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ABSTRACT
We study the evolution of phase-space density during the hierarchical structure formation of
� cold dark matter (CDM) haloes. We compute both a spherically averaged surrogate for
phase-space density (Q = ρ/σ 3) and the coarse-grained distribution function f (x, v) for dark
matter (DM) particles that lie within ∼2 virial radii of four Milky Way sized dark matter
haloes. The estimated f (x, v) spans over four decades at any radius. DM particles that end up
within 2 virial radii of a Milky Way sized DM halo at z = 0 have an approximately Gaussian
distribution in log (f ) at early redshifts, but the distribution becomes increasingly skewed at
lower redshifts. The value f peak corresponding to the peak of the Gaussian decreases as the
evolution progresses and is well described by f peak(z) ∝ (1 + z)4.5 for z > 1. The highest
values of f (responsible for the skewness of the profile) are found at the centres of dark matter
haloes and subhaloes, where f can be an order of magnitude higher than in the centre of the
main halo. We confirm that Q(r) can be described by a power law with a slope of −1.8 ± 0.1
over 2.5 orders of magnitude in radius and over a wide range of redshifts. This Q(r) profile
likely reflects the distribution of entropy (K ≡ σ 2/ρ

2/3
DM ∝ r1.2), which dark matter acquires as

it is accreted on to a growing halo. The estimated f (x, v), on the other hand, exhibits a more
complicated behaviour. Although the median coarse-grained phase-space density profile F (r)
can be approximated by a power law, ∝ r−1.6±0.15, in the inner regions of haloes (<0.6 rvir), at
larger radii the profile flattens significantly. This is because phase-space density averaged on
small scales is sensitive to the high-f material associated with surviving subhaloes, as well as
relatively unmixed material (probably in streams) resulting from disrupted subhaloes, which
contribute a sizable fraction of matter at large radii.

Key words: methods: N-body simulations – galaxies: evolution – galaxies: formation –
galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

Cosmological N-body simulations of the formation of structure
in the Universe allow us to reconstruct how gravitationally bound
objects like galaxies and clusters form and evolve. These simula-
tions have shown that despite the seemingly complex hierarchical
formation history of dark matter (DM) haloes, the matter density
distributions of cosmological DM haloes are described by simple

�E-mail: mvalluri@umich.edu

three-parameter profiles (Navarro, Frenk & White 1996; Merritt
et al. 2006).

The study of the evolution of the phase-space distribution func-
tion (DF) of a collisionless dynamical system (composed of stars
or DM or both) is the fundamental to understand its dynamical evo-
lution, since a collisionless system is completely described by its
phase-space density distribution [otherwise called the fine-grained
DF f (x, v)]. For an isolated collisionless system, f (x, v, t) is fully
described by the collisionless Boltzmann equation (CBE; some-
times called the Vlasov equation), which is a continuity equation in
phase space. A consequence of the CBE is that the fine-grained
DF is always conserved. In addition, V (f )df , the volume of phase
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space occupied by phase-space elements whose density lies be-
tween (f , f + df ), is also conserved. However, the conservation
of the fine-grained f (x, v) and V (f )df is not a very useful property
for understanding the evolution of real systems, since in practice
it is only possible to compute an average of f over a finite volume
of phase space. This average is referred to as the coarse-grained
DF f̄ (x, v), and the associated volume density is V̄ (f ). The evo-
lution of the coarse-grained DF is governed by Mixing Theorems
(Tremaine, Henon & Lynden-Bell 1986; Binney & Tremaine 1987;
Mathur 1988). These theorems state that if the coarse-grained DF
is bounded, then processes that operate during the relaxation of
collisionless systems (e.g. phase mixing, chaotic mixing and the
mixing of energy and angular momentum that accompanies violent
relaxation) result in a decrease in the coarse-grained phase-space
density. This is because at any point in phase space, both low and
high phase-space density regions get highly mixed (Tremaine et al.
1986; Binney & Tremaine 1987). In addition, there are simple rela-
tionships that exist between the initial V (f ) and the coarse-grained
V̄ (f ) at a later time: V̄ (f ) is always greater than V (f ) (Mathur
1988). Since it is only possible to measure the coarse grained phase-
space density, hereafter we simplify the notation and use f (x, v) to
represent f̄ (x, v) and V (f ) to represent V̄ (f ).

Recently, Dehnen (2005) proved a new Mixing Theorem that
states that the excess-mass function D(f ), which is the mass of
material with coarse-grained phase-space density greater than a
value f , always decreases due to mixing, for all values of f . He
showed, using this theorem, that steeper cusps are less mixed than
shallower ones, independent of the details of the DF or density
profile, and this implies that a merger remnant cannot have a cusp
that is either steeper or shallower than the steepest of its progenitors.

Taylor & Navarro (2001) have introduced a surrogate quantity,
Q(r) = ρ(r)/σ (r)3, where ρ(r) is the configuration-space density
averaged in spherical shells, and σ (r) is the velocity dispersion of
DM particles averaged in a spherical shell centred at the radius
r. Note that, although Q(r) has dimensions of phase-space den-
sity, it is not true coarse-grained phase-space density, because it is
constructed out of separately computed configuration-space density
and velocity dispersion in arbitrarily chosen spherical shells. Con-
sequently, it is not expected to obey any Mixing Theorems (Dehnen
& McLaughlin 2005) and is generally difficult to interpret in terms
of phase-space density. Nevertheless, it is an intriguing quantity, be-
cause Taylor & Navarro (2001) show that Q(r) is well approximated
by a single power law, Q ∝ r−β with β ≈ 1.874 over more than 2.5
orders of magnitude in radius for CDM haloes universally, regard-
less of mass and background cosmology (see also Ascasibar et al.
2004; Rasia, Tormen & Moscardini 2004). Recent work, however,
indicates that Q(r) profiles are somewhat sensitive to the amount
of substructure and the slope of the power spectrum (Knollmann,
Knebe & Hoffman 2008; Wang & White 2008).

While power-law Q(r) profiles are by no means universal for self-
gravitating systems in dynamical equilibrium (Barnes et al. 2006),
power-law profiles with exactly the same slope were first shown
to arise in simple self-similar spherical gravitational infall mod-
els (Bertschinger 1985) pointing to a possible universality in the
mechanisms that produce them. Austin et al. (2005) extended the
early work of Bertschinger (1985) using semi-analytical extended
secondary infall models to follow the evolution of collisionless
spherical shells of matter that are initially set to be out of dynamical
equilibrium and are allowed to move only radially. They concluded
that the power-law behaviour of the final phase-space density pro-
file is a robust feature of virialized haloes, which have reached
equilibrium via violent relaxation. They used a constrained Jeans

equation analysis to show that this equation has different types
of solutions and that it admits a unique periodic solution which
gives a power-law density profile with slope β = 1.9444 [compa-
rable to the numerical value of β = 1.87 obtained by Taylor &
Navarro (2001)].

A recent study (Hoffman et al. 2007), followed the evolution of
Q(r) profiles in cosmological DM haloes in constrained simulations
designed to control the merging history of a given halo. These
authors showed that, during relatively quiescent phases of halo
evolution, the density profile closely follows that of a NFW halo,
and Q(r) is always well represented by a power-law r−β with β = 1.9
± 0.1. They showed that Q(r) deviates from power law most strongly
during major mergers but recovers the power law form thereafter
(this is consistent with our findings using a series of controlled
merger simulations; Vass et al. 2009). More recently, Wojtak et al.
(2008) demonstrated (using a variant of the FiEstAS code) that
the DF of �CDM haloes of mass 1014–1015 M� can be separated
into energy and angular momentum components. They proposed a
phenomenological model for spherical potentials and showed that
their model DF was a good match to the N-body DFs and was also
able to reproduce the power-law behaviour of Q(r). Despite the
insights obtained in these studies, the origin of the universality of
Q(r) is not yet understood, and the question of how this quantity
relates to the true coarse-grained phase-space density has not yet
been thoroughly investigated. This motivates our study which is
focused on the evolution of both Q(r) and phase-space density
evolution using a set of self-consistent cosmological simulations of
halo formation.

In the last 4 years, three independent numerical codes to compute
the true coarse-grained phase-space density from N-body simula-
tions have been developed (Arad, Dekel & Klypin 2004; Ascasibar
& Binney 2005; Sharma & Steinmetz 2006). In the Appendix, we
compare results obtained with the codes ‘FiEstAS’ (Ascasibar &
Binney 2005) and ‘EnBiD’ (Sharma & Steinmetz 2006) at a range
of redshifts. However, we only present results obtained with the
‘EnBiD’ code using a specific kernel. Following the submission
of this paper, we became aware of the work of Maciejewski et al.
(2009). These authors carried out a similar comparison of various
coarse-grained phase-space density estimators for N-body simula-
tion cosmological haloes at z = 0.

In an accompanying paper (Vass et al. 2009), we present an
analysis of phase-space and Q(r) evolution during major mergers
between CDM-like spherical haloes. We show that major mergers
(those which are the most violent and therefore likely to result in
the greatest amount of mixing in phase space) preserve spherically
averaged phase-space density profiles [both Q(r) and F(r)] out to
the virial radius rvir of the final remnant. We confirm the predic-
tion (Dehnen 2005) that the phase-space density profiles of DM
haloes are extremely robust, and in particular, the prediction that
the steepest central cusp always survives.

To understand the robustness of profiles outside the central cusp
(Vass et al. 2009), we drew on recent work by Valluri et al. (2007)
that shows that matter in equally spaced radial shells is redistributed
during the merger in such a way that only about 20 per cent of the
matter in the central cusp is ejected during the merger to radii ex-
tending out to about two scale radii. For all other radii, roughly
15 per cent by mass in each radial shell is redistributed uniformly
with radius. Further, nearly 40 per cent of the mass of the pro-
genitor haloes lies beyond the formal virial radius of the remnant
(Kazantzidis, Zentner & Kravtsov 2006; Valluri et al. 2007), and
this matter originates roughly uniformly from each radial interval
starting from about three scale radii from the centre. While major
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mergers (such as those studied by Dehnen 2005; Vass et al. 2009)
are instructive, they represent the most extreme form of mixing,
and are not the major mode of mass accretion in the Universe. In
addition, since experiments with major mergers demonstrate that
pre-existing power-law profiles are preserved, they shed little light
on the formation of the profiles. Our primary goal is to gain a better
understanding of the origin of the power-law phase-space density
profiles seen in cosmological DM simulations.

In this paper, we investigate the evolution of the coarse-grained
phase-space density in the formation and evolution of four Milky
Way sized haloes in a �CDM cosmology with cosmological pa-
rameters: (�m, ��, h, σ 8) = (0.3, 0.7, 0.7, 0.9). In Section 2,
we summarize the cosmological N-body simulations analysed in
this study as well as the numerical methods used to obtain coarse-
grained phase-space densities. (The Appendix contains a detailed
comparison of the two codes FiEstAS and EnBiD. We also present
reasons for our choice of EnBiD, with n = 10 smoothing kernel).
In Section 3, we describe the properties of the spherically averaged
quantity Q(r) as well as the the coarse-grained DF for one Milky
Way sized DM halo at z = 0, as well as the evolution of the phase-
space DF of this halo from z = 9 to the present. In Section 4, we also
present results for three additional Milky Way sized haloes. In Sec-
tion 5, we present an interpretation of the power-law profiles seen
in Q(r) and discuss the implications of observed coarse-grained DF
in a cosmological context. Section 6 summarizes the results of this
paper and concludes.

2 N U M E R I C A L M E T H O D S

The simulations analysed in this paper are described in greater detail
in the works of Kravtsov, Gnedin & Klypin (2004) and Gnedin
& Kravtsov (2006). The simulations were carried out using the
adaptive refinement tree N-body code (ART; Kravtsov, Klypin &
Khokhlov 1997). The simulation starts with a uniform 2563 grid
covering the entire computational box. This grid defines the lowest
(zeroth) level of resolution. Higher force resolution is achieved in the
regions corresponding to collapsing structures by recursive refining
of all such regions by using an adaptive refinement algorithm. Each
cell can be refined or de-refined individually. The cells are refined if
the particle mass contained within them exceeds a certain specified
value. The grid is thus refined to follow the collapsing objects in a
quasi-Lagrangian fashion.

Three of the galactic DM haloes were simulated in a comoving
box of 25 h−1 Mpc (hereafter L25); they were selected to reside
in a well-defined filament at z = 0. Two haloes are neighbours,
located 425 h−1 kpc from each other. The third halo is isolated and
is located two Mpc away from the pair. Hereafter, we refer to the
isolated halo as G1 and the haloes in the pair as G2 and G3. Although
we analysed all three haloes at the same level of detail we present
detailed results for G1. The virial masses and virial radii for the
haloes studied are given in table 1 in Kravtsov et al. (2004).
The virial radius (and the corresponding virial mass) was chosen as
the radius encompassing a mean density of ∼200 times the mean
density of the Universe. The masses of the DM haloes are well
within the range of possibilities allowed by models for the halo of
the Milky Way galaxy (Klypin, Zhao & Somerville 2002). The sim-
ulations followed a Lagrangian region corresponding to the sphere
of radius equal to 2 virial radii around each halo at z = 0. This region
was resampled with the highest resolution particles of mass mp =
1.2 × 106 h−1 M�, corresponding to 10243 particles in the box, at
the initial redshift of the simulation (zi = 50). The maximum of 10
refinement levels were reached in the simulations corresponding to

the peak formal spatial resolution of 152 h−1 parsec. Each host halo
is resolved with ∼106 particles within its virial radius at z = 0.

The fourth halo was simulated in a comoving box of 20h−1 Mpc
box (hereafter L20), and it was used to follow the Lagrangian region
of approximately five virial radii around the Milky Way sized halo
with high resolution. In the high-resolution region, the mass of
the DM particles is mp = 6.1 × 105 h−1 M�, corresponding to
effective 10243 particles in the box, at the initial redshift of the
simulation (zi = 70). As in the other simulation, this run starts
with a uniform 2563 grid covering the entire computational box.
Higher force resolution is achieved in the regions corresponding to
collapsing structures by recursive refining of all such regions using
an adaptive refinement algorithm. Only regions containing highest
resolution particles were adaptively refined. The maximum of nine
refinement levels were reached in the simulation corresponding to
the peak formal spatial resolution of 150 h−1 comoving parsec. The
Milky Way sized host halo has the virial mass of 1.4 × 1012 h−1 M�
(or 2.3 million particles within the virial radius) and virial radius of
230 h−1 kpc at z = 0.

The peak spatial resolution of the simulations determines the
minimum radius to which we can trust the density and velocity
profiles. In the following analysis, we only consider profiles at radii
at least eight times larger than the peak resolution of the simulations
[i.e. ≈0.5–0.6 h−1 comoving kpc or r ≈ 0.004 rvir(z=0)].

2.1 Phase-space density estimators

In this paper, we will focus on the time evolution of the spherically
averaged phase-space density Q(r) as well as the coarse-grained
phase-space DF f (x, v) during the formation of the Milky Way
sized DM haloes in �CDM cosmological simulations described
above.

In the last four years, three independent numerical codes to com-
pute the coarse-grained phase-space density from N-body simula-
tions have been developed (Arad et al. 2004; Ascasibar & Binney
2005; Sharma & Steinmetz 2006).1 These techniques differ in the
scheme used to tesselate six-dimensional phase space as well as in
the density estimators they use. The first study of coarse-grained
DF (Arad et al. 2004) showed that it has its highest values at the
centres of DM haloes and subhaloes. They also showed that the
volume density of phase-space V(f ) within individual cosmologi-
cal DM haloes at z = 0 has a power-law profile over nearly four
orders of magnitude in f . The main criticism of this code is that it
is not metric-free. The FiEstAS algorithm of Ascasibar & Binney
(2005) and the EnBid algorithm of Sharma & Steinmetz (2006) are
preferred due to their speed and the metric free nature. The FiEs-
tAS algorithm is based on a repeated division of each dimension of
phase space into two regions that contain roughly equal numbers of
particles. EnBiD (Sharma & Steinmetz 2006) closely follows the
method used in FiEstAS, but it optimizes the number of divisions
to be made in a particular dimension by using a minimum-entropy
criterion based on the Shannon entropy that measures the phase-
space density with much greater accuracy when f is high. Sharma

1 An even more sophisticated numerical method has recently been presented
by Vogelsberger et al. (2008) for calculating the fine-grained phase-space
structure of DM distributions derived from cosmological simulations. This
code has the potential to identify fine-scale structure such as caustics in
phase space and the phase-space structure of tidal streams in the Milky
Way halo. Its ability to estimate the fine-grained f (x, v) makes it useful for
understanding non-equilibrium systems and for making accurate predictions
for direct DM searches.
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Figure 1. Q(r) and F (r) in 100 spherical radial bins about the most bound
particle in halo G1 from the L25 simulation at z = 0. Top panel: Q (dot–
dashed curve); power-law fit Q ∝ r−1.84±0.012 is given by upper thin solid
line. F (r) from EnBiD [with n = 10 smoothing kernel (dotted curve)];
power-law fit to F (r) ∝ r−1.59±0.054 is given by lower thin solid line. Mean
value of f (long-dashed curve) is noisier than F (r) due to subhaloes. Resid-
uals to the two power-law fits are shown in the bottom panel.

& Steinmetz (2006) showed that EnBiD with a kernel which in-
cludes 10 nearest neighbours (n = 10) about each point was able to
recover analytic phase-space density profiles to nearly three to four
decades higher values of f than FiEstAS.

For our haloes at z = 0, the results we obtained with the different
codes were completely consistent with those obtained by Sharma
& Steinmetz (2006). The deviations between the estimates obtained
with the different codes and various parameters were significantly
higher at higher redshift – where comparisons with analytic esti-
mates are not available. We refer the reader to the Appendix for a
detailed comparison between estimated values of f using the two
codes at various redshifts. In the rest of this paper we present results
obtained with EnBiD (n = 10 kernel), the parameters preferred by
Sharma & Steinmetz (2006).

Fig. 1 (top panel) shows the spherically averaged quantity Q =
ρ/σ 3 (dot–dashed curve), the mean of f (x, v) in spherical bins
(dashed curve) and the median DF in spherical bins (dotted curve).
As we will show in Fig. 4, the large fluctuations in the mean value of
f (dashed curve) beyond 0.1rvir are due to the presence of substruc-
ture, which can have extremely high central values of f . The median
value of f (hereafter represented by F) is much smoother, being less
sensitive to the large range (nearly eight orders of magnitude) in f at
each radius. In what follows, we will use the median F, computed in
concentric radial bins centred on the most bound particle in the main
halo, since it is less sensitive to substructure. Q(r) is well fitted by a
power law, Q ∝ r−1.84±0.012, over the radial range [0.004–0.6] r/rvir

(upper thin solid line). The power-law fit F (r) ∝ r−1.59±0.054 over
the same radial range is shown by the lower thin solid line. The
bottom panel shows the residuals of the fits F [log (F/F fit)] and
Q [log (Q/Qfit)]. This plot shows that while Q(r) is an extremely

good power law, the median F(r) is only approximately power law
over the same radial range. Note that Q(r) is numerically larger
than F(r) due to the fact that the former quantity does not properly
account for the volume of the phase-space element. A similar result
was obtained in a much higher resolution simulation by Stadel et al.
(2008), a study which appeared as we were preparing this paper for
publication.

3 EVO LUTI ON O F PHASE-SPACE DENSITY
WITH REDSHIFT

Hoffman et al. (2007) studied the phase-space density profiles of
a DM halo by tracking Q(r) for material within the formal virial
radius at each redshift. They found that the virialized material within
this radius has an approximately power-law form with a constant
power-law index of −1.9 ± 0.05 at all redshifts from z = 5 to the
present.

We follow a slightly different approach in this paper, since our
objective is to understand the evolution of the true coarse-grained
phase-space density distribution. We track the evolution of phase-
space density, by tracing backwards in time all the material that lies
inside the virial radius at z = 0. This will allow us to understand
how the initially high phase-space density material that lies outside
virialized systems at high redshift falls in and undergoes mixing and
how the resultant mixing preserves the phase-space density profiles
as a function of redshift.

We identified Milky Way sized DM haloes at z = 0 in our cos-
mological simulations and identify all the particles that lie inside
twice the virial radius at z = 0. Our choice of halo outer radius
(2rvir) is motivated by the recent work of Cuesta et al. (2008) who
showed that the virial radius is arbitrary and does not correspond
to a physically meaningful outer boundary for a DM halo. A better
outer radius is the so-called ‘static radius’, defined as the radius at
which the mean radial velocity of particles is zero. This radius is
typically about 2rvir for a galaxy-sized DM halo. After identifying
all particles within 2rvir at z = 0, we tracked them back to z = 9.
Our simulations do proceed back in time to even higher redshifts,
however we do not analyse them here because the mass resolution at
higher redshifts does not allow us to resolve the evolution of most of
the objects beyond this epoch. There were 1.6 × 106 particles within
2 virial radii of the G1 halo, which is the halo that is most isolated
at z = 0. Two other haloes (G2 and G3) from the L25 simulation
are closer to each other at z = 0 (1.5 virial radii apart). Therefore,
we only tracked those particles which lay within one virial radius
of the centres of these two haloes at z = 0 back in time to z = 9.
The particles in the high-resolution simulation L20 were selected
and tracked in the same way as for the G1 halo, and at z = 0 there
were 3 × 106 particles inside twice the virial radius. The position
and velocity data for all the particles identified as belonging to a
given halo at z = 0 were analysed.

At all redshifts we compute the phase-space densities of parti-
cles in physical coordinates rather than in comoving coordinates.
Distances are always in kpc and velocities are in km s−1, and these
quantities are measured relative to the centre of the most massive
progenitor. In many of the figures that follow, the physical distances
at all redshifts other than z = 0 are scaled by the virial radius at
z = 0, i.e. all distances are given in units of r/rvir(z=0).

In this section, we will present the results obtained for the G1

halo in the L25 simulation. A comparison with results for the other
three haloes is made in Section 4.

Fig. 2 plots the median value (F) of the phase-space density f as
a function of radius (as defined above) at several different redshifts.
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Figure 2. F as a function of comoving radius r for all material that lies
within 2rvir of the centre of the G1 halo at z = 0. Each curve corresponds to
a different redshift as indicated in the legends.

At the highest redshift plotted (z = 9), the overall value of F is higher
at large radii than it is at the centre of the halo, and it only varies by a
factor of a few over the entire range of radii [F ∼ 10–30 M� kpc−3

(km s−1)−3]. This is because within the inner, virialized regions the
coarse-grained phase-space density is lowered due to mixing, while
it is still high in the outer regions where the large fraction of matter
is not yet mixed or is located in small subhaloes that have not mixed
to the same degree as the main host. As the evolution progresses,
there is a decrease in the central value of F till z = 3. The median

value of F at the centre of the halo drops from F ≈ 10 M� kpc−3

(km s−1)−3 at z = 9 down to F ≈ 2 M� kpc−3 (km s−1)−3 at z = 0.
The central value of F remains constant beyond z = 3, while there
is a steady decrease in F at intermediate radii.

Although it is instructive to plot the mean and/or median values
of F at each radius, much more information is contained in the full
coarse-grained phase-space density f . The six-dimensional function
f (x, v) can be most easily visualized using the volume DF V(f ),
which also obeys a Mixing Theorem (Mathur 1988). Arad et al.
(2004) showed that at z = 0, V (f ) for cosmological DM haloes
follows a power-law profile V (f ) ∝ f −α with power-law index
α = 2.4 over four orders of magnitude in f . They argued that
since DM haloes are almost spherical, if their phase-space DFs are
approximately isotropic, their DFs could be written as functions of
energy alone: f = f (E). In this case they showed that if Q ∝ r−β ,
then V(f ) would also be described by a power law, and the index α

was related to the index β through a simple equation.
In Fig. 3, we plot the evolution of V(f ) with redshift for all the

material that lies within twice the virial radius of halo G1 at z = 0.
In the bottom-right panel, the solid line is a fit to V(f ) for values
of 10−4 < f < 102.5. Over this range the best-fitting power-law
profile is given by V (f ) ∝ f −2.34±0.02 which is not very different
from the power-law profile fit obtained by Arad et al. (2004). At all
redshifts, V(f ) deviates from the power-law profile at both low and
high end. It is likely that at the high-f end the distribution deviates
from the power law due to the unresolved subhaloes below the mass
resolution limit of the simulation.

The Mixing Theorem requires that the coarse-grained volume DF
V(f ) always increases (Mathur 1988). We see that V(f ) increases
steadily from z = 9 onwards for f < 1 M� kpc−3 (km s−1)−3 in such
a way that as the system evolves, there is more volume associated
with material with low f . At higher values of f , V (f ) remains

Figure 3. The volume DF V ( f ) for G1 halo in the L25 simulation at different redshifts. A power-law fit to V ( f ) ∝ f −2.34±0.017 is shown at z = 0 (solid line).
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Figure 4. Contours of constant particle number density in the plane [log (f ), log (r)] for the G1 halo, plotted at different redshifts. At each redshift the radial
distribution of particles is given relative to the most bound halo particle in units of the virial radius of the halo at z = 0. The yellow and black contours
correspond to the regions with the highest and lowest particle number densities, respectively. Contours are spaced at logarithmic intervals in particle number
density relative to the maximum density contour. F, the median value of f at each radius, is represented by the solid white line.

almost constant with decreasing redshift, probably owing to the
fact that this material forms the cusps of DM haloes. While the
Mixing Theorems have previously been demonstrated for isolated
systems, this is to our knowledge the first demonstration of their
validity in a cosmological context.

It is particularly illuminating to plot the full coarse-grained phase-
space density of all particles as a function of radius from the centre
of mass of the main halo at each redshift (Fig. 4). At any radius from
the centre, there exist particles with phase-space densities spanning
between four and eight decades in f . The coloured contours repre-
sent a constant particle number per unit area on the plane [ log (f ),
log (r)]. The yellow/orange contours represent the parameter range
with the largest number of particles, while the blue/black contours
represent regions with the smallest number of particles. The solid
white curves on each plot show the median value (F) of f (x, v) in
100 logarithmically spaced bins in r. These curves are identical to
the various curves in Fig. 2 and trace the regions with the largest
particle number density at each radius. Numerous spikes in f are
seen at r > 0.1rvir and correspond to DM subhaloes.

As the evolution proceeds, there is an overall lowering of the me-
dian phase-space density F (white curves). There is also a continu-
ous decrease of the low-end envelope of f to lower values pointing
to an increasingly large amount of matter with low phase-space den-
sity. However, the upper envelope representing the highest phase-
space density regions at the centres of the subhaloes remains rela-
tively unchanged with redshift, indicating that primordial values of
f are largely preserved at the centres of DM subhaloes lying outside
the centre of the main halo.

It is illustrative to compare the evolution of F(r) and Q(r) with
redshift. Fig. 5 shows the two curves plotted as a function of ra-
dius (in comoving units) at each redshift for all the matter in halo
G1 that lies within 2 virial radii at z = 0, as a function of phys-
ical radius from the centre of the most massive progenitor of the
final halo (in units of the virial radius at z = 0). In each panel a
thin vertical line is drawn at the virial radius of the halo at that
redshift.

We find the best-fitting power-law Q ∝ r−1.84±0.012 at z = 0 to the
profile within 0.6rvir. In agreement with Hoffman et al. (2007), we
find that the same power law provides a reasonably good fit to the
profiles at redshifts from z ∼ 5 to 0. While Q always decreases with
radius since it is a spatial average over increasingly large volumes
of configuration space, the median phase-space density F decreases
monotonically with radius only within about 0.6 rvir of the main pro-
genitor at that redshift. Outside the virial radius at each redshift (i.e.
to the right-hand side of the vertical dashed line), F(r) become sig-
nificantly flatter, even increasing with increasing radius. At all z �=
0 this represents the median phase-space density of matter that will
lie within the outer radius of the halo at z = 0, but is either still un-
virialized or lies within small haloes. In general, this material is not
as mixed as the more massive main progenitor. The nearly constant
value of F beyond the virial radius at high z may be interpreted as the
median phase-space density of DM in the Universe at that redshift.
At lower redshifts, a non-negligible fraction of this matter lies within
inner regions of small haloes, which have undergone relatively small
amount of mixing. As more and more material undergoes substantial
mixing as the haloes evolve, the high phase-space density unmixed
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Figure 5. Q = ρ/σ 3 (dot–dashed line) and median F (dotted line) as a function of r/rvir(z = 0) for different redshifts for the G1 halo. The dashed vertical
line is situated at the virial radius of the main halo at each redshift.

material in the subhalo centres, as well as in the relatively unmixed
streams formed from disrupted subhaloes, prevents the median at
large radii from decreasing rapidly, despite the large increase in low
material with low f -values within the virialized regions of the main
halo.

To better understand the evolution of f with redshift we plot his-
tograms of log (f ) at each redshift in Fig. 6 (thick solid histograms).
The thin red curves at each redshift represent the best-fitting
Gaussians to the distribution of log (f ) at that redshift. A Gaussian
provides a good fit to the majority of the mass. [Since log (f ) is close
to Gaussian, f itself has a lognormal distribution.] By approximately
z = 1, the skewness of the distribution is significant, and the skew-
ness increases steadily until z = 0. To better understand the origin
of the matter in the high-f tail at z = 0, we plot the distribution of
DM particles that have the values of f ≥ 1 M� kpc−3 (km s−1)−3 at
z = 0. The ordinate values of this distribution (multiplied by a fac-
tor of 10 to enhance visibility) are shown in the dashed histograms.
The thin blue curves show that the high-f tail is also well fitted by a
Gaussian (except at z = 0). As we saw in Fig. 4, most of these high-f
tail particles are in subhaloes at z = 0, while some are also in the
highest phase-space density particles in the central cusp of the halo
at z = 0. This high-f subpopulation has a Gaussian distribution at
z = 9 with a mean f = 1.73 ± 0.6 M� kpc−3 (km s−1)−3 compared
with the mean f = 1.57 ± 0.54 M� kpc−3 (km s−1)−3 for all the
particles (in the solid curve) at z = 9. A Student’s t-test indicated
with 99 per cent confidence that both distributions are drawn from
the same population at z = 9. This implies that the material that
lies in the centres of DM subhaloes at z = 0 will have phase-space
densities that are representative of the mean phase-space density of
matter at z = 9.

4 C OMPARI SON O F FOUR MI LKY WAY S IZED
H A L O E S

In this section we present results for the phase-space DFs for all
four of the DM haloes described in Section 2. Although, we present
results mainly at z = 0, evolution with redshift for each of the haloes
was similar to the evolution of halo G1 presented earlier.

Fig. 7 compares the volume distribution of phase-space density
V( f ) for the four different haloes at z = 0. All three haloes from
the L25 simulation (G1, G2, G3) show almost identical profiles in
V( f ) confirming the universality of the process that produced the
phase-space DF. For halo L20, V ( f ) lies systematically above the
other curves especially at higher values of f , where it also extends to
large values of f . It was first shown by Sharma & Steinmetz (2006)
that this is a numerical consequence of the increased mass resolu-
tion of the simulation. This indicates that the absolute value of f
derived in the previous section is somewhat dependent on the mass
resolution of the simulation and increases slightly with increasing
mass resolution. In all four haloes, V( f ) is well approximated by
a power law over nearly six orders of magnitude in f . The first
column of Table 1 gives details of the power law fits to V( f ) (i.e.
the power-law slopes and their errors over the range 10−4 < f <

102.5). The power-law slopes we obtained are similar to those ob-
tained by previous authors (Arad et al. 2004).

In Fig. 8, we plot F(r) and Q(r) for the four different haloes at z =
0. The top set of four curves show Q(r) while the lower set of curves
show F(r). In all four haloes, Q(r) is well fitted by a power law of
slope β = 1.8–1.9 (see Table 1). F(r) shows significant deviations
from a simple power-law profile, with a systematic upturn beyond
r/rvir > 0.1. The higher resolution simulation (L20) appears to
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Figure 6. Histograms of the phase-space density f of all halo particles as a function of redshift (thick solid histograms). The dashed histograms follow
those particles which have the highest phase-space densities f ≥ 1 at z = 0, with ordinate values multiplied by 10 to enhance visibility. The thin red
curves are the best-fitting Gaussians to all the particles in the thick solid histograms, while the thin blue curves are best-fitting Gaussians to dashed
histograms.

Figure 7. V ( f ) for four haloes, at z = 0. The triple-dot–dashed line is for
G1, the dotted line for G2, the dashed line for G3 and the solid line is for
higher mass resolution simulation L20.

have systematically higher F and Q values than the haloes from the
low-resolution simulation (again, a numerical consequence of the
higher mass resolution; Sharma & Steinmetz 2006). Table 1 gives
the values for the slopes and the error bars on the power law fits to
Q(r) and F(r) for r < 0.6rvir as well as the inner power-law slope
of F(r).

Table 1. Power-law indices for fits to V , Q and F for four
haloes at z = 0 for r < 0.6rvir.

Halo V Q F

G1 −2.34 ± 0.02 −1.84 ± 0.01 −1.59 ± 0.05
G2 −2.37 ± 0.02 −1.82 ± 0.01 −1.46 ± 0.06
G3 −2.35 ± 0.02 −1.75 ± 0.01 −1.42 ± 0.03
L20 −2.27 ± 0.01 −1.87 ± 0.01 −1.64 ± 0.07

5 D ISCUSSION

Several previous studies have attempted to account for the origin of
the power-law Q(r) profiles of DM haloes. Notably, it has been ar-
gued that power-law profiles result from virialization and not from
the hierarchical sequence of mergers, since they are also produced
in simple spherical gravitational collapse simulations (Taylor &
Navarro 2001; Barnes et al. 2006, 2007). Our results presented in
the previous section (Fig. 5) show that while Q(r) and F(r) have
approximately power-law form within 0.6rvir at a given redshift,
F(r) flattens out and remains quite flat beyond this radius. Fur-
thermore, as the hierarchical growth of the halo progresses these
approximately power-law profiles extend to larger radii until they
encompass all the mass within the virial radius at z = 0.

It has been shown from both theoretical arguments and numer-
ical simulations (Dehnen 2005; Vass et al. 2009) that power-law
profiles of phase-space density for central cusps are well preserved
during major mergers. At intermediate times during a major merger,
deviations from the power-law profile are seen but these largely dis-
appear at the end of the merger. In major mergers there are two main
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Figure 8. Q (thin lines) and F (thick lines) for all the haloes studied, at z =
0. Triple-dot–dashed lines are for G1, dotted lines for G2, dashed lines for
G3 and the solid lines for L20.

reasons for the preservation of the power-law profiles. First, the most
tightly bound material – that forming a steep central cusp or shallow
core—preserves its phase-space density in the final remnant. This
is a consequence of the additivity of the excess mass function – a
result of the fact that steeper cusps are less mixed than shallower
cusps (Dehnen 2005). Over 60 per cent of the material in the central
cusp (within one scale radius) of a progenitor NFW halo remains
within the cusp of the merger remnant (Valluri et al. 2007). The
second reason for preservation of power-law profiles at large radii
is that material outside three scale radii of the progenitor haloes is
redistributed to other radial bins almost uniformly from each radial
interval. In addition, nearly 40 per cent of the material within the
virial radius of the progenitor haloes is ejected to beyond the virial
radius of the final remnant (Kazantzidis et al. 2006; Valluri et al.
2007). This material can be shown to have originated in roughly
equal fractions from each radial interval beyond three scale radii
and has higher phase-space density than expected from the simple
power-law extrapolation of the inner power law. This self-similar
redistribution of material contributes to the preservation of power-
law profiles in Q(r) and F(r) in equal mass binary mergers. Thus,
once a power-law phase-space DF has been established in a DM
halo, major mergers will not destroy this profile. This has been con-
firmed by our recent work on mergers of equal-mass haloes (Vass
et al. 2009).

As discussed in the previous section (Fig. 6), the coarse-grained
phase-space density f in �CDM haloes has a nearly lognormal
distribution with the median of log (f ) (the peak of the histogram
f peak) evolving steadily towards lower values of f as the halo grows.
We now quantify the evolution of f peak with redshift.

Fig. 9 shows the evolution of median phase-space density f peak

derived from the histograms of log (f ) in Fig. 6 for each of
the four Milky Way sized cosmological haloes in this study.
The solid dots represent the values of f peak as a function a,
while the dot–dashed curves are meant to guide the eye by con-
necting points for each of the four individual haloes. For a <

0.5 the decline in f peak is approximately power law, f peak(a) ∝
a−4.5. This implies that the matter inside the haloes has un-
dergone significant mixing due to virialization during the hi-
erarchical formation process; the levelling off of the curve at

Figure 9. The median phase-space density (peak of histograms f peak in
Fig. 6) at each redshift as a function of the cosmic scalefactor a = (1 +
z)−1, plotted for four Milky Way sized haloes (points). The thin dot–dashed
curves connect points for the four individual haloes.

a ∼ 0.5 indicates a decrease in mixing after z = 1, possibly re-
sulting from a decrease in mass accreted in major mergers.

On average, as a halo grows via accretion its median density
decreases as a power law with time, despite the fact that the most
centrally concentrated material retains its original high phase-space
density. This nearly power-law profile in f peak leads to some insights
into the development of phase-space density profiles. We can break
down the formation of haloes into two phases (Li et al. 2007): the
fast accretion regime during which halo mass grows very rapidly and
the slow accretion regime. In the fast accretion regime, the mixing
processes are very efficient as the potential well is established and
potential fluctuates rapidly and constantly. This results in a rapid
decrease in the overall central phase-space density of the halo (as
seen from the rapid drop in the central most regions of the profiles
in Fig. 2). The inner profile of phase-space distribution should be
largely set during this stage. As haloes grow subsequently, either
by major mergers or by quiescent accretion of smaller haloes, the
average phase-space density decreases, but the pre-existing high
central phase-space density cusps are preserved.

At these later times the evolution of the true phase-space density is
complex and occurs due to the accretion of high phase-space density
material in subhaloes, as well as loosely bound material at the edges
of the halo. The steady decrease in the amplitude and increase in
the slope of the F(r) profiles in Fig. 2 with redshift show that
the true phase-space density does not obey the power-law profiles
seen in Q(r) at all redshifts. Variations in the individual power-law
profiles of haloes both at z = 0 (Fig. 8) and with redshift reflect the
large variation in the cosmic accretion histories of individual haloes.
Additional deviations from the power law arise due to the matter
bound to subhaloes that survives with high phase-space density and
leads to the variation of the coarse-grained f of some six orders of
magnitude in the outer regions of haloes.

All this indicates that the actual phase-space distribution is not
as universal and simple as the Q(r) profiles lead one to believe.
The mechanism behind the universal power-law form of the Q(r)
profiles is therefore likely to be different (e.g. it is not affected by
the presence of subhaloes) and simpler than the processes that shape
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the distribution of the coarse-grained phase-space density. The Q
profile is a ratio of the density and velocity dispersion (which can
be interpreted as a measure of temperature) and is therefore related
to the entropy. For an ideal monatomic gas the entropy can be
defined as Kgas = T /ρ2/3, while for DM, by analogy, the entropy
can be defined as KDM = σ 2/ρ

2/3
DM (Faltenbacher et al. 2007). This,

as noted by Hoffman et al. (2007), gives KDM ∝ Q−2/3 or KDM ∝
r1.2 for Q ∝ r−1.8. This power-law form and slope of the entropy
profile is very similar2 to the one found for the gas in the outer
regions of clusters in cosmological simulations (e.g. Borgani et al.
2004; Voit, Kay & Bryan 2005). This power law is also predicted
by the models of spherical accretion (Tozzi & Norman 2001) and
reflects the increasing entropy to which the accreting material is
heated as the halo grows its mass. Although the processes governing
the virialization of gas and DM are different (the short-range local
interactions for the former, and long-scale interactions for the latter),
the fact that the resulting entropy profiles are quite similar indicates
that they lead to the same distribution of entropy. The Q(r) profile
therefore may reflect the overall entropy profile of DM, not the
coarse-grained local phase-space density, which exhibits a more
complicated behaviour.

6 SU M M A RY A N D C O N C L U S I O N S

We have investigated the evolution of the phase-space density of
the DM in cosmological simulations of the formation of Milky
Way sized DM haloes. The analysis was carried out using two
different codes for estimating the phase-space density. Both codes
give qualitatively similar results, but the estimated values of phase-
space density f are quite sensitive to the type of code and, for a
given code, also depend quite sensitively on the choice of smoothing
kernel used. Based on comparisons of the two codes (FiEstAS and
EnBiD) and various smoothing parameters (see the Appendix), we
select the EnBiD code with n = 10 kernel smoothing and present
results for the analysis with this set of parameters.

The simulations presented in this paper complement our analysis
of the evolution of phase-space density in binary major mergers
(Vass et al. 2009). We confirm that the profiles of Q(r) = ρDM/σ 3

DM

computed by previous authors can be described by a power law
Q(r) ∝ r−1.8±0.1 over more than 2 orders of magnitude in radius in all
haloes. The median of the phase-space density [F(r)] at given radius
r, however, exhibits a more complicated behaviour. Although F(r)
is approximately a power law for r < 0.6rvir, the profiles generally
flatten in the outer regions. Subhaloes contribute somewhat to this
behaviour, although their effect is limited by the relatively small
fraction of mass (<0.1) bound to them. However, in addition to
subhaloes, a significant fraction of high phase-space density matter
is in the relatively unmixed material (possibly in streams) arising
from tidally disrupted subhaloes (e.g. Arad et al. 2004; Diemand
et al. 2008). The rise in F(r) at large radii suggests that the fraction
of mass in such streams can be substantial.

This behaviour holds at earlier epochs. From z = 5 to 0, material
within rvir(z) at each redshift follows a power law in Q with an
approximate power-law slope of ∼ −1.8 to −1.9. In contrast, F(r)
can only be well described by a power law in the inner regions,
and its slope changes continuously with redshift. Beyond the virial
radius, Q (a quantity that is obtained by averaging over increasingly
large volumes) decreases rapidly with radius, but the median value

2 The slope is even more similar if one takes into account the random bulk
motions of the gas in estimating Kgas (Faltenbacher et al. 2007).

of F flattens significantly. We argue that F is a more physically
meaningful quantity, especially for understanding the evolution of
phase-space density in collisionless DM haloes, as it measures the
median of the true coarse-grained phase-space density.

At all redshifts, the highest values of phase-space density f are
found at the centres of DM subhaloes. In the centre of the main
halo, the median phase-space density (F) drops by about an or-
der of magnitude from z = 9 to 0. In contrast, the centres of
DM subhaloes maintain their high values of f ∼ 103 M� kpc−3

(km s−1)−3 at all redshifts. The highest values of f at the centre of
the main halo are, therefore, lower and less representative of the pri-
mordial phase-space density of DM particles than the central value
of f in the high phase-space density subhaloes. At rvir, the decrease
in median phase-space density is much more significant, with F ≈
30 M� kpc−3 (km s−1)−3 at z = 9 decreasing to F ≈
10−3M� kpc−3 (km s−1)−3 at z = 0, a decrease of over four or-
ders of magnitude (Fig. 4).

The evolution of F(r) and V( f ) with redshift is consistent with
expectations from the Mixing Theorems, which require that mixing
reduces the overall phase-space density of matter in collisionless
systems and that the volume of phase-space associated with any
value of f increases due to mixing and relaxation.

The distribution of f is approximately lognormal until z ∼ 3.
As time progresses, the mean and median of log (f ) shift to pro-
gressively lower values as a larger and larger fraction of matter
undergoes mixing and moves to lower values of f . Some fraction
of high phase-space density material does survive in the centres
of subhaloes and in the relatively unmixed streams leftover after
subhalo disruptions, which skews the distribution. Remarkably, the
highest phase-space density particles at z = 0 have retained their
phase-space density since z ≈ 9, the earliest epoch we analysed.
The phase-space density in the centres of DM subhaloes is therefore
representative of the mean phase-space density of DM at the high-
est redshifts. This can potentially allow for stronger constraints to
be placed on the nature of DM particles from the Tremaine–Gunn
bound (Tremaine & Gunn 1979; Hogan & Dalcanton 2000).

The median value of phase-space density decreases with de-
creasing redshift approximately as a power law described by
f peak 
 a−4.5. This majority of the decrease in f peak is the result of
mixing within virialized haloes which reduces the coarse-grained
phase-space density of matter that has turned around from the Hub-
ble flow; much of this mixing occurs prior to z ∼ 1, after which the
rate of mixing in galactic-sized haloes slows down.
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Figure A1. The volume DF V ( f ) at different redshifts during the evolution
of the G1 halo in the L25 simulation. Plots compare results obtained with
the FiEstAS code and EnBiD code (using three different parameters) as
indicated in the line legends.

APPENDIX A : C OMPARISON O F ‘FIESTAS’
AND ‘ENBI D’ A NA LY SI S O F H ALO G1

The numerical estimation of coarse-grained phase-space densities
during the evolution of the four N-body haloes presented in this
paper was carried out using two publicly available codes ‘FiEstAS’
(Ascasibar & Binney 2005) and ‘EnBiD’ (Sharma & Steinmetz
2006). A comparison of these two codes has previously been pre-
sented by Sharma & Steinmetz (2006), who showed for an analytic
DF (for the spherical Hernquist potential), that ‘EnBiD with n = 10
kernel smoothing’ gave the highest fidelity to the analytical DF. In
a related work, Vass et al. (2009) confirmed the findings of Sharma
& Steinmetz (2006) for a spherical isotropic NFW halo. This latter
study is the main basis for our choice of EnBiD with n = 10 kernel
smoothing. After this paper was submitted to the Journal we be-
came aware of the work of Maciejewski et al. (2008). These authors
carried out a similar, and somewhat more detailed, comparison of
coarse-grained phase-space density estimators for N-body simula-
tions on cosmological haloes at z = 0. Our results are in agreement
with theirs.

However, it is unclear whether the comparisons with analytic
profiles of isolated haloes at z = 0 are valid for matter distributions
arising from cosmological N-body distributions, at high redshifts,
where the majority of the particles actually lie outside virialized
haloes. Our purpose in this Appendix is to present a comparison
of results obtained with the different codes at a range of redshifts
to allow readers to appreciate how sensitive some of the results
presented in this paper are to the choice of code and smoothing
parameters used in density estimation. Since the coarse-grained DF
f (x, v) is a six-dimensional function, it is difficult to compare esti-
mates for this function obtained using different codes. Traditionally,
the best single variable function to compare is the volume DF V (f ).
Variations in the estimation of f translate to variations in estimation
of V (f ). In Fig. A1, we compare the volume density of phase-
space V (f ) obtained for the G1 halo at four different redshifts using
the FiEstAS code (triple-dot–dashed curves), EnBiD code with no
smoothing (dot–dashed curves), EnBiD with FiEstAS smoothing
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Table A1. Power-law indices V ( f ) ∝ f −α and F (r) ∝ r−β

at z = 0 from different codes.

Code α β

FiEstAS 2.62 ± 0.06 1.43 ± 0.02
EnBiD (no smoothing) 2.35 ± 0.02 1.65 ± 0.02
EnBiD (FiEstAS smoothing) 2.46 ± 0.03 1.69 ± 0.07
EnBiD (kernel n = 10) 2.34 ± 0.02 1.59 ± 0.05

(long-dashed curves) and EnBiD with an n = 10 kernel (dotted
curves). In each case we see that V ( f ) has a nearly power-law dis-
tribution over more than six orders of magnitude in f at z = 0 [from
∼10−4 to 103 M� kpc−3 (km s−1)−3]. Table A1 gives the slopes of
power-law fits for the four different estimates of V ( f ) over the
range 10−4 < f < 103 at z = 0. The FiEstAS estimate of V ( f )
is systematically lower than all EnBiD estimates at high values of
f (at all redshifts). In addition, all EnBiD curves extend to much
higher values of f than the FiEstAS estimate (this is particularly
true at z = 9 where the FiEstAS estimate differs from the other es-
timates both quantitatively and qualitatively). The results from the
various EnBiD estimates differ very little at intermediate values of
f (10−4–103), and consequently we are confident that conclusions
drawn from the median f are quite insensitive to the details of the
EnBiD parameters used to obtain f .

The differences between the various estimates of F at large radii
become significantly larger at higher redshift. In Fig. A2, we plot
the four different estimates of F (r) at four different redshifts in
the evolution. The vertical dashed line in each panel represents the
virial radius of the main halo at that redshift. We see that F from
any of the codes is quite flat beyond the virial radius in all cases,
but the absolute values of the curves differ significantly. Note that
at z = 9, the different estimates can differ by as much as two orders
of magnitude.

Figure A2. F for the G1 halo in the L25 simulation at different redshifts
obtained using FiEstAS and EnBiD as indicated by line-legends. The dashed
vertical line is situated at the virial radius of the main halo at each redshift.

In this paper, we choose to present results from EnBiD with n =
10 kernel smoothing over the other estimates largely because it does
the best job of reproducing analytic DFs (Sharma & Steinmetz 2006)
and because it appears to provide a good upper limit to the phase-
space density both at high and at low values of f . In the absence of an
analytic comparison of the estimates at high redshift, we caution the
reader to refrain from drawing very strong conclusions regarding
absolute values of f or F from the results presented here.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 1225–1236


