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ERRATA

P. 12, Eq. (3.23), replace "V" by "Vj"

P. 13, line 2, replace "Sij" by "sij"

P. 13, line 6, reference 12 off

P. 15, in the second equation of (3.31), replace "- PM" by "~ pM"
P. 18, Eq. (3.39), replace "dp/du" by "dp/ds"

P. 18, Eq. (3.40), replace "dp/du" by "dp/ds"

P. 19, Eq. (3.41), replace "dp/du" by "dp/ds"

P. 22, line 4, after "field equationsg"

add "(which determine gij)"
P. 22, line 9, after "special relativity" add "as well as general rela-
tivity"

P. 23, line 3, replace "(3.26)" by "(3.41)"

P. 25, on the right-hand side of Eq. (4.4) replace "ij" by "xiB"
P. 29, Eq. (L.19), replace "a" by "2"

P. 34, line 4, replace "(4.33)" by "(L.38)"

P. 37, Eq. (L4.49), replace L by %i in the second sum
a=

P. 41, add the following paragraph after the statement c.

"Thus we see that the hypersurface, p = constant, in the case of geodesic
flow satisfies one of the conditions a, b, c¢. However in Newtonian case

we know that when the stream lines are straight, the surfaces, p = constant,
are one of the following classes of surfaces: parallel plane, concentric
circular cylinders, concentric spheres, This result in the Newtonian case
was proved by Wasserman (Formulations and Solutions of the Equations of

Fluid Flow, Doctoral Thesis, University of Michigan, 1958). In proving

this result Wasserman made use of the fact that orthogonal coordinate systems
can be introduced on a Vo. In our case since p = constant is a Vs, we can-
not in general introduce an orthogonal coordinate system on Vs,"

P. 42, line 5, replace "the space V3" by "our coordinates"

P. Lk, after the last sentence in the page add "The flow is uniform,"

(over)



18)
19)
20)
21)
22)

23)

31)
52)
33)

3))

35)

36)

ERRATA (Concluded)

P. 45, line 3, after "is given by" add "(at P - see Figure 1, page 28)"
) y bag

P, 47, Ea. (5.2), replace "=" by "»"

P. 47, line 7, after "[see (L4.64)]" add "at P"

1 1

P 56, Eq. (7.h), replace "|g| 2" vy "|g|2"

P. 56, line 4, replace npldkln by ngidkde

P. 56, line 7, after "satisfy" add "(E

A ik
of EkpE)" e

P, 58) Eq. (7.13), replace gt by ng

nl o i, n
P. 58, Eq. (7.16), r?place 3 EijkzwluJ b
- n l " ”l
P. 59, Eq. (7.17), replace "- 3 k" by 3

are not the covariant components

y "_ % -}EleleuJ"

kl"

P. 60, Eq. (7.19), replace "- kjay" by "k;ay"

P. 60, Eq. (7.2C), replace " ﬁﬂl

6x{ R

P. 60, Eq. (7.21), replace " L by " -
: e
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P. 61, in the second equation of (7.22), replace " uigj;i - giujpi " by

" uigj;i ) giuj;i

P. 62, line 1, replace "(7.12)" by "(7.13)
P. €2, line 2, replace "vJ" by "wd"

P. 62, line 3, replace "(7.12)" by "(7.13)

P. 62, in the two equations Q. =
replace "s" by "S"

P. 62, Eq. (7.26), replace "s" by "g"

P. 62, after the last sentence add "The last two equations are valid in

the Newtonian mechanics."
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ABSTRACT

The purpose of this study is to relate fluid flow in the space-time
of relativity to the geometry of the world-lines. This is done by intro-
ducing an orthogonal ennuple, such that one of its directions is along
the world-line and the other three are along any three orthogonal direc-
tions perpendicular to the world-line, at each point of the world-line.
By expressing the equations of motion and the equation of conservation
of matter in terms of the ennuple, the variations of pressure, density,
and generalized density along the four directions are determined in terms
of the divergence of the world-line vectors, and the projections of the
curvature vector of the congruence of world-line vector along these four
orthogonal directions. Then eliminating the divergence of the world-line
vector between two of these equations, a generalization is provided of a
result proved by Taub in special relativity for isentropic motion in con-
nection with the local sound speed (Relativistic Rankine-Hugoniot Equa-
tions, Physical Review, Vol. Tk, No. 3, 1948, pp. 328-334). In particu-
lar, if the orthogonal ennuple is chosen along the directions determined
by the world-line vectors, the principal normal vector of the world-line,
the second and the third normals of the world-line, it is found that the
pressure does not vary along the second and the third normals of the
world-line.

In the case of geodesic flows, it is shown that the motion is irro-
tational and the hypersurfaces, pressure = constant, form a system of
geodesic parallel hypersurfaces orthogonal to the world-lines. The hyper-
surfaces, entropy = constant, are orthogonal to the hypersurfaces, pres-
sure = constant, if and only if either a) the world-lines are geodesics,
b) the entropy does not vary along the principal normal vector of the
world-lines, The hypersurface, pressure = constant, in the case of geo-
desic flows in special relativity, has all its principal normal curva-
tures constant. It is found that hypersphere also belong to this class
of hypersurfaces. The flow in the case when the hypersurface, pressure =
constant, is a hypersphere, is reduced to the corresponding case in non-
steady Newtonian mechanics. ‘

The intrinsic forms of the equations of motion and the equation of
conservation of matter are derived with reference to a hypersurface con-
taining the world-lines. It is found that the flow properties depend on
the normal curvature of the hypersurface in the direction of the world-
lines and the geodesic curvature of the world-lines.

Lastly, the geometric properties of the vorticity tensor and vorti-
city vector are studied. The flow is found to be irrotational if and
only if the world-lines are geodesics. In the case of Beltrami flows,
that is, if the vorticity vector vanisﬁes, the vorticity tensor is found
to be in the plane formed by the world-line vector and the principal

iv



ABSTRACT (Concluded)

normal vector. In the case of steady flows, it is observed that the Ber-
noulli hypersurfaces contain the world-lines; they contain also the vor-
ticity vector if the entropy does not vary along the vorticity vector.



CHAPTER I. INTRODUCTION

The problem of determining the motion of a fluid subjected to its
own gravitational and internal forces, is a problem in relativity. The
geometric treatment of flow is simpler in relativity than in Newtonian
mechanics. This is because the world-line vector, which corresponds
to the velocity vector in relativity has its magnitude unity.l In this
work the fluid flow is related to the geometry.

In Chapter II, basic concepts of thermodynamics in relativity
needed for our study are considered.

In Chapter III, a world-line is considered as a curve in space-
time V, of general relativity, and the properties of the fluid flow are
related to the intrinsic properties of the curve. This is done by in-
troducing at each point of the world-line an orthogonal ennuple such
that one of its directions is along the world-line and the other three
along arbitrary directions. By expressing the equations of motion

and the equation of conservation of matter2

in terms of the ennuple,
the variations of p, the pressure, p, the density, and o, the gen-
eralized density, along the four directions are determined in terms
of the divergence of the world-line vector and the projections of the

curvature vector of the congruence of world-line vector along these

four orthogonal directions. These are the intrinsic forms of the eque-

tvions of motion and the equation oI conservation of matter. Then, elim-




inating the divergence of the world-line vector between two of these
equations, a generalization is provided to the result proved by Taub”
in special relativity for isentropic motion in connection with the

N

local sound speed. Lichnerowicz™ and Coburn’ have also provided the
generalizatibn by studying the discontinuity manifolds.

Our next step in Chapter III is to choose the orthogonal ennuple
along the directions determined by the world-vector, the principal
normal vector of the world-line and the second and the third normals
of the world-line, By this choice, we find that the pressure does not

vary along the second and the third normals of the world-line. This

T e AU

property is a generalization of the known result in Newtonian mecharics
that the pressure.does nqt vary along the binormal of the stream lines.6
Then, the properties of the fluid flow are studied in the case the
world-lines are geodesics. We find that the motion is irrotational5
and the hypersurfaces, p = constant, form geodesic parallel hypersur-
faces normal to the world-lines. This result is also an extension of a
result known in Newtonian mechanics, that the surfaces, p = constant,
are parallel surfaces orthogonal to the stream lines when the stream
lines are straight lines;6 It is observed also that the hypersurfaces,
S (entropy) = constant, afe orthogonal tc the hypersurfaces, p = con-
stant, if and only if either (a) the world-lines are geodesics or (b)
the entropy does not vary along the principal normal.

We conclude Chapter III by expressing e, the internal energy and

the generalized density explicitly in terms p, for a degenerate and



a classically perfect gas for isentropic motions (Chapter II).

In Chapter IV, geodesic flows in special relativity are studied in
detail., It is observed that the hypersurfaces, p = constant, have con-
stant principal normal curvatures kg, ky, k,. It is found that hyper-
spheres and- hyperplanes belong to the above class of hypersurfaces.

The world-line vectors and the thermodynamic quantities are determined
in terms of coordinates when the hypersurfaces, p = constant, are hy-
perplanes and hyperspheres,

In Chapter V, the flows in the case when the hypersurfaces, p =
constant, are hyperspheres in special relativity, are reduced to non-
steady flows in Newtonian mechanics, It is found that each component
of velocity varies directly with the corresponding coordinate and in-
versely with time, It is found also that p and p are functions of
time only.

In Chapter VI, the intrinsic forms of the equations of motion and
the equation of conservation of matter are derived, in the case when
the world-lines lie on a hypersurface S; of the space of general rela-
tivity V4. It 1s observed that the flow properties depend on the normal
curvature7 of the hypersurface in the direction of the world-lines and
the geodesic curvature7 of the world-lines. From the equations of
motion (6.7), it is seen that the worldlines are geodesic on S3, if and
only if the pressure does not vary along the relative curvature vector
h respect Lo Oz, IL is seen also Lhat Lhe world-

lines are asymptotic on S if, and only if the pressure does not vary



along the normal to the hypersurface Sa.

Finally, in Chapter VII, the geometric properties of the vorticity
tensor and the vorticity vector are studied, It is found that the
fluid flow is irrotational if and only if the world-lines are geodesics.
In the case of Beltrami flows, it is found that the vorticity tensor
lies in the two-plane formed by the world-line vector and the principal
normal vector of the world-lines, If the motion is isentropic, in ad-
dition to being Beltrami, the hypersurfaces, p = constant, are found
to be orthogonal to the principal normal vector of the world-lines; and
in this case all the thermodynamic quantities are found to be constant
along the world-lines. 1In the case of steady flows, it is observed
that the Bernoulli hypersurfaces contain the world-lines; they contain
also the vorticity vectors, if the entropy does not vary along the

vorticity vector.



CHAPTER II. THERMODYNAMICS

In this chapter we consider notations and concepts used by Taub.2

A fluid is characterized by its caloric equation of state. This
implies that e, the internal energy, is expressed as a function of p
and p, where €, p, and p are measured by an observer at rest with re-
spect to the fluid. Following Taub the equation of state may be writ-

ten in the form

e = €¢(p, p) . (2.1)

We introduce another function o, which we call the generalized density,

given by

. € ,.p
6 s o l1+E 4 2,2
p ( c2 002) ( )

where ¢ is the speed of light, assumed to be a constant, In the thermo-
dynamic plane only two of the six quantities p, p, o, €, T, the tempera-
ture and S the rest specific entropy are independent. Hence two of these
six thermodynamic functions determine the other four. A differential
equation connection the thermodynamic quantities is given by the first

law of thermodynamics; namely

3S de 0 (1
T =, = = —_— = 2,
ox? ax? e BXJ( p) (2.3)

- oo . : s
where x“:(j = O, L, 2, 5) denote a curvilinear coordinate system in V.



A fluid is said to be perfect® if
p = pRT , (2.4)
where R is the gas constant,and is said to be incompressible if

e =0 . (2.5)

1+5 o 2 (2.6)

A fluid motion in which S is identically constant throughout the medium
of the fluid is said to be isentropic. For a degenerate and classical-

ly perfect gas, isentropic motion implies the following relation:2

p = p°(§;)7 " (2.7)

where py, p,, 7, A are constants. The local sound speed, a, or the
speed with which sound waves are propagated, was obtained by Taub3 in

special relativity for isentropic motion. It is given by
8 Bf_d_(E) (2.8)
c@ o dp\p
From this relation and other formulas of Taub's paper,2 we find
| 28 (2.9)
p

Fliminating & hetween (2 R) and (2.Q) we obtain



1
. 2.10
= (2.10)

Ql~
glg
Q
L}
O I+
I
g

The result (2.10) will be shown to be valid in Chapter III in Equation

(3.35) for non-isentropic compressible relativistic fluids in general

relativity assuming that p varies along the world-lines.

In the case of isentropic flow of a degenerate and classically

perfect gas, the speed of sound can be written in the form
a® = v % . (2.11)

The above result is obtained when we substitute for p from (2.7) in

(2.9).



CHAPTER III, INTRINSIC FORMULATIONS COF BASIC RELATIONS
A. INTRINSIC FORM OF THE EQUATIONS OF MOTION AND THE EQUATION OF CON-
SERVATION OF MASS
Let xj(j =0, 1, 2, 3) denote a curvilinear coordinate system in
the four dimensional space-time V, of general relativity. ILet 8ij be
the covariant components of the metric tensor of V4. The indefinite

form

t(ds)® = gijdxidxj (3.1)

has the signature (+, -, -, -), ds being the element of arc, The scaler
£ is 41 if dxi determines a direction which is time-like; and.g is -1

if a space-like direction is determined. The sign of & is so chosen

to keep (ds)2 always positive. The unit time-like vector along-the

world-line u" is given byl
o= ==, (3.2)

From (3.1) and (3.2) we see that the unit four vector ul of & world-

line satisfies the relation

g v = 1. (3.3)
Now, we introduce the symmetric energy tensor

™ - el - pgiJ (3.4)



where ¢ is given by the Equation (2.2). The equations determining the

fluid motion are2

™= o (3.5)

where the semi-colon denotes covariant differentiation with respect to
the space-time V, with metric g;; given by (3.1). For non-isentropic

flows the conservation of mass relation

(pud) . = 0 (3.6)

31

must be added to the system.

Let us now introduce arbitrary unit vectors ai, bi, nt at every
point of a world-line such thaf the four vectors ui, ai, bi,and ni
form an orthogonal ennuple in V,, Since ui is time-like the other

three are space-like; that is, they satisfy
g8 o - g = gijninj = -1 . (3.7
Since the four vectors are mutually orthogonal, they satisfy
uja” = uibi = wyn = a-bfL - an’ = bl = 0 . (3.8)

At every point of the world-line the metric tensor can be written in the

form (cf. Ref. 7, p. 96)

giJ = uiuj - aiaj - bibJ - nin,j . (3'9)

We shall now express the variation of p, p, and ¢ along the four
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i i

directions u-, ai, bi, and n~ with the aid of the Equations of motion
(3.5) and the Equation of conservation of mass (3.6). Substituting for

78 in the Equations (3.5) from (3.4) and expanding, we obtain

2. ulud + czc(uiuj.- +udul, ) - gijp.- =0 . (3.10)
3d 3d 3d 3d

Expanding (3.6) we obtain
9 Jo.o- :
D;Ju + pu ;j 0 . (5011)

Teking the scalar product of (3.10) with u; and using the Equation (3.3)

and its consequence
i
u,.u o= 0 (3.12)

(3.10) reduces to

czo;juJ + czqu;j - qu;j = 0 . (3.13)

Combining the first two terms of (3.13), we get

J) . L

J
(ou PR up,; (3.14)

Substituting now for o from (2.2) in (3.14) and applying the product

rule of covariant differentiation to the two functions puJ and

2

(1 + ec™® + pp~2c™®), ve get
J € € 1
oy (1o G ) cod (1o 5B - Eudy G

. \ ¢ ¢

The first term of the left-hand side of the above equation vanishes by
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virtue of the Equation (3.6). The second term, after performing the

covariant differentiation becomes

L I 1) J J}
ce["u;J+p(p>.-u°+uP;J y

.’J

Cancelling ujp;j/c2 from both sides of the Equation (3.15), Equation

(3.15) can now be written in the form
uje,. + P <l> _uj =0 . (3.16)
3d 3J

For a scalar function f, f;juj denotes the directional derivatives of

f along the world-line, Denoting
Wy = £ (5.17)

Equation (3.16) can now be written in the form

-2-§+p§g<%) = 0 . (3.18)

Since the covariant derivative of a scalar is its partial derivative,
the Equation (2.3), after taking the scalar product with ui, becomes,

using the notation (3.17),

as de d < )
T——- = et v— -— o ol
ds ds P ds \p (3.19)

Comparing Equations (3.18) and (3.19), we see that

15

w

=0 , (3.20)

that is, the entropy is constant along the world-line, as observed by




Taub. Using the notation (3.17), Equation (3,11) can be written in

the form
% 4pudy =0 . (3.21)
ds ’

Now we shall consider the divergence term uJ;J appearing in (3.13)

and (3,21). For this we make use of the well-known fact that for a

congruence of curves determined by a unit vector ui, the tensor

where V; 1s the curvature vector of the congruence u; and Lij is a co-
variant tensor lying locally in the subspace normal to ui.9 The, follow-

ing relations are satisfied by Vy:

We write

where Sij is symmetric and rij is skew symmetric, Substituting for

Ly; from the above equation in (3.22), we get

Wiy o= Syy tTyy gl (3.24)

Multiplying both sides by 8ij and using the second equation of (3.23)
and the ract that rij is skew symmetric (that is, gijrij = 0), Equutiou

(3.24) can be written in the form



uJ;j gi“)ui;J = gijsij . (3.25)

The invariant gijsij is the sum of the principal values of the symmetric

tensor Sij- If the principal values are -p;, -p2, -ps, then (3.25) can

be written in the form

uj;j = - (py*+p2tps) = M. (3.26)

In the case when there exist »' hypersurfaces orthogcnal to the world-
lines, then'M is the mean-curvature of these hypersurfaces,
Substituting for uj;j from (3.26) into (3.13) and writing the two

Equations (3.13) and (3.21) in the notation (3.17), we get

Ldp _ do, (3.27)
c? ds ds
99+pM = 0 . (3.28)
ds

Equetion (3.28) implies that the variation of log p along the world-

—

lines is equal to the negative divergence of the world vector, In the

case when hypersurfaces exist orthogonal to the world-lines, then M is
the mean curvature of these hypersurfaces (cf. Ref. 7, p. 168), and the
density does not vary along the world-lines if and only if M = O,

Hence we may conclude that: 1In the case when surfaces exist normal to

the world-lines the variation of log p along the world-lines is equal

to the negative mean curvature of these hypersurfaces and further the

density is constant along the world-line if and only if these hyper-
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surfaces are minimal,

To find the remaining intrinsic formulations of the equations of
motion, we teke the scalar product of the equations (3.10) with &y, by,

and n; and use the normal conditions given by (3.7) and (3.8) to ob-

tain
3.1 13
c“o(u’u ’Jai) - & 84D, 5 0
2, 31 1]
c?o(uu ;jbi) - g bip;y = O (3.29)
i i
c o(uju ;jni) -g Jlflj_pj =0 .

The factor ujui; j in the first terms of‘ these equations can be replaced
by Vi, by virtue of the first relation of (3.23). The second term of
the first equation of (3.29) is ajp;j. Following the notation (3.17),
let us write ajp;j = dp/da, etc.; now the Equations (3.,29) assume the

form

i 1 dp
o(Vtay) = = =%
(Vay c® da
1 dp

UV:Lb') = — aO

(Vg Z 0 »(53)
i 1 dp

o(Vn,) = -,

( i ?dn

Vlai , Vj‘bi , Vlni are the projections of the curvature vector V' of the

world vector along the directions al, bl nl, Equations (3.27), (3.28),

and (3,30) are the intrinsic forms of the equations of motion and the

equation of conservation of mass for fluid flow in general relativity.

The Equations (3.27) and (3.28) are not independent. It can easily
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be seen by differentiating (2.2) along the world-line and using (3.18)
and (3.28) we get (3.27). Therefore the system of equations consisting

of the first law of thermodynamics and

- 1+—= ¢+ -2
d
a8 -pm,.q_s. = 0
ds ds
ofve) = 492 (3.31)
C 8

_ 134

o V'b,) = 52
1 dp

o(V'n ) = =&
( 1 ¢2 dn

determine the motion of fluid in general relativity.

Comparing the Equations (3.27) and (3.28) and (3.30) with their
6

analogues in Newtonian mechanics,” we notice that the variations of

p d o along the directions ui ai bi and ni depend only on the
2’_!_____ Pttt ot N adit Sy S tihel e st A atei

—— —— ————————— p—— —— ——————————egeee. e * | et

——— —— ———— ettt Pt v et g

Now let us provide a generalization of Taub's result in connection
with the local sound speed (Chapter II). Assuming that p varies along
the world-line, we prove that the Equation (2.10) holds good in the
case of non-isentropic fluid motion in general relativity. To prove
this let us eliminate M between the two Equations (3.27) and (3.28) to
get

1d 14 1 d
230 _=2°%9 . —= °p (3.32)
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Expressing o and p as functions of p and S, we have

G0 _ 0,038
ds dp ds OS ds

dp _ pdp ,0pds
ds o ds 3S ds

By virtue of the Equation (3.20), the two above equations reduce to

do _ Qodp
ds dp ds
(3.33)
dp _ i |
ds dp ds

Eliminating do/ds and dp/ds emong the three Equations (3.32) and (3.33),
we get

d

Qi+

&1

d0
gp- . (5-31'1’)

O I+
&
[

IFJ
18
&t

Since we have assumed that p varies along the stream line, that is,
d # 0
ds
we cancel dp/ds throughout the Equation (3,3h4) and get
1 1 én (
==-2 s 52, 3.35)
p 20 %

This sbove equation agrees with the Equation (2,10), The Equation (2,10)

is obtained by Taub in special relativity for isentropic motion.
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B. PROPERTIES OF FLUID FLOW WHEN THE ORTHOGONAL ENNUPLE LIES ALONG THE
WORLD-LINE VECTORS AND ALONG THE FIRST, SECOND, AND THIRD NORMALS
OF THE WORLD-LINE
Equations (3.27), (3.28), and (3.30) are valid for arbitrary choice
of the orthogonal ennuple, at each point of the world-lines. Now we
choose an ennuple along the world vector, along the principal normel
to the world-line, and along the second and the third normels of the
world-line, Let ai, bi, n’ denote the directions along the principal,

first, and second normals of the world-line, These vectors are mutually

orthogonal and they satisfy the Frenet formulas (cf, Ref. 7, p. 106)

3 i
u, .u’ = - kja
i3 *
s, uw = -kul - k!
L , (3.36)
b .-uj = kgal + ksni
3d
nt ,uj = kg’bi
5d

where k,, ko, k3 are the first, second, and the third curvatures of the

world-lines, Substituting for ui,juj from the first equation of (3.36)
3

in the Equations (3.30) and vsing the normality conditions of the vectors

ui, ai, bi, and ni, Equations (3.30) reduce to

1l d
P - ™
(3.37)
& _ 5. &
db dn

The above equations indicate that the variation of pressure along the

first normal depends on the curvature and that the pressure does not
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the corresponding in the Newtonian mechanics,6 where the pressure does
not vary along the binormal of the stream lines and that the variation
of pressure along the principal normal depends on the curvature of the
stream lines.

Further, if the world-lines are geodesics, then k; = O, which im-

plies from the Equation (3.37) that

4

= . (3.38)

And conversely if (3.38) is true, then from (3.37) we have k, = 0;
that is, the world-lines are geodesics. Hence we have: A necessary

and sufficient condition that the world-lines are goedesics is that

the pressure does not vary along its first normal.

The gradient of pressure can be written as the sum of the gradients

along ui, ai, bi, and nl in the form

dp dp dp dp
P, = —U, -—=8, - —=>b, - —=n, . .
L du + da 1 g 1 4an 1 (5.39)

From (3.37) and (3.39), the relation (3.39) can be written in the form

a
i = Bug - cfauay . (3.40)

The above result shows that the normals to the hypersurfaces, p = con-
stant, lie in the biplane parallel to the world vectors and the first
normal, In the case of geodesic flow, k; = O, Therefore (3,40) re-

duces to
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Py = 2y . (3.41)

The relation (3.41) shows that the "velocity" vector is normal to the
hypersurfaces, p = constant; that is, u; forms & normal congruence.
Therefore the vector ujy forms a geodesic and normael congruence. These

two properties imply that the world vector satisfies the conditionlO

U - uos 0o . (3.42)

Since the vorticity tensor LE is defined by5

SETRR T TR (3.43)

that is, the fluid motion is irrotational.5 Therefore, if the world-

lines are geodesics then the fluid motion is irrotational. Also, since

the world vector is orthogonal to the hypersurfaces, p = constant, the
hypersurfaces, p = constant, form a system of geodesic parallel hyper-
surfaces,

Now we wish to know under what conditions the two hypersurfaces,
p = constant and S = constant, intersect orthogonally. To determine
the conditions let us first express the gradient of S as the sum of the

oradients along u., a., b., and n..
- ~ g 47 47 4
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as as as ds
S;i = a;ui-a-;ai-a'gbi-a;ni . (3.1”"')

The first term on the right-hand side of the above equation vanishes
by virtue of the Equation (3.20). Therefore we may write (3.L44) in the

1orm

_ds ds, _ds
5., = -3, 9y n, . 3.15)
51 da % g 1 g & (

Let us now form the scalar product of the gradient vectors P.y and S-j’
) 3

In the scalar product gijp,iS we substitute for P,y from (3.40) and
J

3d
for §, 5 from (3.45), Then we notice

gl - Ad[de ., . k+c20a. ( 8, .8 b, - 4 ..
&p;15,; = &8 (duul 2 Ual) da 9T @3 T @m )

Simplifying the right-hand side of the above equation by using the

normality conditions of the vectors u;, a;, by, and n;, ve get

gijp;issj = - kyc0 %% . (3.46)

gijp;iS is zero if and only if either (&) k; = 0 or (b) dS/da = O.

5d

Therefore we have the following result. The hypersurfaces, p = constant,

intersect S = constant orthogonally if and only if either of the follow-

ing conditions hold: (&) the world lines are geodesics; (b) the entropy

— — ————— —— —— e T e e

does not vary along the first normal.

C. INTEGRATION OF THE EQUATIONS OF MOTION IN THE CASE OF A DEGENERATE

TTITTITAM 7T Ty D aiaata] ~

TEOGoL PLULD TOR IOLNINUEIC FLOWS

In the case of isentropic fluid motion of a degenerate, classically
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perfect gas, the thermodynamic variables p, €, and o, and the local
sound speed &, can explicitly be expressed in terms of p. For such
fluids in isentropic motion p and p satisfy the relation (2.7). Let

us assume that p does vary along the world-line, Differentiating

¢ = ¢(p, S) along the world-line, we get

de _ dedo e s
ds d ds dS ds

The above equation with the aid of (3.20) can be written in the form

Substituting for de/ds from the above equation, in the relation (3.18),

Equation (3.18) becomes after cancelling do/ds
k.2 -0 . (3.47)

Substituting for p from (2,7) in the above equation, and integrating

the resulting équation with respect to p, we get

€ = ;Tliii p?"1 + constant, (3.48)

o can also be expressed in terms of p. We will substitute for p from

(2.7) and for e from (3.48) in the Equation (2.2)., Then we get

0 = p [l P A p?=1 +,constant] . (3.49)
c(r-1)

To obtain the local sound speed, we will substitute for p from (2.7)

and for o from (3.49) in the relation (2.11), Thex we get
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y=1
a2 = __TA + constant, (3.50)
ca + ——-A-Z—- py’l
y -1

The properties of fluid flow we have discussed in this chapter hold
in the space of general relativity, In addition to the equations of

motion and conservation of matter (3.5) and (3.6), the flow must satis-

fy also the field equation52

Rij -

ol R

Rgij = KC2Tij (3.51)

where R is the Ricei tensor of the space V4, R its scalar curvature and
K a universal constant., However, in the case of flows in special rela-
tivity, Equations (3.51) are not valid but (3.5) and (3.6) do hold good.
Therefore all the properties of flow we have obtained in this chapter

are valid for the motion of fluid in special relativity.



CHAPTER IV, GEODESIC FLOW IN THE SPACE-TIME OF SPECIAL RELATIVITY

In Chapter III we have seen that in the case where the world-lines
are geodesics in V,, the «' surfaces, p = constant, form geodesic paral-
lel hypersurfaces orthogonal to the world-lines (3.26). In this chap-
ter, we study these surfaces in detail in the space-time of special
relativity E4. By use of geometry of thg parallel hypersurfaces in
the hyperbolic spéce E4, and the equations of motion (3.31), we shall

show that in the case where the fluid motlon is isentropic, any hyper-

surface, p = constant, is such that all three of its principal normal

curvaiurés are constants, From these classes of hypersurfaces we

choose the following two hypersurfaces with the principal normal curva-

tures k,, ky, k, satisfying
a ky = Ky
a ky = Ky

We shall show that the hypersurface satisfying condition

—
=
.
"
0
o

—
no
~
o
1]

constant # 0.

(1) is a hyperplane and the hypersurface satisfying the condition

(2) is a hypersphere.

Then, we shall express the world-line vector and the thermodynamic
quantities p, €, p, 0, a in terms of the cdordinates when the hyper-

surfaces, p = constant, are hyperplanes and hyperspheres,

23
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A, THE EQUATIONS OF MOTION

Let x* = (1 = 0, 1, 2, 3) denote an orthogonal pseudo-cartesian
coordinate system in E;, The components of the metric tensor 81) of
E4 are

8o = 1
(4.1)

815 ° 1J
Since E4 ie & "flat" space, all the Christoffel symbols venish, and the
covariant derivatives are just.the partial derivatives. We have as-
sumed that the world-lines are geodesics; that is, the curvature vector

V1 of the world-lines satisfy the equations
Vi = ui; Juj = O . (h'2)

We substitute for Vi in the last three equations of (3.31) from the

Equation (4,2), The equations of motion (3.31) now become

€
o = p (l + -(-:-E + ;Eé)
gﬂ = = pM (h'B)
ds
-gg = 9-2 = 9.2 = 0

where ai, bi, and nl are three mutually orthogonal directions in the
hypersurfaces, p = constant, and M is the mean curvature of this hyper-

surface. Let us denote some particular hypersurface, p = constant, by

Vs.
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B. THE HYPERSURFACE, p = CONSTANT

We shall introduce now, a coordinate system on the hypersurface
V3; and discuss the first and second fundemental tensors of Vi, Let
ya: (¢ =1, 2, 3) be a curvilinear coordinate system on Vs, The com-

ponents of the metric tensor 8B of Vs is given by (cf. Ref. T, p. 146)

By = Sijxiaxjs = ii xiaxjB (4.4)
1=0
where,

i

X =
a o

is the projection tensor. A unit vector d; of E4 and lying in V3 has

components dy in Vs given by
a, = d;xt (L.5)
o/ *a - .

Since the vectors uj, a;, b;, and n; form a mutually orthogonal system
in E4, the metric tensor g81j of Eg, by virtue of (3.9), can be written

in the form

Since ujy is orthogonal to Vs and since aj, bi, and nj lie on Vi, we

have from (4.5) that

- - i .
X, = ey, bix o ba, nx n ., (4.7)
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Multiplying both sides of the Equation (4.6) by xiaxJB and using (4.7)

d (4.4), the Equation (4.6) becomes

Gp = " %lp o o - (.8

Also, mltiplying both sides of (L.4) by %P ang using the second equa-

tion of (L.7), we obtain from (4.6)
gaaéxas = g8 anﬁjx = gijaiaj = <1 . (k9

The result (4,9) shows that the vector a® is a space-like unit vector
in Vs, Similarly b® and n% are also unit space-1like vectors in Vs, The

second fundemental tensor Qug is given by (cf. Ref. T, p. 148)

ui)a = - Qagg?7xiy (4.10)

where the comma followed by a denotes covariant differentiation with
respect to the sub-space Vs, Miltiplying both sides of (4.10) by

glejb and using (4.4), the Equation (4.10) becomes

- gt Xy = s - (k.11)

Now, let us choose.the three directions da, ba, n% along the principal
directions of Vs, If points are wmbilical, we choose eny three mutual-
ly orthogonal directions on Vi, Let kg, ky, k, be the principal ﬁormal
curvatures elong &, v%, % respectively. Since &2, 1%, 1% are along

the principal directions of Vs, we have (cf. Ref. T, p. 153)
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n
o

(QaB - Xqa8op) a2
Q
(Qaa - kbgaﬂ)b =0

(95 - Kp&qp) o

1
o
L]

Multiplying the above equations by a’ , b7, n? respectively and adding,

we obtain
Qozﬁ( e%? + %) + %) - goca(ka_a@a7 + kbbab7 + knnan7) .

Substituting for a%? + v%” + n%” on the left-hand side of the above
equation by -g77, the equivalent of the result (%.8) , the above equa-

tion becomes
- O,Bga" = gas(kaaaa7 + kbe['b7 + knnan7) . (4.12)

Let us now multiply the above result by g75 and use the results

Syggw = 50[7 ’ gaB&a = ag , ete. . (4.13)

Then the Equation (14,12) takes the form
- QBB = kaaBaB + kbbsba + knnsna . (4,1Y%)
The mean curvature, M of Vs, from (h.9)‘ and (4.14), is
M = gaBQaB =k, vk vk . (4.15)

We shall now consider a hypersurface Tla which is parallel to Vs,

and express the first and second fundamental tensors EaB and ?za of

B
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Va In terms of the first and second fundamental tensors of Vs and a
parameter r,
Let us introduce the pseudo-cartesian coordinates % (1=0,1,2,3),

such that, on the original Vi
o= LY (k. 168)
and on any parallel Vg
¥ o= K%+l (® (4.16v)

where r is a parameter. In the figure, P(y¥, 0) on Vs corresponds to

E(ya, r) on Vs.

7 Vs /E(y“, r) (

geodesic

) Vs A (5%, 0) <

Figure 1

In the case when the metric is positive definite, r is the distance be-
tween the two parallel hypersurfaces along their common normel;here it
is geodesic distance. Differentiating the Equations (L4.16b) along the

hypersurface Vs, we have
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oo ket . (4.17)

Our procedure in obtaining EaB and EOB of 55 is similar to that of the

Euclidean case. The metric tensor gas of Vg is, by definition,

Bp = gijxlaxJB . (4.18)
Substituting for ;ia from (L4.17) in the sbove equation, the Equation

(4.18) becomes

)

fp = Eiylxig + el (g nd

Simplifying the above result, we get

= gt xd 4+ org, xtud 2g. .t wd oL (b,
8B 81X *p * 0Ty g gt TUg U U g (4.19)

The first term on the right-hand side of (L.19) is gp DY (L), In
the second term on the right-hand side, we substitute for uj,B from the
Equation (L4.10). Then this term reduces to -2rQyg. In the third term
of the right-hand side of (4.19), we substitute for ui)a from (4.10)

and use (4.4) and (4.13). The Equation (L4.19) then reduces to

gaB = gy - 20g * r29a7056g76 ) (4.20)

We will now substitute for &op and QaB in the above result from (4.8)

and (4.14) and use (4.9). Then the Equation (L.20) becomes

2
g, = = (1- rka) aa

B o8 - (L - rkb)ab b - (1 - rkn)enanB . (4.21)

a
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Now, we define the vectors Ea, :D'(x,  on Vs at P corresponding to the

vectors &% s ba, n% on Vs at P, in the following manner:
o 1 a T 1 a 1 a
a = g , b = b = n (4.22)
l-r1k, 7’ 1 - rky, ’ 1-rk)

We shall show that the vectors & s ba are mutually orthogonal, space-

like unit vectors on Vs, From (4.21) and (L4.22), we have

e = [ (1 - k) %ayag - (1 - i) g -

(1 - rkn)znanB] .(.._.__....__

From the orthogonal properties of the vectors aa, ba, n% the above equa-

tion reduces to

g, e %P = -1

which shows that & is & unit , space-like vector, Similarly we con-
clude b* and n® are also unit , space-like vectors, To show that

€@ 1 1 are mutually orthogonal on Vs, we have from (4.21) and (4.22)

gaagaga = [-(1- rka)aaaaa - (1 - k) 2b bg

WP
(1 - riey) g (1 - rk,)(1 - rky)

From the orthogonality conditions of aa, ba, n® it 1s clear that the

above result reduces to

The above result shows that & and b* are orthogonal., Similarly we can



31

prove that ';a, %U, o are mutually orthogonal, The covariant compo-

nents ;B are given by, from (4.21) and (4.22) and the condition that

a0 is space-like,

8y = gygao = (1-7tk)ey . (k.238)
Similarly we find

n, = (1- rk )n

B . (4,23p)

B

The metric tensor EOLB of T/S can now be written in terms of ;a, ba, Nye

From (4.21), (L4.23%a), and (4.23b) we have

tp = -ZO[E -bbB nanB . (L,2h)

We shall now express the second fundamental tensor 505[3 of R/’-s in
terms of the principal normal curvatures of Vs, From (4,11), ?blB can

be written in the form

fop = - gi.]xi ud B (4.25)

Substituting for ;{-ia from (4.17) and for uj’B from (4,10) in the above

equation, the Equation (4.25) becomes

Ea = -y tr QBBQaeg . (4.26)

Substituting again for Qg from (4.14) &nd - a%a€ - b€ - n®n€ for 366

in the above result, Equation (4.26) becomes
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- Qg o(1 -k )a.aaB + k(1 - rky) bobp * kn(l - rkn)nana (4.27)

or, in terms of ;a, ";a, ;0," 5015’ can be written by use of (L,27) and

(4.22) in the form

“a % 13 n gty - (4.28)
- - + ] .
QO‘B 1-rk aaa l-rk,b a’p l-rkn P

Let us now define

ke - Ry - %

X = k=
kg l-rka’b 1 - rky, » ¥pyo= 1 - rky

(4.29)

Comparing (4.28) with (4.14), we can write (4.28) by use of (4.29) in

the form

- Qas

= kaaocaﬁ S E + knnO!nB . (4.30)

The above result shows that Ea’ ib s -}_Ln are the principal normal curva-

- —

tures along 8y ba, ;a respectively, The mean curvature M of -’\;3 at P

is given by (L4.30) and (L4.29). The mean curvature:

K k X

- - - - = b n
M = aBS—) =k k = & + L}l
& B thy t (l-rka 1 - rky 1-1«11n 31)

Since the world-lines are geodesics orthogonal »' hypersurfaces,
p = constant, we parametrise any world-line by the variable r and write

the metric in E, in the form (cf. Ref. T, p. 5T)
g(ds)2 = ar® + go[Bd;,fOldyB (4.32)

where £ is given by the Equation (3.1).
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We now use differential geometry to determine the properties of

fluid flow, in the case when the world-lines are geodesics, We assume
that the metric E4 is given by the Equation (L4.32) where any curve,
r = variable, 1s a world-line. We shall now show that for isentropic
fluid motion, the hypersurface Vs (p = constant) is such that all its
three principal normal curvatures k., ky, k are constant, We prove
this by the aid of the equations of motion (L.3),

The last equation of (4,3) indicates that the pressure varies

only along the world-line, Therefore we write

p = p(r) . (4.33)

Thus, any r = constant is a hypersurface and can be chosen as the
initial p = constant, Since the motion is isentropic p and p are con-

nected by the relation (2,7)., Equations (4.33) and (2,7) imply that

p = p(r) . (4.3L)

The second equation of (4,3) can now be written with reference to

the hypersurface Vs in the form

® . (1.35)

r

o I+

where M is the mean curvature of ﬁé. In the sbove equation, we notice
that the left-hand side is a function of r by virtue of (4.34), and

theretore M 1s a tunction of r only, Hence we have
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M

e . (4.36)

Substituting for ﬁ from (4,31) in the above equation, we find that

(4,36) becomes

) ka kb kn
555 [l - Tk ' l-1k 1- rkn] =0 (4.37)
or, the above equation may be written ac
1 aka 1 Bkb 1 akn .
- O . .
-0’ 50 (L-mg o (-2 o (4.38)

Differentiating (4.33) with respect to r and using the fact that

, kb’ kn of initial Vs are not functions of r, we get

k, ? 3k, Ry K,k
T s %at 350 P T ) = 0 . (439
(1-71kg)® % (L - k)% @ (1 - rky)3 %

Differentiating (4.39) again with respect to r, we get

SO 2 SRS
2 _ __ 8 _._.k.t.’._..._. kb —_— 8 0o . (h.ho)
(1 - rkg)* oy® (1 - rky)* aya (1 - rk )4 oy®

Now we shall show, by use of the three Equations (4.38), (L.39),
d (4.40), that the normal curvatures k., k, k are all constants,

We write
@ = (L-rk) , B = (L-rk), v = (1-rk). (ki)

The determinant of the system (4.38), (L4.39), and (L,L0) is



1 1 1
ZF 7 oy
k, kK, K 1

- (=2 22 3l
2 2 2
A e o
a4 B4 v4 n

Expanding the determinant, the above result can be written in the form

o*B*v*D = (aky - Bkg) (Bk, - viy) ok, - vkp)

(4.42)

(ky = ko) (X, - k) (ky - k) o

We consider the following two cases in solving the Equations (L4.38),
()‘Lo59)) arld (h,hO) fOI' aka/aya, akb/aya, and akn/ayac
Case (a) k., K, k are distinct.
(4.13)
Case (b) At least two of k., K, k are equal,

If k, k , k are distinct, then from (4.42) it is clear that D £ 0,

which implies from the Equations (4.38), (4.39), and (4.40) that

Ok, Oky ok,
— = — = — =0 (4.44)
Wy g Wy
which imply that k., k,, k, are constants,
Let us now consider the case (b)., Let us assume that kg = Ky
This implies from (L4.42) that D = O, Therefore, we put ky =k, in the

two Equations (4.38) and (4.39) and solve for dk,/dy, and 3k /dy,.

Substituting k, in place of ky in (4.38) and (4.39), we obtain
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2 ¥, 1 X,

2, %, kK Wy

?Efjf?i;75'g§5 + CRETSE 50 o . (4.46)

The determinant D of the above system is

<m’ ey

2
2

ol
I

a8

——

2
o™

Arguing as in the two cases (4.43), we find that if kj and k, are dis-
tinct then both k. and k, are constant. If k. = k;, then D= 0. Sub-
stituting k, = k, in the Equation (L.145), we find

0

e S

o
or k, is a constant and therefore k, is also equal to the constant,
Therefore case (b) implies either ks = ky = constant, k, = constant,
or kg = ky = ky = constant. In the case when k, = ky, we have seen

that

k. = k, = constant; k; = constant,

by using only the two Equatiors (4.38) and (4.39). The above equations
satisfy also the other equation of the system, namely, the Equation
(L. L0), We symmarize our resnlts as followes

The hypersurface Vs (p = constant), with principal normal

curvatures k., ky, ky, in the case of isentropic geodesic motion,
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is such that

i. if k., k, k are distinct, then k's are constants

11, if k, =k, k # ko, then k's are constants

-1

iii, ifk ky =k, then k's are constants.,

a

Thus we see that k's are always constants.

C. THE CODAZZI EQUATIONS

Now we shall consider the Codazzi relations (cf. Ref, 7, p. 150)

and get all the possible cases of the hypersurface Va.

Let us write

so that

The Codazzi equations (cf, Ref. 7, p. 150) are

b,y = Yoy,p

Substituting for Qg in (4.48) from (4,14) using the notation (4.1k),

the Equation (L4,48) becomes

Torming b

3
(agl ggags)ﬂ - @ g’gag?);ﬁ :

7. LA\

-

o F - JE ) e 8 _ 1
He dSladal proudult vl \(4.4y) wiova g WE pCUL

(4.19)
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©

a b ..8 ab a
L kgans’ynB +2 iqu’yanB 2 kqa Bn,/nB % kn ’Bnan 0, (450)

a

where . stands for summation with respect to the index a, which runs

from 1 through 3. Since all gd are space-like, we shall write

eb -1 if a="D
anB = § = (k.51)
0 if af¢bv .

We also have the equation

n® = 0 ., (4.52)
By use of (4,51) and (4.52), the Equation (4.50) becomes

Eb gﬁdgﬁﬁns - %?106,7 -2 kga BW‘B - lénthaBB = 0.

Forming the scalar product of the above equation with %a, we get, by

use of (L4.51) and (L.52)

¢ bg b ¢y a Bca bg
- k_n - k_n - kn + kl’l = .
I B)7n b a}7n aftc 8 a B 7 . c 7)5 O

Again forming the scalar product with £7, the above equation becomes

- 1, 2R

¢ b
7B -
c By

- %}éa’yﬁa% . ?ﬁa,aﬁﬁﬁa R )

(] )

Let us now consider all the possible cases of the Equation (4,53).

In this case, the Equation (4.53) reduces to an identity in virtue

of the Equation (L.52).
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Cese 2: b = ¢ ;4 f.

let us take b = ¢ =2, f =1, Then the Equation (4.53) becomes

1 22y .2 12
knCl B0 I +12cn,,,5n72n = 0 , (4,54)
Since
2 1 1
n, g = - na,gﬁa ) (4.55)

substituting for %a,anza in the first term of (L4.54) from (4.55), the

Equation (4.54) becomes

(}f - 12{)n7,8n = 0 ., (4.568)
Similarly we can show

(k - X)n ?1527 =0 . (4.56D)

2 3 7;5

Case 3: f, b, ¢ are distinet,
Let us take b =1, ¢ =2, £ =3, With these values the Equation

(4,53) becomes

.2 lgy 1 190 . 2 3ylp
knB)yn 27 - %,7%7 + lgga’an n* + ]2<n7,627n = 0, (457)

2

In the above equation we put

1 2 2

Ty R -nom}la
2 3 32
ny ol = -y g’
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by virtue of (4.,55). With these substitutions the Equation (4.57) be-

comes

2
- Py

)

287 4 (k - )y, 6

]
o
L]

—~
=
-

A9 ]
QO

N

Similar equations can be obtained for the values b

]
n
-
(e}
n
N
-
[}
1]
]

and b=3 c=1, f =2, ete, If E, g, %, are distinct constants, then

from (4.56a) we find that

2 2gl
U
ny,Bnﬁn

]
o
.

And from (L4.56b) we find that

It
o

2 2
nnB“Bg7

The gbove equations and the Equations (4.52) indicate that the curvature

2 1 2
vector of n7 is orthogonal to n7, n,, gy' Therefore we conclude that
225
n7’Bn = 0 ,

Similarly we have

AN
=
]
o
-

The above three equations imply that the principal directions of Vs
are along the geodesics of the hypersurface Vs, Therefore we have the

following result: If kg, ky, k, are distinct then the lines of curva-

ture 2; yg are geodesic .
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Again if k; = ko, then from (4.59) we see that either ks = kp, or

1
%BnB%Ct:O,

)

These conditions show that either all the curvatures are equal, or

2 1% _
a,B

From the above results, we see that the Codazzi relations are satis-
fied if:
a., All the principal curvatures are equal constants,
b, The principal curvatures are distinct constants, This im-
plies that the lines of curvaturés of V5 are geodesics,

c. Only two of the principal eurvatures are equal constants,

D. TWO SPECIAL HYPERSURFACES, p = CONSTANT

From the above classes of hypersurfaces, we examine the follow-

ing two:
() k, = k = k = 0
(B) k, = X, = k; = constant £ 0,

and get sufficient conditions to satisfy the Codazzi relations, We
shall show that, if the condition (A) holds, thén the hypersurface is
a hyperplane., If the condition (B) holds, tﬁen we shall show that the
hypersurface is a hypersphere,

If the condition (A) holds, we find then from (L4.1%) that

e = O . (4.59)
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Substituting for an from the sbove equation in the Gauss equation

(cf. Ref. 7, p. 197)

Ropys = Toplss - Sosllpy o
we find that

Rpys = 0 .

The above condition implies that all the Christoffel symbols vanish for

the space Vs, Therefore, we have (cf. Ref., 7, p. 147)
i - i
X o = gt - (4. 60)
The Equation (4.60) becomes, by virtue of (4.59),
i -
X’as = 0 .
The above equations become on integration
R

where A;a and ui are constants, The sbove equations show that the co-
ordinates are linear in ya. Therefore Vs is a hyperp;ane.

If the condition (B) is satisfied, then all the principal curva-
tures are equal. Therefore, the Equation (4.14) can be written in the

form

Qg = - k(guaﬁ + bybp nanB) E
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The sbove equation, by virtue of (4.8), becomes

QJB = k&aﬁ

which shows that all the points of V3 are umbilics. Substituting the

above value of Qg into (4.,10), the Equation (4.10) becomes

i . |
L kx' (4.61)
Since
1 dut i
ua=-——’xa..___
’ Oy Oy

we can integrate the Equation (4.61) to get
W= -t o+ oxed (L4.62)

where el is a constant vector. Teking the scalar product of the sbove

equation with itself, we obtain
gyl - kel)(lodd - ked) = 1,

i

Writing x* - el = x'i, the above equation can be written in the form

sijx'ix'j = k7
or, removing the primes and meking use of the Equation (L.l), we find

= 2 (4.63)

which is a hypersphere in E,,
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Now, we shall find the thermodynamic quantities and the components
-of the world-line vector in both the cases, when the hypersurface Va,
that is, the hypersurface, p = constant, is (1) a hyperplane, (ii) a
hypersphere.
In the case when the hypersurface is a hyperplane, since the prin-

cipal normel curvatures are zero, from the Equation (4,31) we find that

Therefore, substituting this value of M into the Equation (L.35), we

find that

Since p and p are related by the Equation (2.7), from the sbove equa-

tion and the Equation (2.7), it follows that

@ - o
dr

)

which shows that the pressure does not vary along the world-line,
Since the pressure is constant on the hyperplane and also along the

normal, it follows that the pressure is constant throughout the

medium of flow, Since p and S are both constants, it follows that

all the thermodynamic quantities are constants throughout the medium

of the fluid, ul is normel to the hyperplane ard is a constant vector,

Therefore, we find that the components of the world-line vector are

constants also,
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Let us now consider the case the hypersurfaces, p = constant, are
hyperspheres, We first note that the unit normal vector of the hyper=-

sphere (4,63) 1is given by
o= kX0, - kY, - P, - xXP] . (4.6L4)

Since all the principal normal curvatures of the hypersphere are equal

to k, the mean curvature M from (L4.31) beccmes

ﬁ = 3k .
1l -1k

Substituting for M from the above equation in the Equation (L.35), we

find that

19 3k
p or 1-r1k (1.65)

it

Since p and p are related by (2.7) and p is constant on the hypersphere,
¢ is a funetion of r only, Therefore, integrating the above equation

with respect to r, we find that

p = B(l-rk)°> (4.66)

where B is an arbitrary constant. Substituting the above value of ¢
into the Equations (2.7), (3.48), (3.49), and (3.50), we obtain p, €, o,
a, respectively, The unit normal vector of the parallel hypersphere
gives the world-line., Therefore the result (4.64) gives the world-

line vector,



CHAPTER V., REDUCTION OF THE GEODESIC FIOW TO NEWTONIAN MECHANICS,
IN THE CASE WHEN THE HYPERSURFACES, p = CONSTANT,
ARE - HYPERSPHERES
In Chapter IV, we studied the properties of the geodesic flows in
the space of special relativity., In this chapter, we shall reduce the
geodesic flows to Newtonian mgchanics in the .case when the hypersur-
faces, p = constant, are hyperspheres. We employ the technique used by
levi-Civita (cf. Ref. 1). We find that the flow in Newtonian mechanics
is three dimensional. We find also that each component of the velocity
vector is the ratio of the corresponding coordinate and time; and that
the density is directly proportional to the cube of time, Thus for a
degenerate gas (for the isentropic case) all the thermodynemic. quanti-

ties are functions of time only,

A, TRANSITION TO NEWIONIAN MECHANICS
In order to meke transition to Newtonian mechanics, we shall need
a result of the text of Levi-Civita (cf, Ref, 1), To state the result

in the present notation, we note that

X = X, X =y, X = z (5.1)

are the pseudo-cartesian orthogonal coordinates of a system of special
relativity with metric tensor 81 satisfying the Equations (4.1). The

metric tensor of the corresponding system of Newtonian meckanics is

46
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(the prime indicates a tensor in Newtonian mechanics)

‘8117 = '822 = 'gaz = 1 'gp = 0 .

The Greek indices run from one through three (o, p = 1, 2, 3). Thus if
corresponding relativistic and Newtonian quantities are related bj an

arrow, then

BiJ_*'gaB i=01J=28.
The result of the paper8 in the coordinate system (5.1) is
v
W =1, uw - 2 (5.2)
c

where v& are the components of the velocity in Newtonian case. The

world-line vector ul is also given by [see (L.64)]

ui = ('];XO) - Exl’ - EXE; - -l;-xa) (5-5)

where k 1is given by (4.29). Substituting for x° from (5.1), k from

(4.29), the component u°® becomes

uo = ket
1l -1k

The first result of (5.2) implies that, in the above equation we need

have

— ct (5.4)

or (5.4) can be written in this form:
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-—-I""'*C't .

From the sbove result we have

Substituting the value of 3/dr from (5.5) into +ke left side of (L.65),
and from {5.4) into the right side of (L4.65), the Equation (4.65), in

Newtonian mechanies, becomes

.32 -0, (5.5)
ot t

Integrating the above equation, we get

o = Ct° (5.6)

where C is an arbitrary constant. Since ¢ is a function of time only,

we have p is also a function of time only; that is,

9 _ % . % . % _ % _ X _ o,
x 0y ¥ 0x w0 : (5.

To obtain the velocity vector va, from the second relation of (5.2), the

relation (5.4) and (L4.6), we have

va[.:.%i] . (5.8)
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Now we shall show that va, P, p satisfy the equation of motion

and continuity in Newtonian mechanics. The equations of motion are

ovy |, Oy 1 dp
—— + h'4 —— = - — °
ot oxM o XM (5.9)
and the equation of continuity is
d . ., ¥
—+v = = 0 ., .10
ot oxM (5.20

Substituting in (5.9) and (5.10) for v* from (5.8), and for d,/dx* and
3p/3x* from (5.7), we see that (5.9) is identically satisfied and {5.10)

becomes

%P _ E - o0
ot 31: ’

which is the Equation (5.5). Therefore v7, p, and ¢ identically satisfy

the equation of motion and continuity.

The stream lines of flow are given by the velocily components \5.8).

They are given by the differential equations

dx QZ dz
y

which imply that the stream lines are straight lines. From the velocity

components (5.8), it is clear that the motion is irrotational.



CHAPTER VI. INTRINSIC FORMS OF EQUATIONS OF MCTION AND CONSERVATION
OF MATTER WHEN THE WORLD-LINES LIE ON A HYPERSURFACE Si
In this chapter we shall derive the intrinsic forms of the equations

of motion and the equation of conservation of matter in the case when
the world-lines lie on a hypersurface Ss of the space of general rela-
tivity V4. The intrinsic forms of the equations of motion (6.7) show

that the flow properties depend on the normal curvature of the hypersur-
face in the direction of the world-lines and the geodesic curvgture of

the world-lines. From the equations of motion we find that the world-

———-..._—....—.-.-—-—.——-.——-—— —_— e, D

al.ong the relative curvature vector (cf. Ref. 7, p. 151) of the world-

lines with respect to S3. We find also that the world-lines are asymp-

_—-—-—-—— _—_-—-—.—.—_

normal Eg EEE surface,

A, HYPERSURFACES CONTAINING THE WORLD-LINES
Let x9 (3 =0, 1, 2, 3) denote a curvilinear coordinate system in

the four dimensional space V4 of general relativity, with metric tensor

8ij The world vector ul along a world-line is given by (3.2); that is,
i
g)i— = ui
ds

where ds is the element of arc along the world-line, The congruence

of curves determined by the vector field ui is such that the value of ui

50
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at any point is tangent to the curve of the congruence through that point;
that is, if dx® are the components of & displacement in the direction

i

of u*, we have

This system of differential equations admits three independent solu-

tions

éi(xoy xl; xa; XS) = Ci (6.1)

where c?t

are arbitrary constants. FEach of the equations in (6.1) is

a hypersurface S; in V,. The intersection of the three hypersurfaces
is a curve of the congruence; or a world-line. Also, given a world-
line, there exist three surfaces (6.1) such that the world-line is the

intersection of these three hypersurfaces. We shall study the proper=-

ties of the world-line in relation to one of these hypersurfaces.

B, INTRINSIC EQUATIONS

At each point on a world-line, we introduce the four unit vectors,
ul along the world-line, al along the normal to the surface, bl along
the relative curvature vector (cf. Ref. 7, p. 151) of the world-line
with respect to Si, and nl orthogonal to ui, ai, and bi. The follow-
ing relations are satisfied between the curvaturé vector ui,.Jui of the

world-line and the vectors al and bi:

1.3 _ .1 1
u ;Ju = kua + kgb (6.2)
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where k; is the normal curvature of Sz of the world-line and kg is the
relative curvature (cf. Ref. 7, p. 151) of the world-line with respect
to S;. The above equation is the generalization of Meusnier's theorem
(cf. Ref. 7, p. 152). The vectors al and bl are orthogonal.

We shall now eﬁpress the variation of p, ¢, and ¢ along the four

i i

directions u-, a-, bi, and _ni

with the aid of the equations of motion
(3.10) and the equation of conservation of mass (3.11). Usiﬁg the no-
tation (3.17), the Equation (3.11) can be written in the form (3.21).
The divergence of ul appearing in the Equation (3.21) is the sum of
the principal values of the symmetric tensor Sij (3.24), which we de-
noted by M. Therefore the equation of conservation of mass reduces to
the Equation (3.28). iét us now substitute in (3.105 for uj;j from

(3.26), for ul;J-u'j from (6.2). Then the Equation (3.10) becomes

2 ji 2 ¢ 1 i i ij
¢ o;juJu +c“o(u™™ - ka* + kgb ) - g Jp;J = 0 . (6.3)

i

Forming the scalar product of (6.3) with u-, ai, bi, and ni, and using

the orthogonal properties of these vectors, we obtain

-u'j + c2aM - p;J-uJ = 0

%o
3d

c2oku - p;Jaj = 0

(6.4)
2 J
- cok, - Y = 0
g~ P
p;JnJ =0 .
By uce of the nctetion (2,17) ) “he shove cquations can be written ia the

form
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.d_g'i-()M = _].'_gR

ds c? ds

o
Q

o
|-
&b

(6.5)

'
-
[0.5]
i
o
o]
Q
Q|
&3

o
L]
g1e

To this system we have to add the equation of conservation of mass

Qe + pM = 0 . (6.6)
ds

From the first three equations of (3.31), Equations 6.5) and (6.6), we

have the equations

€ P ds dp
= 1l +—= +—= — =0 — = = oM
o P ( o2 p02 ) ’ ds ' ds P
1 dp
k. =
ZEG da
6.
.1 (6.7)
g c2g db
0 =§2 .
dn

These equatiohs and the first law of thermodynamics (2.3) constitute the

basic equations-of the system.

From the equations of motion, we shall deduce the properties of
fluid flow. The last equation of (6.7) shows that the pressure does not

o n

- Ay - LAY S . .1 e - .,,'i TV PR R ~ [ . ~e Ny >
valy awoug Lue ullecuioun U . £10i Lue L1l egualion, we liau vidab, Ll

the world-line is a geodesic on Vi3, then the pressure does not vary along
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the relative curvature vector of the world-line, and conversely it fol-
lows from the same equation, that if the pressure does not vary along
the relative curvature vector of the world-line, the world-line is a

geodesic on Sz, Hence we have that the world-lines are geodesics on Sg

if, and only if, the pressure does not vary along the relative curvature

vector of the world-line with respect to Sa.

From the third equation of (6.7), it follows that if the normal
curvator ky of the world-line is zero, then the pressure does not vary
along the normal to the hypersurface S;; and conversely. But the normel
curvature of the world-lines is zero provided that the world-line is
an asymptotic line on.Ss (cf. Ref. 7, p. 156). Therefore, we have the

following result, The world-lines are asymptotic lines on S3 if, and

only if, the pressure does not vary along the normal to the hypersur-

face Sa.

—— —



CHAPTER VII. THE VORTICITY TENSOR AND THE VORTICITY VECTOR

In this chapter we study the geometric properties of the vorticity
tensor and the vorticity vector, and we shall prove the following re-
sults:

(a) The fluid flow is irrotational if and only if the world-lines

are geodesics,

(b) 1In the case of the Beltrami flows, the vorticity tensor lies
in the two-plane fofmed by the world-line vector and the
principal normal vector of the world-line,

(c¢) 1In the case of isentropic Beltrami flows, the hypersurfaces,
p = constant, are orthogonal to the principal normal vector
of the world-lines; in this case, all ﬁhe thermodynamic
quantities are constant along the world-lines,

(d) TFor steady flows, the Bernoulli hypersurface contains the
world-lines. It contains the vorticity vector also, if the

entropy does not vary along the vorticity vector.

A, GENERAL FLOWS

The vorticity tensor is defined by

wyyo= % (ui;j - uj;i) . (7.1)

Let us define the vorticity vector wi by

25



56

W= -}::.ivjk‘wk!uj . (7.2)

Note that if wgy vanishes then _v_z_i_ vanishes, and not conversely. The

tensors Eijk[ and -E.i Jky are related to the tensor density Eijkl and

11
tensor capacity eijkl by
L
B |g| 2 gl (7.3)
— ‘-1—
2
Bigwy = I8l Zeggey - (7.4)
Note that Eijkl

and €1 jks have the values 1, when i, j, k, I is an even
permutation; -1, when i, j, k, ! is an odd permutation; O, otherwise.
And g is the determinant of the matrix gy j* The tensors Eijkl and

Eipst satisfy,

B E e = - 3is{ 8800 (7.5)

where &9 Sk 61 is the generalized Kronecker tensor; the brackets de-

[p s t]

noting the alternate sum, From the definitions of the tensor ELIK! ang

i

the vorticity vector w~, and from the relation (7.2), it follows that

wiu. = 0 , (7‘6)

that is, the velocity vector and the vorticity vector are orthogonal.

The fluid motion with

wi,j = 0 (7-7)
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is said to be irrotational, We define the fluid motion with
vl - o0 (7.8)

as Beltrami flow. Note, Taubl® defines the flow to be irrotational if
wi =0, From (7.2), (7.7), and (7.8), it follows that irrotational

motion implies Beltrami flow.

Following the notation of Taub (cf. Ref. 12), we introduce the

vector

vy = ePy (7.9)

where the function @ is given by

P

-p = If) %—fg . (7.10)
(o]

P, in the above equation is independent of the coordinates of the points
of space-time. The integrand is considered a function of p and S, and
the integration is carried out with S constant, Defining the skew-

symmetric tensor
Q:: = 1 (Vi s = Vaug) (7.11)
i 2 Ly g

Taub has shown that EE vanishes and the motion i§ isentropic, if and

only if (cf. Ref, 12)

Qs = 0, (7.12)

and also that
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T
By = Wy -5 (s, - 8,qu) (7.13)

where T is the proper temperature, From (7.1), (7.9), and (7.11), it

follows that
Gy = Py -3 B -ug] o (L

Now, using trese above equations, we shall find the intrinsic pro-
perties of flow when the fluid flow is (&) irrotational, (b) Beltrami
flov.

Multiplying both sides if the Equation (7.2) by Eimnp , and using

the Equation (7.5), the Equation (7.2) becomes

i= _ _ay J .k _1
WEi_mnp = =3!% m& nB p]wklu,j

Expanding the Kronecker tensor, the right-hand side of the above equa-

tion can be written in the form

17 !
VEimp = '5'(Umwnp Uiy +.upwmn)

which by virtue of (7.1) becomes

L
3

ggr = Nylgy =) Fmlug g - ug ) Fuluyg - )
(7.15)

Multiplying the above equation by w and meking use of the Equations

(3.3), (3.12), and (7.1), the above equation becomes

2v. Emuwj‘uJ + ulukmuJ - ukul;JuJ . (7.16)

. 1
ke <



59

If Vi) is zero, then we know from (7.2) that wi-is zero, Therefore, if
iy 1s zero, then forming the scalar product of (7.16) with ul, the cur-
vature vector uk;juJ of the world-line vector is zero. Hence we con-

clude that, if the fluid motion is irrotational, then the world-lines

are geodesics. In Chapter ITI, we have seen that the fluid motion is
irrotational when the world-lines are geodesics. Thus, from the result

of Chapter III and the present result, we find that EEE fluid motion 35

irrotational if, and only if, the world-lines are geodesics. This re-
sult is not valid in the Newtonian case. There, if the motion is ir-
rotational, the stream lines are not necessarily straight lines.

Let us now consider the properties of flow when the vorticity

i

vector vanishes; that 1s, the flow is Beltrami, When w™ is éero, from

(7.16) it follows that
w,, = & (u,u w9 - wu .uj)
ki SRR ¥ k°L;) '

ud from the first equation

Substituting for the curvature vector U,
3

of (%.36), the above equation becomes

Y1 T '21' ky (e, - uyey) (7.17)

where a; is the principal normal vector of the world-lines. The above

equation shows that if the flow is Beltrami, that is, if Wi

o

vanishes,

then the vorticity tensor lies in the two-plane formed by the world-

line vector and the principal normal vector of the world-lines.

Further, in addition to being Beltrami flow, if the motion is
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isentropic, that is, if @ is zero, then from (7.14) and Taub's re-

sult [see (7.12)], it follows that
v o= 5 (B - ud.y) (7.18)
1 RN I S L 5 SO ‘
Comparing (7.17) and (7.18), we find that

fs1 = -kiag (7.19)

and from the Equation (7.10), since the integrand is a function of p

and S, we have
op 1 9 op S
-_..,z____P.,.+_é..é; . (7_20)

The last term of the right-hand side of the above equation is zero,
since the motion is isentropic, Therefore the Equations (7.19) and

(7.20) imply that

1
—= = kya . .21
e 184 (7.21)

The above result shows that, in the case of isentropic Beltrami flows,

the hypersurfaces, p = constant, are orthogonal to the principal vector

of the world-lines, Again, comparing (7.21) with (3.40), we find that
the pressure does not vary along the world-line. Since both p and S do
not vary along the world-line, and since only tﬁo of the six thermo-
dynamic quantities €, p, p, T, o, S, are independent (Chapter II), it
follows that all the thermodynamic quantities are constant along a

world-line. Therefore, we have, in the case of isentropic, Beltrami
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flows all the thermodynamic varisbles are constant along a world-line,

These constants may vary from one world-line to another,

B. STEADY FLOWS

Now we shall study the properties of the vorticity vector, in the
case of steady flows. In describing the study flows of flulds in their
own gravitational fields, it is assumed that the space-time and the
velocity field are invariant under a time-like one parameter group of
motions. That is, there exists a Killing vector (cf. Ref, 12), satis-

fying the following equations:

Eip0 Ph 7 O
uigvj;i - giqui = 0 (7.22)

i _ _ i
S;ig = O = p;ig .
Taub has shown (cf. Ref, 12), that the invariant

i

H = Vigi = ‘ e-éuig (7‘23)

is the Bernoulli function for the fluid flow in relativity; and also,

that

Hy = njigj . (7.24)

3

Now we shall show that the Bernoulll hypersurface, that is, the hyper-

surface, H = constant, contains the world-lines; and that Et_ contains

the vorticity vector also, if the entropy does not vary along the vor-
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ticity vector. To show this, let us form the scalar product of (7.12)
with ud and vJ and use the fact that the entropy does not vary along

‘the world-line, and the Equation (7.6). The the Equation (7.12) be-

comes

D
e
.
=
Coe
n
Pl+3
7}
we
[

Multiplying both sides of the above equations by gi and using (7.22) ,

(7.23), and (7.24), the above equations become

H;J.uj = 0 (7.25)
Bl = E.lé(THesé)s;ij ) (7.26)

The Equation (7.25) implies that the world-line vector is on the hyper-

surface, H = constant., Equation (7.26) shows that, if the entropy does

not vary along the vorticity vector, then the hypersurface, H = constant,

contains the vorticity vector also. In particular, we have that in the

case of isentropic flow the Bernoulli hypersurfaces contain the world-

line vector and the vorticity vector.
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