Abstract

Interest in applying radar remote sensing for the study of forested areas led
to the development of a model for scattering from corrugated stratified dielectric
cylinders. The model is employed to investigate the effect of bark and its roughness
on scattering from tree trunks and branches. The outer layer of the cylinder (bark)
is assumed to be a low-loss dielectric material and to have a regular (periodic)
corrugation pattern. It is further assumed that the corrugation exists in only the
angular direction (two-dimensional problem). The inner layers are treated as lossy
dielectrics with smooth boundaries.

Under the mentioned conditions, a hybrid solution based on the moment method
and the physical optics approximation is obtained. In the solution the corruga-
tions are replaced with polarization currents that are identical to those of the local
tangential periodic corrugated surface, and the stratified cylinder is replaced with
equivalent surface currents. New expressions for the equivalent physical-optics
currents are employed which are more convenient than the standard ones.

It is shown that the bark layer and its roughness both reduce the radar cross
section . At frequencies where the bark thickness and its roughness are consid-
erable fractions of the wavelength the radar cross section reduction becomes very
significant. [t is also demonstrated that the corrugations can be replaced by an
anisotropic layer and expressions for the elements of its permittivity tensor in
terms of the corrugation parameters are derived In Appendix A. Application of

the equivalent dielectric layer simplifies the problem extremely.
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1 Introduction

The literature concerning the problem of scattering from cylinders with rough
surfaces is relatively scarce. To our knowledge the first treatment of a problem
of this sort was given by Clemmow [1959] where a perturbation solution to an
eigen function-expansion was obtained for a perfectly conducting cylinder with al-
most circular cross section, and only the E polarization case was considered. This
technique is restricted to very smooth and small roughness functions. Other per-
turbation techniques for perfectly conducting cylinders with very small roughness
have also been developed [Cabayan and Murphy, 1973; Tong 1974]. None of the
existing techniques can handle dielectric rough cylinders, particularly when the
roughness height is on the order of the wavelength.

Study of this problem is motivated by the fact that a tree trunk can be viewed
as a multi-layer dielectric cylinder with a rough outer layer. The outer layer has
almost a periodic pattern and the roughness height is proportional to the diameter
of the cylinder. This layer consists of dead cells with almost no water content;
hence, its dielectric constant is low and slightly lossy. The inner layers that carry
high dielectric fluids have very high and lossy dielectric constants. In modeling
a tree, the branches and trunk usually are considered to be homogeneous smooth
cylinders [Durden et al, 1988; Karam and Fung,1988]. In this report the effect of
bark and its roughness on scattering is studied.

Under the assumption that the bark roughness is a regular corrugation in only

the angular direction (i.e., ignoring variations in the axial direction) and the radius



of curvature of the cylinder is much larger than the wavelength and the period of
corrugation, an approximate solution to the scattering problem is obtained. In
this solution, each point on the surface of the cylinder is approximated by its
tangential plane. Then the polarization current in the periodic tangential surface
is obtained numerically. Once the polarization current in the corrugations is found,
the scattered field due to the corrugations together with the scattered field from the
smooth cylinder (when the corrugation is removed) give rise to the total scattered
field. The scattered field for a smooth cylinder is obtained using new physical
optics surface currents that are more convenient than the traditional ones. It is
shown that the corrugation on the surface can be replaced with an anisotropic
layer which would extremely simplifies the problem. In Appendix A the equivalent
dielectric tensor of the corrugated layer in terms of the corrugation parameters is

derived.

2 Scattering from Periodic Corrugated Planar
Dielectric Surface

In this section we seek a numerical solution for the total field (or polarization
current) inside a periodic inhomogeneous layer lying over a stratified dielectric
half-space illuminated by a plane wave. The geometry of the scattering problem
is shown in Fig. 1. First the two-dimensional Green's function for a stratified
dielectric medium is found. Using Floquet’s theorem these results are extended to

the periodic case. Then the problem will be formulated as an integral equation



that can be solved numerically by the method of moments.

+ E(x,y) ¢0 L

Figure 1: Geometry of a periodic inhomogeneous dielectric layer over a stratified

dielectric half-space.

2.1 Two-dimensional Green’s Function for a Stratified
Dielectric Half Space

For a volume distribution of electric current (J.) occupying region V in free space,

the corresponding Hertz vector is given by

iZo CikOIF-F'I

- =/ !
H"4wko/vJ(’)|f-ff|dv’

where Zo(= ) is the free-space characteristic impedance and the resulting fields

Yo
are
c= K1+ 3&) L+ 550,
2
= il + k3 (1+;‘ga%,) 1, (1)
E,= kI,



The Hertz vector potential associated with an infinite current filament located

at point (z’,y’) in free space with amplitude I, and orientation p is of the form

-7

B ke =P =y, p=zyorz ()

Hp(éf,y) =

The corresponding field components can be obtained by inserting (2) into (1) and

then by employing the identity

1 r+oo etkyly—y'|-tkz(a-2")
B (ko/e =2+ (=)D = = [

T J-o0 ky

dk; (3)

the resulting fields can be expressed in terms of continuous spectrum of plane

waves. In (3) k, = \/m and the branch of the square root is chosen such that
V-1=1.

In the presence of the dielectric half-space, when the current filament is in
the upper half-space, each plane wave, is reflected at the air-dielectric interface
according to Fresnel’s law. It should be noted that the incidence angle of each

plane wave, in general, is complex and is given by

k-

v = arctan(

5’
The net effect of the dielectric half-space on the radiated field can be obtained by
superimposing all of the reflected plane waves that are of the following form

Rq(,y)eiky(y+y’)—ik,(z—x’)‘ q= Eor H.

where R,(7) is the Fresnel reflection coefficient. The total reflected field can now

be obtained by noting that

E; = -Ru(1)E;

I



and since the direction of propagation along the y axis is reversed for the reflected
waves, the operator - for the z and y components of the reflected field must be

replaced by —8%. Thus,

r k 2 0o eiky(y+y’)—ikz(z=2')

Exz - 45 [ I(1+P'a,_-2)+[ 3332,] . RH('Y) s yky dk.,
r oo Ryl Ne—ikg(z—z')

Ey= -8B L + L(1+ & &) 13 Ra(n) =g =2 dk, ()
» o0 etky(yty’)—ikz(z—2')

Ez = T Iz fjoo RE(’Y) e ky dk:r

In matrix notation the total field in the upper half-space can be represented by
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Gy= —BB0+EL)H (ky/(z - 2) + (y - ¥')?)

ky(y+y')=ikz(z—z')
+1 [33 Ryg(y) 0 ),

G.o= —BLHV (ko/(z - 2')2 + (y - y')?)

etky(y+y ) —ikz(z—2")

+'1,F fjf: RE(’Y) ky dkx]

are the elements of the dyadic Green’s function for two-dimensional layered dielec-
tric half-space problems. If an electric current distribution J. occupies region S in
the upper half-space, the radiated electric field at any point in the upper half-space

can be obtained from:
Ez,y) = fS[Gu(r, y; 2,y ) (2, y') + Goy(z,y; 7 y')Jy(z, y')|dz'dy’
Ezy) = [5Gyl y;2,y") (2, y) + Gz, v 2, y") y(2',y"))da’dy’  (T)

Ei(z,y) = fSGu(m,y;x’,y’)Jz(x’,y’)dx’dy’
2.2 Far Field Evaluation

In scattering problems the quantity of interest usually is the far field expression.
Here we derive the approximate form of the Green’s function in the far zone using
the saddle-point technique. All the elements of the dyadic Green’s function have

an integral of the form

1 r+> e'ky(y+y') =tk (z-1')
I=—[ "R dk, (8)

™ x ky



Using the standard change of variable
kr = kosin~y

the integration contour is changed from the real axis in the complex k.-plane to

contour I in 4-plane as shown in Fig. 2. Also by defining

SD.P

Figure 2: Contour of integration and steepest descent path in y-plane.

z — ' = pysin ¢y, y—y' = pacos ¢y
integral (8) in y-plane becomes:
1 ikopa cou(x+42)
P—— ) [ ] d
I=— [ Ryxe .
The saddle point is the solution of

d
3 coslr+ $2) =0



implies v = —¢,. When kgp, > 1 the approximate value of I can be obtained by
deforming the contour of integration from I' to the steepest descent path (S.D.P.)

given by
Im[i cos(y + ¢,)] = 1.

There are some poles associated with the reflection coefficient function (R,(v))
of a layered dielectric medium that are captured when the contour is deformed.
the contribution of these poles gives rise to surface waves, but their effect can be
ignored if the dielectric materials are lossy and observation point is away from the

interface. Under these conditions we get

I = LRy(=62) fsp.p ™m0y

&

2_cilkor=m/4 R (4,),

ko p2

where we have used the fact that R, is an even function. Also the large argument

expansion of the Hankel function can be used for distant approximations, i.e.

2 keorr
Hy (k{2 = 202+ (y = y)) o [ eilon i),

where p; = \/(x —z')2+ (y — y')% From Fig. 3 it is seen that in the far zone the

following approximations can be used also
o1 =02=29,
pr=p—12'sind — y' cos ¢,
p2 =p—2'sind + y'cos .
These approximations can be inserted into expressions for the dyadic Green’s func-

tion given by (6). The far field approximation of derivatives of the Hankel function

(o8]



and integral J can be obtained by retaining the terms up to the order p~'/? and
discarding the rest. Thus the expressions for the Green’s function elements in the

far zone become:

J— _knfn /”2 ei(kop-r/4) COS2 ¢e—iko sinéz’[e-iko cos gy’ __ RH(¢)eiko cosd)y’}

G
G:z:y = b_q_g_ Tet(kop—r/‘t) sm¢cos ¢e —tkp amqb:z:’[ —tko cos ¢y’ +RH ¢) ko cosd>y']

(
Gy = Lcn_n /_z_ei(kop—rM) sin @ cos ek dn¢d[e-ikom-¢y’ Ru(d)e ikocos¢y’]
G’W = ..n.Zn. / t(kop-"/‘i) sin ¢e—cko undm'[e—cko cos gy’ 4 RH(¢) iko cosdw]
Gzz= __n4_q, /me‘(hp-”/“)e-'h"né’l[e"hcuw'+RE(cﬁ)eik"c“d’yl].
(9)
! %
(X,y)
(x'.y')= Source Point
(x',-y')=Ilmage Point
(x,y)=Observation Point
¢
X
>
(x',-y")

Figure 3: Geometry of the line source and its image.

It can easily be shown that for an electric current distribution J,. the radiated

far field does not have a 5 component and the far field amplitude defined by

E = | —2—gilks=r/4)g
mkop




has components
5¢ — h)Ll_Z_Q_{fS cos qux(x/’yl)e-iko sind)a:'[e—iko cospy’ __ RH((ﬁ)Ciko coséy’]dmldyl
_ fS sin ¢Jy(a:’, y/)e—iko sin ¢z’ [e—iko cos ¢y’ + RH(gﬁ)eikO cosd)y']dl.ldyl}, (10)
Sz — _I_cQ4_ZQ_ fS Jz(l‘l, y/)e—-z’ko sinzbz’[e—iko cos ¢y’ + RE((ﬁ)Ciko cos ¢y’]d$'dy',

2.3 Scattering from Inhomogeneous Periodic Dielectric
Layer above a Half-Space Layered Medium

Consider an inhomogeneous dielectric layer of thickness ¢ on top of a stratified half-
space dielectric medium as shown in Fig. 1. The permittivity of the inhomogeneous
layer is represented by ¢(z,y) which is a periodic function of z with period L.
Suppose this structure is illuminated by a plane wave whose angle of incidence
and polarization respectively are ¢y and p. For an E-polarized wave p = 7 and
for an H-polarized wave p = — cos ¢oZ — sin ¢of, thus the incident wave may be

represented by

Ei — ﬁeiko(sinéox—cosd)oy)' (11)
A polarization current distribution is induced in the inhomogeneous layer. This
current gives rise to a scattered field that can be obtained from (7). The polariza-
tion current is proportional to the total field within the inhomogeneous layer. The

total field is comprised of the incident field, the reflected field which would have

existed in the absence of the inhomogeneous layer, and the scattered field, i.e.

E‘'=E +E +E°

10



The polarization current in terms of the total field is given by

Je(z,y) = —ikoYo(e(z,y) — 1)E- (12)

Upon substitution of expression (7) for E® into (12) a set of integral equations for

polarization current can be obtained; for E polarization we have

To(z,y) = —ikoYo(e(z,y) — 1){eikominbor]emikocosdoy 4 R () ik cosdoy] -
+ o S22 T,y G (2, y; 2,y ) da'dy'},
and for H polarization
Jo(z,y) = —ikoYo(e(x,y) — 1){cos goe'* sndns[—e=thocostoy 1 Rpy(gg)etho cos o]
+ Jo 2312 ) Gaela, 32", y') + (2, y') Gy (2, y5 2, y')|d'dy'},
Jy(z,y) = —ikoYo(e(x,y) — 1){—sin goetko sindoz[e=tho costoy 1 R py(gg)etho o 0]
+ Jo 23[J=(, 4" )G el 35 2, y') + Ty (7', ) Gy (2, y5 2, y') ] d'dy' ).
(14)

Since there is no closed-form representation for the kernel of these integral equa-
tions, finding the solution, even numerically, seems impossible. But by employ-
ing Floquet’s theorem the integral equations can be reduced to a form which is
amenable to numerical solution. The fact that the permittivity of the inhomoge-
neous layer is periodic in z,excluding a phase factor, all the field quantities are

required to be periodic in z . Therefore the polarization current must satisfy

Jo(z+nL.y) =T (z,y)e*osinonl (15)

11



Now by using (15) the integration with respect to z can be simplified significantly

by breaking the integral into multiples of a period, that is

+o0
L. = [ G.(z,y;2',y)J.(2',y")dz'dy’
e (16)

+
= L [t Gl i y) ey )dedy
At this stage, if the variable z’ is changed to z’ + nL and property (15) is used,

I,. becomes
1‘0+L ! ! I ! ! !
Izz = / GZZ(CL',?/;ZE ' Y )JZ(IIZ Y )d(L‘ dy

where
+00 o
GP(z,yi2'y) = Y, Gaul@,y;8" + nl,y )eosindont

n=-—oo

If the expression for G, as given by (6) is inserted in the above equation and the

order of summation and integration is interchanged, and then the identity

+o00 , ¥oo
3 einbtosingoths) — o 5™ §[(ks + kosin ¢o)L — 27n]

n=-—oo n=-—oo

is employed, the periodic Green’s function simplifies to

koZo +00 , " . e~ tknz(z-2')
GZZ(I. y: II, yl) - — .)L Z {ezknyly—y | + RE(’Y,;)&' ny(y+y )]_T— (17)
~ n=-o0 ny
where
2
kne = % — kg sin ¢o, kny = k2 - k2,
and
kﬂl‘
¥p = arctan(—).
Koy



Other elements of the periodic Green’s function can also be obtained in the same

manner

+o0 i ! i ’ -lknz(.t—z:')
Gr(z,y;2',y) = -8B+ F &) T [e*nhvvl - Ry(y,)elbnlvty))einiz)

ny

o

o0 : ] - ’ —iknz(z—1
G20 y) = — 3B sly L [V Ry(y)eitmlty)) s
12 . o ; "\ e=tknz(z=2")
Goo(z,y; ', y') = 38 37 ke Falv=dl — Ry )etbnsluty)] g
oo i - ‘ ' e—uknz(x—-z’)
Gzy((z,', v; CL‘I, y/) = —592%0-(]_ + Plo.%f) nzz_:oo[e knyly—y'| + RH(’Yn)e kny(y+y )]T
(18)
The integral equations (13) and (14) now take the following form
Jz(a:,y) —_ —l'kQYo(E(it,y) _ 1){eiko sind)o:z:[e—iko cos doy + RE(¢0)eik° cosaSoy]
t +L/2
+[ ] J(2y)GE (2, ;2" y")da'dy'},
0 -L/2
Je(z,y) = —ikoYo(e(z,y) — 1){cos Boe'* “i“"sf”’[—e""‘o cosboy 4 RH(qbo)e““’ cos dov]
t +L/2
+ Of_Lf/z[Jx(x’, y)GE(z,y;2'y") + Jy(2', y)GE (2,95 7', y')]da'dy'},
Jy(z,y) = —tkoYo(e(z,y) — 1){—sin goet¥o sinto[g=hocosdoy L R y(pg)etho s dov]
t +L/2
+ ({_Lfﬁ[«’z(w', y)GE(z,y:2',y") + Jy(2',y")GE (z,y; 7', y")|dz'dy'}.
(19)

Far away from the surface (y > \g), contribution of only a few terms of the
summations in (18) are observable. These terms correspond to values of n such
that k., is real and they are known as the Bragg modes. Among all the Bragg
modes the mode corresponding to n = 0 carries most of the scattered energy and

this is specifically true when L < Agq. The scattered field due to this mode is a

13



plane wave and for E and H Polarization, respectively, we have

t +L/2 . ! N 7 N H '
EE — 51_—5_580_;5 {f f Jz(xl’yl)[e—zko cos oy + REezko cos oy ]e—-zko singor dzldyl}
0-L/2

_eiko (cos ¢ y+sin oox)é:

(20)
Z n ¢ +L/2 : J . ! k M ]
EH — _chond,o cos ¢y f f JI(I,, yl)[e—:ko cos oy __ RHe:ko cos doy ]e—z 0 sin o dxldy/
0-L/2

+L/2
— 81N @g

O m—N—

Jy (2, y/){e—iko cosdoy’ 4 Ryei* cosd)oy’]e—iko sinéox’dxldyr}
-L/2

-(COs Bod — sin pojf )ekolcos doytsindoz)
(21)

2.4 Numerical Implementation

It is very unlikely to find an analytical solution to the equations as given by (19)
even for the simplest form of ¢(z,y). However an approximate numerical solu-
tion can be obtained using the standard moment method with point matching
technique. In this method the cross section of the inhomogeneous layer over one
period is discretized into small rectangular segments over which the dielectric con-
stant and polarization current can be assumed to be constant. Now in equation
(19) the integrals over one period of the inhomogeneous layer can be broken up
into summation of integrals over each segment where the polarization current is
constant.

Let pq designate a cell whose center coordinate is (z,.y,) = (pAz.qAy), where
p and ¢ are some integers and Ar and Ay are dimensions of the rectangular
segments. [f the polarization currents as given by (19) are evaluated at the center

of uv-cell (point matching) the integral equations can be cast into matrix equations.

14



The matrices formed by this technique are known as the impedance matrices. The

solution to this matrix equation gives the polarization current at the center of each

segment.

After a simple integration of the periodic Green’s functions over the area of pg-

cell, it can be shown that the entries of the impedance matrix for E polarization

(TM case) are of the form

Z(U,U;p,Q) = 4

[ 28y 0) = 1) 5 [ehuubiomal 1 Rip(sy,)etbos(on 00)] nlinaln

’ n=—eo nz Kny
sin(knp Az /2)e™ ne(ze=22) ot g
] +00 . '
ﬁg&(é(u, v) - 1) Z [—ieikwAy/2 +1+ RE('Yn)C‘zknyyu

-sin(k,,yAy/Q)]H:k—2 sin(kpe Az /2)e~Hns(Zu=22) 4 =gy £p

: +o0 . .
-1+ 2;;3_(6(“’ v) = 1) L [—iethnwB¥/2 44 Rp(y,)eknv

-sin(kn, Ay/2)| = - sin(kn:Az/2) v=qu=p.
nz Kny
(22)

For H polarization (TE case) the integral equations for J; and J, are coupled,

which result in coupled matrix equations that can be combined into a single matrix

equation. The resultant impedance matrix consists of four sub-matrices of the

following form

z_ 2, 2z |

23 2,4



whose entries are given by

Zi(u,v;p,q) =

Zy(u,vip,q) =

Zy(u,v;p,q) =

S

4

2 400 . _ . —kiz "
zlém(E(-u,v) -1) nzz_:oo[elknylyu val — Ry () ethns v tua)] & Mk%/y )
'Sin(knyAy/Q) Sin(knz‘AI/(z)e—iknz(Iu—IP) v # q
: 3 + 00 i '
22Lk2(6(u,v) — 1) Z [_iezknyAy/Z 44— RH(,yn)eﬂk,,yy,,
n=-00

Sm(/cnyAy/‘) ]_EI_/_LSIH(knxA:E/Z) —iknz (zu—2p)

vequ#p
. +0o0 . .
-1+ 2'z’-‘:‘%-(e(u,v) —1) % [~iet i/ 4 i — Ry(yn)e' Pt
-sin(knyAy/Q)]Q-;—k%@g—) - sin(knzAz/2) v=qu=p,
nz Fny
(23)
. +© . .
Fle(w,v) = 1) T [sgnlyy — yoetslie el 4 Ryy(y,)ethnylivtsal]
'krlx—y sin(kn,Ay/2) sin(kn Az /2)e ™ Fns(Fu=2p) v #q
. +oco . .
Fle(w,v) = 1) & Rulya)e™ s sin(kny Ay/2)
-sin(knz Az /2)e™ kns(Tu=2p) v =g,
(24)
o +:25 . v .
Tle(uv) = 1) 3 [sgn(y, = yg)e™ vl — Rpy(yn)ettnlivrual]
7:',1._9 sin(kn, Ay /2) sin(k, Az /2)e ™ knz(zu=7p) v#q
21- _1 T _R ‘-2knyyv 3 k A 9 __1_.
L(C(u~v) ) —Z-;oo H(7n)6 Slﬂ( ny y/")kny
) Sin(anAI/Q)e—ik"x(:"_IP) v =4q,
(25)
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(

2 () = 1) 5 {(1 = Sl sl 4 Ry, )eiknstre 0]
knrlkz,y ) Sin(knyAy/Q) Sin(anAz/Q)e'iknr(fu—z‘p)} v #q
B (euv) = 1) 8 [=ill = H)ehmoa2 ik Ry(,)(1 - )

Sin(knzA[L‘/‘Z)e-iknx(l‘u—Z‘p)

-sin(kn,Ay/2)etHnyvv] L
Zy(u,v;p,q) = (knyAy/2) ]kmkgy
v=qu#Fp

L B () — 1) 5 (i1 - et 2 4 4 Ru(y)

n=-—0oo

(1 _ _21) 31n(knyAy/2) z2knyyv] knzlk

— sin(k,,Az/2)

v=qu=np.
(26)
In (24 ) and (25) sgn(z) is the sign function defined by
+1 ifz>0
sgn(z) = (27)
-1 ifz<0.

All series in (24), (25), and (26) are exponentially convergent and thus the series
can be truncated for relatively small n. This is also the case for (23) except for one
term in the summand of the expressions corresponding to v = q. The convergence

rate of

/k2 : —tknz(Tu—zp) ;
Z z k k2 -sin(kn Az/2)e ™ nstTu"p (28)

n=-0oo

is very poor and in order to improve the convergence rate the standard trick is to
add and subtract a series whose summand is asymptotic to the original series. For

large n



and the summand is approximated by

L |
{—85;; sin(k — nxAz/?)e"k"’(“’“'””)

where the asymptotic forms for k,, and k., are only used in the amplitude factor.

It can be shown that

na

+00 e

2

n=-—o00,n#0

= isgn(a)(r— | a|) (29)

where « is a real number. By employing (29), a closed form for the asymptotic
series (S,p,) can be obtained and is given by

r L —iknz(ru“rp)[sgn(;l;p - xu)(l - ELI"LL——I—UI) sin(ko sin ¢0A$/2)

2—k§'6
Sapp = — 182 cos( ko sin goAz/2)] z, # 1,
%(1 - %) cos(ko sin ¢oAz/2) Ty =z,

Now (28) can be written as

IoIX k2 -k L : i sin(ko sin ¢oAz/2)
2 nr . kn.r 2 —tknz(zTu—zp)
S=g L lhm ~ gesintkete/2e T Koo

4

=00
n#o

+Sapp

in which case the series converges very fast.

The right-hand-side of the matrix equations may be represented by an excita-

tion vector whose elements, for E polarization, are

b(u.v) = ikoYo(e(y, y,) — 1)ekosintorufe=thocosdore L (4 )etho cosdove]
The excitation vector for H polarization is made up of two sub-vectors with entries
bi(u,v) = thoYo(€(Ty,yy) = 1) cos oe'R in®omu_g=thocosdons 4 p (g )eiko cosdove]
by(u. v) = —ikoYo(e(zy,yy) — 1) sin gge'fosintoTulg=kocosdors o p, (5 )etho cos@ov],
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We point out that the inhomogeneous layer may have an arbitrary thickness
profile with a maximum height ¢. In such cases we may assume that the layer has

a constant thickness ¢t and the permittivity corresponding to air-filled points is 1.

3 High Frequency Scattering from Stratified Cylin-
ders

For dielectric cylinders with large radii of curvature, physical optics may be used
to obtain the scattered field provided the dielectric has sufficient loss to prevent
significant penetration through the cylinder. The dielectric loss also suppresses
the effects of creeping waves which enhances the physical optics results. If the
dielectric cylinder is stratified, the physical optics approximation could still be
used if the radius of curvature of all the interface contours are much larger than
the wavelength.

Two types of physical optics approximations can be applied: 1) surface inte-
gral and 2) volume integral approximation . In surface integral physical optics
the equivalent surface currents are approximated by electric and magnetic surface
currents of the infinite tangential plane. In the latter method the volumetric po-
larization current is estimated by finding the internal field using geometrical optics
ray tracing. Of the two techniques, the surface integral physical optics is much
easier to employ. New physical optics surface currents [Sarabandi et al 1990] that
are more convenient to use than the standard ones [Beckmann 1968] are exam-

ined. These currents can be obtained by noting that the reflected plane wave from

19



a dielectric interface can be generated by equivalent electric and magnetic current
sheets. These currents are normal to the plane of incidence and their density is
proportional to the incident field amplitude, polarization, and associated Fresnel

reflection coefficient. Suppose the incident field is given by
Ei = Eoe"""’i‘"" H = Hoeikoic,».r

and the normal to the cylinder surface is represented by the unit vector n. The

unit vector normal to the plane of incidence is

>

3>

fo DX
- b
| 7 X k|

in terms of which the new physical optics electric and magnetic currents are given

>

&>

by

v

J. = —2Yo(Eq - £) cos ¢; Ri(é;)e™ ok ¥ (30)

3, = —2Zo(Hy - {) cos ¢;Ru(¢i)e™™s i (31)

Here, Rg and Ry are Fresnel reflection coefficients and ¢; is the local angle of

incidence given by
@; = arccos(—n - k;).

In shadow regions on the surface (¢; > 7/2) the currents are zero.
Suppose a stratified cylinder with arbitrary cross section is illuminated by a

plane wave travelling in —z direction (k; = —2) as shown in Fig. 4. The outer
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surface of the cylinder is described by a smooth function p(¢). For E-polarized
wave (Eoq = £) only electric current and for H-polarized wave (Hp = Y(2) only
magnetic current is induced on the cylinder surface as given by (30) and (31). It
can easily be shown that in the far zone of the cylinder in a direction denoted by

¢s, the far field amplitudes for E and H polarization respectively are given by

k , ’ / /
Sg = :70 : cos ¢iRE(¢i)e—tkop(¢> ){(cos ¢’ +cos(d "¢s))\/p2(¢l) + p?(¢')de’ (32)
2 Jlit

-k - ")(cos @' +cos(¢’ - /
SH=¢?O /ljc cos ¢; Ry (¢;)e ko p(¢')(cos &' +cos(¢ ¢s))\/p2(¢l)+pl2(¢1)d¢ (33)

where the integral is taken over the lit region and p’ is the derivative of p with

respect to ¢. If the surface of the cylinder is convex the integral in (32) and (33)

Figure 4: Geometry of scattering problem of a stratified cylinder.

can be evaluated using the stationary phase technique. The stationary point (¢sp)
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is the root of the equation

d

-c-l—@'—;p(@ ) (cos ¢ 4 cos(¢’ — &) = 0.

By noting that at the stationary point ¢; = ¢,/2 and

p(¢sp)

Vo) + 976 = ot

and also by defining

d2

= W[P(é') (cos @'+ cos(¢' — 85))]sr=0s»

equations (32) and (33) become

S k \
Sg = écos(ﬁ)RE(?— p(ésp)’ . il
2 Y oslosr — a2 219
e~ kop(dsp)(cos dsp+cos(dsp —os)) . e-issn(g)f ’ (34)

4 ¢s ¢s p(éSP) kOW
Sy =¢cos(—)Rgy —) — -
(2) (3 cos(dsp — ¢5/2)\ 2| g |
e~ ikoo(dsp)(cososptcos(ésp—¢s)) , o—isgn(9)§ (35)

For a circular cylinder of radius a these expressions simplify to

Sg = 2%\/ko7ra cos(@,/2)Rg( %)e"'r‘”“’“C"s('t”/z)e”/4 (36)

~1 Oy, _; . : -
Sy = ¢3\/k07ra cos(c;)s/?)ab?h((-")—)e"m“’“C"’(‘:"me”'/4 (37)

To verify the validity of the physical optics expressions with new set of physical
optics currents we compare expressions (37) and (38) for a lavered circular cylinder
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with the exact series solution [Ruck et al, 1970, pp. 259]. Let us consider a two-
layer cylinder with inner and outer radii of a; = 10¢m and @ = 10.5¢m respectively.
The dielectric constant of the inner and outer layers respectively are 15+:7 and 4 +
21. These values are so chosen to simulate a tree with smooth bark. Figures 5 and
6 compare the normalized backscattering cross section (o/7a) of the cylinder for E
and H polarizations using physical optics expressions and exact series solution. In
these figures the cross section of the cylinder in absence of the outer layer (bark) is
also plotted to demonstrate the effect of the bark on reducing the cross section of
the cylinder. For frequencies above 2 GHz (koa = 4.2) the agreement between the
two solution is excellent. The bark layer plays the role of an impedance transformer

which reduces the cross section of the cylinder by 14 dB around kqa = 16.



------------------------------------------------------------------

o/ra (dB)
5
T

P.O. 2-Layer
......... P.O. 1-layer

1o} Exact 2-layer

0 b b L
0. S. 10. 15. 20. 25. 30. 35.

Figure 5: Normalized backscattering cross section (%) of a two-layer dielectric
cylinder with a = 10.5¢m , a; = 10cm, €, = 15 +17, €; = 4 + 11 versus koa for TM

case.



o/ra (dB)
1
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0. 5. 10. 15. 20. 25. 30. 35.

Figure 6: Normalized backscattering cross section (%) of a two-layer dielectric
cylinder with a = 10.5¢cm , a; = 10em, € = 15+ 47, €, = 4 + 11 versus koa for TE

case.
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4 Scattering from Corrugated Cylinder

Consider a corrugated dielectric cylinder with arbitrary cross section as shown in
Fig. 7. Assume the corrugation geometry is such that the humps are identical
and of equal distance L from each other. Further assume that if the corrugation
is removed the surface of the cylinder would be denoted as before by p(¢) and the

radius of curvature at each point is much larger than the wavelength and L. Under

?Y
r
om
p
o/ m
2\ %m <l )i
]
&2
El 3
L

Figure 7: A corrugated cylinder geometry.

these conditions each point on the cylinder surface can be replaced, approximately,
by a periodic corrugated surface. The accuracy of this approximation is in the order
of physical optics approximation for smooth cylinders.

Suppose the cylinder is illuminated by a plane wave travelling in —z direction
and let us denote the tangential coordinate at the center of each hump by (z',y')

where y’ coincides with the outward normal unit vector (7(¢)). If the origin of the
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prime coordinate system corresponding to the m'* hump is located at (Pms @m) We

have

=3 Dby =, (38)
/=1 =
Abep: = CR— (39)
\/P2(¢e) + p"*(d)

where Ad; is a known quantity. The local incidence angle at the m** hump can

be obtained from

¢! = arccos((dm) - &)

and the induced current in the m** hump can be approximated by that of the pe-
riodic corrugated surface when the incidence angle is ¢! . The scattering direction
is denoted by ¢, as before and the scattering direction for the m* local coordinate

1s given by
'8 __ i1
@m - ¢3 - oyn

The far field due to the m** hump (S,,), depending on the polarization. can be
obtained from (10) and we note that those humps with | 0%, |> 7/2 do not con-
tribute to the far field. The total contribution of the cylinder corrugation to the
far field is the vector sum of the fields due to each hump modified by a phase factor

to correct for the relative positions of the humps. Therefore

Sc — ZSme—ikorme—iko(rmcoso,+ym s'mo,). (40)
m



where

LIm = Pm COS ¢ma

Ym = Pm SIN Oy
The total scattered field may now be obtained from
S=S8.+8;,

where S; is the far field amplitude of the smooth cylinder.

5 Numerical Results

To examine the effect of surface corrugation on scattering from corrugated cylin-
ders, we consider a two-layer circular cylinder with uniform corrugation. The
pertinent parameters are chosen as follows: each hump is a Ag/8 x Ao/8 square
with dielectric constant €; = 4 + 71, the distance between humps is L = Ay/4, the
thickness and dielectric constant of outer layer are \q/2 and 4 + i1 respectively,
and the radius and the dielectric constant of inner layer are 10\ and 15 + :7 re-
spectively. For the corresponding periodic surface (see Fig. 8) all the components
of the induced current in each hump are obtained by the moment method and the
amplitude and phase of the total current ([, J(z’,y")dz'dy’) are plotted in Figs. 9
and 10. Figures 11-14 show the amplitude and the phase of the zeroth Bragg mode
as given in (20) and (21), the reflected wave in the absence of the corrugations, and
the sum of the two waves (total reflected wave) as a function of incidence angle.

For E polarization (Fig. 11) the total reflected wave is less than the reflected wave

(8]
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in the absence of corrugation (reduction in the scattered field). In this case, as
far as the total reflected field is concerned, the corrugation can be replaced by
a homogeneous dielectric layer with thickness A\g/8 and € = 2.6 +:0.38. For H
polarization (Fig. 13) the total reflected wave is weaker than the reflected wave
in the absence of the corrugation for angles less than the Brewster angle and vice
versa for angles greater than the Brewster angle.

Once the induced current versus angle is obtained the bistatic scattered field
can be computed from (41). Figures 14 and 15 show the radar cross section due
to the corrugation (o.) and smooth cylinder (o) and the total radar cross section
(0.4 05). To examine the role of the outer layer, the radar cross section of the
cylinder (1-layer) when the outer layer is removed is also plotted. It is seen that
the smooth bark reduces the scattered field by 3 dB and the corrugation on the
bark further reduces the scattered field by another 8 dB. In Fig. 16 the radar cross
section of the corrugated cylinder, for both polarizations, are compared with a
smooth cylinder when corrugation is replaced by an equivalent uniaxial dielectric
layer as explained in Appendix A. The thickness and dielectric tensor elements
respectively are t = Ao/8, €, = €, = 2.6 +10.38, and ¢, = 1.81 + :0.78. Excellent

agreement is obtained.

6 Conclusions

A hybrid solution based on the moment method and physical optics approximation

is obtained for corrugated layered cylinders. The only restriction on the physical



dimensions is the radius of curvature (r) of the cylinder where we require r >
Ao. Also new physical optics expressions for the equivalent surface current on
the dielectric structure is introduced. Also it is shown that when period of the
corrugation is smaller than the half a wavelength the corrugation can be modeled
by an uniaxial dielectric layer which extremely simplifies the problem.

This method is employed to investigate the effect of bark and its roughness on
the scattering from tree trunks and branches. It is shown that the bark and its
roughness both reduce the radar cross section. The low contrast dielectric bark
layer manifest its effect more significantly at higher frequencies where the bark

thickness and its roughness are a considerable fraction of the wavelength.
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Figure 8: Geometry of the corrugated surface
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Figure 9: Amplitude of the total induced current in the two-layer periodic corru-

gated surface versus incidence angle.
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APPENDIX A
SIMULATION OF AN ARRAY OF DIELECTRIC SLABS
WITH AN EQUIVALENT ANISOTROPIC MEDIUM

Al Introduction

Our purpose in this appendix is to find the equivalent dielectric constant of a
medium comprised of homogeneous dielectric slabs of identical material which are
equally spaced. Depending on the polarization of the fields and the boundary con-
ditions imposed, a variety of different modes can be supported by this structure.
Modeling of grooved-dielectric surfaces with anisotropic homogeneous media, to
our knowledge, was first studied by Morita and Cohen. They analyzed this prob-
lem by simulating the infinite periodic array using a partially-filled waveguide,
then, by solving the appropriate transcedental equation the propagation constant
in the corrugation was obtained. These results are used in many problems such as
matching dielectric lens surfaces [Morita and Cohen, 1956] and designing broad-
band radomes [Bodnar and Bassett, 1975; Padman, 1978].

Since the interest is in the modes that are excited by an incident plane wave,
simulating the array by a partially-filled waveguide which forces the tangential
electric field to be zero at the waveguide walls may not be appropriate. Here
we impose a condition that supports the modes which would be excited by a
plane wave incident on the structure. This approach will provide a formula for the
elements of the equivalent dielectric tensor which is different from that reported by

Morita and Cohen. The validity of this technique is verified by numerical solution
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of corrugated surfaces in Section A5. In Section A4 the reflection coefficient of
uniaxial layered media is derived to extend the applicabilities of the equivalent

dielectric technique to periodic surfaces with arbitrary cross sections.

A2 Theoretical Analysis

To proceed with the analysis, suppose that similar dielectric slabs of an infinite
array with thickness d and dielectric constant e are parallel to the y-z plane.
Further assume that the period of the structure is denoted by L. The geometry of
the problem is depicted in Fig. A-1. If the z-y plane is the plane of incidence, the
solution is independent of z and therefore the waves can be separated into E- and

H-polarized waves. Each period of the medium can be divided into two regions

Figure A-1: An array of infinite dielectric slabs.

and, depending on the polarization, the z component of the electric or magnetic
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field must satisfy the wave equation, i.e.

A AT ,
(axz—f—ayz—}—eko)\ll(:r,y):O 0<z<d (A1)
A AT AR
<3x2+3y2+k0) U(z,y) =0 d<z<L (A2)

where U(z,y) = E,(z,y) or H,(z,y). Using separation of variables and requiring
the phase matching condition, the solutions of (Al) and (A2) take the following

forms

Uiz, y) = [Aeikgx + Be‘ikix] etkyy (A3)

Uiz, y) = [C’&‘lkélr + De"ikérx] e'ky (A4)
where k, is the propagation constant in the periodic medium which must satisfy

(kD)? + kI = ek} (A5)

(kN2 + k2 = k3 (A6)

In an attempt to find the unknown coeflicients, we notice that the tangential com-
ponents of the electric and magnetic fields must be continuous at z = d which con-
stitutes two equations. Two more equations can be obtained by applying Floquet’s
theorem for periodic differential equations which requires ¥(z + L,y) = oc¥(z,y)
for some constant o. To set an appropriate value for o suppose the medium is
simulated with an equivalent homogeneous dielectric. If a plane wave illuminates
the half-space of the equivalent homogeneous medium at an angle ¢, the z depen-

dency would be of the form e *n%z This dependency suggests that we need to
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impose a progressive phase condition, i.e. let ¢ = e**0sin%oL  Therefore the other

two equations become

Etan(0+ Lyy) = et SiwoLEtan'(O»y) (AT)

Hian(0+ L,y) = e*osmolg, (0,y) . (AS)

Application of the mentioned boundary conditions for the E polarization gives

the following equations

Aeik£d+ Be—ikgd — Ceikgfd+ De-ikyd
kf; {Aeik,{d _ Be-ikgd] — kil [Ceikyd _ De—ikﬂd}
(A9)
A+B= [Ceikgfz + De-ikgfz] e—ikosingoL
ki [A- B] = kil {Ceikifl _ De—iki’z] e—ikosindoL
Since we are interested in the nontrivial solution of the above linear equations the

determinant of the coefficient matrix must be set to zero. This condition provides

an equation for k! and k' and is given by

~(£ + %) sin(kLd)sin (kZ(L - d)) + 2 cos(kLd) cos (kI(L — d)) =

(A10)
2 cos(kosin ¢oL)

Dispersion relations (A5) and (A6) give rise to another equation for k% and I’

l.e.

(kD)7 = (kI = k(e — 1) (ALL)

z

The transcedental equation (A10) together with (All) can be solved simultane-

ously to find the propagation constants. It is worth noting that in a limiting case
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when the periodic medium approaches a homogeneous one then k! — kI and

(A10) reduces to
cos(kyL) = cos(kosin L)

which implies k., = ko sin ¢g as expected.
After solving (A10) and (All) for kI’ the propagation constant in the y-

direction can be obtained from

k2= kg — (kIN? (A12)
It should be pointed out that the solution for kX is not unique and therefore
this structure can support many modes corresponding to different values of kZ/.
The dominant mode for this structure corresponds to a value of kX! such that the

imaginary part of k, is minimum. For the equivalent homogeneous medium with

permittivity €,, the propagation constant in the y-direction would be
k2 = k& (e. — sin® o) (A13)
Comparing (A12) and (A13) it can be deduced that

I\ 2
€, = sin? b0+ 1— (—-’—-) (Al4)
ko

From the symmetry of the problem it is obvious that if the electric field is in the
y-direction the equivalent dielectric would be the same, that is ¢, = ¢,.
Using a similar procedure the following transcedental equation for H polariza-

tion can be obtained

~(%5 + &) sin(kld) sin (KL(L — d)) + 2cos(kLd) cos (KL — ] = s
E T ( 5

2 cos(kgsin ¢gL)
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The equivalent dielectric constant ¢, can be obtained from (A14) where k! is the
solution of (A15) and (A1l). Since ¢, # €, = €, the equivalent medium is uniaxial

with the optical axis being parallel to the z-axis.

A3 Low Frequency Approximation

An analytical solution of equations (A10) and (A15) for kI and kX! cannot be
derived, in general, but using Newton’s or Muller’s method numerical solutions
can easily be obtained. One of the cases where approximate expressions for ¢,
and €, = €, can be derived is the low frequency regime where L < 0.2X,. In
this approximation the sine and cosine functions are replaced with their Taylor
series expansion keeping up to the quadratic terms. Therefore equations (A10)

and (Al5), respectively, reduce to

(kD)2d + (kIH*(L — d) = (kosin ¢g)2L

(A16)
. 2
(kD)2 + (KL — d) = (kosin go)? orbiey
These equations together with (A1l) can be solved easily to obtain
d L-d
eyzezzezﬁ-—f— (A17)
(e = 1)¥d(L - d) 2 Le

T = A

oL -d el Tt I+ d (AL8)

Note that when d — L, the elements of the dielectric tensor approach the per-
mittivity of region I, i.e. €;,¢,,¢, = € and when d — 0, then ¢;,¢,,¢, — 1, as

expected. There are two interesting points in (A17) and (A18) that should be
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mentioned. The first is that the equivalent permittivities are not functions of fre-
quency (ko). The second point is that ¢, (= €,) is not a function of incidence angle
and variation of €, with incidence angle is very small. This variation is higher for

larger values of e.

A4 Reflection Coefficient of Uniaxial Layered
Medium

Consider a multilayer dielectric half-space as shown in Fig. A-19. Suppose each
dielectric layer is uniaxial and the optical axes of all the layers are parallel to the z
axis. Further assume that a plane wave whose plane of incidence is parallel to the
z-y plane is illuminating the stratified medium from above at an angle ¢o. The

interface of the nth and the (n + 1)th layers is located at y = d,.

0}

€
e e N e d
€ 1
......... S d2
e N
» X
___________________________ dN

Figure A-19: Plane wave reflection from a stratified uniaxial dielectric half-space.

The dielectric tensor of the nth layer is defined by D™ = €,E" and is assumed
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to be of the following form

€zn 0 0
€En=¢| 0 €, O (A19)
0 0 e,

and its permeability is that of free space (gn = po). In this situation two plane
waves are generated in the dielectric slabs: one ordinary and one extraordinary.
For the ordinary wave the electric field and the electric displacement are parallel
and both are perpendicular to the principal plane (the plane parallel to the optical
axis and the direction of propagation) [Kong, 1985; p. 68], hence the magnetic
field is in the z-direction (see Fig. A-19). For the extraordinary wave, however,
the electric displacement and the magnetic field lie in the principal plane and the
y-z plane respectively which force the electric field to be parallel to the z-axis.
Therefore the ordinary or the extraordinary waves can be generated, respectively,
by a magnetic or an electric Hertz vector potential having only an ¢ component.
For ordinary waves D™ = ¢y, E™ and the magnetic Hertz potential (IT} = II7%)

must satisfy the wave equation, i.e.
V" + ke, JI? = 0 (A20)

The electric and magnetic fields in terms of the magnetic Hertz potential are given

by
E? = tkoYoV x IT, (A21)
H =V xVxIT}, (A22)
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In the case where there is no variation with respect to z (A21) and (A22) reduce
to

oIl

5 z (A23)

E" = —ikoZo

211 27"
e O oI

[)
5 8y? T+ Bxayy (A24)

The electric and magnetic fields associated with the extraordinary wave, as dis-

cussed earlier, can be derived from an electric Hertz vector potential, i.e.
H; = —1ikoYoV x IT?
and from Maxwell’s equations
VxEl'=kV x IT"
which implies
E? = k2II" + VO" (A25)

where ®" is an arbitrary scalar function. Using (A19) the electric displacement in

the nth layer may be represented by
D? = ¢of(€zn — €n) EL.Z + €,ET] (A26)
Inserting (A25) into (A26) and noting that

D} =VV. I} -V}
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we get

V2H: + emkgH: + (€zn — en)(()aq)
T

i+ V(0" =V -I) =0  (A27)

So far no condition has been imposed on the scalar function ®". To simplify the
differential equation (A27) let V - IT? = ¢,®" be the gauge condition. Therefore

the electric Hertz vector potential must satisfy

€zn — €n 0TI

= 2
c O 0 (A28)

V2I? + €, k27 +

In the special case where 3/0z = 0 the magnetic and electric fields of the extraor-

dinary waves can be obtained from

one
5 2 (A29)

H" = ikoZo

10417 1 917 .

no_ k2 n o —
E: = (kll; + €, Or? )2+ €n Bxayy

(A30)

The solution of the differential equations (A20) and (A28) subject to plane

i(kGzzEhGyy (ke Ttk y)

wave incidence can be represented by e )and e

respectively and
upon substitution of these solutions in the corresponding differential equations the

following dispersion relationships are obtained

(k2)% + (kt’;y)2 = €kl (A31)
1 n\2 1 n\2 2 ¢
:(ker) + —(key) = kO ('\32)

Imposing the phase matching condition, i.e. k), = k7, = kgsin ¢g, the dispersion

relations simplify to

k2 = koy/en — sin dg
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C,vn .
kg, = koy/—\ €n — sin® @

€n

The Hertz vector potentials in the nth layer can be written as

[¢]

II7 = [Afe ™Y 4 Are™ay] ghosindos (A33)

[} = [Ble™ ¥ 4 Breitiy] gikosintor (A34)

€

In (A33)-(A34) the subscripts z and r in the coefficients denote the propagation in
the negative and positive y direction respectively.

Since there is no variation with respect to z, the incident wave can be de-
composed into parallel (H) and perpendicular (E) polarization which would excite
extraordinary and ordinary waves respectively. For E polarization the electric and
magnetic fields in each region can be obtained from (A23) and (A24) using (A33).
In region 0, A? is proportional to the incident amplitude, and —A2/A? = Rg is
the total reflection coefficient. In region N + 1, which is semi-infinite, AN*! = 0.
Imposing the boundary conditions, which requires continuity of tangential electric
and magnetic fields at each dielectric interface, we can relate the field amplitudes
in the nth region to those of (n + 1)th region. After some algebraic manipulation,

the following recursive relationship can be obtained

n n+1/ gn+l n_—i2k3}t1d
_AY  (CATTATT) + TRem ks

A} (‘A?H/A?H)Fg+e“2k3;1dn+1 (A35)

where

. \/en —sin’o - \/enH —sin¢

o 2- . 2
€n —SIN QO+ \/€uyy —SIN° O
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Starting from —AN*1/AN*! = 0 and using (A35) repeatedly Rz can be found.

For H polarization incidence the extraordinary waves are excited and using
(A34) in (A29) and (A30) the electric and magnetic fields in each region can be
obtained. Following a similar procedure outlined for the E polarization case an
identical recursive formula as given by (A35) can be derived. The only difference
is that A is replaced by B, k,, by k., and I') becomes I', which is given by

\/ €x(n+1)€n+1\/ €n — Sln — VE€zn€n\/ €nt1 — Sll’l (P
\ /er(n+1)en+1\/5n —sin? ¢ + \/€on€n\/€ns1 — sin? ¢

A5 Numerical Examples

C

As mentioned earlier (A10) and (A1l5) can be solved using numerical methods.
Here we use Newton’s method to find the zeroes of the functions given by (A10)
and (A15) in which k! is expressed in terms of kI using (A11). Before searching
for zeroes we note that these functions are odd functions of kX that is, if « is a
solution so would be —x and both would give identical solutions for the equivalent
permittivity as given by (Al4).

To study the behavior of the equivalent dielectric tensor elements, we consider
a medium with e = 4 +¢1 and L = Ay/4. Figure A-3 and A-4 depict the variation
of the real and imaginary parts of ¢, (H polarization) and ¢, = ¢, (E polarization)
versus angle of incidence for d/L = 0.5. It is shown that the dependency with the
incidence angle is very small and these results are in agreement with (Al7) and
(A18) within 10%. The real and imaginary parts of the equivalent permittivi.ties

as a function of d/L for incidence angle ¢ = 45° are shown in Figs. A-3 and A-6
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respectively.

As L/)g increases the propagation loss factors (Im[k,]) of different modes be-
come comparable to each other. For example, if L/ ¢ = m/2, where m is an
integer, there would be at least two modes with equal propagation loss factor.
Figures A-Ta through A-7d show the location of zeroes of (A10) in k!/-plane for
d/L = 0.5, ¢o = 45°, and four values of L/)\y. The real and imaginary parts of
the equivalent permittivities as a function of L/Ag for d/L = 0.5 and ¢¢ = 45° are
shown in Figs. A-8 and A-9. The discontinuity in the equivalent permittivities
at integer multiples of A\y/2 are due to the abrupt changes in the location of the
zeroes in the kXl-plane which correspond to the dominant modes.

To check the validity and applicability of this technique we compare the re-
ﬂection coeflicient of a corrugated surface using the moment method as discussed
in Section 2.4 with the reflection coeflicient of the equivalent anisotropic medium
as derived in Section A4. The geometry of the scattering problem is depicted
in Fig. 7. We consider a case where L = Ao/4,d =t = Ao/8, ¢ = 4 + 11,
and € = 15 +:7. The tensor elements for these parameters are found to be
€; = 1.81 +:0.15, ¢, = €, = 2.6 +10.58. Figures A-10 and A-11, respectively,
compare the amplitude and phase of the reflection coeflicients for both E and
H polarizations. Excellent agreement between the results based on the moment
method and the equivalent layer is an indication for the validity of the model. As
frequency increases, because of presence of higher order modes, the discrepancy

between the moment method and the equivalent layer results becomes more evi-
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dent. Figures A-12 and A-13 show the reflection coefficient of a corrugated layer
with L/Aog = 04, d =t = 0.2\, ¢ = 4 + 11, and €, = 15+ :7. In this case
€, = 1.81 +1:0.2, ¢, = ¢, = 2.77 4+ 10.78 and the agreement is still very good, but
for L > Ag/2 where more than one Bragg mode exists the model fails to predict
the reflection coefficient accurately.

Success of the equivalent layer in modeling rectangular corrugations can be
extended to arbitrary periodic geometries. By approximating the cross section of
the periodic surface with staggered increments of equal height, the surface can
be viewed as a stack of corrugated layers (see Fig. A-14). The height of each
layer AH must be chosen such that AH < A/10 where A is the wavelength in the
material. Then each corrugated layer can be modeled by an equivalent anisotropic
slab and the reflection coeflicient of the resultant uniaxial layered medium can be
obtained. To demonstrate this method consider a wedge-shape microwave absorber
with permittivity e = 2+410.5, period L = 0.4, wedge height H = 1.5, and base
height D = 1Xy. The number of layers considered here is 30 and the corresponding
reflection coefficients for both E and H polarizations as a function of incidence

angle 1s depicted in Fig. A-15.
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Figure A-3: Real part of the equivalent dielectric tensor elements for periodic slab
medium with L = \o/4, € = 4 + i1, and d/L = 0.5 versus incidence angle; ¢, (H
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