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INTRODUCTION 

In the author’s laboratory an experiment of the following type is performed. 
Replicas of “jar microecosystems” are prepared as  identically as  possible from 
undefined pond material (water, bottom matter). Ensembles of these replicas are 
then cultured in incubators under varying degrees of statistical uncertainty and 
physical stress. Such microecosystems, like all ecosystems, undergo a sequence of 
changes (called succession) until they reach a climax form of organization. This 
is a form of organization which appears to  be stable in the sense that it persists for 
a relatively long time. A necessary condition for such persistence is that the system 
is somehow capable of either dissipating or absorbing without visible effect the 
perturbations to  which it is being subjected; after all, if it were not capable of do- 
ing this it would continue to  change. By choosing the degree of environmental 
uncertainty it is thus possible to prepare (through the culturing process) ecosys- 
tems capable of absorbing or  dissipating at minimum this degree of environmen- 
tal uncertainty. 

The ability to cope with (absorb or  dissipate) environmental uncertainty will 
be called adaptability. Thus, the imposed uncertainty of the culturing environ- 
ment provides an operational definition of minimum adaptability. Once systems 
with defined minimum adaptabilities are prepared, many questions might be 
asked. For example, does actual adaptability tend to decrease in the direction of 
the minimum possible? What is the relation between adaptability and the stability 
of succession? What is the relation to the spectrum of particular forms of adapt- 
ability (e.g., genetic, organismic, populational) and to  patterns of community 
organization? The intention of this paper, however, is not to  consider the experi- 
mental aspect of this problem, but rather to describe a formalism which makes it 
possible to  approach complete, self-sustaining biological systems of the above type 
theoretically, in particular to  analyze the complex of adaptabilities underlying 
their dynamics. 

The essence of this formalism (hierarchical adaptability theory) is an entropy 
theory analysis of the state-to-state behavior of ecosystems in which the state 
specifications are structured in a way which reflects the hierarchical and compart- 
mental organization of complete, self-sustaining biological systems (including their 
environment). After briefly reviewing this formalism (cf. also Conrad’-’), we 
shall state and prove the bootstrap principle of hierarchical adaptability theory 
(that the assumption of structured descriptions is self-justifying). The bootstrap 
principle underlies the major conclusion, viz., that as the dynamics of any par- 
ticular level in an ecosystem appears more autonomous (i.e., more amenable to 
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description without reference to  variables associated with other levels), the con- 
tribution of adaptabilities a t  other levels in general becomes more important as  
support for these dynamics. This makes it possible to cross-correlate the elements 
of hierarchical adaptability theory with concepts deriving from dynamical styles 
of analysis and  therefore t o  make some statements about the hidden biology 
underlying ecosystem stability and bifurcation. 

FORMALISM OF HIERARCHICAL ADAPTABILITY THEORY 

Structured State Specifications 

The ecosystem is supposed to  consist of a living (biotic) part and a physical 
environment, each with a finite set of distinguishable states observed on a discrete 
time scale. (These assumptions simplify some technical problems, but could be 
dropped.) The state of both the living part (community) and the environment 
is furthermore supposed to  be adequately specifiable in terms of a finite set of 
observable properties. In the case of the community these properties include: 
species composition, foodweb structure, number of organisms in each species, 
locations of each organism, physiological state of each organism, pattern of gene 
activation and  also genotype (DNA base sequence) of each organism. In the case 
of the environment the physical space is divided into local regions and the state 
of each of these regions (excluding that portion occupied by living matter) speci- 
fied in terms of macroscopic variables (e.g., temperature, pressure, mole numbers, 
other mechanical forces). 

The above state specifications can be thought of as  structured descriptions of 
ecological systems. In the case of the community this structuring corresponds to  
the apparent organizational structure, i.e., to the levels of organization in biologi- 
cal systems, with more or less identifiable units (or compartments) a t  the various 
levels. Thus, the community can be considered as a unit, populations as  subunits 
of the community, organisms as subunits of populations, and genome and 
phenome (all of the organism aside from the genome) as  subunits of the organism. 
Species composition and foodweb organization are thus partial states (or partial 
characterizations) of the community, without reference t o  species, organisms, or 
other lower level compartments. Number and locations of organisms are partial 
states of species, again without reference to lower level subunits. For the present 
purposes, the pattern of gene activation can be thought of as  the partial state of 
the organism in terms of phenome and genome and physiological state and DNA 
sequence as complete states of the phenome and genome. The procedure could be 
carried further, by increasing the number of levels and decreasing the number of 
properties required to  characterize compartments a t  each level (assuming that a 
complete set of properties has been chosen in the first place). 

The above correspondence between structured state descriptions and  hierarchi- 
cal and compartmental structure can be made formal by defining complete states 
as many-tuples of partial states. Thus, 
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where the a" are complete states of the community, the ai{ are partial states of 
compartment i a t  level j ;  level 3 can be taken as the community level (and there is 
only one community), level 2 can be taken as the population level, level 1 as the 
organism level, level 0 as either the genome or phenome level (in which case the 
states are complete), and the re-representation is possible for some choice of 
superscripts. (Actually, since matter cycles in an ecosystem and since organisms 
are born and die, it is necessary to  define a reference structure with a very large 
number of compartments, some "unborn" or "dead" at  any given time.3) Also, for 
the environment, 

B v )  = [B,:(o,. . . , B ~ W I  = n p , , m ,  (2) 
h 

where the 6" are complete states of the environment, the fins are complete states 
of region i at  level 0, the convention is that all compartments are a t  level 0, and 
the re-representation is possible for some choice of superscripts. 

Later it is shown that structurability of community descriptions is a self- 
justifying assumption. 

Transition Schemes and Transition Scheme Entropies 

Imagine a large number of replicas of microecosystems, all prepared as  iden- 
tically as possible and undergoing state to state transitions in time. One may sup- 
pose that for any given time, starting from any given initial state, there would 
exist in principle a set of transition probabilities 

(3) R = ip[a"(r + 11, Bu(t + 1) I a'( t ) ,~'( t ) l l .  

w = lP[(Y."(t + 1) I a'(t), B"(t)ll 

0' = IP[B"(t  + 1) I a'W, B"t)lI 

For the community and environment separately this implies the partial schemes 

(4a) 

(4b) 
where the prime notation distinguishes the environment scheme. On these partial 
schemes entropies may be defined, e.g., 

~ ( w ' )  = -2p[a ' ( t ) ,  8W1 p[P"(t + 1) I a'(t), B"(t)l x 

log p W ( t  + 1) I a'W, B V ) l  (5) 

and 

H ( W  I w ' )  = - z p [ ( ~ ' ( t ) ,  Bs(r ) ,  B"(t + I)]  p[a"(r + 1) I a'([), p"(r), B"(t + 111 x 

log p[a"(t  + 1) 1 e'(t), B"(t ) ,  B"(r + ] ) I ,  (6) 
where indices run over all sums and corresponding entropies may be written for 
H ( w )  and H(w' I w) .  In analogy to  a well known identity of entropy theory,8 

H ( w )  - H ( o  I w ' )  + H(o' I w )  = H ( w ' ) ,  (7) 

which can easily be proved for this generalized case by substituting the transition 
scheme definitions. Equation 7 is always true and expresses what is in fact a 
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tautological relation between the observed statistical properties of the community 
and the observed statistical properties of the environment. 

Operational Definition of Adaptability 

In order t o  use the foregoing to  develop a definition of adaptability it is neces- 
sary for the terms on the left-hand side of Equation 7 t o  represent potentialities, 
independent of the particular statistical character of the environment. This can be 
done by varying over all possible environments, looking for the most uncertain 
environment compatible with the system remaining alive. If this environment has 
transition scheme w ' ,  Equation 7 can be expressed as  the inequality 

If(&) - H(& 12') + H( t '  12) 2 H ( w ' )  (8) 
where H(b) is the potential uncertainty of the community, H(b I ij') reflects the 
potential ability to anticipate the environment, H(b' 1 &) reflects the potential in- 
difference t o  the environment, and w' is the transition scheme of the actual en- 
vironment. The entire left-hand side of Equation 8 will be called the maximal 
adaptability of the biological system. Actually the condition that the system 
undergo complete demise is a rather strong one if the biological system is a com- 
plete community (as opposed to, say, a single population or organism) and in 
general it is more reasonable to replace it by a weaker condition, e.g., that the 
community not be pushed out of a given edaphic climax (in which case maximal 
adaptability is defined only for this climax) or that it not  exhibit more than some 
predefined degree of decrement in biomass. The latter condition introduces a cer- 
tain arbitrariness into the definition, but this can be removed to the extent that 
the relative adaptabilities (of a t  least initially identical systems) can be expected 
to  be properly ordered. 

It is possible to  replace the above definition of (maximal) adaptability by a 
definition of another quantity (minimal adaptability) which extends the idea of 
relative ordering in the sense that it requires no measurement of cell death and 
which a t  the same time may quite reasonably be expected to  provide an index of 
actual adaptability. This definition, however, requires a postulate, viz., the cul- 
ture procedure postulate (really the fundamental postulate of microbiology since 
the work of Koch). To express this, first consider a n  environment with transition 
scheme 3'. Equation 8 can then be written, for this special case, as 

H ( a )  - H ( G  I a') + H(G' I G) = H ( a ' ) ,  ( 9 )  

where a i s  the transition scheme of the biota in this environment. If the commun- 
ity is allowed to  culture in an environment 2 for a very long time (in practice, long 
relative to successional time scales) the left-hand side of Equation 9 will be called 
the minimal adaptability of the community. The culture procedure postulate is: 
Minimal adaptability is an index of maximal adaptibility in the sense that a com- 
munity with higher minimal adaptability will sufer less damage (as measured by 
biomass decrement) than a community with lower minimal adaptability when both 
communities are exposed to an environment more uncertain than either culturing 
environment. (The condition should also be added that the two systems are initially 
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identical and that the culturing environment is as nearly as  identical as possible 
except for the difference in uncertainty.) 

The culture procedure postulate is based o n  the idea that never used compo- 
nents of adaptability (larger than necessary behavioral repertories, better than 
necessary ability to  anticipate, more than necessary indifference) always tend t o  
atrophy in the succession or evolution process. Thus Equation 8 can be replaced by 

H ( G )  - If(& I&’)  + H(G’ 1 G) - H ( w ’ ) ,  (10) 

where the arrow indicates a tendency for the adaptability to decrease in the direc- 
tion of the actual uncertainty of the environment and thus to decrease in the direc- 
tion of minimal adaptability (if w’ = G’). Thus, the arrow can be taken to  mean 
that in the course of succession or evolution adaptability decreases in the sense 
that the amount of biomass decrement following on an increase in the uncertainty 
of the environment would be greater. 

The culture procedure postulate is a local postulate since only systems which 
are in all respects similar except for the uncertainty of the culturing environment 
are being compared. 

Structure of Adaptability 

The components of adaptability may be further decomposed, using the struc- 
tured state descriptions expressed in Equations 1 and 2. To this the transition 
scheme of the community is written in terms of the joint occurrence of all possible 

Defining local transition schemes for each compartment 

wpq = {  P[a,,;(t + 1) 1 n aii / ( t ) ,  (12) 
i . i  h 

Equation 11 can be expressed as 

= n w j j .  
i. j 

where care should be taken t o  realize that this is not a bona fide product, but 
rather shorthand for the composition of all (or some set) of local schemes. Simi- 
larly, the transition scheme of the environment can be expressed in terms of a 
“product” of transition schemes for local regions 

where r r  
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Substituting the above compositions into Equation 10, we find 

H (v dij) - H (v dij 1 Oh)+ H ( & L O /  v aij) 

Each of the terms in the above equation may be expressed (using identities 
analogous to  Equation 7) in terms of sums of unconditional and conditional 
entropies. However, since there are many possible expansions of this type, it is 
convenient t o  choose a single canonical form which puts all the subcompartments 
on an equal footing. To do this, define the effective entropy, He(wij)  as  the sum 
of the unconditional and all possible conditional entropies o f  compartment i a t  
level j ,  but normalized by normalizing the linear combination of all possible ex- 
pansions (for an example, see Equations 19a,b,c). With this convention Equation 
16 can be written 

Each term in this equation can be identified with a possible mechanism of adapt- 
ability. Thus the unconditional parts of the effective entropies express the in- 
determinacy of the genetic endowment of an organism, phenotypic plasticity (e.g., 
morphological, physiological, behavioral), developmental plasticity (i.e., alternate 
expressibility of the genome), numerical and topographical plasticity of popu- 
lations, and so forth. The conditional terms express the degree of independence 
among these different plasticities, the anticipation terms reflect the effectiveness 
with which they are used, and the indifference term expresses the niche structure 
(both spatial and physiochemical). The equation itself formally expresses a prin- 
ciple of compensation among adaptabilities, viz., that change in the adaptability 
of  one subsystem tends to be compensated by opposite changes in the adaptability 
of other subsystems, at the same or different levels, or by opposite changes in the 
indifference to  the environment. The costs and advantages of such compensations 
depend on factors such as  the morphological organization of the system and the 
time scale of environmental disturbance. In this sense the spectrum of adaptabil- 
ities in nature can be regarded as  an optimization problem. 

Equation 17 could also be written in terms of the Gij ,  in which case the com- 
pensations are among minimum adaptabilities. In what follows the argument 
could be expressed either in terms of the i3;, or the Gi j .  

BOOTSTRAP PRINCIPLE OF ADAPTABILITY THEORY 

The bootstrap principle of adaptability theory is: The assumption of the hier- 
archical and compartmental structurability of the state description of biological sys- 
tems is selfijustifying within the frumework of adaptability theory in the sense that 
such structurability is a necessary condition for  eficient adaptability. By efficiency 
of adaptability is here meant the relative cost of adaptability in terms of energy 
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or in terms of interference with biological function (which ultimately appears in 
terms of  an energy cost). Thus, suppose the morphological structure of an organ- 
ism is extremely complex. Developmental and genetic plasticity would be rela- 
tively more costly in this case since genetic variations are more likely t o  be dis- 
ruptive and alternative modes of development would require the accumulation and 
maintenance of much more genetic information. As another example,lsuppose that 
modifications of organism behavior are coordinated to  morphological modifi- 
cations involving growth processes. This clearly increases the energy that must 
be expended to  maintain behavioral plasticity. More generally stated: Any increase 
in the extent of modification required to achieveLa given degree of adaptability in- 
creases the biological costs (ultimately measurable in terms of energy utilization) 
associated with that adaptability. This generally is in fact implicit in the culture 
procedure postulate. 

Given the above, the bootstrap principle is fairly easy t o  prove. To make things 
concrete, consider the simple, three compartment decomposition of a single or- 
ganism (organism one at  level one, with genome and phenome compartments one 
and two at  level zero). For the behavioral uncertainty component of adaptability 

ff(210&041) = Hc(40) + He(&) + ffe(h1Ih (18) 

where 

HAGO) = i(ff(40) + ~ H ( & I O  140) + ~ H G o  1911) + H ( ~ o  I G2041)l 

fL(b) = 5 W ( b )  + 4HGm I GIO) + iH(k?dhl) + f f (G20 i 31041)l 
(19a) 

(1%) 

ffJ211) = ijff(41) + IH(GII I G o )  + J H ( h i  1220) + f f ( i h i  I40ho)l. (19~)  

Each effective entropy consists of an unconditioned modifiability term (to be called 
the modifiability term) and a number of conditioned modifiability terms (to be 
called the independence terms). For given modifiabilities the effective entropies 
are largest when each of the conditioned terms are equal and equal to  the modifi- 
ability term (since they cannot be larger). Thus, the conditions for a maximum 
uncertainty component of adaptability for given observable modifiabilities are 

H(4o) = H(40 I 4 0 )  = H(Ql0 I 211) = ff(GI0 I ~IOCII), 

H(Qm) = H(h0 I 4 0 )  = H(&O I G l l )  = H(;Lo I GlOc2Il),  

H(41) = HGll I &to) = H(41 I cjm) = ff(Ol0 l ~ I O 4 0 ) ,  

P a )  

(2Ob) 

(20c) 

where H ( b l o ) ,  H(&), and are the observable modifiabilities. To the 
extent that these conditions are not realized, the observable modifiabilities of 
different compartments will be correlated (because the independence terms are 
relatively small) and therefore the extent of modification required to  achieve a 
given degree of adaptability would increase. However, according to  the above 
version of the culture procedure postulate, this increases the costs of adaptability. 
In short, a necessary condition for efficient adaptability is that the independence 
terms are not small relative to their modifiability term. To the extent that this is 
true, however, it is also true that compartmental (and level) structure will be a 
necessary condition for efficient adaptability. In this sense the initial assumption of 
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hierarchical and compartmental structure is self-justifying from the standpoint of 
adaptability theory. 

The above conclusion clearly generalizes for an arbitrary number of com- 
partments and levels and therefore for the community as a whole. This does not 
mean that the condition of maximum independence of compartments is ever ob- 
tained. In general this is impossible and in many cases strong correlation is in- 
herent in fundamental biological constraints. The most important example is the 
relation between genome and phenome. Specification of the phenome completely 
determines the genome, but specification of the genome only partially determines 
the phenome. This is because a given genome only specifies a repertoire of 
possible phenome states, but in  general any genetic change (other than certain 
degenerate changes) modifies this repertoire. This constraint is clearly fundamen- 
tal since it is the basis of evolution. However, to the extent that the effects of en- 
vironmental disturbance can be prevented from ramifying to more and more com- 
partments, the absorption or dissipation of these disturbances will be less costly. 

DYNAMICAL AUTONOMY AND THE ROLE OF 
UNREPRESENTED ADAPTABILITIES 

Degree ojAuronomy 

A compartment (or level) will be said to be autonomous to the extent that its 
behavior is independent of other compartments (or levels). From the standpoint 
of the transition scheme q,, a compartment or level is autonomous to the extent 
that the transition probabilities need not be conditioned on other compartments or 
levels. From the standpoint of the scheme entropies, a compartment or level is 
independent to the extent that its independence terms are large relative to the 
modifiability term. The degree of autonomy can be expressed by the ratio 

ti, = ffe(&,)/H(4j)-, (21) 

where compartment (i, j) is completely autonomous if t,, = 1 and not autonomous 
if tjj < I (since the effective entropy is less than the unnormalized modifiability). 

Autonomy and Predictability (for Discrete Time. 
Finite Stare Dynamical Systems) 

If compartment (i9j) is completely autonomous (E i j  = l ) ,  Gij is as good a 
predictor of the behavior of this compartment as the global community scheme’&. 
In this case only properties (variables) of the compartment need enter into the 
predictor. If  ti, < 1, the “law will be broken,” with the degree of breaking de- 
pending on the degree of autonomy (or degree of dependence). In this case vari- 
ables from other compartments must be added to the predictor to restore its pre- 
dictive power. (If the modifiability is high and the anticipation term low, reflecting 
good anticipation, a still better predictor could of course be constructed by in- 
cluding environmental variables.) 

The predictor here has been written in the form of a transition scheme (cf. 
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Equations 4a & 13). The data provided by this setup are: a set of states of the 
community, a set of inputs (states of the environment), a set of states of the com- 
partment in question (which may be the community or a subunit of the commun- 
ity), the probability distribution of initial states of the community and environ- 
ment, and a rule (assumed for the sake of generality t o  be probabilistic) for 
determining the state of the compartment a t  the next instant of time. This is the 
same information that would be necessary to  define the compartment as an auto- 
maton (since, according to Equation 1, specification of the state of the community 
automatically entails specification of the states of all its subcompartments). Thus 
the predictor can be interpreted as the transition function (or rule) governing the 
behavior of the compartment, viewed as an automaton (actually semiautomaton, 
or automaton without output). A necessary condition for the rule to be the best 
possible rule is that the compartment be completely autonomous. If the compart- 
ment is incompletely autonomous, a better rule can always be written, but a t  the 
expense of choosing as the automaton an enlarged system, including more com- 
partments. If no such union of compartments is autonomous, a better rule can 
always be chosen, until finally the automaton is the complete community itself, 
with all its subcompartments. Thus, the above condition, to  be called the pre- 
dictivity condition, can be stated more generally: A transition scheme incor- 
porating variables associated only with a particular compartment (level) can only 
approach optimal predictivity to the extent that the compartment is autonomous. 
(A level of organization of a compartment is a compartment if it is the union of all 
the subcompartments a t  that level and in this case autonomy would be defined for 
the level and  enlargement could correspond to  addition of levels.) 

Autonomy provides a necessary but not sufficient condition for a good rule be- 
cause the initial state of the entire community is specified, not just of the com- 
partment itself. If the rule is not good in this case, it could never be good if only 
the initial state of the compartment were specified. Alternatively, it must be good if 
the rule for the compartment is t o  be good. It would be possible t o  redefine 
transition schemes solely in terms of compartments (using only the initial states 
of the compartments). This would make it possible t o  formulate a sufficient con- 
dition, but would also generate many more conditional terms, representing the 
uncertainty in the behavior of the environment and the rest of the community 
given the behavior of the compartment. 

The Bath of Unrepresented Adaptabilities 

In and  of itself the predictivity condition is basically trivial-all it says is that 
if other components give information about the compartment of interest, it is pos- 
sible t o  construct a more predictive but less local transition scheme. However, in 
conjunction with the compensation equation (Equation 17) it is highly nontrivial 
and leads directly to  the following key statement: A s  the predictive value of a 
transition scheme (transition function, rule, law) used to describe the behavior of any 
given compartment (level) of a global biological system depends less on the incor- 
poration of variables associated with other compartments (levels) the adaptabilities of 
these other compartments (levels) becomes in general more important for main- 
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iaining ihis predictive value. This statement follows directly from the fact that pre- 
dictivity means high independence, but high independence means that  environ- 
mental disturbances affecting other compartments (levels) are absorbed and 
dissipated in those compartments or  levels, with minimum ramification to  the 
compartment (or level) of interest. There are four possibilities (assuming an un- 
certain environment): 

(A) Independence high (i.e., comparable to  modifiability) 
( I )  Low modifiability. In this case adaptabilities elsewhere in the system 

enable the compartment t o  support arbitrary but determinate and pre- 
dictable dynamics despite environmental uncertainty, i.e., are unrepre- 
sented in these dynamics but are  critical for supporting them. 

(2) High modifiability. In this case the compartment of interest makes an 
efficient contribution t o  total adaptability, providing the anticipation 
term is relatively low (implying good anticipation). An optimal pre- 
dictor can be constructed without reference to  other compartments, but 
the best predictions are necessarily probablistic. If the transition 
scheme of the environment is added to  the predictor it will be better, 
provided that the coordinated anticipation term is smaller than the 
modifiability, and can be deterministic to the extent that the anticipa- 
tion term is small. It' the adaptability of the compartment of interest is 
less than the total required adaptability (in general the case), 
adaptabilities unrepresented in its dynamics are  critical for main- 
taining these dynamics. 

(B) Independence low (smaller than the modifiability) 
(3) Modifiability low. In this case adaptabilities elsewhere in the system 

absorb most of the environmental uncertainty, but nevertheless the 
modifications of these other compartments ramify to  the compartment 
of interest, making its behavior less than optimally predictable without 
enlargement of the set of variables. Thus fewer unrepresented adapt- 
abilities would play a role in supporting a predictable dynamics. 

(4) Modifiability high. In this case the compartment of interest makes a 
less than maximally efficient contribution to total adaptability, pro- 
viding the anticipation term is relatively low, but an optimal predictor 
cannot be constructed without enlargement of the set of variables, 
thereby implying that fewer unrepresented adaptabilities would play a 
role in supporting the (in general stochastic) dynamics. 

As a somewhat contrived example, imagine a population undergoing phyletic 
evolution. In the case of low modifiability and high independence for the popula- 
tion level, all the uncertainties would be absorbed at  the genetic and organismic 
levels. More realistically, these modifications would also appear in the population 
dynamics (the case of low modifiability and low independence). In the case of high 
modifiability and high independence, the lower level adaptabilities would not 
appear, but the population dynamics would itself contribute t o  the adaptability. 
A more realistic case is the one of high modifiability and low independence, in 
which case the genetic and organismic modifiabilities would manifest themselves 
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a t  the population level, but the population dynamics would itself contribute to  
adaptability. 

The conclusion is thus that any apparently autonomous compartment or level 
of biological organization is really highly controlled by a very much larger system 
of unviewed compartments or levels that are protecting it from environmental 
disturbance. It is important to  recognize that this is not the same as saying that 
underlying the dynamics of, for example, a population, there are an enormous 
number of physiological and genetic processes, involving metabolism, repair, ir- 
ritability, movement, and so forth. It is only in so far as these processes undergo 
either adaptive or maladaptive change that they can produce modifications in the 
dynamics of the population, and it is only in so far as any adaptive changes are 
unrealistically efficient that they can fail to  produce modifications in these dy- 
namics. In general the learning a t  one level can only rarely be completely hidden 
from the standpoint of the behavior of another. 

The statements made in this section have been made for discrete time, finite 
state, probablistic dynamical systems. They are clearly also true for the determin- 
istic case and could be generalized for continuous time and differentiable dynami- 
cal systems. 

FUNCTIONAL SIGNIFICANCE OF STABILITY CONCEPTS 

Role of the Represented Adaptabilities 

Now it is possible to address the question, what is the relation between the 
various forms of stability or instability exhibited by biological systems and their 
adaptability. According to  the previous section, as the behavior of any particular 
level of  biological organization appears more autonomous, the contribution of 
unrepresented adaptabilities a t  other levels becomes in general more critical for 
maintaining this behavior. The key to  using hierarchical adaptability theory to  
study the functional significance of stability and bifurcation is to look at this 
statement from the other side, viz., from the side of the represented adaptabilities. 
From this standpoint, as the behavior of any particular level of biological organi- 
zation appears more autonomous, its potential contribution to maintaining the 
behavior patterns a t  other levels increases (though it can only make such a con- 
tribution if the modifiability term is large). 

Recovery of Stability Concepts 

Basic stability concepts (e.g., weak stability, asymptotic orbital stability, struc- 
tural stability) are ordinarily used in biology within the context of differential 
models, whereas hierarchical adaptability theory has been formulated in a discrete 
time, finite state representation. Here the most convenient way to  make cross- 
correlation possible is to  define analog concepts for the representation used here, 
basing these on the notion of a tolerance (originally discussed in the context of 
biological models by Zeeman’ and most prominantly developed for automaton 
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systems by M. Dal Cin”). This is a binary, symmetric, reflexive, but nontransi- 
tive relation on a set of states, to be denoted by ‘I-” and which roughly cor- 
responds to  the idea of a (here arbitrarily established) allowable difference 
between states. Analog definitions are: 

(A) Weak Stabiliry. A trajectory of a deterministic transition scheme is 
weakly stable if and only if it is possible to  define a nontrivial tolerance such that 
for all n if ai;(t) - ai;(r), then ai;(r + n) - aji(t + n) ,  where a,; and ail” are 
the states a t  time r + n and ai; and a; are the states at time r .  A scheme all of 
whose trajectories are weakly stable will be called weakly stable. Such schemes are 
analogous to  differentiable dynamical systems with a constant of the motion (since 
a constant of the motion means that nearby states always remain nearby but never 
become identical). 

(B) Srrong Srobiliry. A state ai; of a (probabilistic or deterministic) transi- 
tion scheme is strictly stable if and only if it is possible t o  define a tolerance such 
that the system returns to ai; by time r + n (n sufficiently large) if aii(t) - ai;(r), 
and furthermore if for all k < n states a t  t + n - k are either identical to  or in 
tolerance with (rill. Strong stability could also be defined for a trajectory if it is 
only required that by time t + n the states are identical, but not necessarily 
identical t o  the initial state. For deterministic systems, strong stability is analogous 
to asymptotic orbital stability, where nearby states change to  more and more 
nearby states (or where trajectories converge, as  for stable limit cycles). 

(C) Sfrucrural Stabiliry. Consider the joint transition scheme w ~ w , ~  = 
(p(aw’(t + I ) ,  a,:(t + 1 )  1 a(n,  B ( t ) ] .  The term anbwill be called a parameter (and 
w, a parametric scheme) if it remains the same for all t ,  while awa in general 
changes (i.e., is the variable). The joint scheme will be called structurally stable to  
a change from am4 to a,: if it is possible t o  define a tolerance o n  the states of 
compartment ( p ,  q )  such that a,”(t + n )  - awD(t + n), where n is arbitrary and 
the aw” are states of  the compartment with parameter am‘ and the aw”(t + n)  are 
states of the compartment with parameter amc. If the scheme is not structurally 
stable to  this particular change in parameter, the change will be called a bifurca- 
tion-producing change and the scheme will be said t o  bifurcate. The definition of 
structural stability is analogous to  the dynamical notion of qualitative invariance 
to change in parameter and the notion of bifurcation t o  the notion of qualitative 
change in response to  slight change in parameter. ( I f  a,”(t + n )  = a,”(r + n), 
then rather than calling the joint scheme structurally stable it will be said that the 
two compartments do not interact.) 

Biology of Stabiliry. Instabiliry. and Bifurcation 

Stability and  bifurcation play a fundamental role in relation to  all the basic 
biological capabilities-metabolism, repair, growth, reproduction, irritability, and 
movement. Adaptability is also a fundamental biological capability, but in a 
higher order sense that it involves variation and modulation of these first order 
capabilities so as to absorb and dissipate disturbance. Here the concern is only with 
this connection, but in fact it is the decisive connection as  regards the particular 
form stability and  bifurcation take in relation to  processes involving metabolism, 
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repair, growth, and so forth. A major conclusion is that instability and bifurcation 
make a fundamental contribution to the stability of biological systems, or at least 
to the stability of the most essentialprocesses in such systems. 

To justify this statement, consider the fundamental biology of each of the basic 
notions of stability (from the standpoint of adaptability theory): 

(A) Weak Stability. Weakly stable models are frequently criticized (as candi- 
dates for descriptions of biological systems) on the grounds that they are not 
structurally stable to a change in parameter that would represent the addition of 
even the smallest amount of dissipation. Nevertheless a compartment accurately 
describable by a weakly stable model would be capable of making a highly efficient 
contribution to adaptability and could under suitable conditions persist in a form 
so describable. The suitable condition is that the compartment be completely 
protected by a bath of adaptabilities provided by other compartments (possibly 
including its subcompartments or its supercompartments) from all disturbances 
that could introduce a source of dissipation into its dynamics. The efficiency of 
the contribution would result directly from this necessarily high autonomy to- 
gether with the fact that slight perturbations (not introducing sources of dissipa- 
tion) produce only slight modifications in the system and an enormous number of 
slight perturbations can therefore be absorbed without significant cost. The 
likelihood of the necessary conditions being met may not be compelling; never- 
theless the above considerations should be taken into account if it appears that a 
system is accurately describable by a weakly stable model. (Examples of weakly 
stable models are the Lotka-Volterra equation, Kerner's" statistical mechanics of 
Lotka-Volterra systems, and Goodwin's'' statistical mechanics of gene-protein 
interactions in cells.) 

(B) Strong Stability. The argument generally made in favor of strongly stable 
models is that they are necessarily dissipative (since they forget perturbation), and 
therefore not necessarily structurally instable to a perturbation that introduces 
more dissipation. The fundamental equations of physics are conservative, there- 
fore weakly stable, so that ultimately the dissipation of disturbance is equivalent 
to the absorption of disturbance in a (weakly stable) heat bath. This heat bath is 
thus the unrepresented (physical) adaptability that supports the strongly stable 
dynamics of the compartment in question. However, the particular form of these 
dynamics is also maintained by other, biological adaptabilities, which are neces- 
sary to prevent different types of dissipative perturbation from mixing in, and 
which play an increasingly important role insofar as the degree of autonomy 
increases. 

The above considerations suggest how strongly stable dynamics (with 
asymptotically stable states or limit cycle behavior) might be significant from the 
standpoint of a system performing particular biological functions, how the strong 
stability contributes to adaptability by representing the absorption of disturbances 
in a heat bath, and how the appearance of some degree of dynamical autonomy 
(or predictability in terms of a restricted set of variables) can more or less be 
supported by unrepresented adaptabilities. Taking the other point of view, how- 
ever, instabilities of a strongly stable system (involving transitions among mul- 
tiple steady states or multiple limit cycles) potentially provide adaptabilities that 
may be unrepresented in the dynamical descriptions of other compartments, but 
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which support these dynamics. The costs of such adaptabilities depends on the 
biological structures and processes required, the modifications required t o  move 
from one stable state (organization) to  another, degree of independence of such 
modifications from modifications of other compartments, and the compatibility 
of the different states with the efficiency of the compartment and other com- 
partments (which might be expected t o  increase as the “nearness” of the states 
increases). 

(C) Structural Stability. The argument for structurally stable models is the 
same as above, except that the dynamical structures can be so chosen that more or 
less wide classes of perturbation can be mixed in also so chosen that the bifur- 
cations (catastrophes) occur in a structurally stable way.I3’l4 From the standpoint 
of adaptability there are three basic considerations, indicating both costs and 
advantages of structural stability and structural instability: 

(1 )  Relation between independence and structurally stable behavior (stable or 
unstable). The states assumed by the varying compartment (i.e., the variable) are 
changed gradually as the states of parametric compartments (represented by the 
parameter) undergo changes. This means that modifications in different compart- 
ments are correlated, thereby apparently decreasing independence and increasing 
the cost of adaptability. Some caution is necessary, however, since the system is 
really more structurally stable if the “nearbyness” of the behavior of the variable 
compartment for different states of the parametric compartment increases, so that 
independence increases as structural stability increases provided the compartments 
interact. Indeed, another way of saying that the dynamics of a subcompartment of 
an interconnected system of compartments has high independence (or high degree 
of autonomy) is to  say that these dynamics are  structurally stable relative to 
changes in the other compartments (whose states may be lumped into parameters). 
To increase this independence (nearbyness of the behavior of a compartment de- 
spite possible change in the behavior of other compartments) the system must be 
built so that it is capable of supporting more modes of dissipation compatible 
with a given class of behaviors. This (along with structural constraint or internal 
decorrelation concomitant t o  weakened interaction) is the cost of independence. 
Furthermore. since independence has a basis in the construction of the system, 
it is itself an aspect of organization that must be protected from disturbance, 
implying that the whole hierarchy of adaptabilities contributes to  the maintenance 
of the independence (i.e., structural stability o r  noninteraction) which increases 
their efficiency (self-consistency of the bootstrap principle). 

(2) Contribution of structural stability of stable behavior. By structural stabil- 
ity of stable behavior is meant the structural stability away from the bifurcation 
points. Of two systems structurally stable to  the same class of perturbations, the 
one which undergoes less quantitative change (therefore is more independent) is 
here called structurally stable. For the system less structurally stable (in this sense) 
adaptive or maladaptive changes in compartments (generally represented in terms 
of a single lumped parameter) causes any law written solely in terms of the 
variable of the compartment of  original interest to  be broken. However, the con- 
sequent quantitative changes in the compartment of interest potentially subserve 
the absorption of disturbance and therefore may also be adaptive, though in this 
case at  a real increase in the cost of adaptability (because of the real decrease in 
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independence). This cost can be reduced if the parametric compartment is or- 
ganized in such a way that the modifications are really inexpensive. It can then be 
thought of as a sensor or control element and in fact low independence in this case 
increases adaptability by increasing anticipation (i.e., decreasing terms such as 
H(Gm I a&), where G,s is the transition scheme of the parametric compart- 
ment). It might be noted that if the parametric compartment were excluded from 
consideration, the quantitative variation of behavior of the compartment of in- 
terest would appear as  a form of unstable behavior. 

(3) Contribution of structural stability of unstable behavior. By structural 
stability of unstable behavior is meant structural stability of the bifurcation 
process. Insofar as bifurcation allows for different modes of behavior (e.g., dif- 
ferent modes of development), it provides a mechanism for absorbing disturbance, 
in just the same sense that weak stability or multiple steady states potentially 
absorb disturbance, except that the unstable behavior would appear quite incom- 
prehensible if an attempt were made to  describe it solely in terms of variables of 
the compartment of interest. As with the case for stable behavior, a decrease in 
independence would in general mean correlated modifications and therefore an 
increase in the cost of adaptability; but if the parametric compartment is 
specialized as an inexpensively modifiable sensor or controller, better anticipa- 
tion is possible and it is more likely that a mode of behavior appropriate to  the 
environment will be assumed. 

In sum, the modifiability terms cross-correlate t o  instabilities, associated with 
jumps t o  alternate weakly or strongly stable states (absorption of disturbance) 
or to stable behavior involving the direct return t o  an initially strongly stable 
state subsequent to  disturbance (dissipation of disturbance). The independence 
terms cross-correlate with either structural stability or weakening of interaction. 
The translations, however, are strictly applicable only to discrete time, finite state 
dynamical systems, although it is not unreasonable t o  expect essential carryover 
to more general situations. 

CONCLUSIONS 

Adaptability theory has a number of applications which have been described 
elsewhere, e.g., to  homeostasis,' patterns of adaptability in populations,' rout- 
ability of matter and energy flow in c o m m ~ n i t i e s , ' ~  and evolution of levels of 
organization.' The discussion in the present paper, which deals with the cross- 
correlation of the adaptability theory framework and dynamic biological models, 
also has evident implications for the construction and interpretation of dynami- 
cal models in biology. 

A pertinent example is the long-standing issue as to  the relation between com- 
plexity and stability of ecological systems. The elegant studies of May16 have 
clearly established that the probability of stability decreases as complexity- 
number and interdependence among species-increases. The basic reason is 
roughly that as the dimensionality of a space gets larger it becomes less likely to  
find multidimensional valleys and if such a valley is found it is more likely to  be 
one which a small perturbation will cause the system to escape. Yet as May" 
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points out, complex communities in nature are not necessarily less stable than sim- 
ple ones, and in fact climax communities are often quite complex. From the stand- 
point of adaptability theory the increase in complexity of the community level is 
quite compatible with the lowered stability, provided that adaptabilities unrepre- 
sented in the population dynamics are increased, either by increasing the modifi- 
ability of subcompartments (increasing genetic and phenotypic plasticities) or by 
increasing the independence of the various forms of modifiability. In this way the 
community earns the advantages of complexity (e.g., specialization of labor) but 
without incurring the disadvantage of instability at the population level, essen- 
tially because the bath of unrepresented adaptabilities causes the environment it 
sees to appear quieter. However, it should also be remembered (from the stand- 
point of constructing models) that instability of the population dynamics may also 
make a contribution to adaptability, particularly if  species can be stored (in spore 
or seed form) and if organisms are not too expensive to construct (e.g., micro- 
organisms). Indeed adaptability theory suggests that as the environment is made 
harsher and more uncertain (thus increasing the requirements for adaptability and 
at the same time making it more difficult to pay for this adaptability) there will at 
some point be a switch between the two types of adaptability patterns. In either 
case to the issue of the relation between stability and complexity must be added 
the consideration of adaptability. 
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