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Summary. Top coding of extreme values of variables like income is a common method of sta-
tistical disclosure control, but it creates problems for the data analyst. The paper proposes two
alternative methods to top coding for statistical disclosure control that are based on multiple
imputation. We show in simulation studies that the multiple-imputation methods provide better
inferences of the publicly released data than top coding, using straightforward multiple-impu-
tation methods of analysis, while maintaining good statistical disclosure control properties. We
illustrate the methods on data from the 1995 Chinese household income project.
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1. Introduction

Statistical disclosure control (SDC) is a class of procedures that deliberately alter data that
are collected by statistical agencies before release to the public, to prevent the identity of sur-
vey respondents from being revealed. These methods have increased in importance, with the
extensive use of computers and the Internet. The goal of SDC methods is to reduce the risk of
disclosure to acceptable levels, while releasing a data set that provides as much useful informa-
tion as possible for researchers. One aspect of this is the ability to draw valid statistical inferences
from the altered data.

Top coding is a simple and common SDC method that seeks to prevent disclosure on the
basis of extreme values of a variable, by censoring values above a prechosen ‘top code’. For
example, in surveys that include income, extremely high income values are considered to be
sensitive and have the potential to reveal the identity of respondents. By recoding income values
that are greater than a selected top-code value to that value, respondents with very high income
have reduced risk of disclosure.

It is left to the analyst to decide how top-coded data are analysed. One approach is to catego-
rize the variable so that top-coded cases all fall in one category—this is sensible but precludes
analyses that treat the variable as continuous. Another approach is to ignore the fact of top cod-
ing and to treat the top-coded values as the truth. This method is straightforward, but clearly
the data distribution is distorted and biased estimates will be obtained. A better method is to
treat the extreme values as censored. Under an assumed statistical model, maximum likelihood
(ML) estimates can be obtained by using algorithms such as the expectation–maximization
(EM) algorithm (Dempster et al., 1977). This method is model based and should yield good
inferences if the model is correctly specified. But we expect this method to be quite sensitive to
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model misspecification, especially when the upper tail of the assumed distribution differs mark-
edly from that of the true distribution. The data users can also apply an imputation method to
the top-coded data set and fill in the censored values. A limitation is that the imputed data fail
to reflect imputation uncertainty, and imputations are sensitive to assumptions about the right
tail of the distribution. We propose alternatives to top coding that allow better inferences for
the data user by using simple multiple-imputation (MI) combining rules, while preserving the
SDC benefits of top coding.

MI has been proposed as a method of SDC (Little, 1993; Rubin, 1993; Little et al., 2004;
Reiter, 2003, 2005a, b). An imputation model is built from the original data and observed val-
ues are replaced by draws from the predictive distribution based on the model. The imputation
process is repeated several times and the imputed data sets are then released to the public. Apply-
ing this approach to our problem, we delete the data values that are greater than a cut-off point,
which is chosen to be smaller than the top code to achieve a mixing of sensitive and non-sensitive
values, and apply MI to fill in these values. We then release multiple-imputed data sets to the
public. Data users can apply MI combining rules (Reiter, 2003) to obtain valid inferences, as
described in Section 3.

We propose non-parametric and parametric MI methods. The non-parametric method is a
hot deck procedure, where we replace the deleted values with values that are randomly drawn
with replacement from the set of deleted values. The parametric method is Bayesian and assumes
a model for the data, draws model parameters from their posterior distribution and then imputes
the deleted values with random draws from the posterior predictive distribution.

We compare estimates of the mean of the data from our methods with two estimates from
top-coded data. The first, as described previously, is to treat the top-coded values as the true
values. The second is to treat those values that are greater than the top code as censored and to
apply ML estimation under an assumed model.

We also investigate situations where covariates are present. We use the proposed MI meth-
ods to fill in for deleted values without conditioning on covariates. We then perform regression
analysis on the imputed data set and compare regression coefficients with those from original
and top-coded data. Extensions of our methods that condition on covariate data are also out-
lined.

The rest of this paper is organized as follows. Section 2 presents SDC approaches, and Section
3 describes corresponding methods of inference for a population mean. Section 4 describes a
simulation study to evaluate the approaches in Section 3, and Section 5 applies the methods to
data from the 1995 Chinese household income project. Section 6 considers estimates of regres-
sion coefficients for a regression where the outcome is subject to our disclosure control methods.
Section 7 gives conclusions and discusses future work.

2. Methods of statistical disclosure control

Let Y denote a survey variable (e.g. income) and suppose that values of Y that are greater
than a particular value yT are considered too sensitive for release to the public. We consider the
following approaches to SDC.

(a) Top coding: treat yT as a top-code value, i.e. replace values of Y that are greater than yT
by yT. The resulting sample is referred to as ‘top coded’.

(b) Hot deck MI (HDMI): choose a value yI that is smaller than yT. Delete the values of
Y that are greater than yI and replace them with random draws from the set of deleted
values. We choose yI < yT to achieve a mixing of sensitive and non-sensitive values. We
refer to yI as the cut-off point.
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(c) Parametric MI (PMI): the HDMI method provides disclosure protection by scrambling
sensitive and non-sensitive values, but it is arguably limited from the point of view of SDC,
since actual sensitive data values are released. The PMI methods address this concern by
releasing data that have been simulated from a parametric model. First, values that are
greater than yI are deleted, as with HDMI. The model—we consider the log-normal
model and power-transformed normal model (the power normal model for short)—is fit-
ted to the data. Parameters are drawn from their posterior distribution under the assumed
model, and deleted values are imputed with draws from their predictive distribution. See
Appendix A for details.

Write the complete data as Y = .Yret, Ydel/, where Yret denotes the retained values and Ydel
denotes the deleted values beyond the cut-off. We consider two versions of PMI, labelled PMIC
and PMID. For PMIC, we draw the parameter φ of the model for the data Y from its posterior
distribution given the complete data Y , i.e.

PMIC :φÅ ∼P.φ|Y/:

For PMID, we apply the parametric model to the deleted data Ydel and draw φ from its posterior
distribution given Ydel:

PMID :φÅ ∼P.φ|Ydel/:

The other steps are the same for these two methods, i.e. we draw deleted values from the truncated
predictive distribution

YÅ
del ∼P.Y |Y>yI, φÅ/:

PMID is less efficient than PMIC since it models the deleted data and fails to exploit fully the
information in Y when drawing values of parameters. However, modelling the deleted data only
as in PMID provides useful robustness to model misspecification, as we shall see below.

3. Methods of inference for the mean

We first consider the properties of these SDC methods for inferences about the mean of a variable
Y subject to top coding. Some comments concerning inference for other parameters are provided
in Sections 6 and 7. The following estimates and associated standard errors are considered:

(a) before deletion (method BD)—the sample mean of original data .y1, y2, . . . , yn/ before
SDC is

θ̂1 = 1
n

n∑
i=1

yi; .1/

this estimate is used as a bench-mark for comparing SDC methods;
(b) top coding (method TC)—the sample mean of the top-coded data set, namely

θ̂2 = 1
n

n∑
i=1

yit , .2/

where yit =yi when yi < yT and yit =yT when yi �yT; this approach is obviously biased,
and our objective is to improve on it with other methods;

(c) log-normal ML (method LNML)—the ML estimate based on the log-normal model,
computed by the EM algorithm (Appendix B). The log-normal is chosen as a convenient
model for right-skewed data, but we emphasize that other models could be considered.
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The standard errors for methods (a)–(c) are computed by the bootstrap, with B =100 boot-
strap samples.

The five remaining methods are all based on MI and create D sets of imputations for values
that are beyond the chosen cut point yI; D imputed data sets are thus created. For the dth
imputed data set Y.d/ = .y

.d/
1 , y

.d/
2 , . . . , y.d/

n /, where y
.d/
i =yi if yi <yI and y

.d/
i is the dth MI draw

if yi �yI. The MI estimate is then

θ̂MI = 1
D

D∑
d=1

θ̂.d/, .3/

where θ̂
.d/

is the sample mean of the dth data set. The MI estimate of variance is

TMI =var.θ̂MI/= W̄ +B=D, .4/

where W̄ =ΣD
d=1W.d/=D is the average of the within-imputation variances W.d/ for imputed data

set d and B =ΣD
d=1.θ̂

.d/ − θ̂MI/
2=.D − 1/ is the between-imputation variance. Formula (4) dif-

fers from the original MI formula for missing data (where B is multiplied by a factor .D+1/=D;
see for example Little and Rubin (2002), page 86), for reasons that were discussed in Reiter
(2003). Imputations for these MI methods are created as follows.

(d) Hot deck MI (method HDMI)—imputations are drawn randomly with replacement from
the set of values beyond the cut-off yI.

(e) Log-normal MIC (method LNMIC)—imputations are posterior predictions from a log-
normal model fitted to the complete data before deletion.

(f) Log-normal MID (method LNMID)—imputations are posterior predictions from a log-
normal model fitted to the deleted data beyond the cut-off.

(g) Power normal MIC (method PNMIC)—imputations are posterior predictions from the
power normal model, the power-transformed normal distribution fitted to the full data
before deletion. For convenience the power transformation is estimated by ML, and
parameters are drawn from the full data posterior distribution, treating the power trans-
formation as known. An alternative approach is to draw the power from its posterior
distribution as well, but we made use of the widely available ML routine box.cox.
powers() in R (R Project, 2007) in our calculations.

(h) Power normal MID (method PNMID)—imputations are posterior predictions from the
power normal model, fitted to the deleted data beyond the cut-off.

4. Simulation study

A simulation study was carried out to evaluate and compare the SDC methods in Section 3. We
computed point estimates of means and the corresponding variances and confidence intervals
from the imputed data sets and compared them with those calculated from the original data set
before SDC.

4.1. Study design
Data sets were generated from the following four distributions, all with mean 1: exponential(1),
gamma(1.25, 0.8), log-normal(−0.2, 0.4) and square-root normal(0.9, 0.19) (the variances of
these distributions are 1, 0.8, 0.49 and 0.69 respectively). Fig. 1 shows the form of these dis-
tributions beyond their approximate upper 10th percentile. For each simulated data set, we
calculated the eight mean estimates and their corresponding variances as discussed in Section 3.
To assess the validity of inferences, we calculated the 95% confidence intervals (CIs) based on
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Fig. 1. Tails of the data distributions in the simulation study: �, exponential(1); �, gamma(1.25, 0.8);
�, log-normal(�0.2, 0.4); �, square-root normal(0.9, 0.19)

the usual normal approximation and computed the proportion of CIs that contain the true
mean. For parametric estimates in Section 3, the simulated data distributions are allowed to
differ from those assumed in the statistical models, to provide an assessment of sensitivity to
model misspecification.

In our simulations we chose the 95th percentile of the population distribution as the top-
code value yT. Denote by nS the number of sensitive sample values that are greater than yT. We
studied two alternative values for the cut-off point yI: yI90, the value with 2nS larger values in
the sample, and yI80, the value with 4nS larger values in the sample. These values correspond
approximately to the 90th- and 80th-percentile values of the distribution, and for this reason we
label the version of a method with an asterisk that uses cut-off yI90 ‘Å90’ and the version that
uses cut-off yI80 ‘Å80’.

Clearly the disclosure risk is reduced by increasing the fraction of non-sensitive values that
are imputed. A simple measure of the risk of disclosure is the proportion of multiple-imputed
values beyond the top-code value yT. For all the MI methods, this is approximately 50% when
the cut-off point is yI90, and approximately 25% when the cut-off point is yI80.

4.2. Results
Tables 1 and 2 present simulation results for sample sizes 2000 and 200 respectively. Results are
based on 500 data sets for each model. We set B=100 for the number of bootstrap samples. For
both NPMI and PMI methods, we created D = 5 imputed data sets. As expected, method TC
underestimates the mean and has poor confidence coverage, particularly for the n=2000 sample
size where bias is a relatively large component of the RMSE. The HDMI methods (HDMI90
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and HDMI80) have minimal bias and close to nominal coverage for all the simulated popula-
tions, with small increases in root-mean-squared error RMSE and CI width compared with the
BD estimate. LNML dominates other methods for log-normal data but has serious bias and
very poor confidence coverage for the other data sets, suggesting marked sensitivity to model
specification. The LNMIC methods have similar properties, although they are less biased and
have somewhat better confidence coverage than LNML when the model is misspecified. The
LNMID methods are much more robust than their LNMIC counterparts, yielding minimal
bias and good confidence coverage for all problems that were simulated.

The PNMIC methods do consistently well in terms of RMSE. Confidence coverage is close
to the nominal value, except for exponential data with n= 2000 where coverage is a little low.
This suggests that the power normal model yields good fits to the range of models that were
simulated. The PNMID methods also perform well in terms of bias and confidence coverage,
but they are less efficient than the PNMIC methods.

When lowering the cut-off point from yI90 to yI80, we observe minor increases in RMSE
for HDMI, LNMID and PNMIC, and LNMIC when correctly specified. More substantial
increases in RMSE are seen for PNMID, and LNMIC when misspecified. The losses in effi-
ciency for HDMI80, LNMID80 and PNMIC80 may be acceptable given the increase in disclo-
sure protection.

To provide a visual illustration of the imputation methods under potentially misspecified
models, Fig. 2 shows the original deleted data values and the imputed values from the HDMI
and four PMI methods, with cut-off yI90, for one of the simulated square-root normal data sets
with n = 2000. Note that the mean of the deleted values is 2.78. The HDMI predictions look
similar to the deleted values and have a similar mean, 2.80.

The LNMIC predictions are too severely skewed and have some extreme predictions, reflect-
ing the damaging effect on predictions in the tail of applying a misspecified model to the full data
set. The LNMIC predictions average 5.68, which is a marked overestimate. In contrast, when
the log-normal model is correctly specified, the predictions track the deleted values well (the
data are not shown). The LNMID predictions have the shape of a normal distribution, reflect-
ing effects of model misspecification, but their mean, 2.72, matches the mean of the deleted
values well.

The PNMIC predictions match the deleted values quite well and have a similar mean (2.87),
reflecting that this model is correctly specified, since the power normal model includes the
square-root normal model as a particular case. The PNMID predictions are more skewed than
the deleted values, a reflection that the power normal model does not fit that well when applied
to the deleted values; however, these predictions average 2.79, which is very close to the mean
of the deleted values.

In summary, we see that, for inference about the mean, the HDMI method performs best
overall but has the limitations in terms of SDC that were noted above. Among the parametric
imputations, LNMID has the best performance and it works almost as well as HDMI. In partic-
ular it gives good estimates of the mean even when the log-normal model is misspecified and LN-
MIC is biased, reflecting the fact that the effect of misspecification on the mean is limited when
the model is fitted to the deleted data. (In contrast this method will work less well for large per-
centiles under misspecification, since the imputed distribution in the upper tail is distorted.) PN-
MIC also does quite well, reflecting that the power normal model fits the simulated distributions
well. The PNMID method is satisfactory in terms of bias and confidence coverage, but it is con-
siderably less efficient than PNMIC or LNMIC since it is fitting the larger power normal model
to the small set of deleted values. The risk of disclosure is reduced when we increase the set of val-
ues being mixed with the sensitive cases, at the expense of some loss of efficiency of the estimate.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Deleted and imputed values for square-root normal data (n D 2000) (values greater than 8 are
pooled into one category): (a) deleted values, mean D 2:78; (b) imputed (HDMI), mean D 2:80; (c) imputed
(LNMIC), mean D 5:68; (d) imputed (LNMID), mean D 2:72; (e) imputed (PNMIC), mean D 2:87; (f) imputed
(PNMID), mean D2:79

5. Application

We applied the above SDC methods to a subset of data from the 1995 Chinese household income
project,whichwasconductedbytheInter-universityConsortiumforPoliticalandSocialResearch
at the University of Michigan (Riskin et al., 2000). This project was designed to measure the per-
sonal income distribution in the People’s Republic of China in 1995. Income information on both
households and individuals was recorded for rural and urban areas. Since SDC was not applied
to the released data set, the effectiveness of the various SDC methods can be readily assessed.

5.1. Data analysis
We illustrated application of the SDC methods to both urban and rural individual income
values. After deletion of missing and zero income values, the urban data set included 15983
individuals and the rural data set had 6296 individuals. We applied the top coding, HDMI and
PMI methods to the data and computed the estimates (a)–(h) that were described in Section
3. The power transformation parameter that was estimated by the R function was 0.13 for the
rural data and 0.45 for the urban data.
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Table 3. Comparison of mean estimates, 1995 Chinese household income project, urban and rural data

Method Results for the urban data Results for the rural data

Estimate Fractional Standard Relative Estimate Fractional Standard Relative
deviation error of 95% CI deviation error of 95% CI
from BD estimate width from BD estimate width

mean (%) mean (%)

BD 6196 0 36 1.0 2196 0 339 1.0
TC 5895 −4.86 25 0.70 1969 −10.36 25 0.65
LNML 7732 25.8 85 2.38 2675 21.8 59 1.53
HDMI90 6196 −0 41 1.16 2196 0 45 1.16
HDMI80 6196 −0 43 1.19 2197 0.01 47 1.22
LNMIC90 6760 9.10 58 1.61 2512 14.39 70 1.80
LNMIC80 7320 18.14 69 1.92 2653 20.80 77 1.98
LNMID90 6174 −0.35 33 0.92 2179 −0.81 36 0.93
LNMID80 6162 −0.55 32 0.90 2164 −1.46 35 0.90
PNMIC90 6035 −2.60 29 0.80 2205 0.39 39 1.01
PNMIC80 6089 −1.73 30 0.83 2223 1.21 41 1.05
PNMID90 6135 −1.98 37 1.03 2196 −0.02 70 1.80
PNMID80 6108 −1.41 39 1.09 2378 8.26 338 8.74

5.2. Results
Table 3 displays the results from the data analysis. We plot the original deleted data values and
the imputed values from the PMI and HDMI methods using cut-off point yI90 in Figs 3 and 4
for the urban and rural data respectively.

Predictably, in both urban and rural cases, method TC underestimates the mean and yields
an underestimate of the standard error because of the reduction in standard deviation from top
coding. HDMI90 provides the estimate of the mean that is closest to the BD mean, with a 16%
increase in standard error. LNML has a large positive bias, indicating sensitivity to the lack of
fit of the log-normal model for these data. LNMIC90 is also quite biased, although it performs
better than LNML. LNMID90 has negligible bias and a slightly smaller standard error than
BD in both the urban and the rural data. The power normal model estimates PNMIC90 and
PNMID90 also have small bias. For the urban data, PNMIC90 has relative CI widths that are
less than that from BD, which seems anticonservative; for the rural data it has a standard error
that is very similar to that of BD. PNMID90 shows a slight increase in CI width for urban
data but a large increase in CI width for rural data, reflecting difficulties in fitting this com-
plex model to the deleted data. Changing the cut-off point to yI80 results in some increases in
bias and standard error for LNMIC80 estimates. Estimates from HDMI80, LNMID80 and
PNMIC80 are still acceptable, as are PNMID80 estimates in the urban sample. For the rural
data, PNMID80 yields an estimate with strikingly large bias and standard error, the result of
some very extreme outliers from imputation. It is important to check that the method is not
creating extreme outliers as in this illustration.

6. Study of statistical disclosure control methods with covariates

To make the situation more complicated and realistic, we now introduce covariates into our
analysis. We use the previous MI methods to impute deleted values, apply a linear regression
model to the imputed data set, calculate estimates of regression coefficients and compare them
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Deleted and imputed values for the 1995 Chinese household income project, urban data (values
greater than 85000 are pooled into one category): (a) deleted values, mean D 15164:56; (b) imputed
(HDMI), mean D14921:94; (c) imputed (LNMIC), mean D20787:62; (d) imputed (LNMID), mean D14606:76;
(e) imputed (PNMIC), mean D13712:23; (f) imputed (PNMID), mean D14081:03

with those from the original data. Since the MI methods do not condition on the covariates,
we expect some bias from this procedure; our interest is in the size of the bias and resulting
distortions in confidence coverage.

6.1. Simulation study
Data sets were generated from the following two distributions:

(a) high correlation distribution,(
X

log.Y/

)
∼bivariate normal

{(
38
8:6

)
,
(

93 5
5 0:38

)}
;

(b) low correlation distribution,(
X

log.Y/

)
∼bivariate normal

{(
38
8:6

)
,
(

93 2:5
2:5 0:38

)}
:

Here X is considered as the independent variable and Y is the dependent variable. For each
simulated data set, we applied the SDC methods to impute for deleted values and performed
linear regression of log(Y ) on X. We then calculated the estimates of the regression coefficient,
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Deleted and imputed values for the 1995 Chinese household income project, rural data (values
greater than 60000 are pooled into one category): (a) deleted values, mean D8971:90; (b) imputed (HDMI),
mean D8780:45; (c) imputed (LNMIC), mean D11777:76; (d) imputed (LNMID), mean D8698:32; (e) imputed
(PNMIC), mean D9103:11; (f) imputed (PNMID), mean D8408:86

their corresponding variances and confidence coverage, as we did for the estimates of the mean
in Section 4.

Table 4 displays results for sample sizes 2000 and 200. For data from the high correlation
distribution, method TC underestimates the regression coefficient, with large RMSE and very
poor confidence coverage. HDMI90 also underestimates the coefficient, as is to be expected
since the relationship between the outcome and covariate is attenuated by randomly ‘shuffling’
the values that are beyond the top code. Nevertheless it is less biased and has better coverage
than method TC. The other PMI90 methods yield almost the same result as HDMI90. When
changing the cut-off point to yI80, all MI methods yield estimates with more bias and RMSE,
reduced efficiency and worse confidence coverage. When the data are from the low correla-
tion distribution, all the MI methods have satisfactory properties. This suggests that, for more
moderately correlated data, the attenuating effect from imputing without conditioning on X is
relatively minor. For the smaller sample size of 200, all the methods are improved in terms of
RMSE and coverage, since bias is less of an issue.

6.2. Application in Inter-university Consortium for Political and Social Research data
We also consider the effect of the SDC methods on a multiple regression, estimated on a subset
of the urban data in the 1995 Chinese household income project. Our sample included 10 752
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individuals and 10 variables, with the logarithm of income treated as the dependent variable.
The covariates were age, gender, marital status, level of education, occupation, work environ-
ment, work intensity, years of work experience and logarithm of hours worked per week. To
simplify the analysis, we investigate only the scenario where the covariates are complete. We
applied the top coding, HDMI and PMI methods to the data, where the PMI methods were
applied to the marginal distribution of the dependent variable. We again computed estimates
of regression coefficients.

We plot standardized regression coefficients after imputation against those from the original
data set in Fig. 5. We choose HDMI, LNMID and PNMIC as representations of the MI meth-
ods and use the 90th, 80th, 60th and 40th percentiles of the outcome variable as cut-off points,
to assess the effect of increasingly severe imputation. We observe that, with yI90, the regression
coefficients from the imputed data set are very close to those from the data set before imputa-
tion, and imputation with yI80 also has a minor effect on the coefficients. This particular case is
similar to the low correlation scenario from the simulation study. We conclude that, in a situa-
tion where the outcome and covariates are not strongly associated, the MI methods proposed
are robust to the failure of the imputation model to condition on covariates. Lowering cut-off
points results in larger deviation from the original coefficients, leading to greater attenuation
of the relationship between outcome and covariates.

7. Discussion

Why should the secondary data analyst prefer our proposed MI methods for SDC to top coding?
First, appropriate treatment of the top-coded data, using methods like ML for censored data,
requires custom algorithms that are not widely available in standard statistical software; as a
result we believe that analysts often treat the top codes as true values and assume that the bias
that is introduced by this will be small. In contrast, MI inferences require only complete-data
methods and simple MI combining rules. Second, the MI methods tend to be less sensitive than
top coding to model misspecification, as seen in our simulation studies. There are two reasons
for this—the random draws from the predictive distribution provide variability even if the model
is wrong, and the MIs are based on parameter estimates that use information in the original
data that is not available in the top-coded data. The data producer is also better able to assess
and limit model misspecification, since she or he can compare analyses that are based on the
MI data with analyses that are based on the original data. In particular, the imputations from
the model can be compared with the true values.

For the data producer, MI has the advantage that the balance between disclosure protection
and loss of information can be controlled by the choice of cut-off and number of MIs that are
released. The use of MI allows uncertainty of imputation to be propagated, and the MIs of a
particular value enhance disclosure protection by making clear to a potential snooper that these
values are not real.

For inference about the mean, the HDMI, PNMIC and LNMID methods were decisively
superior to top coding in our simulations. It is clear that treating the top-coded data as the
observed data yields bias, the size of which depends on the fraction of cases that were top coded
and the extremity of the top code. The ML methods that are based on top-coded data are more
difficult to implement for the data user and are vulnerable to model misspecification. Of our pre-
ferred MI methods, the HDMI method produces excellent inferences but has limitations as an
SDC method, since original values in the data set are retained. The PNMIC and LNMID meth-
ods both yielded good inferences for the mean, with the PNMIC methods yielding imputations
that match well the distribution of the deleted values. The LNMIC method was vulnerable to
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misspecification, and the PNMID method yielded good confidence coverage but tended to be
less efficient than LNMID and PNMIC.

We chose the log-normal and power normal models to illustrate parametric MI, since they
are commonly used to model skewed data; they are not universal, and the MI approach could
be applied by the data producer with other models that are more suitable for the data at
hand. MI that is based on a model fit to all the data (as in the LNMIC and PNMIC meth-
ods) is efficient, but vulnerable to model misspecification. Hence, if this approach is adopted,
attention to good model specification is needed—in particular, it is important to check that
the distribution of the imputed values in the tail is similar to the distribution of the deleted
values.

MI that is based on a model fitted to the deleted values alone (the LNMID and PNMID
methods) involves some loss of efficiency but is more robust to model misspecification, since
the model is being fitted to the data that are being deleted. Here simpler models worked well for
the mean, but more refined models may still be needed to get the shape of the distribution in
the tail right. We note that, although method TC is generally inferior, it is better than MI when
estimating percentiles below the top code but above the cut-off point, since the MI methods
delete values in this range that are retained by method TC.

Our results clearly demonstrate the trade-off between reducing the risk of disclosure by allow-
ing a larger pool of non-sensitive values for mixing with the sensitive cases, and reduced efficiency
of the estimates. The MI technology is very helpful in propagating the increased uncertainty
from the disclosure control method, resulting in good confidence coverage.

MI of deleted values should in principle condition on the observed information, and hence
a refinement of the methods proposed is to condition the predictive distribution of the deleted
values on observed covariates. Our preliminary assessment of inferences for regression coeffi-
cients in Section 6 confirms that a failure to condition on covariates leads to an attenuation
of relationships between these covariates and Y. The bias was serious for highly correlated
covariates and large samples, but in other situations it was surprisingly minor. This suggests
that, when applying the MI method to multivariate data, it may suffice to condition on a rela-
tively small set of covariates that are strongly associated with the variable that is subject to SDC.
A simple way of doing this for a small set of categorical covariates is to apply the methods that
were presented here within strata defined by the covariates, as in the urban and rural strata in the
application in Section 5. More generally, regression-based extensions of the methods PNMIC
and PNMID can be readily defined by including the key covariates in the mean function. We
plan to develop and assess these refinements in future work.

We have confined attention here to inferences from top coding and MI methods; other alter-
natives to top coding are also of interest. One such alternative is to add random noise (e.g.
normal noise as in Fuller (1993)) to the values beyond the top code. This method may yield
satisfactory (if less efficient) inferences for the mean, but noise with substantial variance needs
to be added to yield reductions of disclosure risk that are comparable with those of MI, and
adding such noise potentially distorts the distribution. Also custom adjustments are needed
for inferences about other parameters, such as regression coefficients. If multiple imputes are
created by adding noise to the true value, the average of these imputations converges to the
true value as the number of imputations increases, which is an undesirable property from the
perspective of disclosure protection. Our MI methods do not have this property: the average
of the MI imputed values converges to the conditional mean of the predictive distribution, not
to the true deleted value. Thus increasing the number of MIs improves efficiency of inferences
without compromising gains in disclosure protection. This is a major attraction of MI as an
SDC method.
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Appendix A: Parametric multiple-imputation method for log-normal model and
power-transformed normal model

For X from a log-normal.μ, σ2/ distribution, Y = log.X/∼N.μ, σ2/. If X is from the power-transformed
normal(μ, σ2, λ/ distribution with λ �=0, Y = .Xλ −1/=λ∼N.μ, σ2/. To apply the PMI method we estimate
λ by its ML estimate λ̂ by using the widely available routine box.cox.powers( ) in R (see R Project
(2007)) and then assume that Y = .Xλ̂ −1/=λ̂∼N.μ, σ2/. (A more principled approach would also simulate
λ from its posterior distribution.)

Given data Y = .y1, . . . yn/ from the N.μ, σ2/ distribution, the posterior distribution of parameters is

σ2|Y ∼ .n−1/S2

χ2
n−1

, S2 = 1
n−1

n∑
i=1

.yi − ȳ/2 .5/

and

μ|σ2, Y ∼N.ȳ, σ2=n/: .6/

We draw parameters μÅ and σÅ2 from their posterior distribution and then draw deleted values for normal
data from the predictive distribution

YÅ
del ∼N{μÅ, σÅ2|Y> log.yI/}: .7/

We then transform the draws of normal data back to log-normal,

log-normal: XÅ
del = exp.YÅ

del/, .8/

and power-transformed normal data,

XÅ
del = λ̂√.λ̂YÅ

del +1/: .9/

Appendix B: EM algorithm for log-normal model

If X is log-normal(μ, σ2/, then Y = log.X/ is N.μ, σ2/ and μ′ =E.X/= exp.μ+σ2=2/. Let Y = .y1, . . . , yn/
be a random sample from N.μ, σ2/, and suppose that yi is treated as missing if and only if yi > c, where c
is a known censored value. Without loss of generality, we assume that yi is observed for i=1, 2, . . . , r and
missing for i= r +1, . . . , n. The complete-data likelihood is

L.μ, σ|Y/∝ exp
{

−n log.σ/−
n∑

i=1

y2
i

2σ2
− nμ2

2σ2
+μ

n∑
i=1

yi

σ2

}
: .10/

The complete-data sufficient statistics are

S.Y/=
(

n∑
i=1

yi,
n∑

i=1
y2

i

)
: .11/

We write Y = .Yobs, Ydel/, where Yobs denotes the observed values and Ymis denotes the missing values. Given
parameter estimates θ.t/ = .μ.t/, σ.t//, the (t +1)th iteration of the EM method is as follows:

(a) E-step,

s
.t+1/
0 =E

(
n∑

i=1
yi|Yobs, θ.t/

)

=
r∑

i=1
yi +

n∑
i=r+1

E.yi|yi >c, θ.t// .12/

=
r∑

i=1
yi + .n− r/

∫ ∞

c

y
1√

.2πσ.t/2/
exp

{−.y −μ.t//2

2σ.t/2

}
dy

[∫ ∞

c

1√
.2πσ.t/2

/
exp

{−.y −μ.t//2

2σ.t/2

}
dy

]−1
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s
.t+1/
1 =E

(
n∑

i=1
y2

i |Yobs, θ.t/

)

=
r∑

i=1
y2

i + .n− r/

∫ ∞

c

y2 1√
.2πσ.t/2/

exp
{−.y −μ.t//2

2σ.t/2

}
dy

[∫ ∞

c

1√
.2πσ.t/2/

exp
{−.y −μ.t//2

2σ.t/2

}
dy

]−1

;

.13/

(b) M-step,

μ.t+1/ = s
.t+1/
0 =n,

σ.t+1/2 = s
.t+1/
1 =n− s

.t+1/2
0 =n2:

.14/

Once the sequence of θ.t/ has converged to a stable value (μ̃, σ̃/, we calculate the ML estimate of μ′ as

θ̂4 = μ̃′ = exp.μ̃+ σ̃2=2/: .15/
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