can be used for any
arbitrary source,

From the general expressions for the transverse fields in terms of the
longitudinal fields, in any arbitrary cylindrical region (unbounded) the propaga-

tion wave number of a TEM mode travelling in the longitudinal direction z has
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been obtained. The wave numbers for a TEM wave propagating in a direction
perpendicular to z, can be obtained from the general expressions for the trans-

verse wave numbers, using
—a——— = -jx = 0 .

The results of the above general problem have been used to study the
wave propagation in an anisotropic plasma column and an anisotropic ferrite
column separately., The various possible passbands for the propagation of
electromagnetic waves in an anisotropic plasma column have been obtained and
a special case Is cons idered for numerical computation of the longitudinal
electric field in a plasma. The analysis for the plasma problem emphasizes the

slow wave propagation,

vi
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I
INTRODUCTION

Electromagnetic wave propagation through an anisotropic medium has
been studied by many authors in different situations - from ionosphere to con-
ventional waveguides, Ionospheric anisotropy is due to the presence of the
earth's static magnetic field, Ionized, but macroscopically neutral gases of any
kind are known as plasmas., An ionized and neutral stationary plasma in a weak
electromagnetic field can be represented as an equivalent dielectric medium,
Moreover, when this plasma is situated in a uniform static magnetic field, the
strength of which is not necessarily small, its equivalent dielectric "constant"
behaves as a dyadic (tensor). It is well known that radio wave propagation
through the ionosphere depends on the frequency of the electromagnetic wave,
electron density, the collision frequency, the ion gyrofrequency and the electron
gyrofrequency. The same is true for a wave propagating through a plasma
waveguide, This knowledge of the wave propagation is essential for satisfactory
long-distance radio communication through the ionosphere.

The study of a plasma is also of vital importance in the field of thermo-
nuclear reactions, In a thermonuclear reactor a static magnetic field is used
to confine and to heat a plasma. Many times it is desirable to obtain information

on the temperature, density, etc. of the plasma. Such investigations which
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determine the characteristics and behavior of the plasma are known as 'plasma
diagnostics, "

Besides the above, the propagation of electromagnetic waves in plasma-
filled or partially plasma-filled waveguides has aroused considerable interest
in recent years [6] [7] [8] , primarily because of possible applications to
the generation or amplification of microwaves, A medium whose dielectric
"constant" is a tensor is called gyroelectric,

On the other hand, there is another class of materials known as ferrites
which exhibit ferro-magnetic properties. The chemical composition of the

ferrites may be expressed [3] [18] by the formula MO Fe2 Os, where M

represents a metal, such as Mn, Fe, Ni, Cu, Mg, Al, Co, etc. Although
ordinary iron (Fe) and nickel (Ni) possess ferromagnetic properties, they are

of little use as microwave components due to their high losses, But the ferrite
materials mentioned above, whose specific resistances are above 108 times
higher than those of the metals, with relative permeabilities ranging up to
several thousands and relative dielectric constants varying from 5 to 25, have
extensive use in microwave devices. In the presence of a static magnetic field
the permeability u of a ferrite becomes anisotropic, i.e., 4 becomes a dyadic,
which is the characteristic of a gyromagnetic medium., The medium whose

dielectric constant and permeability both are tensors, is known as gyrotropic.
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In connection with the Faraday rotation of guided electromagnetic waves
in a gyromagnetic medium with a uniform static magnetic field in a circular
cylindrical waveguide (the axis of the waveguide coincides with the gyro-axis
which is also the direction of the static magnetic field and has been taken as the
z-axis), Suhl and Walker [Z] have shown that only circularly polarized modes
exist, if E, # 0, andH, # 0, andpure TE and TM modes do not exist.
However, pure TE and TM modes can exist if -f-z— = 0, It should be noted
that in this case as well as throughout the present work, the anisotropic medium
under consideration is homogeneous, For an anisotropic plasma medium TE
and TM modes can exist [7] independently in another special case when the
axial-static magnetic field is infinite., Besides the above mentioned work, a
number of investigators including Van Trier []] , Gamo [19} , Falnberg and
Gorbatenko [4J , Agdur [6] , Epstein [3] , Trivelpiece [8] etc, have
carried out research in connection with wave propagation in gyroelectric, gyro-
magnetic, or gyrotropic media with various configurations, All of the research
work cited above except that in [7] considered only the source free resonance
behavior of electromagnetic waves, In the present problem, however, a source
of electromagnetic waves which interact with the anisotropic medium is included.

In Appendix A, a general formulation of the source-free problem is presented

for any cylindrical geometry with arbitrary cross section, This formulation is




THE UNIVERSITY OF MICHIGAN —
4386-1-T

suitable even for an unbounded anisotropic medium, provided cylindrical sym-
metry is assumed., In Appendix B, dyadic Green's functions for a point source
(electric current or magnetic current or both) are constructed from the general
source free solutions of the Maxwell's equations for both dissipative and non-
dissipative media. For such a construction of Dyadic Green's functions refer-
ences [9] ) [11] , and [12] have been found very useful. An alternative
method using a transmission line formulation can be devised for the construction
of Dyadic Green's functions.

In chapter I the problem considered is to find the dispersion relations and
the complete fields due to an excitation by a magnetic current ring source situated
in a cylindrical isotropic homogeneous medium characterized by a relative di-
electric constant €, and a relative permeability uy , which encloses a central
cylindrical column of a homogeneous anisotropic medium characterized by
dyadics € and K this whole structure being enclosed by a perfectly conduct-
ing cylindrical waveguide. This general analysis has avoided specifying any
particular medium, say a plasma or a ferrite, and also it does not necessarily
consider a ring source of constant strength, A ring source (magnetic current)
represents an idealization of a possible excitation, for example, a circumferen-

tial slot in the waveguide wall, or an annular slot on a thin metallic disc* fitting

*In this example one must also consider the boundary condition for the conducting
metallic disc,
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tightly across the waveguide. Although a ring source is taken for analysis, any
other type of source can also be handled adequately since the formal expressions
for dyadic Green's functions for an electric current source and a point magnetic
current source are given in Appendix B, A magneﬁc current ring source is more
appropriate for a plasma problem, whereas for a ferrite problem an electric
dipole at the center of a cross section of a circular waveguide is more appro-
priate,

In Appendix C, the general dispersion relation of Chapter I has been
evaluated in a number of interesting special situations with appropriate limiting
processes. Although in these special cases the procedures are also applicable
to obtain expressions for the total fields due to the source from the general ex-
pressions given in Chapter I, no attempt has been made to obtain these expres-
sions owing to the laborious task they involve,

Chapter II deals with a problem in which the anisotropic column is taken
to be a plasma in an axial static magnetic field, using the results of Chapter I,
In this case necessary conditions for slow wave propagation (which give maxi-
mum passbands) have been obtained, The sufficient condition and hence the
actual passbands can be obtained from the solution of the dispersion relation.
Since it is not possible to study a dispersion relation in general, a few special

cases have been discussed. In addition to these a more general dispersion rela-
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tion for slow wave propagation has been considered for numerical computation
in Appendix D, In this case the lowest eigenvalues are found and the corres-
ponding longitudinal electric field is calculated,

In Chapter III, the results of Chapter I have been applied to study wave
propagation through a ferrite column with a uniform axial static magnetic field,
It may be noted here that results for a ferrite problem can be obtained by using
duality on the corresponding results for a plasma problem when the boundary
conditions on H in the ferrite are the same as those on E in the plasma, for
example an unbounded plasma and a ferrite,

From the formal expressions of the transverse electric and magnetic
fields as functions of the longitudinal fields E, and H, , and using the expres-
sions for the transverse propagation wave numbers obtained in Appendix A,
conditions for TEM wave propagation in the direction parallel to or perpendi-
cular to the d.c. magnetic field have been obtained, These conditions provide
expressions for the propagation wave numbers in the respective cases. The
conditions which give the possibility of a TEM wave propagation in an unbounded
medium cannot be valid in a bounded medium or in waveguides (except those
bounded by two non-connecting metallic boundaries). Therefore these discus-
sions suggest that the study of a dispersion relation for a bounded anisotropic

medium, under the condition of TEM wave propagation, is meaningless and
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inconsistent. It can be shown that the condition of TEM wave propagation In
the direction of the static magnetic field, is equivalent to zero-value of the
product of the two transverse wave numbers, However, results for such a
situation have been presented in the literature mistakenly,* A reason for such
inconsistent results may be that the authors overlooked the direct equivalent
relations between the conditions of TEM waves travelling in the direction of

the static magnetic field and the vanishing conditions of the product of the trans-

verse wave numbers,

% Agdur, [6] pages 183 to 185, also [4] , page 497,
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I
GENERAL PROBLEM

Statement of the Problem

An infinitely long column of an anisotropic medium character ized by
tensors € and u, of radius a, is situated coaxially inside a perfectly con-
ducting circular cylindrical waveguide of radius b. The annular space between
the column of the anisotropic medium and the cylindrical waveguide is filled
with an isotropic medium characterized by scalars €, and u,. The electro-
magnetic fields are introduced into this system by a magnetic current ring
source of radius c, the center of which lies on the axis of the waveguide, such
that a { ¢ £ b. The total fields and their behaviors are studied. Figure 1 shows

the geometry of the problem,

General Formulation of the Problem

For convenience the plane of the ring source will be chosen as z = 0,
where the axis of the cylinder lies along the z-axis. Due to the cylindrical
symmetry of the structure, cylindrical coordinates r, 6, and z will be used
here, If the ring source is very thin both in the radial and in the axial direction,

it can be represented in the following way

—Im = QoIm elWt = Qom(G) 8(r - c)8(z) eJwt (1)




THE UNIVERSITY OF MICHIGAN
4386-1-T

where w = exciting angular frequency
Qo = unit vector in the 6-direction
m(6) = strength of the source in volts

5(r - ¢) and 5(z) are well known Dirac-delta functions.

Magnetic Ring Current

Region 2
An isotropic medium
Metallic waveguide

Region 1 - An anisotropic medium

FIGURE 1

Although ultimately m(6) will be chosen as a constant for numerical
computational facility, the present formulation of the problem is valid for m(6),
any arbitrary function of its argument 6.

The Maxwell's equations for this problem can be expressed (the time

dependence is assumed to be ejwt) as
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VEE@ = -jugl) - B -6,1
(2)
T xH(@D) = jue g(r) - E(r)

Fasd

where the relative dielectric constant ¢ (r) and the relative permeability u(r)

are defined in the following way.

j 0
érr Jer@
€(r) = - §€ gy €09 0 ,for 0¢rga (3a)
0 0 ezz
with constant elements
= €, (constant) , for ad<rghb (3b)
€r © 696
(3c)
€rg = é@r
Her j"‘r@ 0
ulr) = ~i gy Hop 0 ||, for 0¢rga (4a)
0 0 Hyz

with constant elements

10
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1

us (constant) , for adr¢b (4b)

~N

1

Hyr Moo

(4c)

i

Kro Hor

r in egs, (2) represents a three dimensional position vector, and r is the
radial coordinate, The results developed in Appendices A and B will be fre-
quently used in the following,

A method of solving any source problem in terms of Green's function
will be presented here, To construct a Green's function for a problem with
some given boundary conditions, it is sufficient to find corresponding eigen-
functions which form a complete orthogonal set., These eigenfunctions are solu-
tions of the source-free problem subject to the same boundary conditions,

In the present problem where the waveguide is uniform (independent of z)
and the medium is also homogeneous in the axial direction z (i.e., components
of € and y are not functions of the coordinate z, with ¢ and 4 having forms
shown in (3) and (4) respectively), one can assume that there will be waves
propagating in the z-direction, having z-dependence as e_j)(Z , where X isa
propagation wave number for a particular mode, This assumption leads Max-
well's equations with appropriate boundary conditions, to an eigenvalue problem,

with X as an eigenvalue (see Appendix B and [9] to [13} ).

11
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Thus the source-free solutions & 2 (r) and X Ly (r) satisfying the following

Maxwell's equations (5), form a complete orthogonal set of eigenfunctions.

v X 6:2(3) - jupgulr) - i(,Z (r)

(5)

vx Ao = e e - £,

The orthogonality relation can be obtained by choosing another set
" ’”
é VX (r) and _)_{ Yy, ‘(r), which satisfy the same boundary conditions and the fol-
lowing Maxwell's equations,

vxEp = juou @ - X p o

i

ox X pl) = e - E'pr

where * denotes complex conjugate,
e’ (or ut) = adjoint of € (or u) = complex conjugate of the transpose
of € (or !‘x/).

Now it can be shown (see the above mentioned references) that the

required orthogonality relation is

jggtz(z) Z{Iéll(l‘_)XEOds = Nlé-[[ :55241@(3) . goxé;:z.(g) ds (7)
S

S

T general the single index Z (or,gl) is actually a double index in (or i'n')
corresponding to radial and angular variations,

12
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where £ and 4’ correspond to X y -th and X [* -th modes (eigenvalues)

respectively.
Z, = unit vector in z-direction
N J) = normalization constant
5 =1, forX, = X,
10 4

= 0, for)lﬂj %le*

£ I} and é lt g are transverse components of é / and é /7 respectively. s is

the cross section of the waveguide,

Since In the present problem the only source is a magnetic current, the

total fields can be expressed in the following way, using the appropriate dyadic

Green's functions (eqs, (16b) and (17a) in Appendix B):

2T b oo
"Z &4 )_f&(ﬁ) 0 Iy (x) r' dz' dr' de ®
Y4 2N£
0 0 -
27 b eco
-5 Hg@Xp) - 6,1 () r dz' dr' do o
£ ZNl
0 0 -0

r = observation position vector

r' = source position vector (i.e., primed coordinates refer to source)

and the time dependence eJt g suppressed everywhere,

13
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Using eq. (1), the above two expressions can be reduced to the following

forms
2T
Bw = oS £ @ X (e, 0, 0)m(e) do (10)
yi ZNﬂ 2
0
and
2m
H(r) = -c Z M )((;' (c, 6, 0) m(6") do (11)
7 ZNX. g
0

" n
where }(6,8 (c, 6", 0) is the 6-component of)_{j/(c, o, 0), If éﬁ (r), )_—(z(g)
and __)f Il (r) can be expressed as (the single index A is replaced by the double

index in);

Ein®@ = Apin®@

Hin (©) = Ay g @ (12)
1 1"
L(in( ) = A'L'n &in (r)
and moreover if
Ehy (@) = gy (0,20 T, R (13)

then the above expressions (10) and (11) can be reduced further to the following

14
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Va4
m 2Tm
n

For n = 0, the above summation is no more than a single

Now using (12) and the orthogonality relation

SS €t @

S

2{ tin

ds

(r) x 2, =

it can be shown easily that

"

lin lin _ 1

N.

THE UNIVERSITY OF MICHIGAN

- Q lm 11 " ~
E( = -S) £, @ gy, (© 5 (14)
i,n
Ay
- . g 1in“*1in " ~
H(r) 2 ¢ < > &in (1) g, () my (15)
i,n
where
2m
ﬁn = S e ~jnd m(6') do' (16a)
0
Alin and Ay are constants and £ (r) , and g'l, (r) are known functions.
If m(6') = m, a constant, thenn = 0 [i.e. , —% = O:] and consequently
]

(16b)

summation over i.

n

1

N.

Z
n

z, ds

SS Lin(®)

gtm( r) X

2T b
SO

15

S fmn = gGm(r)_fGin(r) r n(r)]

rdrd6
(18)
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Now using the above relation (18) in the expressions (14) and (15), it can be

shown that the complete fields have the following forms

f‘ﬁniin (r) g@ipy (c)
E(r) = -< Z
== 2 £ 2T b
1 n " - "
jogo[frm(g)gem(g) fem(;)gr.m(_x;)J rdrdé (19)
m g (x) gy, (c)
H(r) = -¢ Z n= in
2
j So[f“n(r)g" (r) —fein(_zg)g;m(g)] rdrdé (20)

Although the above two expressions (19) and (20) are valid for both dissipative
and non-dissipative media, the relation between g and g‘l'n becomes simple in
the case of non-dissipative medium. Thus in a non-dissipative medium (see

Appendix B and [9:] ) it can be shown that

in = g%, = complex conjugate of g;,
(21)

4, = £, = complex conjugate of f;

Therefore, for non-dissipative medium, the total electromagnetic fields are

given by the following expressions (using (21) ):

16
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E) = -¢ S - my, £ (£) gpin (©)
0 T
o S[frin(i)g::é-m@ - fgin(}'_)giiin({)] rdrdf (22)
0+v0
m g, (1) gk, (©
H(r) = "%Z — n Ein 'Y 80in
i,n % .
ﬂfﬂn@gem@ - fgpn(DE (D)) rdrds (23)
0 Y0

It may be noted here that for non-dissipative medium the propagation
wave number Xin (eigenvalue) in the z-direction is a real number,

An alternative set of expressions for total electromagnetic fields which
are particularly suitable for dissipative media (although valid for non-dissipative
media also), can be obtained from (19) and (20) using the following transforma-

tions

)(m - - Xin

@, X

in’ Er@’ u’re) = —iin (E: -Xh'l - €r6: _/“‘re) = —t:in(z) L(24)

g (X €rp pg = B @0 Hips - Epgr Hrg) = Ep®)

~—’

Thus the total fields,which are particularly suitable for a dissipative

medium, can be expressed in the following way (using (24) ):

17
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£ () 8y ()
n=in in
Ry (25)
ot j[fr'm(ﬁ)gem(ﬁ em(r) rm( )] rdrd0
0J0
Mg (£, ()
= T—’ n 2in '~ ®0in
SRy (26)
i,n j[frin(;;)é’@in(s) g1 (D (1) reds
0v0

It should be pointed out here that for a dissipative medium, the propagation

wave number X in (eigenvalue) in the z-direction is complex,

Solutions of the Homogeneous (source-free) Maxwell's Equations

It has been demonstrated in Appendix A that for source-free and homo-
geneous (or for piecewise constant 4 and €, ) medium the longitudinal (z-com-
ponent) components of electric and magnetic fields obey the following two

equations

v o+ €2 6 Jomgu, X

)_( 3
t 7 (rur 3.'1 Z €r b as 7z (27)
2 H e €, X
\% Z M -
}(z * €rlp 47 € M. 43 ¢ z (28)

rr

*To simplify notation, indices are omitted from both field quantities and A .

18
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where aj = kZe (uz 2 - by Ko
_ 2 2 2y g2
al k ur (Gr €'”) era(

61'9 ) €Gr = €
€z © €z

“rr " Fogg T Fr
'urG ) HGr i
Mzz = NZ

k'2 = wzuoeo

The transverse fields (i.e., r and 6 components) can now be expressed

(see Appendix A) in terms of é , and )'(Z in the following manner

L r, %o, [i2 ,
’ét - E[Jxazlvtéz R ) Vt}(z]" —E)-:LX [k XaBVtéz * j(quoalvt )(z] (29)

and

ﬂ = [JXa v, }( + we V & ] - ——-x [kZXa3V,C)(Z - jwé’oalvtéz] (30)
t

19
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where a'2 = kze' (ui —u'?‘) +)(2u'

a. = kZpel -¢1?) +HN%e
2 r
2 2
= +ytet) -
a, = k Wb € +ue') X
P = k%f - af

It is observed here that if ag = 0, the two equations (27) and (28) become
uncoupled, * Although this is a necessary condition that the conventional E-type
and H-type modes separate, it is not sufficient, The sufficient condition depends
on the boundary conditions, For example, if the medium completely fills a
perfectly conducting waveguide, and if ag = 0, E-type and H-type modes can
exist separately, But on the other hand, if there are two coaxial media, (the
outer one may or may not be bounded by a perfect conductor) E-type and H-type
modes can exist separately if and only if —a%— = 0 (with ag = 0). Butif
—;’—9— # 0, and even If 2y = 0, in the above two coaxial media-system E-type
and H-type modes cannot exist separately. A similar discussion for isotropic
media where a.3 = 0, can be found in {16}, sec, 11,6,

For the solution of (27) and (28) éz and )(z can be eliminated yielding
a single 4th degree equation in each of éz and ){ 2 which satisfy both of the

second degree equations (27) and (28), If a choice is made such that¢=£’z+ ja)'{z,

*TE and TM modes also decouple, i.e., they can exist separately if there
is a constant line source in the z-direction. In this case = 0.

20
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then the equations (27) and (28) can be reduced to the following equation (for

detail see Appendix A):

v penig = o (31)

where
t - !2 - MZ = m p
er“r [a —wea(aa =" = i [al 5 ] (32)

Solving equation (32) for @, one obtains
- 2 2 2 2 Z
- + -
o = e.'za"l ! [(aiez al“z) Tak X aghy€ ZJ (33)
2we € a, X
o z 3

Therefore, the roots of 77'2 can also be expressed in the following way

2
N" = vt |ve-u (34)
12
where
1 2 12
v = aj €, 2y, i} N, 7, (35a)
2 € by
and c
U - ___z“z [aZ k4a‘§
€rMr 4 ,
€ _H 2 2
_ Z Z J [
- HoE, = 7 (35b)

21
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Equation (31) has the following form in polar coordinates

2 2

1 8 of .1 9879 _ o
- — . =0 36
r or ~ or 12 062 T @y (36)
where
12 12
N (x) = 7]1)2 for 0{r{a (37a)
=9 - kzpz €, —XZ, foragrghb (37b)

The general solution of (36) in the region containing the origin can be

written as

jnb n=20,%£1,%£2..,.

1
¢1'2 - A1)2 Jn (v L2 I‘) € (38)*

for Oér&a

and the solutions of (36) in the region a¢ r {b, which correspond to longitudinal

fields, are given by

o
I

z = [Bi‘ I, (M) +Cy Ny (ﬂr):l e, ar¢p (39)%

X,

(B3, O+ 0y N ()] e, ag g (40)

*Aq, Ay, B", B, C;'and C"y are arbitrary constants which depend on n and
M1z and 7], If not clearly indicated, these constants and radial propagation
wave numbers are understood to have the double index in,
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where Jn and Nn are Bessel's functions of the 1st kind and 2nd kind of order n

respectively,

Since @, = e +ja1)'/ = A Jn (7'1 r) ejnG, and
b, = € +vioX = AT (s r) e 09,
2 27, n

it is easy to verify that

jn6
E,Z . [alAan(qg r) - a, A I (T r)], forO¢rga,

R
(41)
and ){ jejn9
= —— (AT (79 1) -A; T (7 r)],forO(r(a,
Z - [ 2 “n 2 1% 1 LS
(o2] Gy (42)
Since the boundary condition requires that
(r) - 0= 2 N (x)
é zZ d B "~ or 7 ’
r=b r=b
the equations (39) and (40) can be rewritten in the following way
éz = B, Jn (r) ejnG , forag rgb (43)
){z = B, G, (r) eJnd for ag r¢b (44)

where
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S (x) = 3_(b) N, (r) - I, () N, (qb) (452)
G,(r) = J () N} (9b} - 3} b) N (77x) (45b)
B = - = (45¢)
N, (mb)
N (454)
= N' (1b)
n
N! (77]3) = _E_NL.(J?_I'). (45¢)
n d(nr)
r=b
Jv (Mb) = ——%‘-I—“(——m;l (45¢)
" nr r=b

Now using equations (41) to (44), in the relations (29) and (30), the transverse
components of the source-free solutions of Maxwell's equation (5) can be expressed
as

~j eJne

J, (71 1)
ér: - I:Al{fznll R J{l (ﬂf r) - nw“oexﬂrﬂf = " }

P (y-2) €

(46a)

r

1T (777 )+ € 7]12 __J_n_.(..’z'z__l;).]
+ A, €ZY’2 n 2 T nw“o rur 1 J’

for Ogrga
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é.- —LBZJnGG() ;(BeJnGC() foragr{b  (46b)

E ejnG
: Al{_wo“ 7’1"’2 I (”) ritne, R

Jn('f}’]_ r) _]

p1(@ap)e, r

12 (n' r)+ T —{rl(—q—;—l;) for0grga (47a)
+ A g et Ny 1, TFRe, T 2 SES

It L R in6 o/n{®)
€, 7 B, s (r)+% B, e ——. foradr¢b  (47h)
1
%= —(‘f—a‘)‘ Al{ﬂl R' gy Oy v+
P1\@; =2 €,Mz 23T

1 1 n’7lzse'r“r Jn(77'2 r)
-Ayiny, T3 (O o)t for 0¢ r{a (48a)

X€Z uz 3.3 r
-nwe 6 J)(
)_{rz n_n;__z B, eJHGJ (r) + Bi) Sy (r), foragrgb (48b)
jnG €2 27]177'2
_ _ie A rHe 1172 M J' J(
)(9 p; (2 -a,) [ 1{ Xe i a3 (1 ) M

2 12 v .
oy € I"Zr-'717'2 3 (7% )+ nT' (77'2 r)} ,for 0¢rga
X a n r n
€zHz83 (49a)

- jwe €,B
X, - ——,—;—ii 0 ¢ )+ 22 B 0 G (), for ag r¢b
i (49b)
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where ¢ 7 Y
§ = 2 -9 (502)
My €y
€ a' 12
M= 2o, (50b)
Hrér
!
R=Na o-wu 32' = a4€r“rM"k2€za332 (50c)
4 2 0 wCOCZaB
: k?‘e:Z agdy - agH,.€.8
T = wpy ~Kag% = (50d)
WEHEL23
M appp €, - az2y€,
R' = we 2, -Ka, = (50e)
° X age,
Saﬂ“rer-xz agas€,
T = we:oa,za'l-)(a4 = (50f)
Xa3€.
z
t 1 1 ! = - L _d_'_ 50
S,(r) = J1 (B)N; (qr)-J} (qr) Ny (7b) = T G,(r) (50g)
: .1 d
C,(r) = I () Ny gr) = J; ()N (7b) = 7 ./n(r) (50h)

Dispersion Relation

Since in the present problem the eigenvaluesX are discrete, the boundary

conditions satisfied by the total fields (i, e,, the fields due to the presence of

the source) are the same as those satisfied by any individual fields (i.e., source-

free field).

26
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the source-free fields, éz, Mz’ 59 and ,3)‘9:

€, @) = €, atr=a (51a)
€yla) = Eyla™) atr=a (51b)
€,(b) = 0 atr=bh (51c)
Epb) =0 atr="h (51d)
M, (@) =M, @) atr=a (51e)
Hyla) = ¥glah atr = a (51f)

The constructions of 8z and éG in ag r£{b are made in such a way that
the boundary conditions (51c) and (51d) are now automatically satisfied, since
/Jn (b)=0=8, (b). If the remaining boundary conditions in (51) are imposed upon
the source-free fields expressed in the equations (41) to (44) and (47) and (49),

the following relations among the arbitrary coefficients A;, A,, B, and B, are

obtained;
L o A5, ) - A I ) | = By, (522)
o - a 1 n\z2 o A1 dn '\ 190
1 ST Iy (1 2)
p; (o ‘O‘z)ez[ A {‘Wof"rerrjmz Jn<771 a)¥nezR T a } o2
12 1 . Jn(’72' a)
+A2{wuo€rurr)17]2 Ih (M, a)+ne, T —
_J'/Jow,uz £ (/ (a)
S B, S, (a)+—— B ; )
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J
Q-

[A2 I, (M3 2) - Ay Iy (3 a)] = B,Gp(a), (52c)

1 12

s 2 2 M ’ : ' €212 '2Y) S . '
—J—--[AI{MJ{I(r)laH%& Jnlma) [ -A, %%;Jﬁ(vza)+%— n(722)

PL2)| ™ | e, uyag

-jwe €
T 7);:" B, Gy a) . (524)

Non-trivial solutions for the constants A,, A,, B;, and B, exist, if and
only if the determinant of the coefficients of these constants appearing in equations
(52) vanishes, The vanishing condition of the determinant gives the characteristic
equation (or dispersion relation). Instead of calculating the determinant of the
coefficients and then equating it to zero, one can also eliminate B; and B, from
(52) and from the remaining equations it is easy to obtain two independent values
of the ratio A,/A;. Now equating these two values of A,/A;, one obtains the

desired dispersion relation expressed in the following:
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It should be noted here that to obtain the expressions (53) and (54), some
useful relations (tabulated in Appendix A) have been used, These relations will
be used frequently in subsequent derivations.

When the ring-source m(6) is constant, n=0 (i.e., -g%—EO). In this case

it can be shown that the dispersion relation simplifies to

S{nu G (aL)Jl(rp1 a)-n1 S, (2)J (nla} 7€, J (a)J(nja)+&M; Cola)do6n12) 55
NI{UHZ Go(a)Jl("b a)-1i,S(a)d (7'93} 1€,d0(2)J;(n32)+€xM; Cola)dolpsa)

Alternatively, equation (55) can also be written in the following manner:

12_ 12
(ﬂ—zrrLl) G, (a)J;) (a)Jy(n,2) J;(n5a) - &2—(—7’—9———,&—2 a)S,(a)domia)dy(n,2)
M €4lz7"

J (Ma)d;(,2)
- _o "hal)dy ' 2 €, 1 M Co(a)Go(a)+u2€ZSo{)(a)So(a):\ (56)
€471 | “ 2

1

J_(7,2)3,(7;2)
+ 0€ - r)r)i €y, Co(a)Go(a)+u2EZMJ;(a)SO(a)] =0
2"z L

A number of dispersion relations for various special cases has been developed
in Appendix C,

The solution of the dispersion relation (54) together with the relations (34)
and (37b) gives an infinite number of discrete values of r){ ) 77; ,n (and hence X

also). The radial wave numbers 74 and 1), can also be called eigenvalues in the

domain 0 £r<a, and similarly N is the eigenvalue in the domain a <r<b, of the
30
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Now using (59) and the relations (52a), (52c) of this chapter and (38 (4)),

(38(10)), and (38(11)) of Appendix A, one can express B, and B, in the following

manner:

B = A%, (60)
B, = A1\53 (61)

where . sZIJn(ﬂz'a)—MJn(q{a)
2" 12 12 J (62)

" -71) n(a)
jw e e as
5’3 = — ° : [El I, (75a) —Jn(v;{a)] (63)
()72 - 12)€1“an(3~)

Expressions for Source-Free Fields in Terms of Only One Unknown Constant A,

Since all the unknown coefficients A,, B, and B, are now expressible in
terms of the only one unknown A;, the source-free fields can be written in the

following way (e -j(aez—wt)is assumed to multiply all the expressions for the fields):

Alejne
é, - - [S £ Jn(rlé r) - MJ,Oyr) | = Af,, for0O&rga  (64a)
! 1
(’]2"”12)
éZ = Alfz ejnejn(r) = A f,, for a{ r¢b, (64b)
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Je, uywey )(a3e~]n9A1 J, (7711‘)
&r BN 2 {e 7)1RJ' (71r) - DWH er“r’)? N }

r“r’71’72 (2 -1 )
(65a)

r

g ! 1 19 J (92
+ 54y T€,T O r) tnwge ) ————r| = Af, ... for 0¢ r¢a

: 2 ¢
er: Ale;me[ o £ (G 1) 'gz Cn(r)} = A1f1u . ..foragr&b (65b)
7) r

€ z#zwe aeageJneAl

r)
& = - _ 112 ' n(’ll
0 2 2 12 ,2 12 '2) W M€ 1717 Jh@ir) + n€, R

€y r’h?’??" r

(66a)

r

1 J(‘I‘

néf’g
69: Ae Jne[ —jw ;‘0“9 §38 (r) + —— / :| = A)fg, foracreb, (66b)
77 r
i JwéoafaSeZ A, ejn@ | |
#- (72 _p'?) E,; () -dntyr)| = Ag,, for 0grga, (67a)
Y - i/}

M= A ’égej“@ G (r) = Ayg,, for ag reb, (67b)
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WELE, Ay ejnd

J_t.r)
%: 2 2 2 [{”IRU( HZ 3%n (7)11' +n172 M€2 2 nezlr }
r71 72 (72 '7)1

(68a)

51 7)'2T'Xézu a,J! (.,]2 )+m7128€r“ __r—} = Ajg., for 0 ¢r<a,

!
>
W2
()

R,
=
D

I
5
\10‘“
™
]
o
2
=
+

3 Sn(r)] = Algr, for ag r¢ b, (68b)

r 4 n
77 r
. jn6 !
) Jwél € Ale s 2 2 ' . Jn (7,lr)
‘% 12 12 2 {er Mr’?l?Z‘ M J;l(771 r) + nR Xez‘uzagt
r’h 72 (;72 B T

(69a)

Jo(pg 1)

2 ’ 2

—Zl euz 2! SJ’(;r)+nT'X€ua 2 ‘ = Ajgg, for0¢ rga
e T n z"z=3 r 150

o | -jwe €, %, nof & |
%: Ale"]n \:—-—O;I—z—?— Cy(r) + 772r3 Gn(r)J = Ajgg, foragrgh, (69h)

Determination of the Constant A,

Determination of the unknown constant A; depends on the orthogonality
condition satisfied by the source-free fields. Since orthogonality conditions are

different* for a dissipative and a non-dissipative medium, the constant A; will also

** Although the forms of the orthogonality relation given in (22) of Appendix B are
valid for both dissipative and non-dissipative media, they are particularly
suitable for dissipative media,
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be different for the above-mentioned two media. Here A; will be calculated for
non-dissipative medium only. For dissipative media the corresponding A; can be
calculated using equation (18) together with the transformations given in (24), The
primary aim here is to calculate the total fields with amplitudes due to a given

source, Therefore, to calculate total fields it is only necessary to find the ratio

A m{z
Nin

for any mode (eigenvalue) in. This ratio can be determined from the

knowledge of source-free fields, as suggested in equation (18) together with (21).
2

|4; o

in

In other words, the ratio is given by

2

|A1 in
Npp, 21 b
do [fr'm(r_) g¥9in(®) - for,(1) g"inan(z)} r dr

0 0

1

(70)

The above integral in (70) can be expressed in the following compact form

32
Ni, 2T b
R }2 ) g dGS I:frin(E) g%in(-ll)-fGin(z) g::i‘in(-ll)il rdr = 2r Finflint,
‘ 1in 0 0 £=1 (1)
where
_ v 12 K2k 'y sk
Finl B L'Lnerurl ’hmr €Z[€Iur’72'lnM'mRin - w'uoy?zinRin Xinuza?)] (72-1)
, :{:' > g st RS 2 %
Finz = LinérrMin72in 51in€s [ @iobn Tindlinkz23 - Rin€oir Windin]  (72-2)
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- *r ! g 12 o 12 *1 -
in3 Liner“requinr’2lnglin[.Tiner“r72inMin+WOT]llnRinXirx“zaB] (72-3)

2 12 skt .
E)“oqlinTind(gin“zaS+€r“ 1m m] (72-4)

!
F ==L e , .
in4 i r-r Jn"?hﬂg’lm

wef, 2 2 :
Fins = F;lf‘"z [€0€2l521n| |Nn(7inb)l T oM ‘§3in Iz |Nn(7inb)|2] (72-5)

Fi~n6 |-r] { [ ‘ zinl Jn(qm Nﬂ(7 b)tu o2 ‘§3m| 7)inb)J mmb)]
(72-6)

W X « \
Fin7 ) l: ‘Ezi l J (7) b)N (7’i b)+“ouz lg Sinl Nr;<7inb)Jn(7inb)]

Min
| o -
Fing = Iv; l [ 2m IJ (,’mb)l T |€3m| |J '7Ln ﬂ (72-8)
! skt

F - [ 2 ¥ _

9~ "LinTin (€, H, 2% B Ry w’“‘o“r rl’?znl Mm] (72-9)
F = nL ‘¥ [ 63 3 12 x X

in10 innlingl in wuo ' Y’zm qlm i —€ R; Tln in*z 33] (72-10)
Fin11 = 1n771 m[:é Rln 1n”‘(1n“z33 w/.to(-ir Ky \7,2 lnl Mm (72-11)
F i} n L € U [R ‘2 >{< ~ou 12 a( ] 191

inl2 in"r'rz 1n1’2m inrHr oqzin in”'in"z%3 (72-12)
F ~ XYk [ 3 3 12 %

inl3 rlLin 2ingl in L‘)“o r r711n7]21n in ~€z me m“ 33___} (72-13)
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jn

2 ' >,JZ ;::
F = L € -
inl4 ! mer“r Zgl m[ wH 721n in Xm 2?3 Rm in 1nerur (72-14)
_ ' 3 312 x2 x ]
Fints = nLinl2in &t in[w”oer“r”l inT2in Mjp * TmRmMm zHz8g (72-15)
X1 12 2 sk
Fini6 —-an7]2 nlgl 1n| [€ 1nT1n inkza3 * w“oer“r "1 in m] (72-16)
- X 3 12 %13 %k
Finl7 h 1n 11nSl 1n in 1n'uza3 WH € “r.”lln 'Izm 1n] (72-17)
Fin18 ) 1n Z r r[Tm”Z in" in r“r w“c,"l in 1n K, 3:] (72-18)
_ *y 22 ol 3 3.2 2x%
F1n19 - —nLinvlzinlglinI [CZTlnTinxinuzas + (AJIJO*ﬁrIJr |71 Hj Sln] (72-19)
%1 12 *12 199
FinZO =-n L |€1 | € ”r z 'uoTinxiny'lianaB 1nn11n 1n€ru:] (72-20)
k N P
F11121 ) [ Ha 2ESln 2in n(v) bIN (qm -xmgzmg31an(7inb)Nn(7inb)]
Y’ln"] in
(72-21)
in
F = B3 b N b "'k € . b ]
in22 inﬁin[ In “2in 31n n7 ) (7 )k ?‘E 21n n T'm (71n )
(72-22)

x* *! 2 %k 1 *
[énEZinsz 3in Jn( i’inb)Jn(r)inb) & 1€y rgBinE2 ian(qinb)Jn(vian]

F el
3 2 3k
n23 9 inY)in

(72-23)
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_ % 2 % st
Fin24 [ Ha 2§3m>€2m n Y)mb)N (1’mb) ‘xin§21n€3ian(1'inb) Nn(r’inb) ]

"hn in
(72-24)

n 2 % 3 !
Fin25 i 1 ?,’2 [xinEZinEBian(qmb)J (Y) b) —k H2 2E31n“321n n” qlnb)]
1n‘in (72_25)

jn 2 x ! *
Fin26 - 22 [k “zezESin€21an(qinb)Nn(vinb) S21n§31an()71nb)N (771nb]
"’m in (72-26)

Fin27 - 1. ,-f [k Ha 28 21n n(ﬂmb N (71 b) X SZIH 3in n(Y)mb)N (Ylmb)]

intin

(72-217)
Fin28 ) Y)]:;f [:aejngmng&n n(v PIN ‘? b)—k2M2C2§3ing21nI:In (qmb):]
in'in (72-28)
2
n wi, 9
F oo = _l—v?—l;l—[e"e ‘ l l (1, b)| +uu2]§3 HJn mb)l ] (72-29)
in
n wx’in 2 . 1250
Fin30 ) Infn 2 l:e 62\ 21n| INn(qmb + MOMZ\SSinI INn(qinb)[ J i
2
F :-——z—n “in 3 ( bN(?] b) + Hz|E v] b)]
in31 ‘P 21n‘ n i |3 in in
' 1n, (72-31)
n2w§ s 9 ! w!
Fin32 - Y)Z : lSz lJ (4 b)Nn(vianuouz FBinI Jn(qinb)Nn("'inbir?z_Bz)
in
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2 _2
€
_ 2ty aeinaS
Lin S 14 % w2 2 2 (73)
Sy l’)lin qzin(vzin—min>|

Iinl = E;"’lmr) ?;(quinr)] rdr (74-1)
a
2 50 Er (T) ) 3 (72 r)] rdr (74-2)
[~ , 3 1
Iin3 - Jn (qzinr) Jnmlinr):} rdr (74-3)
0

RN (14-0

in4

§
0
b .

in5 3 @;(qinr) :If:n(qinr{l rdr (74-5)
a
b

Iir16 S [ (qinr) i:fn(?inr;} rdr (74-6)
2
b

Iin7 = j[Jn( )N ("] ] rdr (74-"7)
a

r 1 x1

. S N0 00, 0| e (74-8)

a
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/ ' 5k 1
Ern(minr) Jn(qlinr) dr

ET;(’I; 1nr) ﬁn(q ;inr{] dr

En(qlinr) cin(.’)linr):l dr

;0 x !
{:Jn(qzinr) Jn(minr)] dr

! ! b3 !
[Jn(',zinr) Jn(flzinﬂ} dr

\ Kkt !
[Jnmzinr) Jn(.rhinr)J dr
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7711n i|
Iin18 S dr (74-18)
J (’} r )J _
Iin19 § 2 dr (74-19)
0
A J_(q r)§(7}' r)
_ n /% n ‘%4 ]
Yoo ~ S [ ” dr (74-20)
0
b
Iinzl = S [J qinr) Nn(vinr] dr (74-21)
a
T4
L ooy = § [J (r;m ] dr (74-22)
a
b
Iin23 S [N (’/]i r) N '7mr)] dr (74-23)
a
b
_ 74-24
Iin24 X[N ]dr (74-24)
a
b
Lo = 5 [ (v]mr) N (7 r)J (74-25)
b
Iin26 S[J (qm )N (71 r)] (74-26)
a
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b
Lnor ~ S [Jn(’hnr) Nn(’)inr)] dr (74-27)
a
b
Iin28 ) S [Jn(ylinr) :I‘n(qinrﬂ dr (74-28)
a
b [Nn(q DN mr)]
Lingg = S T dr (74-29)
a
b[Jn(qinr) ::fn(qinr) ]
Lnso = S - dr (74-30)
a
b[Jn(qinr) 1i}n(.,)inr)}
Lnst ~ S - dr (74-31)
a
¢ [;::fnminr) Nn(qinr):}
Linga = S T dr (74-32)
a

It may be noted here that for n = 0 (i.e., when 2z 0), Finl =0, for £ )09,

09 7
and all the integrals Iin'e’ for £ £ 8 can be evaluated in closed form. But when

n # 0, the above integrals can be expressed partly in closed form, partly in

series, or they may be calculated numerically also.
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Expressions for Total Fields (for loss-less media)

Now substituting the expressions (64) to (69) and (71), in the equations

(22) and (23), the complete fields due to the magnetic current ring source can be

expressed in the following way (suppressing the time dependence factor el L‘)t):

- +Ja(inz + jnb
me
c n

| t
Ez T ( ,);z 2 N 'F [:Singlian(ﬂzinr) B Mian(qlinr)]'
i,n in _'hin infI ind
=1 (75a)

JWE €454, C, (c) n¥, E.. G (c)
[ 0 \bin in + in 31r>1:< Aln , for Oérsa
Y"in C.,)in

Tz + jnb
e
E = --— 3z 3
i F.I
LA inl“ink
Z1

=13

a/. (r),

in” in

(75Db)

s
>R

jwe €58, C. (e) n¥X, £, G (c)
[ hil 2in_in + in "3in in , for ag &b

sk Sk 2
1] in © ,}in
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~ o] Z+ j
jwe Cu € a z 7 T R e+w€in Jnf
. - o 7z 73 n in
Er T 2,2 s ‘1!2 12 Qyz nyz )32. ! *
i - F
e Ky L 1inq zin( 2in linz ing ind
L:=1

’{“ jw60€2 i c () . naf’ ng 1rl(o) ]
_ 1

c
in r(m

!
2 J (71 I')
R . -
[ Yhm {m] ('h n(*)"Loer"tl:?zin L 1n__}

r

J (1, 1)
+ & Q' T E‘.-{J'(n'.7 r) 4+ nwp € u'q'lz SR V for 0O4Lra.
*2in | “2in in 4 n ‘% o r r\lin r SR

("764a)

— 9 s 4o
4,))(91_114 jng

M e we € C
E :;f— g n I I:J 2‘32 (c) N Xn€3m 1n() .
r . i F -
4 inz inﬁ

2
i,n ﬂin cqin
£=1
{ nwuouzgi%in(]in(r) j)( S21 ¢ (I)_J £ Crdb
5 - , for agr
Vin r ﬂin )

(76b)
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. 4 9 . e Sk
~ +Ja€inz n W o€2§2incin(0) naqng?nn m(c%
u weE€ a mne in P + cyil -]
_ ,c AN Min Tin
EG - i_471' 2 2 712 )112 12 12 J I
- S
e.'rur i,n lin 2inwzin qlin) ; : I‘in,@ ind
Y

Jn(’lllinr)
’ {nczRin“ r - w“o“rerqlin"zszn(.f(1 }

12 ' oot Jnmzinr)
. T ——
+ glin{“poerpr Moo ’?szn( nzin rHn T , for 0¢rga

(772)
J;jaeinz+.iﬂ9 x %
. m e JWE €€ C, (c) n¥ £ G, (c)
E = -< n 0 “"2in in + in"3in_in .
2] + 47 3R * k2
F, I 1. cn, -
i, n inl'ind in in
L=1
'[ in 2mJ1r§ ) Jw“o“2 €31nsin(r) ]
2 - L
7. r ' , for a( rgb
in in
(77b)
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jcw€ € a me
- oz3§
sz * dT 4 €
“rr T
,

‘qzinuqlin)i inlIi ﬁ

jue e £ c (@ ntf & (o) [ ' ,
. ©2°2in “in in3in in
[ " + =2 J . Lglian(vzzinr)-Jn(ﬂlinr) for 0{r¢a

1

J

y c
Qin 7lin
+Jéfinz+jn6 ;
. - Mh® Joe €8 m( ‘n)eing?ﬁn in
hZ = + Z_ﬂ'— + 3
c
i,n 1n)lIinf, ?m )?in
L=1
for adr¢b
Fj¥€ z+jnb ‘
~ in )
3
o oez mne JwcoczgZincin(c)
H = - E 3z +
r 2 2 _"fl‘z "1'2 ( 12 12 ) . I f,{
47{61‘“1‘ Lin ' 2in qzin ..hi.n Z inf inf in
£:=1
o ( 2 2
€ N
1n531nG1n c) ! 12 Mm r)urrn(.'zl
3? € ua ({( . 1')"*'1’1’?2.
C'l m in in z z°3"n ‘lin in r
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' ! 12
- Ss&m{vzz. T, oA € %3 J (le r)+n1(1 U

1n1n1nz IllIlI'I‘

2 2 Jn(ﬂ'2 2inr)

}:l for 0\( r\(a

(79a)

+ Qeinz-\‘-j nb v
- . ; x .
qH o= - M Jweoe23}521ncin(c) + xinEBinGinw) X
r ar /L 35 F ool * o 42
ind'in £ K in K in
£:1

N jaeinSBinSin(r)Al
1. r 1 ’

in

o€ € % sk .
v 0 2éjZ»incin(L)

for a{rgb

(79b)

2 244 1 1 € K
- ¢ 5. J (M, 1)+nT, o 22
Slin rurq l'in’rl 2in )in n '%in “in in .

47

in 1n723

2 2 12 ?

S T O ”11 X+ R, X e
i
- T

+

Ylin

Jnmlinr) }

r

!
aBJn(’innr)}] for 0 rga
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+j z+jnd ) ‘ ' ‘
e o e €6, C. () nd E. G (o)
_ C n o “72in in in°3in in X
My = i Z * 2
i, o z Z Finﬁlin,@ 1qin CAy]in
L4
-jwE £55, . C, (r) nd £ G, (r)
X 0 “°2in in . i Sln in for O\( r\(b.
n. M r
in in (80b)

Wherever the sign + or + appears, the upper sign corresponds to the propagation

in the positive z-direction and the lower sign for the negative z-direction.

Expression for Average Power-Flow Due to a Magnetic Current Ring Source

The average power flow is defined as

P =1 Re SSExE-gds
av 2 g R

(81)

="1—Re 53\ EH*{? ds
2 - — 70

[y

where Re means real part of

total electric field due to the source at any point

o=

H = total magnetic field due to the source at any point

Now using equations (18), (21), (22) and (23) in (81), the expression for

P'w can be written in the following manner
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2 2
| e
5
P = — Re Sz (82)
2
- I
167 in K infiné
£=1
2
" " mg%m m(fz )m
9 ’ ] —5 G ((,)— """""""""" C, (o)} -
_e 't D 1. ¢ 1. in
672 R ) in in
,,,,,,,, N sz
in F 1
Y inﬁ. inﬁ
£=1

(83)

In particular when n = 0, i.e., when the ring source is of constant

ampiitude, the expression for the power flow reduces to the following form:

2
32a w.
Lx C
o, |wE e ’1 iO()
av

' 10Q 10%«

(84)

J.

It may be noted that for non-dissipative media the quantity inside the
square bracket is real. Any individual term in the series in (82) or (83)
represents average power flow corresponding to that particular mode in (or i

when n = 0).
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II
WAVE PROPAGATION IN AN ANISOTROPIC PLASMA:
SLOW SURFACE WAVES
Introduction

In this chapter the general results of the previous chapter will be applied
to the study of propagation of electromagnetic waves in an infinitely long aniso-
tropic plasma column enclosed by a dielectric cylinder, which is also enclosed by
a perfectly conducting metallic cylindrical waveguide; i.e. the geometry and the
source of excitation are the same as those of the general probelm except that in
the present situation the anisotropic medium is represented by a plasma column
with a uniform static magnetic field in the axial direction z. The relative permea-~
bility u , of the dielectric medium which encloses the plasma column is assumed
to be unity.

The plasma is considered to be fully ionized (i.e. macroscopically neutral)
and there is no drift velocity (d. c.) of electrons or of ions, i.e. the plasma is also
stationary. If one also assumes that the illuminating electromagnetic waves are
weak, then it is possible to describe a plasma as a dielectric medium. In this
analysis it will be assumed that the plasma is homogeneous, i.e. its density (and

hence dielectric constant) is not a function of space.

50




THE UNIVERSITY OF MICHIGAN
4386-1-T

In the presence of a static magnetic field, the dielectric constant of the
plasma becomes a tensor, which means it is an anisotropic medium. _f the static
magnetic field is applied in the axial direction, it can be shown [z} [3][5] that the

plasma has the following dielectric tensor

Err J€.g 0
€ - -j€ € 1
~ Por oo 0 W
0 0 €
77
where
z,, v
- c -1y W (b= ) .
(: - = =1 - e e (2a)
rr 606 r 2 -(-)2‘;? _ JL.)Z
c )
W w2
c
€ g = 69 = € = - = P — {2'))
r r W wa _ u)9 (l _~’___)
c
2
W
and € =€ =1~ P [20)
77 % 2 jv '
w (1--—
-
v = collision frequency (radian) (3a)
quo .
Ve =~ = cyclotron frequency (radian) (3b)
e
g, = charge of an electron (3c)
m, = mass of an electron, (3d)
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B, = d.c. magnetic induction (3e)
&N\ /2
W = & = electron-plasma frequency (radian) (31)
P\ € mg
Ne = electron density (3g)
€, = free-space dielectric constant (3h)

In the ahove analysis the motion of an ion due to a disturbance is neglected
in comparison to that of an electron. The relative permeability of the plasma is
assumed to be unity.

It can be shown from the relations in (2) that the components of € satisfy

the following relation

e - (1 -¢€p) (eZ - €. (4)

An interesting conclusion can be made from the relation (4), namely ¢' = 0, for
either €, = ¢ or € = 1. The physical interpretation of these results can he given

in the following way. For isotropic plasma (i.e. when B, = 0), € = € and €' = 0,

z
On the other hand when Bo -+ w (i.e. W, -t ), E‘r -+ 1 and €' -+ 0. The above
statements can also be verified directly from (2). It may be noted here that the
collision term v in the expression for € in (2), represents loss in the plasma.
Although the various dispersion relations developed in Chapter I and in Appendix
C are valid for a lossy plasma, the complete field expressions obtained in the

previous chapter are not. On the other hand if it is desirable to find the expres-

sions for a dissipative medium (i.e. plasma), one must use the appropriate
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orthogonality condition and the resulting Green's functions which have been dis-
cussed in Chapter I as well as in Appendix B. But here only the loss-free {v = 0)
plasma will be considered.

Although the results obtained in the previous chapter are valid for all
possible modes of propagation in the structure, in the present chapter attention
will be directed to the analysis connected with slow surface waves. The slow
surface waves are those waves which decay radially in the dielectric region and
propagate along the interface of the plasma column and the dielectric, in other
words for such slow waves one finds -

k Ve

electric constant of the medium surrounding the plasma column. This medium

> 1, where €, is the relative di-

may represent a glass tube. Various passbands for slow-wave propagation will

he obtained in the following investigation. Some of the passbands depend on the

o
k &

the particular values of this ratio, provided -;%e:—:: > 1, the condition for the
€

range of the values of the ratio > 1, and some passbands do not depend on

existence of slow surface waves.

Finally numerical computation will be made for a special case.

Conditions for Slow-Wave Propagation and Determination of Various Passhands

In the following analysis only the expressions for the radial wave numbers,
r}{ and n; , will be considered. These quantities do not depend explicitly on any

particular boundary, except that the geometry is cylindrical and uniform in the
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z-direction, thus the results will be true for any such structure, closed or open,
which can support slow waves. For a particular structure, one must consider
the solutions of the respective dispersion relation together with the following
analysis. Since the solution of any dispersion relation, determines only a particu-
lar set of values of n{ and n;, the limitation imposed on the values of nl' and n;,
which are obtained from the expressions for n{ 2 and néz {valid for unbounded
medium also) is furthermore narrowed. Therefore the requirements which are
obtained from a study of the expressions for n{ 2 and 77'22 alone, are nothing but
necessary conditions of wave propagation. The sufficient conditions for propaga-
tion of waves arc provided cnly hy the simultancous solutions of the respective
digpersion relation and the expression‘s for 77{2 and n;z .

The expressious for radial propagation wave numbers 77{ and 7, can be

written here in the following way

2
n{zz =v+ \’v - u (5a)

R2L-p{B2-101-0 +y} k2 xy(*-1)
xty-1 2Azx+y-1) .
{5h)
>_ s
2 2
; J(Bz—l) X +45°x(1-y)
2Azx+y ~1)
where /
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2
k
2
- D {xy-20x+y-1)F +2y(1 - 6
Y eyl [(B {xy xty )} y( y)J (6a)
4
k*(1l-y)
u=—-—-—-—-—3-7- [(82-1)2(1-x)+2y(32-1)+yﬂ (6b)
xty-1
w2
=L
X = = (7a)
w2
P
o m—— 7
y = (7b)
€Z=1—y (Te)
x+y-1
= 7d
€. — (7d)
IO K (7e)
x-1
8 = 2 (76)
k

In the above definitions of €, € and €', the collision frequency v is

r,
neglected.
It can also be shown that

2

2

k

Vo= {——X——J '[(Bz— 1)? x2+482x(1—y)} (8)
2(x+y-1) :

In the dielectric region
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2

2
T)2=k ) - X

since Hg = 1.

2
Therefore for slow surface waves, n <0, and

8,2 2
150
k 62 k =)

i.e 2
k™ &
2 2

or QC—Z-?B > 6
k

where n=-i8§ , §>0.

It will also be assumed that € > 1.

MICHIGAN

(9)

(10)

Since it is assumed that both plasma and dielectric are non-dissipative, the

propagation wave number & is always real. Although the expressions for n'lz and

nt?
2

show that these radial wave numbers may be complex, on physical grounds

only the real values of n{z and n;z will be allowed. For example* if complex

values of T){z and 77;2 (which are complex conjugates of one another) are allowed,

this means that there exist growing waves showing instability of the plasma in the

*The primary reason for allowing only the real values of n{z and 77:;2 in a non-
dissipative medium, is that the power flow, the characteristic impedance, etc.

must be real for such a medium.
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radial direction. Therefore this apparent inconsistant situation will be avoided
by allowing only the real values of n{z and ,7;2 in the following analysis.

The following three cases specify the conditions for which n{z and n;z are

real.
Case |
u<o0 in this case
\ n{z > 0 and (11a)
12
n2 < 0.
Ve
Case II u> 0 ) in this case
v >0, ; nz > 0, and (11b)
and  vZ-u> 0 2 > 0,
7/
Case III u> 0, in this case
v <0, \ TI{Z < 0, and
and vZ-u> 0 n;z <0, (11c)

The regions of u and v in the above three cases are shown in Figure 2.
n{?‘ and n;z become equal on the parabola v2 = u and both of them assume complex
values inside parabola, which contains the positive axis of u. Therefore this is
the forbidden zone for u and v. When y <1 (i.e. when wp <w), it is easy to show
from (5) that 12 and n;z are both real. So even if one considers instability in

plasma, this does not occur for wp <w, provided the medium is loss-free.




rIs,
s 2
2 o 52
o n2 <0
= 1
n 2
:;'D n'2 <0
-]
\\\ Q
FIGURE 2

A\
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In the following detailed analysis the possibility of the above three
individual cases, i.e. the conditions under which the parameters x,y, B3, etc.
have to be chosen, will be shown. These conditions on the parameters, which
are necessary, will give the maximum passbands of slow wave propagation.
Before starting the actual analysis, it will be convenient to introduce ¢ = 52 -1
in the equations (6a), (6b) and (8) which can be rewritten in the following manner

(for slow wave 82> €& > 1)

k?(1-y) 2 2
= - — w(l-x>+2wy+yJ (122)
x+y-1
k2
vV s —m— [lﬂ {Xy—Z(X‘i"y-l)} + 2y(1 —y)] (12p)
2Ax+y-1)
9 2
Vv -u-= . Yox“+ MY+ 1) x(1 -y) (12¢)
2(x+y-1)
2
vt+1l=0 > ¢ (13)
Case I
u<o

nz >0, n2 <0
1 2

This situation can be satisfied in the following three ways.
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1-x>0
1-y>0 ~ (14a)

1>x+y-1>0

/

1-x<0

1-y<0 ~ (14b)

> —Y— (1+ {X)
P

x-1

1-x<0
1-y>0 - (14c)
U< —Y— (14 {%)

x-1 s

Although the condition in (14a) does not explicitly depend on ¢, for slow wave ¢
must satisfy the condition (13). On the other hand the conditions in (14b) and (14c)
show that besides the restriction imposed on x and y, ¥ must satisfy two simul-
taneous conditions. More precisely, the inequalitites in (14b) suggest that ¥ must
be greater than a certain value, i.e. the wave propagation which satisfies (14b) is
possible for a value of ¥ above a certain value. In other words this passband of
wave propagation depends on the degree of slowness of the waves. On the other

hand, the condition in (14c) can be met only for a definite range of ¢/, namely

y

x-1

6 -1< ¢ < 1+ X
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where 1 -x<0, and1l -y > 0.
Before investigating Case II and Case III, it is desirable to find conditions
under which u > 0, v2 ~-u> 0, v> 0, and v2 < 0, respectively.
For u> 0, one finds the following possibilities
1-y<0
(15a)
1-x>0
l-y<0

1-x<0 > (15b)

v < —I— 1+ V%) |

x-1

1-y>0

1-x<0 g_ (15¢)

> X 1+ %)

X -

1-x>0
1-y>0 (15d)

x+y-1<0

2
For v. - u> 0, the following conditions must be satisfied

l-y>0 (16a)
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(here one may choose either x + y-1 > 0, or x+y-1 < 0)

1-y<0
(16b)

poy 2=l b2y ey 1)

The following three situations satisfy V > 0:
x+y-1>0
1-y >0

xy{ 2(x+y-1)

< 2y(1 - y)
klj 2x+y-1) - xy

(17a)

x+y-1>0

1-y>0 -

xy > 2x+y-1)

(17b)

1-y<0

xy >2x+y-1) ¢

N 2y(y - 1)
k'lJ xy-2(x+y-1)
/ (17c)
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Finally one obtains the following four possibilities for V £ 0:

1-y<0
(18a)
2(x+y-1)> xy

1-y <0

Xy > 2x+y-1) ; (18b)

2y(1 - y)
v < Xy - 2(x+y-1)

~’

-

xt+ty-1>0
1-y>»0 (18¢)
2x+y~ 1) > xy 4

2y(1 - y)
2(x+y-1) - xy

v o>

J

x+y-1<0 ‘

(184)
1-y>»0

To satisfy the requirements for Case II and Case III, it is necessary to

satisfy inequalities (11b) and (11c) respectively. It can be shown by a little analysis

that the following are the conditions by which Case II and Case III can be realized.
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Case II

This situation can be obtained if the following conditions are met:

1-y<0
1-x«0
v (19)
2(x+y—1)+x{xy—2(x+y—1)} > xy Vx +2(x+y-1)
>xy+2(x-1) + \[(F-1) (x+y-1) )

The inequalities in (19) are obtained from (15b), (16b) and (17¢c). There is

no other possibility which can satisfy Case II.

Case III

In this case one can show that there are only four possible conditions as

follows:
l1-y >0

1-x¢0 (20a)

v> 2= s VR

Note that this condition is the same as (15c¢), which also satisfies conditions (16a)

and (18c) automatically.
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1-x>0

(20b)

) g

1-y>0

x+y-1¢0

The condition (20b) is the same as (15d) which also satisfies conditions (16a)

and (18d).
1-y <0

1-x>0 g (20c)

o> 2D L 2y ey o)

-~/

This condition (20c) is obtained by combining the conditions (15a), (16b) and
(18a). It may be noted that condition (15a) automatically satisfies (18a) also.

The fourth possibility of realizing CaseIll is obtained by combining the
conditions (15b), (16b) and (18b). Since it is not obvious that these three conditions
can be satisfied simultaneously, it is necessary that they must meet the following

requirements (a detailed analysis is omitted for the sake of brevity).

-

1-y<0
1-x<0

xy D2(x+y-1) , (204)

2(x+y - 1)+ xy Vx> xy + 2(x - 1) \/(y—l)(x+y—1)

>2(X+y-1)+X{Xy-2(x+y—l)}
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Thus it is found that when the condition (10) and any of the following condi-
tions (14), (19) and (29) are satisfied simultaneously, one obtains maximum pass-

band of slow wave propagation. These conditions are necessary for slow waves.

Study of Dispersion Relation for Slow Wave Propagation Under Various Special
Situations

Although the various results together with dispersion relations obtained in
the preceding chapter are valid for any arbitrary angular variation of the magnetic
current ring source, in this section only those dispersion relations which are inde-
pendent of angular variation (i.e., n = 0, for constant amplitude of the ring source)
will be considered.

Since the solution of the dispersion relation, appropriate for any particular
case, together with the expressions in (5) for n"2 and n'y? gives exact information
of the propagation of waves, and as this solution cannot be obtained analytically in
general, the information obtained here without actual solutions will give only nec-
essary con:iitions for slow wave propagation. In general, the actual solution can be
obtained only by numerical computation.

+Static limit: This static limit is a good approximation in the following

situations:

1) circumference of the plasma column is much shorter than the wavelength
of the operating frequency

o . o .
Trivel piece in his work [8] discusses this problem in detail and his method of
solving this problemis different. Here his results are obtained asa limiting case.

66




THE UNIVERSITY OF MICHIGAN
4386-1-T

2
2) for extremely slow wave, i.e., lfzie— >> 1.
2

This dispersion relation in this case for n = 0, can be obtained from the

relation (3) of Appendix C, and it reduces to the following form:

en't Jin'sa) Ilpea)Ko(xb)ﬂoofb)Kl(Xa)

X T | 10K o) - 1 K () (21)
where )
"~ - (Ez/Er) K2
7 (22)
P x - 2
J

The above relations show that the dispersion relation and hence fields do not
depend on n'y in this limit. Moreover, in this limit the magnetic current ring
source excites only E-type mode. But in a general anisotropic medium character-
ized by € of the form shown in (1), pure E-type and H-type modes do not exist,
i.e., they are coupled to each other.

From the properties of modified Bessel's functions it can be shown that the
right-hand side of (21) is positive and greater than unity (it approaches unity as

H—» o). If ez/er < 0, n'y is real, a solution of (21) is possible.

J U=yk-1)

Since ez/er xty-1

either
x>1
(23a)
y>1
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or

x {1

y <1 r (23b)

If ez/ er > 0, 17'12 0, and 7' is purely imaginary, the dispersion relation (21)

becomes
. /ez/er L ¥a /ez/el) ] Il(Xa)KO(Xb)HO(aEb)Kl(éfa) ¥ o4
d &1 Wa feJe) 1 OWK (fa)-1 (fa)K Kb)

A solution of (24) is possible if €. < 0, e, < 0 (since €5 > 0). As it is also known

that I,(z) < Io(z), for any z > 0, it is necessary that

- €, ) /ez/er > &

or
x+ty-1  [(1-y)x-1)
1-x ) X+y-1 > €9 (25)

In particular if €; = 1 (i.e., when the plasma column is surrounded by air), the

inequality (25) reduces to the following

(x+y-1)y-1) N
1-x

1 (26)

Finally the inequality (26) can be shown to be equivalent to the following two

passbands for slow waves when the dielectric surrounding the plasma column is air:
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y-1>0]
1-x>07p (27a)
x+y >2
y—l(Oq
1-x<0 7 (2'Tb)
+
X y<2_J

It may be noted here also that when the plasma column is surrounded by a
dielectric €; > 1, the passbands are reduced further.

When b = a, i.e., when the plasma completely fills the waveguide, it can
be shown that the corresponding dispersion relation (in the static limit) reduces to
the following

Jo(n'l a) = 0 (28)

It is easy to show that only real values of n'; can satisfy the above equation
(28). Therefore, in this case also it is necessary that Ez/er <O0.

A study of the relations (21) and (22) reveals that for x =1, y =1 or
x +y =1, the dispersion relation (21) does not possess any solution, which is
equivalent to saying that these points represent cut-off for the slow wave propaga-
tion.

It may be remarked here that the passbands for slow wave propagation when

the plasma completely fills the waveguide, give maximum range for the case when
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the plasma column partially fills the waveguide (provided n'; is real) in the static
limit. These maximum passbands are depicted in the following Figures 3 and 4,

subject to the conditions (23a) and (23D).

(w;ﬂog - w3)w?

XK [ +
R mele, =t (wz-w?‘)(wi—wz) 29)

1Y

Since group velocity is defined as dw/d¥, Figures 3 and 4 show that this
value can also assume negative values — which proves the existence of backward
wave in such a structure.

With a few more remarks, the discussion of the static limit case will be
concluded. The static limit results are reasonably valid for extremely slow wave
propagation, as pointed out in the beginning of this section. In this limit n's does
not appear in the dispersion relation, showing that the field components for |
extremely slow wave propagation do not depend on n's, when the source of excita-
tion is a magnetic ring current. In other words in this limit an H-type mode is
not excited. This does not mean, however, that in this limit Y]; =0, In fact,

Y]; =-j ¥, a large imaginary number, which shows that a wave dependent on v’);
decays away very rapidly. So it may be conceived that in this limiting condition
the H-type mode is very weakly coupled with the E-type mode and the components

representing H-type mode are also very highly attenuated. It may be noted here

* In {8] , Trivelpiece has also obtained similar results.
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also that the results for §2/€; >) 1, essentially correspond to those for static limit.

General Dispersion Relation (when n = 0) for Slow Wave Propagation

It can be shown from equation (561) of Chapter I, that for slow waves (when
n = -ié, S > 0), the dispersion relation becomes
GZ(T)'zz - n'12))/0(3)60(a)<]1 (n'la)Jl (T]'ga) €2(T}'22 - n'lz)ao(a)go(a)Jo(n'la)Jo(n'Za)

+
nvl nvz k2 (BZ _ 62)

-Jo(n'za)J1 (n'92)
knl, [B* - €

Jo(n'za)Jl (n"2)

(M3 (@3 (@) - ¢ 5 4 @5 (a)]
o o z o 0]

L (58 @G (@) - ¢ M @5 (@] = o
(30)
where

P = -§% = Ke, - H? (31a)
H/k = B (31b)
M = Ke [e e - B - Y);Z (31c)
Ke_ X (31d)

5= (€r— ) - y?

r
J@ = 1(SDK(§a)-1(5aK(Sh) (31e)
o) 0 (o) 0 (0]

G (a) = L(S b)KO(Ja)+IO(5a)K1(6b) (311)
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5@ = L(EbK(Sa) - [(Sa)K(Sh) (31g)
c (a = L(S a)K 0(5 b) + 10(5 b)Kl(é a) (31h)

In connection with the solution of the dispersion relation (30), appropriate
for slow waves, no general discussion can be made. Only a numerical solution
subject to the expressions for n'lz and n'zz given in (5), can give the actual
nature of slow wave propagation.

The dispersion relation (30) will be solved subsequently for a special case

stated in (14a), for which u ¢ 0, n'; is real and n'y is imaginary.

For Zero Magnetic Field (with n = 0)

It has been shown in Appendix C that in this special case the dispersion

relation has the following particular form (for surface waves)

- 85 € Jy(n4a) L(Sa)K (8§ Db)+1I (§b)K(S a)
Z - 0 0 1 (32)+
n'1€J (n'a) I(§DK(8a) -1 (Sa)K (SD)
where
ny? = kzez -H2 = - p? (33a)
= Ke-H2 = &2 (33b)

+
This result agrees with that obtained in [7] .
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In this case of isotropic plasma only an E-type mode is excited, due to the
type of the source of excitation chosen. Since €, is always less than 1 ande; » 1,
it can be shown from (33a) and (33b) that when n is imaginary, n'; is also imag-

inary. In this circumstance a surface wave is possible if € < 0, moreover, since

I, (pa)

the left hand side of (32) is greater than unity, p/d" < 1, and I (oa)
W 0

also necessary that ‘ez l/ez >1, i.e., w (ﬁ .

< 1, it is

For Infinite D, C. Magnetic Field in the z-Direction

In this case the dispersion relation for slow waves has the same form as
(32), with n',2 = €ZT)2 = —EZ5 2 | It can be shown, [:7] , that slow wave is possible
if €, { 0, which makes n'y real. For zero or infinite d.c. magnetic field in the
axial direction, an elaborate investigation has been made in [7:] .

Propagation of Slow Waves in an Infinitely Long Column of Plasma Embedded in an
Unbounded Medium, with an Axial Uniform Static Magnetic Field

To investigate all related results and the nature of slow wave propagation,
in this case, it is only necessary to let b —=» o in the corresponding results of
the waveguide problem, with n? = -§2 = k%¢,-®2. In this case the dispersion rela-
tion takes the following form which is equivalent to equation (22b) of Appendix C

= - ': =
(with Bo=H 1, u=0, up = 1)
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e, hmanmw &  K(Sa)

+ e —
n'1n's J (n1a)d (n'5a) 52 K2(§ a)
0 (0] (o]

+ nllM ——

€9 Kl(é a) Jl(n'la) J]_(T)'za)
n'9S

L) 1 2_.12 ' - !
nlvnzé(ng n'1%) KO(S a) Jo(n 1a) JO(")2 a)
€Z K1(5 a) Jl(Tl'za) J1(T]'1a)
+ NS ——— -, M ——— | =0
nin'y§ (n-n'?)  K(8a) [T T (pa) T 12T T (na)
o) o] 0 +
(34)
The following identities are found useful
€2(1 - € Xsn'y’ + Mn'?) = ee (& +kA) (e +7) (352)
and
2 - 1 2 - 1 2 = - - 2 - |2
er(l ez)(Sn2 Mn';%) erez(S M) l:(kzer A2 +€r) ke ] (35b)

To derive relation (34) it also has been assumed that Fa@" = 0, which may be
interpreted as following from taking the excitation to be a constant ma gnetic
current ring source.

When the d.c. magnetic field is either zero or infinity, only the E-type
mode is excited due to the type of source chosen here. In this particular case the

dispersion relation takes the following form

+
This result agrees with the corresponding result in [4] , wWhen the identities
(35a) and (35b) are used (with €, = 1). It should be noted, however, that to obtain
radiated fields in this configuration the present limiting process is not valid.
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de diln'1a) K, (62)
n'1€zJo(n'1a) - Ko( Sa) (36)

If the axial static magnetic field is zero, € =€ , and n'y? = kzez- X2, the

condition of slow wave is exactly the same as stated in connection with the similar

situation in the metallic wave guide, namely, €, < 0, and |€Z\ [e5 > 1.

On the other hand, if the magnetic field is infinity, a slow wave is possible
if 0 n2=e &2,
if e <0 and n4 €, é

Static limit: It can be shown that in the static limit with b —% oo, the dis-

persion relation (21) reduces to the following expression

€. J1(n'a) K (Xa)

€g R Jo(n'la) i Ko(b(’a) (37)
where
cs
nylz ~ - _€_ XZ
T
S~ M
(38)

If ez/er< 0, then n'; is real and a solution to (37) is possible for a slow

wave,

If eZ[€r> 0, then n'; is imaginary, i.e., n'y = -jp, where p > 0. In this

case (37) transforms to the following form
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€ L (ap) K, (a)
il @) K (fa)

(39)

K ({a) 1, (ap)
K (0a) 2 1 2nd
(o]

I,(ap)
have any solution that €. < 0 and also —E—Q— > 1. It has already been stated
2

Since { 1, it is necessary in order for (39) to

above that ez/ Er > 0, therefore, ez < 0 and er 0.

+y-1
If one writes Er SEAYo s ez = 1-y, as defined in (7), then the conditions

x-1

€ [P
€, <0, €. < 0 and I_rl_ > 1, become equivalent to
€2

4(y—1)(X+y—1) > 2
1-x

y-150 >

1-x>0
? (40)

Note: The discussion on page 497 of [4] of the situation where u = 0, i.e.,
n's = 0 seems to be inconsistent. The first reason is that when n'y = 0, it can be
shown from the general expressims for E

and H appearing in Chapter I, as well

t t

as in Appendix A, that electromagnetic waves which can exist under such a situation
are TEM only. In this statement it is also assumed that the diagonal components
of f.’ are finite and non-zero. But a TEM wave cannot exist in a structure con-
sidered by the authors of [4] . A similar inconsistency appears on pp 183 - 185

of [6] , discussed by Agdur,
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Secondly, the authors of [4] consider a case when y -+ o (and n's = 0),
and simplify the dispersion relation to an expression containing a logarithmic term,
although the modified Bessel's functions Kl(z) and Ko(z) do not behave as logarithmic
functions for large arguments.

Any other interesting situation can be studied by considering the corres-

ponding dispersion relation given in Appendix C.

Expressions for EZ Which is Independent of Angular Variation (i.e., n = 0)

Since EZ plays an important role in a plasma, its expression will be given
here for n = 0. lEZI will also be calculated numerically as a function of r for a

special case of slow wave.

1Jxlz E S
cm © E21C io(c)
E = -jwe eg E [S.%’ J (n,.r) - MJ (n'lr)]
7 0 2 2ot ?)S TF I i'li o '2i io
i M2 T 5 il'il

for 0 r ¢a (41)

8:€17 g - M,J (n) ;)
821 = 2 2 (42a)
] - 1
;= 1) V/ 0@

€
. 2 . _ W2y _ 2
s, = ¢ (8 o) -0 (42b)
r
€, ,
- £, W2y _ .1
M, - . (kzer )(i) 9 (42¢)
r
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2 2 (42d)
= ' - 1 1 '
Fir 7 LS s [r 5 M, - o o"2i K, Xy |
_ :k' >:<' sk 2 : ' sk (426)
F12 LiereznlinZigli ‘ZOIJ U T X, € -R € n 11811
_ :k, . 2 M + g2 :k' (42f)
FiS Lierezn lin2igli [r 21 1Ti wuoxie n liRi]
- n'f; Ty Xe' + 42
Fi4 L€ rz |7721 !811! [ T X i€ € Tnl S} (42g)
waf’i
= 2 2 2 2 (42h
F. ‘nilz [6062 lgzi‘ lNo(nib)‘ +h, ISBi‘ lNl(nib)l ] )
wa(]_ [~ sk
ST T 2 + 2 42i
Fi6 lnilz foez ‘821‘ I, (nib)No(nib) HO‘S l N (n b)J (n b)] (421)
w)(i -
I 2 + 9.3 p 91
L ‘n_r € € |‘§ ,J (n BN (n b) b 34 Nl(nib) 1(nib) (42§)
1 -
W i ]
= -— 2 2 2 2
Fig lnilz [6062 |§2i| lJo(nib)l tu |€-’31| Jl(nib)l (42K)
Bt ] (421)
= J ' -J '
BT e 6@ [Sli oMo ™ Tolmy;
Mai ™ M1i'¢r o
wPe? 62 ?(.e'
L. = 2 (42m)
i 4 )l
n11n21 7721 nll
€ M.(k2€ 3(2) k €, e
R = —— (432)
1 we € €'
0 Z
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1 e MR - oA e (K -Xi)
R, - r 11 1 Z r (43b)
i €
Z
4, (©) = 3 (1IN (nx) - I ()N (n.b) (43c)
Sio(a) = Jl(nib)Nl(nia) - Jl(nia)Nl(nib) (43d)
Gio(a) = Jl(nib)No(nia) - Jo(nia)Nl(nib) (43e)
Cio(c) = Jl(niC)No(nib) - Jo(nib)Nl(nic) (43f)
Iil = g Jl(n'lir):fl(n'lir)rdr (44a)
i Sk
1, § 31 (n! 103, () vde (44b)
113 = 3 Jl(n'Zir):'fl (n'lir)rdr (44c)
L, - 3 AN r)J, (1t x) v (44d)
0
I15 = § Jl(nir):'fl(nir)rdr (44e)
a
b x*
I - S 31 (n 2INy .x) v (44f)
a
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Jy (nir)Nl (nir) rdr

Ny (nir)ﬁl (nir) rdr
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II1

PROPAGATION OF SLOW WAVES IN AN ANISOTROPIC FERRITE

In this chapter the general problem solved in Chapter I will be applied to
the study of wave propagation in an infinitely long anisotropic ferrite column
enclosed in a dielectric medium, which is again enclosed by a perfectly conducting
metallic cylindrical waveguide. All other conditions are similar to those described
in the previous chapters. In a ferrite medium with an axial static magnetic field,

anisotropy is exhibited by the following dyadic form [ZJ of u

Mo I 0
Ko gL oo 0 (1)
0 0 uzz
oP
where “rr = Ky = ur =1 - o2 (2a)
P
_ == - —— 2
Foo = Moy b o (2b)
M, ~ 1 (2¢)
MO
P = ]f}/ —_— (33.)
P
HO
-] 5
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MO = d.c. magnetization
H0 = d.c. magnetic intensity
Y = gyromagnetic ratio for electron

It can be shown from (2) that M and u' are related by the following relation

ur-l = op' (4)

It will be assumed that the relative dielectric constant of the ferrite is €,
a scalar quantity and the medium surrounding the ferrite has relative dielectric
constant €, and relative permeability 1.

With the above assumptions, the magnetic fields, dispersion relations etc.
for this problem under any limiting conditions can be easily derived from the cor-
responding results given in Chapter I and Appendix C. Therefore, no detailed dis-
cussion will be given in this chapter.

It may be noted here that when a ferrite column or a plasma column is
situated in an unbounded dielectric medium, the boundary conditions for E and H
in both cases are identical, consequently any general expression for one situation
can be derived from the other, using the duality, provided M, is not replaced by

unity in any general expression.
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Expressions for Transverse Wave Numbers

If the values for 4 and € given above are substituted in equations (34) and

(35) of Chapter I, one obtains the following expressions
2
12 = vilvi-u (5a)+

kPey 2 - ut?) - urﬂz u'
= oy {kzcl(cur—u')—xzo}
Ir

,JI‘
u! 2 1/2
t o {szl(ou —u')—aezcr} + 412A%¢, (5b)
M, r
242 _ 42
v kzelwr~u +ur) P14 (ur+1) (6a)
2ur
1 P SO
U = o (k2€1ur—a€) -k €y (6b)
r

For slow surface waves the following condition should be satisfied

2
_JL_ - BZ > €2
k2

(7)

' !
+ For ferrite problem the relation 1; = 7, cannot be satisfied, since V2-TU) 0.
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12 12
Since p_ = 1, equations (5) show that V2-U > 0and 7; and 1, are real

for real u, €, and €,. Therefore, no instability phenomena appears in the case
1 1
of a ferrite column. It may be noted that 1); and 7, may assume purely imaginary

values as follows:

12

Case 1 1 20
} if U0, V>0, or VKO (8a)
12
M, <0
12
Case II 1 20
} if U0, and V>0 (8b)
12
7, >0
12
Case III , <0
} if U0, and V<O (8e)
12
1, <0

The above information and the general results given in Chapter I and
Appendix C are sufficient to obtain any particular result for a ferrite column.

It may be noted that an electric current dipole source is more appropriate
for a ferrite problem than a magnetic current ring source. The field expressions
for an electric dipole source can be obtained easily by using the appropriate dyadic

Green's functions developed in Appendix B.
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IV. CONCLUSIONS

In conclusion it may be mentioned that the work described here gives a
systematic rigorous approach of solving a source problem (not necessarily a ring
source) involving a homogeneous anisotropic cylindrical structure bounded by con-
ductors. Since the source free solutions are capable of representing all possible
modes for the structure of the problem, total fields due to any arbitrary source of
any kind (namely electric or magnetic current source) can be calculated by using
the appropriate dyadic Green's function. If there is more than one source, the total
fields can be obtained by using the superposition theorem, provided there are no
interactions among the individual sources. As the present analysis considers a
magnetic current ring source of arbitrary angular variation, the results can be used
for any given angular variation of the source.

From the general dispersion relation which is an eigenvalue equation and
independent of source, various interesting special cases, some of which are
already known, have been studied. The limiting procedures used in obtaining the
dispersion relations for these special cases can also be used to obtain the expres-
sions for the fields in the corresponding situations.

The analysis for the plasma problem which is a special case of a general
anisotropic medium characterized by dyadics g and M, emphasizes the slow wave

propagation. Here the necessary conditions for slow wave propagation, including
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a number of special cases, have been obtained from the expressions for the trans-
verse wave numbers. These necessary conditions also give maximum passbands.
The sufficient conditions and hence the actual passbands can be obtained from the
solution of the dispersion relation. For slow wave propagation, some passbands
depend on the degree of slowness of the waves. The degree of slowness of the
waves depends on the relative dielectric constant, € ,, of the medium surrounding
the plasma column, when all other parameters are kept constant. It has been
shown that the higher the value of € ,, the slower the phase velocity of the wave.
In other words, for a given €5 there is a minimum phase velocity for which a cor-
responding slow-surface wave can propagate. Most of the energy of the slow waves
considered here is confined into the anisotropic plasma. In general, the lower the
phase velocity of the surface wave, the lower the amplitude. Not all the various
passbands for slow wave propagation in an anisotropic plasma column, mentioned
above, are known in the literature, at least to the best knowledge of the author.
Although these passbands could be obtained without any consideration of the pres-
ence of a source.

In the case of an unbounded homogeneous anisotropic medium where a TEM
wave can propagate, conditions of TEM wave propagation in the direction parallel
to or perpendicular to the static magnetic field are obtained from the general ex-

pressions of the transverse wave numbers. It is also shown that the condition of
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TEM wave propagation in the direction of the static magnetic field is equivalent to
the vanishing condition of the product of the transverse wave numbers. This also
establishes the fact that the consideration of the situation under which the product
of the transverse wave numbers vanishes is not justified in connection with the
wave propagation in a bounded medium which cannot support TEM waves. In other
words, if a bounded isotropic medium cannot support TEM waves, so also is the
case for a bounded anisotropic medium. For not being able to recognize the fact
that the condition of TEM wave propagation in the direction of the static magnetic
field, is equivalent to the zero-value of the product of the two transverse wave
numbers, some authors+ discussed the possibility of wave propagations in a
bounded anisotropic plasma column, under the situation for which the product of

the two transverse wave numbers vanishes.

+ Agdur, pages 183-185 of Ref. [6_-] and the authors of Ref. [4] , page 497.

88




THE UNIVERSITY OF MICHIGAN
4386-1-T

APPENDIX A

MAXWELL'S EQUATIONS FOR ANISOTROPIC MEDIUM

The medium to be described here is characterized by a relative dielectric
(permittivity) tensor € and a relative permeability tensor u having the following
Vasd

particular form

€11 € 0

£ 7 |6y Gy 0 ()
0 0 €33 . ST Gy
11 W 0

M = —ju12 Moo 0 (2)
0 0 Hag |, H11 " Ha

The above representations show, in both cases, that the transverse com-
ponents and longitudinal components of the tensors are uncoupled, where € 33 and
Moo correspond to the longitudinal, a preferred direction (say z-direction) compo-

nents of the tensors f\l/ and u respectively. Therefore, € and M can be written
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in the following manner also

= +
D AR IS T @)

=+
o= By T2 E Mg (4)

where ett and u ¢ are tensors (transverse to z-direction) and z, is a unit vector

in the z-direction.

The Maxwell's equations for anisotropic media with sources have the follow-

ing form (the time dependence being elwt).

¥V x E@x) = - jwuo/i(g) " H(r) —_I_m(z') (5)

Vx HE) = jweoe(g) ' §(£)+le(_1:”) (6)

V' ou@ B@ =0, forx fx (7)

V' e E@ = o, for r # r" (8)
where,

r = observation position vector (3-dimensional)
lm(g') = magnetic current source at r = r'

le(z”) = electric current source at r = r"
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In the following discussion the transverse vector and transverse operators (which
are designated by the subscript t) correspond to any plane transverse to the z-
direction, and the transverse plane may have any arbitrary cross section. That
is, the following derivations are suitable for any cylindrical geometry having the
z-direction as its axis.

First of all, it will be shown (see [10] , [1 1] , [:12] , and [14] ) that
the longitudinal fields, EZ and Hz’ can be expressed in terms of the transverse
fields, _Eit and _I_-I_t Secondly, it will be demonstrated that the transverse fields
can also be expressed from the knowledge of the longitudinal fields. In the parti-
cular problem discussed in the text, the latter method has been adopted for the
solutions of Maxwell's equations.

If equations (5) and (6) are multiplied by z in a scalar product fashion,

EZ and HZ can be expressed in the following way

I
1 ez
E = —— V,'H xz - —2—o (9)
Z ]w€o£33 t —t (o] Jweoe33
1 Imz
H =—— V,'z xE - —2— (10)
Z Jweou33 t 0o —t quou33

where I and I are the z-components of I and I  respectively.
ez mz —e ~m

Now taking the vector product of (5) and (6) with z ., one obtains
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E) = - H+1
_z_ox(Vx ) JWHZ, X £ 272y X &
H = j * E +
EOX(VX ) = jwe z x g Etz x1
Introducing
V-V +2z 2 s
t —o 0z
= E, +
E=E+zFE
H=H+zH
and =7 R T A,
one obtains
zx(VxE)=VE-—a—E
Y - tz oz —t
and Z x(VxH)=VH——?—H
-0 = t'z 9z "t
Now equations (11) and (12) can be rewritten as
VE——S—E-—-quz X U H +1 X z
t'z oz —t oo ~t -t —mt ~o
and
VH——?—H=jwez X € E +z x1
t 'z oz —t t -0 —et
where 1

mt

and -I-et are transverse components of -I-m and le respectively.

(11)

(12)

(13)

(14)

Again operating (14) by ]wuogo X th and (13) by Py from the left one

obtains the following expressions
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i(z x u ~H)+ X Z (15)

)
—_— E - — E = -iw; 9
0z Y Jw"‘o 0z —0 ~t =t 0z lm’c -0

. . 0 .
sad oz, X G TN ) - joug 5 ey x g B

=—k2 [: . P ]_'_. .
Zo XK 2o} (8 B riomgz x (g 2y x Ly

—et
(16)
where K= Ffu e .
0o
Adding (15) and (16), one can show that
iVE+jwuz x(u‘VH)+—Q-z xI +(u, 1 -ju,z x1)°1
0z t =z 00 ~t t z 9z —o = —mt 117t 1270  ~t° ~et
= a4E_t-Jk2a3_z_o X Et (17)
where «1't = transverse unit dyadic (18a)
= +
3 7 11619 TH%1 (18b)
2 i
= & € —
2 (€11H1 T Sk T 52 (18c)
(ull*l't_wlzgo x *l't) let 5 (Ht 2o ¥ let) (18d)

Taking the vector product of (17) with Z one obtains the following independent

equation:
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5 o B
5, Z thE - jop p VtH- I+ (Gu

+ .
7 —0 Z o~ Z 0z —mt 1t ”1150 X~1't) I

1 2~ —et

= + i
2,z X Et ]kzaSEJc (19)

Eliminating z, X E—t from (17) and (19) by multiplying (17) by a 4 from the

left and (19) by jk2a3 and then adding the results, E

E, can be expressed in terms of

Ez’ HZ, lmt and le . 1n the following way:

0 . '] . 0 .
= - — — - — + !
P Et [ a4 0z Vth w“oaz V1:Hz Eo x[]kzag 0z vth Jw“oalthz

+ja! ]
[al gz, x Ll Lg

3 e, 2 ]
- [:34 oz Eo X '~1't a 1 —mt
(20)
where the following relations have been used.
42 2
p, = k 2, - a, (21a)
2 2 2 2 %
1 = - = -—
ap = oAyl - kg, = ke (u - u) gy o2 (21D)
2 2 9 2 %
1 = - = - - ——
ay = Kagu, -au, = Ke (u, -uy) s, o2 (21c)

and the identities
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B v—tHz i ullthz T IH9E, thHz (222)
. ] +

Z, X K VtHZ LI xV H ]ulzth (22b)

By a similar method (or by duality of (20) ), one can obtain the expressions for Et

intermsofH, E , I and I _ in the following form:
z° z —mt —et

9
= - —v + ]
pl% [ a4 0z tHz weoa2vth
x[:'kza —Q-VH —'weaVE]
) 39z tz ) ol t z

—[all +Ja Zl]

2 9 ] .
+ —rs —
2 oz Zo XA -ikag 51 Lot (23)
where
2 2 2 %
a = kp (e, - )re, — (24a)
0z
2 2 9 5
ay = ku,(€ -6 )- €, gz—?: (24D)

Although the medium is anisotropic, if it is homogeneous (i.e., components
of € and u are not functions of position, althoughthey may be piecewise con-

stants) and source free (i.e., _I_m =0 = le), one can show that éz and ‘%Lz
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satisfy the following equations [using (20) and (23) in (9) and (10)] s

€ jws po o
gte B MW gy 2
ZoepMyp bz EpHyy 302
U Wwe €, #
2 33 33
vt%z+ € alﬂz - > aBéz (26)

11%11 €11*11

where éz and %z are solutions of homogeneous (source-free) Maxwell's
equations.

To obtain the above two expressions, it has been assumed that -g'z- = —j3€ s
where X is the propagation wave number in the z-direction. This assumption is
permissible in the situations where both the €, 4 and the geometry of the prob-
lem are independent of z, subject to another restriction, that the transverse
anisotropy of € and K are not coupled to the longitudinal anisotropy of € and Ja
respectively.

To obtain solutions for éz and %z’ it is possible to have 4th degree
equations in é , and Q)Lz from (25) and (26) by elimination. Since it is a tedious
task to solve such equations, one can alternatively find a function @ which is a
linear combination of 6 . and sz , satisfying a two dimensional wave equation.

Let such a choice be

¢ = éz+ja%é (27)
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Now multiplying (26) by ja& and then adding the result to (25), one obtains the

following relations

e
Vzt(éz+ja%)+ - is |:a' - weoifaga} éz

€0 LI
U w,uéfa
+ €_§§— [al - “—9"“3—:| ja%z =0 (28)
1111 «

The above equation can be represented as a two dimensional wave equation in {

of the following form

2 2
Vip+79 =0 (29)
where
€ M Wy 9€a
< 33 Ewl—weaea3a =-q'2 =—e——3—3——E11——Q] (30)
11M11 ° 11M11 @

Solving equation (30) for @, one obtains
' 1/2
- 2 202 2

| 4 -
T et T

2 20e € ¥a
o z 3

2
Therefore, the roots *?‘ can also be expressed in the following form:

2, 2,22 ]1/2
1 1 _ ' - +
1"2 B i S Bl U (a] €35~ 2 Hag) T4k x 23€33M33
1,2 7 - —_—
T Sk 2€11H1 2€11H11
(32)
The equation (32) can also be rewritten in the following form
!2 2
M, =Vvt)/VvV'-U (33)
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where
ale,.+a u "2+r;'2
1533 MMz My T
Vo= T ) 2 (342)
11%11
€ ool SINT;
3333 [2 4 2] 33M33 2 9
U=— |a, -ka,|=- p, = NI (34b)
€11k LA 3 € 1 TL 2

Relations Between Various Parameters Introduced in the Above Analysis

First of all, the following new parameters are introduced and defined:

1
e R I A
S=ie. " - e ~ (35a)
1111 H11811
!
S5 22 - weo€5h25 (350)
B0 2 K11€11
= ée — t
R a e, - wp ay (36a)
= .
T wuan 3@34011 (36b)
' = -
R we a,a, Ka A (37a)
1] = -
T weoaz @ Xa 4 (37b)

98




THE UNIVERSITY OF MICHIGAN
4386-1-T

It will be found convenient to carry out algebraic operations in the sequel
using the relations listed in the following table. In tabulating the following results,
no attempt has been made to write them in such a way that any result is a conse-

quence of those preceding it.

1 _ 8 (38-1)
o M
9
1]
2 €33% “6063336“‘3“1
,],1 - - - (38-2)
Hi1¢11 H11%11
1
a7 - €33 USof3ae (36-5)
2 M Hi1€11
2 2
1 - 1
K€, 00y =)
arl-ozz = we Ao (38-4)
o 3 33
Y
o 33
a.a. = - (38-5)
1% € €.
' .
o . 3% - Y33 % (38-6)
K& L M1t
€, .1, .S
11%11 (38-7)

o, =
1 weoasa€€33
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+a

133 " 21Hs33

€1#1

2
7)2 ql

242 2
K" Aghta3€ 3
2 2
€11 M1

MS =

€, M
42 2 11711 2 5,2
p :ka_a T o e———— ‘f)l 7[
1 3 4 633u33 1 2

2 2
+ = - 1 (1Y -t
SR + MT wuzb(qz 71)

a Me kza ale

11f1 ”

MICHIGAN

32 33

= - ! =
3€a4a2 w“oaz WE a_e

o3 33
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(38-8)

(38-9)

(38-10)

(38-11)

(38-12)

(38-13)

(38-14)

(38-15)

(38-16)

(38-17)
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2 1
- (3
k egqazay -a,5€ 1y

= v = -
T w/.zoa2 &(a4a1 e o e (38-18)
o 3 33
May €, 1K1 ’Xzasafss
R' = wea.a -Ha = (38-19)
02 2 4 Ha.e
333
Sa_€ .u —X2a a €
T = we a_a, -Ha, = 2 1111 34 33 (38-20)
021 4 Ha E
333
€ al-e u =€y M (38-21)
3331 ~ ©11M1172 11%11
€ .al - € u 1)'2 = €, u.S (38-22)
3381 ~ S1ifh 11711
2 kzae2a2633”33
- & ! = - (=3 -
Hass =SB Se. u Mu€9q (38-23)
11411
9
Kt al§€33“33
— ' - = p— —
Haady = €1H1179 Me. S€ 1M1 (38-24)
11711
2
P4 8, = B, - a MK (38-25)
a, = a € —kza e (38-26)
1 - 4% 3512
2
= ' - 1 _
Pad a, )€ alel2 (38-27)
a! = a u —kza 7 (38-28)
411 3H19

101




THE UNIVERSITY OF

4386-1-T
al = k2a -a
2 sf11 7~ 24M0
- Ka e e
B9 = X 8381173 19
kZa al - =
g " 813, = Ky Py
a€2 -ala, = €
3,83 7 8938) = P1H11%19
k2 a a. =€
338, "84 TN Py
92,2 2 o
kKa -aa = pu €
2 2 2 2
a, = ku (e, -e)-Re,
2 2 9 2
] - - -
ap = ke (b - my) -k

Ko ) + 3«25

2y = Ko 11
2 2 9 2
- _ +
) L I P AR P
a., = €

+
3 11M12 TH118 10

2 9
a, = Kl € tue,)- K
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(38-29)

(38-30)

(38-31)

(38-32)

(38-33)

(38-34)

(38-35)

(38-36)
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It may be noted that all of the analyses and results obtained in this Appendix
are based on the assumption that the problem has a cylindrical geometry with axis
in the z-direction and having an arbitrary cross section which is independent of the

coordinate z.

Propagation of TEM Waves in an Unbounded Homogeneous Anisotropic Medium

Since the foregoing analysis does not include any particular boundary, it is
valid for an unbounded medium also. Hence, it is possible to obtain conditions for
TEM wave propagation in a direction parallel or perpendicular to the z-axis. It
may be mentioned here that a plasma and a ferrite with a static uniform magnetic
field in the z-direction will have tensor permittivity and tensor permeability
respectively. The forms of these tensors are given in equations (1) and (2). As
mentioned earlier, here also the medium considered will have both € and u as

tensors with constant elements.

TEM Wave Parallel to the Magnetic Field

For a TEM wave in the z-direction both EZ =0 and HZ = (0, If the source

terms in equations (20) and (23) are equated to zero, non-vanishing values of Et

and Et are possible if and only if P = 0, when EZ =0 = Hz’ provided the elements
. _ . crs - 0, gi tw
€ 11° €33, My and Moo are finite and non-zero. The condition o] gives two

TEM waves propagating in the z-direction. These two waves are characterized by
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the following expression of the propagation wave number o in the z-direction

a€2
2 (611 s €12

5 ) (“11 iu12) , (39)

2,2 2 .2
. . . 2 oAy . 2 _ g s .
Since p is proportional to 7)1 qz , the condition ) 1 1’]2 0, is equivalent to
TEM wave propagation in the z-direction, provided the diagonal elements of /ev

and ﬁ/ are finite and non-zero.

TEM Wave in the Direction Perpendicular to the Static Magnetic Field

The conditions for a TEM wave propagating in the direction perpendicular
(i.e., perpendicular to the z-axis) to the static magnetic field can be obtained upon

substitution of o= 0 (i.e. , ”gz* = 0) in the expression (32). This substitution gives

1
two propagation wave numbers 7] 1,9 which represent two TEM waves in the trans-
)

verse plane of the z-axis

2

g €33 o o
= (b, - u.) (40a)
2 w1 M2
and

*?'2 K

2 33 , 2 9
— = —= (e_. -€7) (40b)
T VR b

The results obtained in (39) and (40) agree with those obtained by Van Trier
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[:1] by an entirely different approach.

When P= 0, a study of the expressions (33) and (34) shows that 'r]'z = 0,
provided the diagonal components of € and U are finite and non-zero. It can
be shown also that such TEM modes in an unbounded homogeneous anisotropic
medium do not vary in the transverse plane, but in a coaxial waveguide TEM waves
behave as 1/r in the transverse plane. The above statement follows from the fact
that for a TE M wave the transversely varying part of the transverse fields can be
derived from -V t¢(g), where f(p) is a scalar potential dependent on the transverse
coordinate p.

The two waves given by (39) are known as ordinary and extraordinary waves
in the literatures of the ionospheric wave propagation. The permeability of the
ionosphere is a scalar quantity and equal to that of free space. These two equations
also explain the phenomena known as Faraday Rotation. The two waves represented

by (40a) and (40b) can be said to explain [1] the phenomena known as magnetic

and electric Cotton-Mouten effect.
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APPENDIX B

CONSTRUCTION OF DYADIC GREEN'S FUNCTIONS

Although a construction of Dyadic Green's functions from the source-free
solutions of Maxwell's equations for inhomogeneous anisotropic non-dissipative
media in a uniform waveguide of arbitrary cross section bounded by a perfect con-
ductor, has been discussed in [13:] , they will be also briefly presented here for
the sake of completeness of this work. In this appendix the corresponding results
for anisotropic dissipative medium will also be obtained.

The most important technique involved in the construction of dyadic Green's
functions is the determination of an appropriate orthogonality condition among the
source-free solutions (i.e., eigenfunctions) of Maxwell 's equations. Methods of
finding such orthogonality conditions have been discussed elaborately by the authors
in [9] , under different situations.

Here an indirect method will be presented for the construction of dyadic
Green's functions [_12] . In this method it will be assumed that the sources are
due to some discontinuities, which causes discontinuities in the fields also.

Dyadic Green's functions Z(r, r'), I’em(z’ r'), Y(r, r') and Eme(—z’ r')

are defined by the following expressions:

E(r) = - SSS Z(x, ") " Le(g')dv' -555 Iem(z’z') ‘ lm(_ll')dv' (1)

\' A
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T (r,xr) I (x)dv' (2)
e —e—

~m

—>
b
—~
._"1
=,
i
D
o
<
!
e
<1L/3L____ﬁ

Where the E(r), H(r), L S have the same significance as given by the
Maxwell's equations (5) to (8) of Appendix A. Instead of volume currents, if le
and "I—m represent surface currents, the volume integrals in (1) and (2) should be
replaced by surface integrals (over the regions of surface currents).
In the following are given the physical meanings of dyadic Green's functions:
- ?,( , ') " u = electric field at r due to a point electric current source at
r', directed along the unit vector u.

-T (r, ") " v = electric field at r due to a point magnetic current
source at r', directed along the unit vector v.

- Y(r, x') ° v = magnetic field at r due to a point magnetic current source
-~ at r' directed along the unit vector v.

-T (r,r") u = magnetic field at r due to a point electric current source
~me=" =" = . =
at r' directed along the unit vector u.
In the above statements the point source means a source which has spatial variation
as a Dirac delta function § (r - r').
Let é (r) and ZL(_!) be the solutions of the homogeneous (source-free)

Maxwell's equations (3)

Vox £ = -wupe) Fo (32)
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V x ZL(E) = jw eog(g) ' é(_r_) (3b)

where u(p) and €(p) are functions of transverse coordinate p only.

Since under appropriate boundary conditions, _é (r) and ZJ/(;) form a

complete orthogonal set, the total fields E(r) and H(r) due to any arbitrary source

can be expressed as a superposition of é (r) and ZL(E) in the following way:

E(r) = E A € () (42)
04 o
o
H(x) = E A ZLQ(_I:) (4b)
(04

where Aa is the coefficient of expansion corresponding to a-th-mode (eigenvalue).

and

Reciprocity Relations for Homogeneous Maxwell's Equations

To establish Lorentz's reciprocity relation and hence an orthogonality
condition it is desirable to consider another set of Maxwell's equations. This new
set of equations is sometine s called the Adjoint-Maxwell's equations [9] . After
taking complex-conjugates of these so-called adjoint equations, the resulting

Maxwell's equations have the following forms:

(5a)
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and 2{'4-3 for

+ +
where u, €
As e d

4386-1-T

V . %ﬂ

Z P X3

adjoint of u, and € respectively

1

transpose of u

M1 Ik 0
Mg Hoo 0
0 0 Hs3
= transpose of €
€1 1€ 0
€19 €99 0
0. 0 €.

1 + +
%B’ in general é
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complex conjugate of the transpose of u and € respectively.

e
3

+ "
Although the authors in [:9] have used the symbols é 8 for é

8 and 2‘, 8 have no simple relations with

the solutions of equations (3a) and (3b). Thus, to avoid confusion, the symbols

(5b)

(6)

(7)
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" " " "
é 8 and QL 8 have been used here. Here _é 8 and %3 only mean the solu-

tions of (5a) and (5b), subject to some appropriate boundary conditions.

"

B

é o in a scalar product fashion from the left and then subtracting, one can show

Now multiplying (3a) by %B and (3b) by é and (5a) by ﬁéa and (5b) by

that
N 1
V‘[éxﬂ-ﬂxé}o (8)
a B a  ~B
Since
-|::< " "
. € . - . .
€, & Ly e €, (%)
and % i %
+" " ﬂL” +
. . _ . . oh
a0 K Zﬁ g - &g K4 (Sb)
Let [ =V ¢ + z, —5@; , where Eo is the unit vector in the z-direction.
: ...Q_. = -1 —— P-S—
Now using 52 éa = Jé(; E—’a’ 5z ZLQ JXQZLQ
and
2 g 24" 2
37 éﬁ & 9z 2LB _]XB“B’

equation (8) can be rewritten in the following way
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Now integrating over the cross-section of the waveguide one obtains (using the two
dimensional divergence theorem)

@ [EX .éa ' %ng vXx Qg ' ZZOJ J(X XB)SS [ga Zlgxgo+_q'gox§;]ds

S S

where v is a unit outward normal vector on the boundary curve s of the waveguide
cross section S.
The left-hand side of the above expression vanishes on the boundary of a

perfect conductor

the orthogonality relation becomes

Sg[éof—ﬁxz +f¢ 3'] ds = 2N SQB, (11)

S

where N is a normalization constant and
o

) =1, for Xa: XB

= 0, for on # X B
When the waveguide has a reflection symmetry, i.e., when the properties of the

waveguide are independent of the coordinate z, the orthogonality relation can be

rewritten as
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335 '#”xz dS=N5aB=552L'z x & ds (12)

a BT -o a a —o =8
S S
or
/I
SS & ﬁltﬁ x 7,08 = N5, = SS le 2y x g0 (13)
S S

where the suffix t represents the transverse components of the fields.

Construction of Dyadic Green's Functions (see [11] and [12] )
Knowing the total fields E(r') and H(r') which one may consider are due to
discontinuity at some cross section SZ of the waveguide, one can write, using

equation (4)

Z_L'B'(z') xz = E@) = Z/’g(x') xz ; A éa(l_r_')
and
z, X _éB(g') H(r') = z, X éB(z') Z‘; AQZZQ(_I;')

Integrating the sum of the above two equations over the cross section at SZ

and using (11), one obtains the value of the coefficient Aa as

SS e #) x 2 + 1)z x _é;@'ﬂ as

A = (14)

2N
o
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Therefore, the total electric field at any point r due to E(r') and H(r') is given by

SX ds' [P;(z’) 'ZL;(_I:') xz +H(r) 'EOX&f;(z'E]E (x)

(r CotE
E(r) = Z Aaﬁa(}:) =Z i 2N

o a o

which can also be written

5 EwE @)
a a . z % H(z') ds'

a 2N
z a
Z éa(z)ﬂ; (r")
- SS 3 oN - EQ@) x z d8 (15)
SZ a

Since z, X H(r') and E(r') x Z, represent sources due to discontinuities

in fields at r', one can represent

z x H(x") =1 (r') and E(r") xz =1 (r")
-0 -= —et— - -0 —mt—

Alternatively one can consider the discontinuities in Z, X H(r') and E(r') x £
at r' are due to actual sources _I_e t(3') and lmt (r") respectively. Now with the

above assumption if one compares equation (15) with equation (1), one finds

E@ & ()
Z@ ) = Q. — o (16a)

o o
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Tom® 1) = Z ON (16b)

Similarly if one expresses the total magnetic field as H(r) = Z Aa Zéa(g) and

uses equation (14), following the above procedure, it can be shown that

Y@, 1) = Z N (17a)
a o
@& @)
N Zo= =a=
Tl 20 = ; 2N (1)

Special Cases

It has been pointed out before that in general there are no simple relations
between éa/ and é ; and Zﬁa and fé{; , but in some special cases these
relations simplify. For example, in non-dissipative anisotropic media g+= €,

+

and u* = u,ie., € and k. are hermitean (self-adjoint) dyadics. In this case

™

o e

(_‘; = & , %"=/§'/ ,and)(isreal.
a a a

Therefore, for non-dissipative medium, the dyadic Green's functions can be

expressed in the following way

e
&

€ (r) & (1
2 ) = ), (182)
a

a
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€ X ()
no_ -~ —a
T L Y = Z: *—-—-—ZNQ (18b)

Yeor) = D P (18¢)
o o
Z(x) € (x)
' _ -0~ To—
Tme(z, r') = Z 2Na (184)

Another kind of orthogonality relation and hence dyadic Green's function can

be constructed in the following way (see [9] ). These results are particularly

suitable for dissipative medium.

In this method the following replacement is made

+ —

K - u = transpose of u (19a)
£ € = transpose of € (19b)
+ sk
= - -
X = X (19¢)
"
- 1
E— + € (19d)
o o
1 !
H— + (19)
- e

Due to the transformations given in (19) and the Maxwell's equations (3) and

(5), the following simple relations can be established
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! —
€ = - - -
€ € g tig D) = E K, €0y, 1) (20a)
and
ﬂ/) = + - - -
X (K€ by D) =% %( K €190 b D) (20b)

Therefore, for the dissipative - anisotropic medium the orthogonality relation and

dyadic Green's functions can be expressed in the following way

SS[%'ZZ[; xz - % 2 x éB] as = 2N, g (21)

S

If there is reflection symmetry in the waveguide then

SS&'%'xzdS=N5 =-SX?LZ'Z « & as (22)
S S

a “B o a of

€ @, -, -¢_, -
€ g i) E 0 K-y by

2 1) = - ) o . (232)
o o
€ 1— - -
SRRy h T FLL AL T SRR
wem ™" = > 2N
4w, ey m)F i, K€ n)
ORI N (23¢)
a o
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€ ) € (1, -X, - _

T (e ) = - Z ﬂ(r Ky €190 g) B M0 =X, -0, Hip)

“me =’ > 2Na

For dissipative medium Xa and Na are complex.
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can exist independently. This approximation is also valid when (ka) << 1, where
2a is the diameter of the anisotropic column.

For static approximations it is easy to show that

-

€ aly € K2
n'lz - Z ~ - z

€

rHr r

U a u K2
n'y? = 2’ v - =

Hp€y Hy. ,
S =0
M=~ - (n122 _ 77'12)
n ~ -jik J

()

Now using these relations and the assumption k€ < ¢ 1, it can be shown from the
dispersion relation (1) that for the H-type mode the right-hand side of the expres-
sion (1) vanishes and for the E-type mode the denominator of the left-hand side of
(1) vanishes. For a magnetic current ring source an E-type mode will be excited

in this static-limit situation. Whereas for an electric dipole source an H-type mode
can be excited in the static limit. It is of practical interest to consider the E-type
modes in a plasma and the H-type modes in a ferrite. The following dispersion

relations for these two limiting cases can be expressed in the following way:
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3 (n's2) (L Gea)K o) - 1 6th)K () N
(n'1ale W — ne' = - (fa)e, [In(xb)Kn(aea)_InMa)Kn(a(bU 3)
for E-type modes
and
7! (n'g2) [1: oK (oda) - T oa)Kc b)) .

(an'gdu —7 - ' = Kau, T, , (4)
3 (n'5a) [In(mKnoea)-xn(aea)Knoebﬂ

for H-type modes

When the anisotropic medium completely fills the waveguide, i.e., when

a = b, the above two relations reduce to the following:

Jn(n'la) =0, forn # 0
for E-type modes  (5)
and forn = 0, Jo(n'la) =0

It should be noted also that in this case a change in sign of n does not effect any

result.
Jr(ntza)
( 'a)IJ _Il______ - I‘IM'
M2 r J (T]'za)
i ( for H-type modes  (6)
and forn = 0, Ji(n'sa) = 0 )

When the radius of the waveguide b — o0, the above equations (3) and (4)

reduce to the following simple forms:

*These results agree with those obtained by Trivelpiece [8] except for a change
in sign in the term nu' of equation (4).
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For n = 0, the above relation becomes

2
kznzaeza%ezz u";[ZJ O(n'la)Jl(n&a)—an'l{Ji(n'la)+Jf(n'1a)}] Go(a)JO (a)

e, pd@forimar niaf*-Jrams@natmal em’e @it

2 3
= n“ZGO(a){ZJO(n'la)JI(n'la) [,,112+s] -an'ls@l(n;a)+Jf)(n'1a»} -24onY So(a)Jz(n'la)

(10)

For n = 0, the dispersion relations (55I) and (56I) can also be derived from the
relation (1).

It should be mentioned here that all the following dispersion relations for
various special cases can be derived from any of the general relations (55I), (561),
and (1) of this Appendix. The purpose of writing these various forms of the general
dispersion relation is that it is found more convenient to use one particular form
rather than another for some special cases.

When the anisotropic medium completely fills the waveguide (i.e., when

a = b), the corresponding dispersion relation (without using any approximation)

_2

(r le) s Jn(b) =0= Sn(b)’ at a = b):

becomes (since Gn(b) = Cn(b) =

J;l(n'za) Jl'q(n'la)
M v 2.0 = | _ vt 2 =2} t (A2 .12
ae p Mn'y"n's Jn(ﬂ'za) aur€rSn ' Jn(Tl'13) ne a o(ny2-n4?), forn £ 0

(11)
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n'gS Jl(ﬂ'za)Jo(ﬂ'la)
and Y = Jo(n'za)J1(n'1a) s for n=0 (12)

If one analyzes equations (34I) and (35I) or equation (32a) of Appendix A,

it is easy to show that in the limit €' =u'=a, — 0

3
'\
€ a' € a
n? = =2 S 1
€My r
a
77'22 _ uz 1 - ”Za4
“Hr Hy
S =0
7
M - 1 2 - 1 2 _ 1 2 - S
(T]z 1 ), €Z214 1 GI‘ Gr
S
= 0 - 12 M
a > €8y T S r
u_€'n? - a'se €
Ir Z - _aez _Z
a, €.
J (13)

Now if one divides the numerators of both sides of (54I) by aq and uses

relations (13), the dispersion relation can be shown to have the following form,

after rearranging terms:
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2
‘:ernn'lJ;l(nHa) ] €za4Cn(a)} [urnn'er'l(n'za) waSfa [na((a M
J_(n'1a) S @ T Gl || kan }
(14)

For an isotropic medium, the dispersion relation can be obtained from (14)

letting n'\2=n'2 =a, =k% -A2% ande =€, =u .
& M1 2 4 rx T z“r 'uz

For axially symmetric fields (i.e., when the ring source is of constant

0

strength,

06

dispersion relations

0), n =0, and one obtains from equation (14) the following

e_nn'1Ji(n12) €a,C (a)
- = - —to for E-type mode (15a)
J (n'4a) 2 (a) ’
0 0
and
urnn'le(n'za) uza480(a)
Jo(ﬂ'za) = G_O‘( a_) , for H-type mode (15b)

The relations (15a) and (15b) can also be obtained from (55I) with appropriate

limiting procedures.

It should be noted here that for axially symmetric fields and €' = 0 = u',
E-type modes and H-type modes can exist separately. But in the present problem
where the source is a magnetic current ring source, only E-type modes will be

excited for €' = 0 = u'. Further it may be stated that even in an isotropic medium
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)
" v ' = 0 =y = = i ——— - -
(i.e., € M' and er ez and Hr uz) if 50 f 0, E-type and H-type modes
cannot exist independently.
Ifn#0, buta=b and €' =0 = ', it can be shown either from (11) or from

(14) that the dispersion relations become

1!
o

Jn(n'la) ,  for E-type modes (16a)

and

t
o

J ;l(n'za) = , for H-type modes (16b)

It is now trivial to see that for n=0, a=b and €' = 0 = u', one obtains the

following dispersion relations

Jo(n'la) =0 , for E-type modes (17a)
Ji(nsa) = 0 , for H-type modes (1b)

Relations (16) and (17) are valid for isotropic media as well as diagonally
anisotropic media. However, in our present problem, we consider only (16a) and
(17a), restricting our consideration to E-type modes (due to choice of the source).

+When an infinite column of an anisotropic medium is placed in another

unbounded isotropic medium, the corresponding dispersion relation for surface

1t should be noted, however, that to obtain radiated fields in the present situation,
this limiting process (namely b — o) is not valid.
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wave s can be obtained either from (53I) or from (54I) with b — . To study sur-
face wave propagation (which is also slow wave), for which X/k > 1, one can

show that n is purely imaginary. So putting n = -j& , 8 > 0, one obtains

Jn(a) = —(2/7r).[1n(éb)Kn(5a) -1 (5a)K (5 b)] (18a)
s () = -2/m- [T $a)K! (§b) - 1 (SBIK! (5 a)] (18b)
C_(a) = (j2/m)-[T(§a)K (§b) - 1 (SBIK! (Sa)] (18¢)
G (@) =(j2/m) - [I'(SDK (2) - 1 (SaK! (§b)] (184)

for convenience let

) = L(SBK (82) - 1 (0K (§D) (192)
S (r) = I'(ST)K'(8b) - I' (§b)K' (5 r) (19p)
n n n n n

C (r) = I'(§r)K (§b) - I (SD)K!' (§r) (19¢)
n n n n n

G (r) = I'(§b)K (§1) - I (§1)K'(dD) (19d)
n n n n n

Also it is easy to show that (if n ¢ &b, & may be finite or very large),

— K62
n

~ ——— |, as b= mw (20a)
n V2réd b
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When n = 0, the above relation becomes

S{éﬂzKo(éa)Jl(n'13)+77'1NQK1(53)J0(77’1a)} ) 5€ZK0(5a)Jl(n'la)+€2n'1K1(éa)Jo(n'la)

M{éuZKo(éa)Jl(n'za)+n'2u2K1(éa)J o(n'za)} 5eZKO(5 a)Jy (n'ya)+eyn'sK (Sa)d O(n'ga)

(22a)
The equation (22a) may also be written in the following form:
Ezuz(n'zz—n'lz) €atla(n's?-1"?)
n']. nvz Kz(éa)Jl(nrla)Jl(ntza) + 6 9 K]?(éa)Jo(n'la)Jo(n'za)
EzuZM—uzeZS] [ezu S—uzeZM]

5 Ko(éa)Kl(éa)Jo(n'la)Jl (nha)+ Ko(éa)Kl (cSa)Jo(n'za)J1 (n}a)=0

on't
(22b)
When the anisotropic medium completely fills the waveguide in such a way that
a=b >)1, the corresponding dispersion relation+ can be obtained from (11) letting
a > 1. It should be noted here that if a >) 1 in equations (21) where the limit
b —» @ has been taken the result will be different from that obtained from (11) with
a >> 1. The reason is that if a > 1 in (11), it also means a =b »> 1, but if
a»> 1 in (21), it means that b >> 1, a »> 1, yet a # b. The difference between

the above two results can be shown rather easily for n = 0 as follows: either from

(11) or (12) one obtains the following dispersion relation

+
When a = b — oo, there is no dispersion due to the boundary.
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'S tan(n'sa - 7/4)

nth = tan(n'la _ 7{/4) R as a=b >> 1 (23)

and from (22a) one obtains

S{éuZSin(n'la—w [ &+n\uscos(nla-T /4)} 5€ZSin(n'13—1r [4)+eanlcos(nya-r/4)

M{é/.zZSin(n'za—w [ Ar+nlpncos(nha-~ [4)) i Se_Sin(nya-m [4)+esnheos(nha-/4)

for a>>1, b >>1, but a # b. (24)

For €' =0 =pu' =a_, the dispersion relation (21) becomes

3)

erén'lJél(n'la)_l_ ezalKh(éa)] urén'zJI'l(n'za) . uza4Kl'1(éa) ] nb((a4+éz) 2
J n(n'la) Kn(éa) _l J n(n'za) K n(é a) ka §

(25)
Equation (25) can also be obtained from (14) directly using n = -jé , and letting
b —r00.
For n = 0, the E-type and H-type modes separate and one obtains the fol-

lowing two relations from (25)

€r5 n'191(n"12) €2a4K1(5 a)
Jo(n'la) - - W for E-type modes (26a)
and
K 81331 (n'32) Hea, Ky (6a)
Il T K (Sa) for H-type modes  (26b)

It should be noted here that for isotropic media, 7'} and n'y in (25) and (26) are
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2 = 12 = o2 = g9 = ey - 02 where € = ' =
s ’ M- R, P T, BT

For €' =0=u', n=0 andalso a=b >>1, it can be shown either from (16) or

from (23) that the dispersion relation reduces to

cos(n';a - 7/4) = 0, for E-type modes, a >>1 (27a)

and

sin(n'ga - 7/4) 0, for H-type modes, a>) 1 (27b)

Now it is also natural to discuss the dispersion relation for a<{ 1 and b finite.

To do this the following approximations will be used (see [1 7] ):

n
J (& ~ i’—‘@ , for 0<x<<1 (28a)
No(x) ~ (2/7)log (0;—}() , for 0¢x<¢<1 (28b)

where o =1.,781072

n
N (x) ~ ___(n-l)!(%), n# 0, 0<x <1 (28c)
n T X
KO(X) ~ -log <9§<'>, 0¢x <<l (284)
n
K (x) ~ m-1): (-Z) n#0, 0<4x<<l (28¢)
n 2 X
n-1
J(x) ~ = , nyl, 0<&x<<l1 (281)
n 2™(n-1)!
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. n! 2n
Nn(x) ~ a1 forny1, 04x<¢«¢l (28g)
TX
ot 2n—1
, _ n!
Kn(x) ~ Xn+l , formny 1, 0< x<¢¢l (28h)

It will be assumed that na<<1, n'a<(l, Tl; a<<1, in addition to a ¢¢ 1.

Then, one obtains the following expressions:

n ' n
G (a) ~ (na) N' (rb) + -1)! (.l_) J! (nb)
n gh D T na n

@-1! /2 \ (n2)"
S~ - B (2 g - N
0 'zn ( )n-l
s (a) S T () - —n’?ﬂ———— N' (nb)
7 (na) n 2 (n-1)"

n
n'?2 (na)
T J (nb) - Nn(nb) for n » 1

C (a)~ =
. 7 (na) o 2 (n-1)!

0 1 T 1 2

2 ana
J’O<a>~ = 3 _(nb) log (——”——2 ) - N_(rb)

2 b
So(a) ~ T Jy(nb) - 5 N; (nb)

2 nb
= + — f =0
Co(a) ~ b Jo(nb) 5 No(nb) or n

(30)
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Thus, fora<< 1, na<< 1, n; a<< 1 and n'z a << 1, various forms of the
dispersion relation can be obtained merely by substituting these expressions in (54I),

(551) etc.
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APPENDIX D

A NUMERICAL EXAMPLE

In this appendix, results of numerical calculations will be presented for
a special case of the physical situation described in (14a) of Chapter II.
A normalized value of the electric field, Ez’ will be computed as a function

of g for the smallest eigenvalue, n'; , where we are treating the case

2 > 0

n'g? < 0 > (1a)
0 _

90 0 )

1-x >0 ]

1-y >0 > (1b)

2>xty > 1

J

with the specific parameter choices

~N
ka > 102

€, = 6 (which represents a glass tube) (2)
My =1 &

Rfk = B=25(> J6um )
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as§ = ka Bz- €ty = ka 62—6
a = 10—3 - (2)
c=b=2x10"°

-

First the lowest eigenvalue must be determined. To do this, first some

necessary constants must be computed as follows:

d =c = I1ELK(Ea)-1(82)K (6b) > 0
0 1 o} o o 0
G = ¢, = L(6b) K (Ba) +1 (5a) Ky(6b) > 0
(0] o (o) . (3)
§o = c; = L(8D) K (8a) - L (6a) K; (8b) » 0
C,o=cy = 11 (8a) KO(Sb)+Io(6b) K, (6a) >0

n'y (y) will then be computed from the following expression

nllz 1
= {2(1 -y) {w(l —x)+y} —gbxy+yf(yﬂ, (4a)
K2 20x +y-1)
2
where v = B -1, (4b)
and 2y = ¥ 4t x1 - ), (4c)

For a range of values of y (wherel -x< y < 1),

Starting with y corresponding to the smallest value of 1n'; obtained from

(4a), the function G(n'y , y) given below will be computed for neighboring y until
1
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a change in sign is obtained. [i. e., we want to find lowest value of n',/k which

satisfies G(n'; , y) = 0:]

- 1 1
S 3) - (p2+n' . (1 y)c1 02J1(7’)121)11(13":1)Jr 620304J0(n1a)10(pa)
b ! n'y P s
Jo(n'la) I (pa)
+ - -
50 [62 Mc402 (1 y)Scch]
IO(Pa)J1(n'1a)
+ — -— =
[(1 y) M0103 6280402] &1 0
(5)
where 9
p7(y) n'?  yiy) 0P
— = - = - , (6a)
K2 K2 xby-1 K2
oo E0-90-9 , [xry-1 2], 2 )
x+y-1 1-x P

S = M- (p2+ n'lz)
It should be noted that neither n'; = 0, nor p = 0, can be a solution to (5).
When the lowest eigenvalue n'; is determined, I EZ i will be calculated as
a function of r from the following expression where all relevant parameters are
evaluated at the previously determined lowest n'; .

c | EZI _ we € c &, [S'g“l Io(pr) - MJo(ﬂ'1I'):]

m

8
52,2 o .
(0™ +n%2) RZ=:1 Fo Ly for O<r<a (7a)
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9 =
2W€E €yC Ig‘zl o (r)
= s 0 fora<r <b
2 8 s < <
g
2
) E F, L
L=1
where
.7 (6e,91tnsa) +n'sc,d (n'sa)]
1 = . n
n'y [Sczll(pa) pcglo(pa)]
- T [SEllo(pa)—MJo(n'la)]
2 2 "
201(P +T)1)
F, = Le € n'2 [6 p2R;[§+wu pzﬁ'kﬁe']
1 r z 1 Ir o)
F, = -jL e € 7 pg [wu pzT'kB €' +e Rn'2§]
2 r z 1 1 0 T 1
F, = -jLe e pon & [wu n'zﬁ'kﬁe'-e pzfx:;[T]
3 rz T)l 1 o'l T ?
F :_Leengz [wunyzr}i'kBe'-l_eTn'zS]
4 r z 1 0 1 T 1 )

(Tb)

(8a)

(8b)

(8c)

(8d)

(8e)

(81)

- 5 4 2 2 4 2
po- WkB € €2 E’ZZ{IO(Sb)-l- 2 Ko(Sb)} + Ho§'23{11 (Sb)"';r'i Kl(Sb)}] (8g)

—

2 . 2
p, =B AR RC b){ J1_(8b)+~ KO(Sb)} —Juoé“gll(&b){J S K1(6b) +1; (6 b)}]

6 g2 €
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. wkB 2 2 g .2
F, © e L (6B +u £ T (5b)] ,

Twe € €'kf
0z

E, = ———— J (n4a) - & 1 (pa) |,
3 2€r02(92+n'12) [ ° ° ]

222
weecekP
0 Z

L =
4 2 2 2
e o % )|
K2e M(e -BZ)—k4e €'
R = ror z
we € €' ’
0z
2
kB[e M—ek2(€ —B)]
R = r z T ,
€
Z
2
k4€€'2—k2€ Se - B)
z r.r
T = ' ’
we € €
0z
2
KB [e S - ke (e -B)]
T - r z'r

€
zZ

F(r) = T(6b)K (57) -1 (61) K (8b),
(0] (6] 0 (0] (6]

k
L= = =

0o

-9

10 . .

€ = 367 (in M.K.S. unit)
-7 . .

¢4 = 47 x 10  (in M.K.S. unit)
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€, = -y, (95)
€ - x + Y]:— 1 , (gk)
r X -
el = ‘X._‘L_)S_ , (91)
x-1
az 2 2 2
L = 5 [Jl (n"a) - _7—7_';‘_ Jo(n'1a)J1(Tl'13) + Jo (n’laﬂ, (10a)
b3 Ja
I, =1, = ——— [le(n'la)Iz(pa) + 1Yy Il(pa)Jz(n'la)], (10b)
2 3 2 12
(p= + 1)
2 21 (pa) L(pa)
a 2 0 2
14 = [11 (pa) + on - Io (paa , (10c)

2 21 (8b) L, (5D)
b 2 0 2
L = 5~ [11 (6b) + 5h - 1 (sb)—]
2

e (10d)
21 (6a) L;(8a)
2 2
- 5 [:11 6a) + ——— - 10(6a>:]
I =1, = jL+ —— 11(6b)K1(8b)+Io(6b)K0(6b)+ e ]

2
_ 97'7— [11(5 a)K;(§a) + IO(S a)K0(5 a) +

I (sa)K(8a) - (8 a)KO(S a)]

§a
(10e)
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2 2K (6 b)K;(86b)
_ 2b 2 0 2
18 = I5+ —z [Kl (6b) - 5h - Ko(éb):\

2 2K (8 )K,(52)
|2 &{12(831) - =2 “K2 (5 aﬂ
T §a o

(101)

Discussion of the Computation Procedure and Results

Starting with y values near 1.0, it is found that n'; increases very rapidly
as 1 - y increases. An analysis of the expression for G shows that the first zero
of G will occur shortly after Jo(n'la) changes sign, i.e., when n';a is slightly
greater than 2.4, i.e., n'y >2.4x 103 (with a = 10—3). With the given parameters
it is found y is very near 1.0,

After finding n'; , and the corresponding x and y, for which G = 0, various
expressions in equations (8), (9) and (10) have been computed. Since the parameters
§ a, &b are large in this calculation, the asymptotic formulas for evaluating
Io(z), L(z), Ko(z) and K;(z) have been used (where z stands for either & a or §b).
With the parameter used, KO(G b) and K;(8b) are very small and nearly all terms
involving them were insignificant. However, the form used included all operations
and can be used, without alteration, for any set of parameters.

It should be noted that, although some of the F, and I, in (8) and (10)

are real, some pure imaginary, and some complex, all imaginary terms in the

AL

summation cancel out, and hence E F I,l is real. This fact is in agree-
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ment with the theory as discussed in connection with the equations (82) - (84) of
Chapter I, where it is stated that the power-flow in a non-dissipative medium is
real.

Computation has been completed for the following cases:

Casel) x = 0.Tandx = 0.5, withka = 2x102 and B = 2.5(01‘52:6.25)
CaseT) x = 0.7andx = 0.5, withka = 10%, B = 6.000025
Case II) x = 0.Tandx = 0.5, withka = 7, Bz = 6.005102041

The following pages show tables of values of many of the variables involved,
c| EZI c|E
, for 0 < a < b, Also graphs of

and the values of

in the range

0 < r/a < 1.0 corresponding to the above cases have been shown. For the range
°|E,|
z

r > a, the values of are too small to show on the graph.

The behavior of all the graphs plotted here is more or less the same. It is
the nature of the slow waves. The higher the value of 3 = —x'k— , the slower the
wave. Moreover, the higher the value of €,, there is a minimum value of f, for
which a corresponding slow-surface wave can propagate. Since in the above com-
uptation €5 is chosen to be 6, the minimum value of J is greater than 2.45. On
the other hand a larger value of €, will permit a lesser slow wave to propagate.
Although the above statements show that the degree of slowness of the surface

waves is markedly influenced by the value of €, and hence f3, the strength or

amplitude, however, of these waves depends on various other parameters. For
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example, in the Cases I and III the graphs show that higher the value of x = _cé ,
c |E l W
the lower the amplitudes of l z On the other hand, in the Case II the
%]

graphs show that the higher the value of x, the larger the amplitudes of

i4

although the values of 8 in all of the above cases are of the same order. Moreover,
c |E
I Zl is about 10299

the graphs of the Case II show that the amplitudes of
times higher than that of the Case I and is about 10 times higher than that of the
Case III. Therefore, the above discussions of the numerical results suggest that
for any practical purposes the results of Case II will be of greater significance.
All the graphs plotted here change monotomically, ‘because of the higher
value of 3. On the other hand, if B is small (and hence the smaller value of the

parameters (pa), & a ete.), it is expected that there will be a few oscillations of
c |EZ|

in the range O < r % a. In support of this statement reference may be made
elsewhere (7]

Finally, it should be noted here that is is the value of § a and & b which
played the significant role in producing tremendous difference of amplitudes of

o |2
m

of & is much higher than that of either of the later cases.

in Case I and either Case Il or Case III. In the former case, the value
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CASE 1
2 ¢ Ezl
Summary of Values for ak =2x10", 8 =2.5 Values of I
m
.7 .5 r/a For x=.7 For x=.5
.9999731125 . 9999849842 0 .7559211 x 107299 1. 1286428 x 107298
. 875064017 . 625035752 . 6297345 x 107299 |1, 1123792 x 10-298

. 405305063 x 103
. 582578887 x 10°
.100042490 x 1011
.8291 x 106
. 062918575 x 107197
.574477758 x 10740
. 333243708
-2.1788791769
-4, 228947963 x 1024
-4, 524434966 x 1019
-9.111703604 x 1021
2.510277019 x 1017
-1,187508895 x 10~47
-1.470483272 x 10758
3.396169086 x 10-8

DO W DN DN W

2.429623822 x 10405
. 3475702176 x 1077
.205105178] x 10188
.205105178j x 10188
. 126696590 x 10385
. 842092989 x 1080
. 474033506 x 10793
.592484518 x 1079
. 842092989 x 1080
. 139482976 x 10162
.183039180 x 1079
4.139482976 x 10162
4.576576513 x 10718
-1.126276590 x 10718
-1.801870520 x 10719
1,002632034 x 10-19
1.590427852 x 10243
2.314999446 x 10242
1.590427852 x 10243
3, 643855593 x 10243
4.169401884 x 10~310
8. 776518558 x 10344

—

W WO = WD

5.107586708j x 107207
-8.171358617j x 10-208

2

2. 405160330 x 103
4,582578191 x 109
2.100045835 x 1011
1.4301 x 106

9

8

, 064671742 x 10-197

.863836389 x 10746
- . 9999699684
-1, 414192327
-5. 405747531 x 1024
-4,107746983 x 1019
-6. 992432040 x 1021
1.926178097 x 1017
-7,847883607 x 10748
-6.895189885 x 1098
1.896654271 x 10-8

2. 230758055 x 107207
-3, 568967890j x 10208
1.061285373 x 10405

1.347570418 x 10~7

9.205083423] x 10188
-2, 205083423 x 10188

4.126122615 x 10385
1.481363914 x 1080
5. 68546845 x 1094
-4, 409151006 x 1079
1. 481363914 x 1080
4,139482976 x 10162
3.183039180 x 10-9
4.139482976 x 10162
2. 555875189 x 1070
-4,919007608 x 10~

-7.869871931 x 10720
4, 378993579 x 10720

. 132080703 x 10242
.825160553 x 10242
. 132080703 x 10242
.591448251 x 10243

[or BN B i« P I Sl @)

O W I U B WN H OO~ U b WK
O DN U DN WO HDNWHR IO -3 00

R e S e N

. 374372065 x 107310
. 368854307 x 107344

. 2566279 x 107299
. 6526916 x 107299
8438881 x 107299
. 8648043 x 10-299
. 7570032 x 10-299
.5670449 x 107299
. 3442840 x 107299
. 1385489 x 107299
. 3359942 x 107303
.6088193 x 10~

.5687972 x 107311
.843 557 x 107316
9941111 x 10-320
. 3133097 x 10~324
. 7733840 x 107329
. 5429686 x 107333
.1220024 x 107337
. 9582959 x 107342

. 0642912 x 107298
. 8645246 x 107299
.8220867 x 107297
.5601706 x 107299
. 1323402 x 107299
. 5985988 x 107299
. 0225528 x 10~299
, 4684199 x 107299
. 0491791 x 107303
.6188111 x 107307
. 1384287 x 10-311
. 9660890 x 107316
. 17217359 x 10-320
.5302916 x 10-325
.1895703 x 10-329
. 8453555 x 10-333
.1421868 x 10338
. 5980855 x 107342

H

W€ e &

n |s2p )L
2w €€gC Eg

Y2 32 B

8
where Z = IZZ_; Fl Il
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CASE II
Summary of Values for ak = 102', BZ = 6, 000025 o lE
6= 5x10% Values of __\mg_l_
x .7 .5 r/a For x=,7 Forx=.5
y . 9998905959 .9999384817 0 |1.8096432 x 10> 5.2136187 x 10
f 3. 500280060 2.500160139 .1 |1.7835734 x 102 5,1385115 x 10
ny 2.404840387 x 10° 2. 404835008 x 10° .2 |1.7064903 x 10> 4,9164345 x 10
0 2. 236080556 x 105 2.236079069 x 105 .3 |1.5817168 x 102 4,5569609 x 10
M 5. 000447026 x 1010 5. 000480279 x 1010 .4 |1,4146147 x 104 4,0755384 x 10
S -1.87552 x 106 -1,47648 x 106 .5 [1.2123270 x 102 3. 4927458 x 10
£ 4, 638354547 x 10-97 4,639144141 x 10797 .6 [9.8343796 x 10 2.8333140 x 10
&, 3.646241238 x 106 3.532368146 x 1077 .7 |7.3756387 x 10 2.1249478 x 10
& -2. 332968653 - . 9998769634 .8 |4.8489892 x 10 1. 3970166 x 10
€ -2,788561642 . | -1.414126562 .9 [2.3573572 x 10 6.7917354
R -1, 201246835 x 10 -1.516656482 x 1043 |1,0 [3.0356136 x 1074 8.4724674 x 1076
T -5.556824512 x 1018 -5.011324661 x 1018 1.1 |2.5978231 x 1074 7.2505840 x 1076
R -2. 611720668 x 1020 -1.990641619 x 1020 1.2 2.2038224 x 1074 6.1509190 x 10~6
T! 3.020818349 x 1016 2.302445054 x 1016 1.3 |1.8470813 x 1074 5,1552463 x 10-6
3 -3,676783183 x 1078 -2,446310694 x 1078 |1,4 |1,5209538 x 1074 4,2450169 x 10-6
L -9,287120418 x 10796 | -4, 413530397 x 10795 1.5 |1.2211892 x 1074 3.4083672 x 1076
F, 1.421535942 x 1077 7.993544921 x 1078 1.6 |9. 4365436 x 1075 2.6337610 x 1076
F, 2.299760241j x 107106 | 1 018226137 x 107196 1,7 |6, 8530496 x 1075 | 1,9127019 x 10-6
Fg -3,832039965] x 107107 | -1, 696764786) x 107107 |1,8 |4.4333925 x 10-5 1.2373700 x 108
Fy 1,147162520 x 107204 | 5079880743 x 10729% 1,9 |2,1556305 x10®  |6.0164144 x 10~7
L 1. 347570470 x 1077 1.347570466 x 1077 2.0 |0 0
I, 8.015023185) x 1086 | 8,013856901 jx 1086
Iy -8,015023185] x 1086 | -8,013856901] x 1086
Iy 2.653635970 x 10182 2. 652850350 x 10182
Fy 5, 800314707 x 1078 1.063203035 x 1078 .91 |2.1139941 x 10 6.0906023
R F, 1784938139 x 1078 4,853114861 x 1079 .92 |1, 8720750 x 10 5. 3936289
1 Fe 1.728284623 x 10~8 -6.748558216 x 1079 .93 |1. 6316944 x 10 4,7010883
Fg 4,918169934 x 1078 7.372337806 x 1072 .94 |1. 3929462 x 10 4,0132505
I 2.787895257 x 1077 2.787895257 x 107 .95 [1. 1559233 x 10 3. 3303830
R I, 3, 605254500 x 1077 3. 605254500 x 10~7 .96 |9, 2071729 2.6527501
I 8. 762842367 x 10~7 8.762842367 x 1077 .97 |6. 8741914 1.9806136
Pl 1.915619857 x 10714 1.077186505 x 10714 | .98 |4, 5611931 1.3142336
FoI,  |-1,843263165 x 10719  [-8,159918555 x 10720 | 99 |2, 2691461 . 65388399
Faly  |-3.071388917 x 10720 |-1,359763019 x 10720 | 9931, 1314051 . 32608387
Fuly 3.044151727 x 10742 | 1.347616341 x 10722 | 9984, 5160701 x 1071 13021180
Fsls 1. 617066986 x 10-14 2.964098699 x 1071° | . 9992, 2552059 x 10-1 6.5065232 x 1072
R Fgle | 1.616879755 x 10715 | 3,631098763 x 10710
Fglg 4.309714787 x 10714 | 6,460263407 x 10715
YFl, |8.165756107 x 10714 | 2.745832962 x 10714
Coeff; | 3.618962810 x 107° 1. 042623596 x 107
Coeff, | 4.200826659 x 1074 1.172460375 x 1070
veif weyeEg e E2
Coe =
1
T 52(P2+ niz)z
2w €,62¢ Eg
Coef‘f2 =

R
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CASE III
ka = 7x10%, p% = 6.005102041 E
§= 5x10% Values of ° ' Zl
m
x L7 .5 r/a|l Forx=,T7 Forx=_.5
y . 9779975594 . 9876519579 0 |7.125499252 8.421984918
£ 3. 555976389 2. 532007921 .1 |7.022644030 8.300472142
n) 2. 407251260 x 103 2.406684664 x 10° .2 |6,718529845 7.941190526
P 1.566993507 x 104 1.566800030 x 10% .3 |6.226294257 7. 359653509
M 2. 494896933 x 108 2.498167021 x 108 .4 |5.567130934 6.580887224
S -1. 8520304 x 106 -1, 4616625 x 106 .5 |4.769275220 5. 638235455
£ 2.343388642 x 1077 2. 353220927 x 1077 .6 |3.866659658 4,571767509
£ 2.793267998 x 1074 1570659319 x 1074 .7 |2.897321346 3. 426394461
€ -2,259991865 -. 9753039158 .8 |1,901712998 2. 249848394
e -2.1727504880 -1, 396750794 .9 19.213164880 x 1071 | 1,090918066
R -2.045747178 x 1017 | -2.600475240 x 1017 1.0 |9. 224264276 x 104 | 6, 120993715 x 1074
T -1,873920396 x 1015 | -1,703190155 x 1070 |1.1 |7.893958174x 10™% | 5, 238235476 x 1074
R' -4,326419710 x 1014 | -3,326038291 x 1014 1.2 |6.696715401 x 1074 | 4,443774772 x 1074
! 1.021026696 x 1013 7.847629400 x 1012 [1.3 |5, 612692559 x 1074 | 3,724444016 x 1074
£3 -6.973370110 x 1076 | -4,646927041 x 1076 1,4 |4.621694767 x 1074 | 3.066842382 x 1074
L -2.340389651 x 10745 | -1,000450853 x 10744 1,5 |3,710805671 x 1074 | 2462398898 x 10~4
F, 2.1794648081 x 107° 1.575790576 x 107 1,6 |2,867465463 x 107¢ | 1,902779187 x 1074
F, 3.235412563) x 10713 | 1,444443912jx 10713 1,7 |2, 082423802 x 1074 | 1.381844950 x 104
Fq -5,153970917j x 1014 | -2,323110925) x 10714 1,8 |1,347166981 x 104 | 8,939467016 x 1072
Fy 1,153494515 x 10720 | 5,155845188 x 10721 |1,9 |6,550275578 x 1075 | 4, 346600927 x 1072
L 1, 347567668 x 1077 1.347568769 x 1077 [2,0 |0 0
L 2.099601048) x 1072 | 2, 096263246 x 1072
I -2,099601048j x 1072 | -2,096263246] x 1072
I, 1. 256431006 x 104 1.251876324 x 10%
F, 5. 104127906 x 1076 2. 138824275 x 10
RoFe | 2.109232969 x 100 9.107530442 x 1077
I Fg |-1.856345443 x106 | -9,465968673 x 1077
Fg 3.768417259 x 1076 1,551161837 x 107
I 2.787895257 x 1077 2.787895257 x 1077
Rl 3.60525450 x 1077 3, 60525450 x 10-7
Ig 8.762842367 x 107" 8.762842367 x 1077
L 3,765977397 x 10712 | 2,123486167 x 1071
FoI,  |-6.793075608 x 1071 | -3,027934684 x 10719
Foly  |-1.082128274 x 1071 | -4,869852048 x 1071
Fyly 1.449286274 x 10716 | 6, 454480521 x 10717
Fglg 1.422977398 x 10712 | 5,962818052 x 10713
ReFglg | 1.277961831 x 10712 5. 922509428 x 10713
Fglg 3.302204641 x 1072 | 1,359258666 x 10712
Fole 1.103935282 x 10711 | 5,260078149 x 10712
Coeff; | 2.856029500 x 1078 3.371265747 x 1078
Coeff, | 1276497612 x1073 8. 470522556 x 1074
Couts W €, €xC §2
oe
1 T %z(pz‘*'n'lz)z
2u€,€c \ E%
Coeff2

2
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