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"Enfin, lorsque la chaleur péndtre les masses fluides et
y détermine des mouvements intérieurs, par les changements continuels
de témperature et de densité de chaque molécule, peut-on encore
exprimer par des equations differentielles les lois d'un effect aussi
composé; et quel changement en résulte-t-il dans les %quations

générals de 1'Hydro-dynamique?"”

J. B. J. Fourier, "Theorie Analytique de la Chaleur",
"Oeuvres de Fourier", Tome Premier, ed. Gaston Darboux,

Gauthier-Villars et Fils, Paris (1888)
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NOMENCIATURE

The principal symbols are defined in this table. All of the symbols
are defined in the text. Those symbols having only temporary signi-
ficance are not given here. The equation numbers refer either to the

definition of the term or to the first instance of its use.

English Letters Definition
A Ackermann coefficient, Egn. (2.36)
=(CPAco— Cpaw)Aw/ Cf%o
B Interfacial velocity parameter, Eqn. (2.36)
= ACU/CL- COS)
Cﬁv Characteristic heat capacity of fluid, Egn. (2.5)
Chvo Heat capacity of the species undergoing transfer,
Eqn. (2.5)
C&m; Heat capacity of the "stagnant" species, Eqn. (2.5)
Lo Mass diffusivity characteristic of the fluid
F Stream function in the "transformed" coordinate
system, Egns. (2.67)
E, f Zero and first order stream functions Eqns. (2.75)
and (2.76)
© ©
2% "Inner" and "outer" stream functions, Secs. 4.2
and 4.3
G Large Parameter, Eqn. (2.42)
= g/



English Letters

Gr

\

>

P
X

R

—
*~6

Pr

Definition
Grashof number, Egns. (2.56) and (2.57),

=GR AQ
=G¥Aw

for |sA® | YAw], otherwise

Body force vector (gravity in the usual case)

and the magnitude of 75 , Eqn. (2.4)

Partial specific enthalpies of the species being
transferred and the "stagnant" species, Eqgns.

(2.5) and (2.6)

Mass flux density vector, Eqn. (2.17)

Curvature and dimensionless curvature, Egn. (2.21)
Reference length, Eqn. (2.25); length, Eqn. (2.61)
Dimensionless mass concentration function,Fqn.(2.67)

=lw — W) (Ws - o)

Zero and first order mass concentration functions,
Egns. (2.75) and (2.76)

"Inner" and "outer" mass concentration functions,
Secs. 4.2 and 4.3

Local and mean Nusselt numbers, Egns. (2.60) and

(2.61)
Order symbol, See Sec. k4.1

Local pressure, Eqn. (2.4), "dynamic pressure,"
Eqn. (2.10)

Prandtl number, Egn. (2.35)
= Yoo /doo
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English Letters Definition

Se Schmidt number, Egn. (2.35)
= Voo /),

Sh, Sh Local and mean Sherwood numbers, Eqns. (2.62)
and (2.63)

S(x) Sine of the angle between the normal to the sur-

face and the body force vector, Egn. (2.49)

T Dimensionless temperature, Egqn. (2.67)
= (0- Gu)/(e-0,)

WL‘Tl Zzero and first order temperature functions, Eqns.
(2.75) and (2.76)
o ©)
v o "Tnner" and "outer" temperature functions, Secs.

4.2 and 4.3

=

Local velocity in the tangential direction, Eqn.

(2.26)

—

V Local velocity vector, Egqn. (2.1)

-

\AJ\/B Local velocities of species "A" and "B'" Eqn.
(2.16)

Vv Local velocity in the normal direction, Eqn. (2.26)

—

W Vector defined by Eqn. (2.28)

51,X. Distance tangent to the surface, Figs. 1 and 2,
dimensionless distance, Eqn. (2.25), (% = &/L )

g,y' Distance normal to the surface, Figs. 1 and 2,

dimensionless distance, Eqn. (2.25), (Y'=Q/L )
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English Letters Definition

N Stretched boundary layer coordinate, Eqn. (2.45)
v M
y=y'6"
z A complex variable, Egn. (Al)

Greek Ietters

Ol Thermal diffusivity of the fluid, Egn. (2.3)

(3 Temperature coefficient of expansion of the fluid
Eqn. (2.8)

] Concentration coefficient of expansion of the

fluid, Egn. (2.9)

DS, Aw Characteristic temperature difference, (O, - O ),
Eqn. (2.34), characteristic concentration dif-
ference, (s - W), Eqn. (2.34)

@ Dimensionless temperature, Egn. (2.32)
=(© - oMo - Q)

(] @s'gm Local temperature, surface temperature,
temperature far from the object, Egns. (2.3) and
(2.7)

M Transformed normal distance, Eqn. (2.66)

K(g)’ K, K, Principal function, Eqn. (2.71), first and second
coefficients in the expansion of the principal
function; (see Appendix A).

/,Aw Viscosity of the fluid, Eqn. (2.64)
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Greek Letters

3
T

P‘ Ptb

G+ Gu

=
9

W, W, Wy,

Operators and
other Symbols

ol

%
&,

<§72
Ux

——

()

Definition
Transformed tangential distance, Eqn. (2.66)
"Pi"  3.14159...
Local density of the fluid, density of the fluid
far from the object, Eqns. (2.4) and (2.7)
Ratios defined by Eqns. (2.56) and (2.57)
Local dimensionless shear stress and average dimen-
sionless shear stress, Egqns. (2.64) and (2.65)
Angle between a horizontal line and a line tangent
to the surface, Eqn. (2.21)
Stream function, Egn. (2.26)
Boundary layer stream function, Egn. (2.42)
Dimensionless mass concentration function, Egn. (2.33)
= (W - W (g — Wey,)
Local mass fraction variable, mass fraction vari-
able at the surface, mass fraction variable far

from the surface, Equns. (2.3) and (2.17)

Gradient operator
Divergence operator
Laplacian operator
Curl operator

Scalar or "dot" product
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Operators and

other Symbols Definition
— —
( Ix() Vector or '"cross" product
4 means 'is defined as"
~ means "....is asymptotic to...."
- means "....approaches...."
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ABSTRACT

The laminar boundary-layer description of planar, free-
convection around cylindrical bodies is examined for arbitrary body
contours. The flow is a result of temperature and/or concentration
differences between the surface of the object and the fluid. Dilute,
binary systems are studied. For a body with an outer surface main-
tained at a uniform temperature and a uniform concentration of the
species undergoing transfer, it is possible to treat a number of
combinations of the "driving forces" and coefficients of expansion.
With transformations suggested by analogy with the work of Goertler
on forced convection, new series representations of the dependent
boundary-layer variables, viz., temperature, concentration and velo-
city, are developed. The ordinary differential equations which
determine the functions in these series are independent of the body
contour. Instead,‘some of the numerical coefficients in the differ-
ential equations are fi#ed by the class of the body shape; e.g.,
sharp-nosed, blunt-nosed, or flat-nosed. Hence, the solutions for

a particular class of body shapes may be obtained once and for all
for fixed values of the dimensionless parameters appearing in the
problem. The body contour enters the problem only when the series
are assembled. The series are found to converge rapidly for the class
of blunt-nosed bodies, one term in each series (the zero-order term).
being sufficient to represent the heat-flux density at the surface.

The accuracies of the one-term representations are determined by

xvi



comparing the numerical solutions with experimental data and by cal-
culating the corrections given by the first-order terms.

Free convection around blunt-nosed bodies is described for
several Prandtl numbers between .0l and 1763. by the numerical solu-
tions to the zero-order equations. The description of free convection
around sharp-noéed bodies can be obtained from the numerical solutions
of Ostrach for the vertical plate, when his results are interpreted in
terms of the present theory.

The effects of the body-shape class are investigated at
Prandtl numbers of .01, 1. and 1000. The differences due to class
are found to be small. The effect of the normal velocity, which is
due to mass transfer at the fluid-solid boundary, is investigated,
as is the effect of a difference between the heat capacity of the
species undergoing transfer and the heat capacity of the fluid.

Asymptotic forms of the differential equations are used to
find the flux densities and the shear stress at the surface for:

(i) equal Prandtl and Schmidt numbers, (ii) low Prandtl but high Schmidt
numbers, and (iii) high Schmidt and Prandtl numbers, for free convection
driven by both temperature and concentration differences. Explicit
formulae are given for the determination of the heat- and mass-flux

densities and the shear stress at the surface of the object.

xvii



CHAPTER 1

Introduction

A fluid motion is termed free or natural convection when
the motion is due solely to the interaction between body forces (such
as that'éf gravity) and local density variations in the fluid. These
local density variations may be the result of temperature and/or com-
position variations. The study of transport processes in such a flow
field is naturally complicated by interactions between the transport
processes. This situation is in sharp contrast to the study of heat
and/or mass transport in forced dbnvection. There, the flow field
is usually known a priori and interactions are frequently negligible,

Much of the study of thermal, freemc;nvection phenomena
has been directed towards describing flow and heat transfer near
vertical plates and cylinders, horizontal cylinders, and spheres.
Some recent work has also been done towards finding body shapes for
which the differential equations describing the phenomena can be re-
duced to ordinary differential equations (Ostrach(EB)), This natur-
ally results in a considerable reduction in the*effort required to
obtain relations between the quantities of interest. The use of
boundary-layer theory, in connection with laminar, free convection
around submerged objects, leads to the very useful result (which may
be obtained without actually solving the equations), that for a given
body and fluid the rate of heat transfer is proportional to the

Grashof number raised to the quarter power. Inspection of asymptotic



forms of the boundary-layer description also leads to the conclusion
that the proportionality factor, which depends on the body shape and
the properties of the fluid as characterized by the Prandtl number,
varies as the square root of the Prandtl number as the Prandtl number
tends to zero. On the other hand, the proportionality factor varies
as the quarter power of the Prandtl number as the Prandtl number tends
to an infinitely large value. Concentration-driven free convection
differs from its temperature-driven counterpart mainly due to the
presence of an interfacial velocity at the solid-fluid boundary.

This velocity destroys the similarity between these two flows.
Acrivos(l) has recently analyzed £he effect of this condition on the
rate of mass transfer,.

In view of the previous discussion, it is apparent that
there are two general areas wherein a lack of understanding and des-
cription exists. They are in the areas of : (i) effects due to body
shape, and (ii) effects due to interaction between the heat- and mass-
transfer processes, Some work has been done in both these areas and
will be mentioned later.

This research is directed towards a description of free
convection driven by both temperature and concentration, with partic-
ular attention to the problem of body shape. The boundary-layer des-
cription of two-dimehsional, planar flows around solid objects is
developed in Chapter 2. The submerged object has a temperature and/

or concentration differing from that of the fluid far from the object.



Dilute, two-component fluids are considered. The motion is assumed
to be steady. A transformation, similar to that used by Goertler(lg)
for studies of two-dimensional, forced convection, boundary layers,
is used to develop series expansions for the stream, temperature

and concentration functions. In Chapter 3 some numerical solutions
for the first two terms in the expansions are given. These results
are compared with experimental data taken from the literature. It
is shown that the use of the transformation essentially eliminates
the body shape variable from direct consideration in the solution of
the differential equations. Chapter 4 is devoted to some asymptotic
solutions for extreme values of the Schmidt and Prandtl numbers,
which appear as parameters in the differential equations. The final

chapter, number 5, summarizes the research and suggests possible

extensions.



CHAPTER 2

Mathematical Models

2.1 Problem Statement

Free convection, resulting from temperature-induced den-
sity differences, has been the sﬁbject of theoretical and experi-
mental studies for over a century. Two early ihvestigators were
Dulong and Petit (as cited by Ede(9)), who studied the cooling of
spheres in 1817. A comprehensive survey of research on free con-
vection near vertical surfaces has been made by Ede(9). A flow
driven by concentration-induced density differences is mentioned
in a review by Schmidt(27). Ostrach(25) has recently presented an
extensive summary of free-convection research. These reviews obviate
the need for a general review of free convection here, so reference
to reports in the literature will be made only in connection with
specific aspects of the work,

Somers(29) studied free convection near a vertical plate
when the density of the fluid depended on temperature and concentra-
tion. However, his theory is limited by restricting the Schmidt and
Prandtl numbers to be almost equal. Furthermore, the so-called inte-
gral forms of the boundary-layer equations were used with assumed
velocity, temperature and concentration profiles. Somers indicated
that concentration and temperature effects are not strictly additive.

(11)

Gil, del Casal and Zeh and Sparrow, Minkowycz and

Eckert(5o) report theoretical work on free convection due to the

k-
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combined effects of temperature and concentration. Gill et al
studied the effects due to temperature- and concentration-dependent
physical properties for hydrogen-air, helium-air, water vapor-air,
and carbon dioxide-air mixtures. The flow was that near a vertical
plate. For the carbon dioxide-air system fluid-property effects
were almost absent. By way of contrast, in hydrogen-air and helium-
air systems the assumption of constant physical properties resulted
in errors of about 10 per cent, while for the water vapor-air system
the error was about 50 per cent. All of these discrepancies depended
on the concentration of the "diffusing species" and diminished with
decreasing concentration., Sparrow, et al studied free convection
near a stagnation point on a curved surface in the helium-air system.
In addition to accounting for property changes due to temperature
and composition, both the Dufor effect (transport of energy due to
composition gradients) and the Soret effect (transport of mass due
to temperature gradients) were included. Their conclusion was that
these "coupling effects" may be appreciable for low molecular weight
materials when the concentration 6f the diffusing species is high.
These investigations point out, via the "case study method,"
that property variations and coupling can be important factors in
particular situations. However, the studies do not, due to their
nature, furnish information about the effects of changes in the

average fluid properties, as characterized by the Schmidt and Prandtl

numbers.
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In the present study a description of free convection will
be developed which accounts for the effects of body shape, average
fluid properties and interactions between the heat and mass transport
processes as they affect the density of the fluid. Such a description,
in which the major features of the phenomena are retained, while local
property variations and coupling are suppressed, is felt to be of
value. TFirstly, because these latter effects are of secondary im-
portance in many instances. Secondly, such an idealized model can be
used as a basis for comparison. Finally, because of its simplicity
such a model enables one to study free convection without the restric-
tion of a particular type of fluid property behavior.

Two main classes of planar, free convection will be examined.
The two classes represent flows around two types of symmetrical bodies,
"sharp-" and "blunt-nosed"; e.g., wedges and parbolas. By considering
these classes of body shapes it will prove possible to develop rather
general methods for describing the flow, within the frame-work of
boundary-layer theory.

In each instance the body is assumed to be immersed in a
large body of fluid, which is taken to be of infinite extent, and
which has no motion imposed on it except that brought on by the non-
uniform density field. The surface of the object is kept at a temper-
ature level different from that in the fluid far from the object-
the object is a source or sink for thermal energy. Similar boundary
conditions are imposed on the concentration of a single chemical

species. Hence, the surface of the body either loses or gains energy
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and/or material by transfer to or from the fluid. It is further
specified that there is no forced injection or removal of materiasl
through the surface of the object. Since the surface of the object
and the fluid far from the object are at different levels of temper-
ature and concentration, transport causes temperature and concentra-
tion variations throughout the fluid which give rise to spatial den-
sity variations. In each class of flows the axis of symmetry of the
object is assumed to be parallel to the "body force'" vector. Here-
after the use of "body force" will refer to volumetric forces acting on
the fluid. Gravity will be the only body force considered but the
results can easily be extended to any body force which can be ex-
pressed in terms of a linear potential function.

Now, the interaction between gravity and density causes the
fluid to move. Hence, the transport processes within the fluid are
convection (bulk transport) and diffusion (molecular transport). The motion
is assumed to be in a steady state. This latter restriction rules
out any consideration of turbulent motions. The problem now is to
describe this flow, in particular the local velocity, temperature and
concentration, from which the rates of transport between the object
and the fluid can be determined.

In the following chapters certain simplifying assumptions
will be made. In general, these assumptions will be noted but in the
interest of brevity certain obvious ones will not be mentioned.
Furthermoré, the description will not be developed from first prin-

ciples. Rather, a familiar description will be selected as a starting



point. For a detailed development of the equations of change the
reader 1s referred to the treatise of Bird, Stewart and Lightfoot(5)

or a paper by Merk.(eo)

The model is based on a Newtonian fluid,

with Fourier's and Fick's laws governing the molecular fluxes of heat
and mass, The couplings between temperature and concentration gradients,
in the forms of the Dufor and Soret effects, are neglected. Within the
framework of the theory to be presented, which requires small "driving
forces," these effects are expected to be small. The effects of com-
position, temperature and pressure on the properties of the fluid,
excepting density in the body force terms in the equations of motion,
viscous dissipation of energy, and compression are all neglected. The
assumption of constant properties has been formally justified by

(22

Ostrach ) a:nd by Hellums aﬁd Churcﬁill(IB) for the éase of tempera-
ture-driven free convection. In this latter instance the justification
is based on the fact that the product of the coefficient of thermal
expansion,f? , and the characteristic temperature difference, s
is small. The results of the constant property assumption may be
viewed as the zeroth approximation in a parameter perturbation in

the quantityﬁ_AQ. Ostrach also shows that, within the framework of
this approximation, viscous dissipation of energy may be neglected.
Hence, for flows driven by temperature and composition effects both
ﬁAG and ¥AW , where ¥ is the coefficient of expansion due to con-
centration changes and Aw 1is the characteristic concentration dif-
ference, must be small. For the very low speeds found in free convec-

tion the effects of compression in the energy equation can be neglected

(Schlichting(?3) p. 292).



These assumptions lead to the following mathematical model
for free convection in a two-component, non-reacting system. The con-

tinuity equation,

IV=0

(2.1).
The conservation equation for one of the two species present,
VAV/® AR (2.2).
The conservation equatign for thermal energy,
Ve =o' - %@w-@(ﬂrga) (2.3).
The equation of motion,
VIV -- VP4 '—%@ A (2.4).

The operatocrs have fheir usual meanings; the tilde implies that the
operator is not dimensionless. oG ; Heo Co Po 5 Voo are,
respectively, the mass diffusivity, thermal diffusivity, heat capacity,
density and kinematic viscosity, which are characteristic of the

fluid. §7 is the local velocity vector, &, the local mass fraction

of the species which is being transferred to or from the solid (A, say),
© , the local temperature, P , the local préssure, P , the local den-
sity and Eg , the body force vector (gravity). The second term én the
right-hand side of equation (2.3) represents the so-called Ackermann
effect (Merk(zo)), which is an energy transport effect due to diffusion.

HA and Fqs are the partial specific enthalpies (units of energy per

unit mass) of species A and the "stagnant" species (B, say). For
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"perfect" or more generally "athermal' solutions, wherein there are no
heat effects due to mixing, HA and HB are independent of com-
position (Denbigh(B)). This is the type of solution considered in
this research.

Now, over small temperature ranges it can further be as-
sume;i that HA'—' CpA” (6- ) and HB = CP%(G—G‘») ; Where

Cp,eo and Cpam are the heat capaciltles per unit mass for speciles

A and B at the temperature O, , a reference temperature. Hence,

Ha~ Fe= (Cour Coy . ) (O — Gw) (2.5),
and

V(A A= (G Co W (2.6).

Paco

The model is as yet incomplete, there are four equations
and five unknowns. The final relation is the equation of state,
which, under the restrictions previously noted, takes the following

form:
P = Rl Rle-6u) —dw—cu] (2.7).

Here, 3 and Y are:

4_1|oP
. P"”[a@L-o. (),
Q).:wm
and
d_1 (0P
X— %l:aw 0:0 (2-9)-
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The coefficients f3 and ¢ are treated as constants, and We 18

a reference concentration.

U
It is convenient to introduce a dynamic pressure, P , de-

fined as
VpP=pY + VP (2.10).

The dynamic pressure relation and the equation of state are now sub-

stituted into the equations of motion to yield

—-_— Ny = Z)

VVV=- ;13— P —(3(e-6s) —-X(w—ww)§+vaﬁ\7 (2.11).
Using the identity

AVAVER SV AVAV,BRVAVAY, (2.12),

<

one finds
5 VN0 =-§VP —ple-0ag —yw-we)g + W (2.13).

Subsequeht application of the "curl operator," Vx , to Equation

(2.13) results in

2-—-&-

V7 W =676 = ¥0wx G + W (2.14),
where
—> AL e
W = VxV (2.15).

Note that the various mathematical operations which have been used to

remove the pressure variable have increased the order of the system.
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The boundary conditions are taken as follows.

(a) At the interface between the surface
of the object and the fluid, the temperature is constant at O and
the mass fraction of the species undergoing transfer is constant at
ws . The velocity in the direction tangent to the surface is zero.
However, phe velocity in the direction normel to the surface is not
zero due to & flux of species A . To develop a condition for the
normal component of velocity let the mass flux density (mass/area/
time) of A relative to the mass average velocity be T]'A . Now the

mass average velocity is defined by

V=V, + 0-w) Y, (2.16),

- —
where V, and Vg are the velocities of species A and B , and

) 1is the mass fraction of A . From Fick's law
- oY
JA=—Poewvw (2'17))

where oe,,, is the diffusion coefficient. Now,
- > —
J.= pw(V, -V) (2.18)

-5
and at the surface ;= O , so that

EA‘—‘ PV(i—&)g) (2'19)'

Hence, at the surface,

VY L
V=- T, LV w (2.20).
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Along the extension of the plane of symmetry of the body,
parallel to the body force vector, the velocity normal to the exten-
sion is zero and the gradients of temperature and concentration normal
to the extension are zero; i.e., symmetry extends into the fluid.

(b) Far from the object and the plane of symmetry, temper-
ature and concentration approach the values G. and (o . Hence,
the reference state is that of the fluid far from the object. The
condition placed on the velocity far from the object has been infer-

(26)

red from the experimental data of Schmidt and Beckmann and
Jodlbauer(lS). It is that the velocity parallel to a tangent to

the body is zero. This condition will suffice for the boundary-layer
theory that will féllow.

It is to be noted that for closed bodies, e.g., cylinders,
nothing has been said about the plume (a column of fluid) which rises
above or falls below the object. In what follows the plume is to be
completely ignored and, as a result, the theory may be invalid in the
region of the plume. Furthermofe, since the plume may-affect the rest
of the flow, the theory must be substantiated by appeals to experiments

or to a more complete theory.

2.2 Mathematical Model of Free Convection in Curvilinear Coordinates

The mathematical model described in the previous section
is specialized by choosing a particular‘coordinate system, which is
intimately connected with the geometry of the immersed object. The
coordinaté system 1s an orthogonal, cﬁrvilinear system based on dis-

tances measured along the surface from an intersection of the plane
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of symmetry with the surface of the body and on distances measured
normal to the surface. The curvilinear coordinate system, the various
operators, the body force vector, and the velocity vector are deve-
loped next in terms of this coordinate system. The geometries for
each of the two classes of flows to be studied are given in Figures
1 and 2,

Let X and § Tbe the distances along and normal to the
surface and ¢) the angle, measured in the clockwise direc-
tion, between a horizontal plane and the line tangent to the surface

~e

at %Y . The local curvature, K , is defined as

Q.

? (2.21).

~

Y

K<

Q-

A differential area in the plane of X and ‘9 is then

dA =(1 +Kg) dx d§ (2.22).

Hence, the arc length parameters or metrical coefficients are

hy=1+K hy = 1 (2.23).

For cusped-nosed bodies or for any concave body a unique coordinate
system is defined only for points (ﬁ,y) © within the region defined
by the evolute (a curve traced by the center of curvature) and the
surface of the body. Furthermore, it is apparent that for wedge-nosed
bodies such a coordinate system is not defined upstream from the body,

except in the case of a flat plate.
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~—PLANE OF SYMMETRY

CENTER OF

CURVATURE
\

\\—-SURFACE OF BODY

di= (I/K+y)dg = (1+Ry)dX , dA=(1+Ky)dXdy , h,=1+Ky , h=I

(b)

¢

>
N

g

y
9,=—9gsing

g,7gcosd

Figure 1. (a) Arc Length Parameters and (b) Body Force Components
for Bodies with Convex Surfaces



-16-

PLANE OF SYMMETRY

-——— SURFACE OF BODY

dL =(/K+y)dg = (1 +Ky)dX , dA=(1+KY)dRdy, h=1+KY, hzl
(v)
¢>(/
g, l\
g

gy=gcos¢> 9,7~ gsing

Figure 2. (a) Arc Length Parameters and (b) Body ForcesComponents
for Bodies with Concave Surfaces
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In the two-dimensional, curvilinear coordinate system the

equation of continuity is

g; + £ r(m’@ﬁ}} (2.24),

~

where U and U are the dimensional velocities in the X and Y
directions. The dimensionless coordinates X and y' and the dimen-

sionless curvature K , are introduced by

x=%, y=2  K=KL (2.25),

where l, is a characteristic length. The dimensionless stream function,

\P , 1s introduced with

joveo¥ o w OV
Ty VT LKy o x (2.26).
Then
.-—)—_.-_“* Voo 1 ) 1 a\ij D . —5_\!
We-h 3 1+Ky{ax Ky 5%}+ay{a KY) S5 H (2.27)
or

W = —h VARV (2.28),

e
where R is a unit vector normal to the plane of the flow and

2
V% 1is the dimensionless laplacian. Furthermore,

VivaR ! Y > _a\Pa
vV a 1+Ky{@\f OX XY (2:29),

2052 1 Ji_ 1 D D [ | ' ’
v _1+Ky'{a'x|:l+ Ky‘ a’X] + ay,l.(l-v— Ky)gyﬂ (2.30)
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and

T >

- 2.31
+Ky' O j ay (2:52)

L =V=

-

where | and J are unit vectors in the X and ‘y‘ directions.

Hence,
N N - » . ,
V@;-zlﬁ COS9 200 4 00 (2.32),
I=TI Tk ox TSN &5
and similarly for QZung . Here, ”9” is the magnitude of the vector
Ei . Now the dimensionless concentration and temperature are intro-
duced as
Nt &=, g GA”QQ'» (2.33),
with
AW (ws-wy), NOL(6,- G,) (2.54).

The Prandtl and Schmidt numbers are defined as

Pre=, So- e (2.35),

and introducing A and B with

d  (Cpaco— ) 4 Aw
AL pr Aw, B= —,

(2.36),

the partial differential equations are now

Y o0y _BlV_ } (2.57),
KyIOY' Ox Ox oY SC VN
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L [Y 20 Y a@]_ L a A ;
l-yKy‘[ay' O X O X aj‘ —P" v@_ACV-Qve (2-3 )7

t [a¥ 2 ry_dY o } 2
lny'[ay' SV Y-S VY=V VY (2:29).

| A
_9eASL[ C05600 ]
<. Vi { 1+ Ky' 9% 5|N¢>@y

AWl cosp ) ~SIN51>—a—=Q~]
Ve 14 Ky' X Yy

Note that ¢) is the angle between the surface normal and the body

force. The boundary conditions are:

(a) at the surface

—qg oY st (2.40),
c==1 y =0, &b-=pse" 9

(b) far from the surface

e il —g—:—% — 0 (2.41),

The equation for the stream function, equation (2.39), con-
tains the dimensionless parameters KBZXGD and ¥ AW . 1In order to
continue the development leading to a boundary-layer description both
these parameters must have the same sign, if they are of the same
order of magnitude. For example, suppose that the Schmidt and Prandtl

numbers are approximately the same size and that the Ackermann effect
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term is very small, then ©= () and if F}Zlé)='-YZ§u)there will
be no motion, and no boundary layer. If the signs of (3[569 and
Y Aw are different and one parameter is much larger than the
other it may be possible to treat the problem by considering one
effect as a small perturbation on the other, depending, of course,

on the other parameters in the problem.

+ - + -1 [+] [-]1 [+

NG
-~

+=11+{[=[1+{=[F{[=1+ =1+ =1+ =1+

1 2 3 L 5 6 7 8 9 10 11 12 13 14 15

Figure 3. Expansion Coefficient/Characteristic Driving
Force Sign Combinations

Of the sixteen possible cases (considering combinations of
the signs of (3 ,0NQ, ¥ ,/ANwW ) shown in Figure 3, eight have
the same sign for [3; AQ and ¥ANW . Four of these result in a
flow counter to the direction of the body force, gravity, and the
other four result in a flow in the direction of the body force. For
example, consider the case of a body whose cross seétion is a closed

curve. For cases 1, 4, 13 and 16, hereinafter called the "positive
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condition," the flow develops in a direction counter to gravity and
a plume rises above the cylinder. While for cases 6, 7, 10 and 11,
the "negative condition," the situation is reversed., It is apparent
that the differential equations are the same for both the positive
and negative conditions if, for the latter, the symbol ”9 " is re-
placed with W-g " and the origin of the coordinate system is the
upper intersection of the plane of symmetry with the body contour.
For "open bodies" (e.g., a body cross-section with a parabolic con-
tour, or a wedge) the positive condition can be treated only if the
body opens upward and vice versa for the negative condition. With
these restrictions in mind, the "eight possible cases" can be treated
with the same system of differential equations. The only difference
in the description of these eight cases is in the boundary condition
for the stream function. The parameter B may be positive or nega-

tive, depending on the sign of AW.

2.3 A Boundary-layer Model

In what may be termed the classical boundary-layer theory,
as explained by Schlichting(25), it is postulated that there exists
a thin region near solid objecté in which certain quantities describing
the flow change very rapidly. One is led to consider the relative
size of certain expressions in the differential'equations describing
the flow and discard some, due to their‘relative smallness, This leads
to an impressive simplification of the differential equations. 1In

forced-convection problems the validity of such approximations depends
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on the size of the Reynolds number for the flow. The theory becomes
8 better approximation as the Reynolds number increases. The class-
ical theory, however, lacks a systematic formulation which would
allow one to find corrections to the theory for lower Reynolds num-
bers, Becently, boundary-layer theory, for forced-convection pro-
blems, hes been put on a more formal and systematic basis by consid-
ering it as that which van Dyke(3l) calls a '"singular perturbation

problem." By means of methods developed to analyze this type of
?roblem, corrections to the'classical theory can, in principle, be
derived. The quantities of interest are developed in two asymptotic
expansions in the Reynolds number. These expansions are postulated
to have overlapping regions of validity. In one of the regions, the
"outer region," the flow is largely determined by the body shape and
the upstream flow. The effects of viscosity are small in the outer
region, which is "far" from the body. On the other hand, in the region
near the body, the "inner region," the effects of viscosity are strong.
The first term in the inner expansion is found by solving Prandtl's
classical boundary-layer equations.

A corresponding theory for free convection around submerged
objects has not been developed. One of the difficulties appears to

be that the flow far from the object is completely determined by the

inner flow, near the object, and cannot be specified a priori.
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In this research, attention will be directed only to the first
terms in "inner expansions" (as given by the usual boundary-
layer theory), and neither the higher-order terms nor a descrip-
tion of the flow far from the object will be sought. The validity
of the results will be justifiled, instead, by comparisons with ex-
periments.,

The differential equations describing the free-convection
phenomens contain a parameter g E/’Hﬁ , hereafter denoted by the
symbol G . If the transformation -»(gzqf' be made, then the
equations become formally the same as those for forced convection,

‘where G/Z plays the same role as the Reynolds number; i.e., in

the equation for the stream function \S_h appears as a coefficient

of the highest derivatives. Hence, based on the corresponding develop-
ment for forced convection, the following expansions may be expected

to be valid near the object for large G

(o)

=Y | =Y, _\

5= =6 Yoy + o(GY) (2.42),
. @ g
S= Oy *+ol5) (2.43),

(0)

A= Oy +0(GH (2.44),

with
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The order symbol, o(t} , means that succeeding terms are of an
)
order smaller than € ; e.g.,of(sq) indicates, in Equation (2.42),

that
I (0)

. | Y -G Y|, (2.46).

-

Y, =
G4c | G*
The orders of the succeeding terms in the expansions are based on

a heuristic examination of the differential equations after substi-

tution of the expansions.

The partial differential equations for the "zeroth" ap-

proximations are

(?\ (’o{ 0y  (0) -1

\_f;.\. o %Oy = vy (2-47);
(© (0 & (o) 4 (o 4 @ (0)

Vo, - 6, =F/g, - ALO6 (2.48),

©) (o) (o © (o) (0

(o)
\‘V‘J\‘VX‘JS T ‘fx \yw\) = pAS SmekaAwS@()O‘J t \P\J\m(g'@)’

where S() is S|N¢ . The subscripts "x" and "y" denote partial
=) »
differention. The equation for q! can be integrated once, using

the boundary conditions, to give

© (o) @ (© ) (©

() X
VY, — Yaty =BAS S +6Aw5w>ﬂ+ Y,y (2:50)

In the preceding development terms which vanish, supposedly, as

(3 =00 , have been neglected. A further requirement is that the
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gurvature of the body, K , be small; this is to insure that Kyéllq
remeins small. Consider, now, Equations (2.47), (2.48) and (2.50);

the absence of second derivatives with respect to %  1ndicates

that in the "zeroth" approximation there is no mechanism whereby

events downstream can affect the flow upstream, For closed bodies,

whex:e there is & plume, the epplicebility of this model must be est-
ablished by experiment. This matter will be examined in Chapter 3.

A further simplification is still possible. When I@AGlzlzfA(uI

define
Gr £ GRAG (2.51).

Now pAG no longer appears as an explicit parameter but rather in

the ratio O , where

g JAW

oL = (2.52).
BAS
Conversely, when |(3A9|<|6A0.)|
let Gr £ GYAW (2.53)
and
4 (BAS
%= Yoo (2.54).
In general, then, Equation (2.50) is written as
© (© © ©) o) o\ ) i
— = : 2. s
AR AN G S0 O + 0 S () + Y, (2.55)

Y
where the symbol G is replaced by Gr in every instance, e.g., );'-}{'Gyd,
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Here, for IBAG[2 WAWI

Ggi.%d:%ﬁ—g-)Gr%GﬁA@, (2.56)

and for |3 A<y Awl

FR-YAY

ar'zu;\,w’g'«éi» G- AW (2.57).

"Gr" is the familiar Grashof number for either a temperature
"driving-force" or a concentration "driving-force."
The governing partial differential equations and boundary

conditions in the model are then

(©) (o) @ (o L
\lj \y O —Scin” (2-“‘7);

© (o) © (o) St () _1 (0)
\Pyex - \-I-Jxes =F @” - é (2:48),

(o O (o ©)

9y (o

\R\H‘, - \Px\jl_jw = GTS(x)@ + O’MSmﬂ + \yy“ (2.55),
(0] S (0) (o)

é*o) ({3‘-(*0) 1, \J:/(xo) O, \P(xo\ BSC()S (2.58),

and

) ()

SIENE Q‘*.y),%(w,y) —0, y—ow (2.59).
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Before proceeding further with the development, the following
quantities are defined for the boundary-layer model as applied to di-
lute mixtures (w<¢¢l) .

The Nusselt number,hh¢ , for the dimensionless heat-flux density at

the gurface

N 3 (heat-flux density)(characteristic length)
U~ (thermal conductivity)(temperature difference)

oo Nu=- t“[@y + (A+BIRSE (2.60).

o]

The sechd term on the right arises from mass transfer., The Nusselt

number averaged over a length, £ , is

£
N_ugifo‘[\lu('x\(ix (2.61).

The Sherwood number, for the dimensionless mass flux density at the

surface,

(2.62).

Sh d:|: Pwst(\—Cg)s)L ] _ G.Mlq L((_«%—
y=o

(8. Aw " »} .
L y=0

The average Sherwood number

§hd:—§—f5h(«)3x (2.63).

The dimensionless shear stress at the surface

2 ¢’
Texl oo

{I}”] (2.64),
y=0

and the average stress

_ 4
T & L Tds (2.65).
(o]
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2.4 The Boundary-layer Model in Series Form

The body shape still remains in the problem in terms of the
function Sy , representing the sine of the angle between the
body force vector (gravity in the usual case) and the normal to the
surface. 1In order to achieve a description in which the body shape
is no longer an explicit variable, further work must be done.

One approach, at this stage, is to expand S(x) and the

© (o) oy

dependent variables ﬁ, @ and \P as power series in X and then
to solve the resulting equations for the coefficients of like powers
of X , which depend on y . This i1s the basis for the Blasius
series for forced convection past cylindrical objects (see Schlichting(ES),
p. 146). This technique, expansion of Sxy as a power series in

X , was used by Chaing and Kaye(7) for temperafure-driven free con-
vection around a circular, horizontal cylinder. It is possible to
scale all of the coefficients resulting from the expansion for S
out of the problem, which Chaing and Kaye did not do. However, there
are some questions about the ability of the resulting series to repre-
sent the dependent variables accurately with only a small number of
term§. In fact, van Dyke indicates that the Blasius series (forced
convection) actually diverges for X>.62 in the case of the circular
cylinder (see Schlichting, p. 154). Chaing and Kaye indicated that
three terms are sufficient for temperature-driven free convection at
a Prandtl number of .7. For the average heat-flux density over the
whole circumference of the cylinder, Chaing and Kaye's one-term ex-

pansion gave a result 14 per cent higher than a two-term expansion,
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and the two-term expansion was 0.3 per cent lower than a three~term
expansion. In any case, a'representation which requires as few
terms as possible is desirable.

Hermann(lu) treated the problem of temperature-driven free
convection around horizontal, circular cylinders using boundary-layer
theory but assumed "similarity" so that the problem could be reduced
to the solution of ordinary differehtial equations. The fact of the
matter is that the flow does not possess the assumed similarity.
Hermann realized this difficulty but expected that the error involved
would not be serious. The agreement between the calculated tempera-
ture field and the experimental results of Jodlbauer(ls) was indeed
good. Hdwever,'for the velocity field the agreement was not as good.
Hermann's method has two shortcomings in that there is no systematic
way of improving his approximate solution to the boundary-layer
equations and it is not readily apparent how other cylindrical ob-
jects are to be treated. FEach object would have to be treated as

a separate case,
(12) . .

Goertler attempted to generalize and improve the con-
vergence of the stream-function series, for two-dimensional forced
convection past submerged objects, by scaling both the X and Y
coordinates. His efforts were in part rewarded, for in the case of
the circular cylinder the first term of the Goertler series differs
from the "exact'" solution by less than L4 per cent over 60 per cent

of the distance from the stagnation point to the point of flow separ-

ation. Furthermore, in those cases where sufficient similarity
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exists to enable one to transform the boundary-layer equations to
ordinary differential equations, the Goertler series gives this
result immediately.

The following transformations are now introduced for free-
convectiqn problems, the intent is to develop series representations
for the concentration, temperature, and stream functions which con-
verge rapidly and are universal as far as body shape is concerned
"Universal" is here taken to mean that the body shape does not appear

in any of the differential equations explicitly.

\g = ljéO@fZX

—(3.),4 [Smf (2.66)
vy £
)
(o 3/4 _5/4 =
\yhﬂy) = (‘%—) g F(Eﬁl)
S = T(Em) r (2.67)

(o)

Q(W) = M (E M)

It is understood that F , T and M still depend on the other

dimensionless parameters Sc , Pr , 0; , 6y , A and B . Note

1
that Acrivos( ) used essentially the transformations given for y
{0)

and \+/ to establish the form required for Sexy which would enable

one to transform the boundary-layer equations to ordinary differential
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equations. With these transformations equations (2.47), (2.48) and

(2.55) become

43(EM-EM,) - FMy = SO My, (2.68),
$2RT-RT) - FT, = A Tm = ASTM, (2.69)
and
$8(550 RRon) ~ FR SKRF = oT + oM+ By, (8700
where
=4/3
K(g)z—é— + %E[S(«)] Cdg% (2.72)

The boundary conditions are

Mo = T,0) =1, E0=0
Fleo) + AR50 = B S My(50) L (2.72)

M = Tlew) = RE0)=0

Goertler‘s(le) terminology, of "principal function" for
I((g) , will be employed here. The prinicpal function depends on
the body shape and at this point two classes of body shapes are intro-
duced. For sharp-nosed bodies the series for l((g) proceeds as (see

Appendix A)
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K(E):%—+Klg+oo- (2.75)
where K1 etc. are constants. For blunt-nosed bodies

Keg)= 3 +Kg* - (2.74)

The variables |V , T and F are represented as follows:

(2) for sharp-nosed bodies,

T & o oot 2.75),
(b) for blunt-nosed bodies (where the curvature at the nose

is not zero),

' @ 3 & /
M) = ;:) Ma(’?)galz) Tew = %0 -];(m(éd z} F(EM)Z; E“ﬂga 2 (2.76).

The series given in (2.75) and (2.76) result in the following sets
of ordinary differential equations (primes denoting differentiation

with respect to m ):

(a) for sharp-nosed bodies,

when 3:0
M+ Sc FM, =0
T+ R AET- A% MT, =0 (2.77),
Fe BB - SR el eM=0

when 4= 1,’2, 500

M+ Se £ M- % ScR M+ (% +1) Sc M= Ry

B ‘
AVE 802:‘[&33 M (4 + )R, Mj~n}



(b) for blunt-nosed bodies,

when 4=0
Ma+Sch M= 0
T+PrET-A EEMT=0
E+EE-EE+aT+mMs=0
when =123,

M+ Sck M- 2 ScEM+ (24 +1)Sc fy M,=Rwy
-l
Rm= SCZ\[zh M= @+ Myee]

T+ RET- A&MT 2R £ T+ I+ DRE T AS*MT Ry

= \ | = LR
= A LR T (ke 05 TrASE WM

B+ FE- 26+)EG+24+EE ~ S KEE-aT+ aM=Ry

}OO

Re = é>:[(?n+l)F,§ Fa-@R+1E l;'rp-TK&RZE R_]

®=1

-

> (2.79),

> (2.80).
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The boundary conditions are:
(a) for sharp-nosed bodies,

when 3, =0

e
Mo =T, =1,El)= 0, b =BSc M)
(2.81),
M.oo)= T,(e0) =F.l0)= O
when a: \'213)...

M}(o): _g(o) :F-;(o) = Mt(cv):.g(oo) = %(w):o

L (2.82),
— oA

(V+ 431’- \l;(o) =B Sc M&(o)

(b) for blunt-nosed bodies,

when 3,= 0]

Moy =T =1, Rl =0, o= BS?M;O)
C (2.83),
= Tae = Eion =0

when 4= 12,3000

M&(O):E(O) = g(o):Ma_(oo) :1;(00\ = F;_(oo\—_o

(2.84)
(1+24) f(@=BScM©

In the absence of mass transfer Equations (2.77) and their

boundary conditions comprise the same system as that investigated by

Ostrach(gg) for temperature-driven free convection in the neighborhood
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of a vertical plate. Equations (2.79) and their boundery conditions,
again in the absence of mass transfer, were studied by Chaing and

Kaye for free convection near the stagnation point on a horizontal,

circular cylinder. The succeeding systems of differential equations
(4=1,2,3,:-= ) are linear systems and it is anticipated that the
coefficients in the expansion of the principal function,]((g) ,
could be scaled out of the systems. Consider, as an example, the

system describing either sharp-nosed or blunt-nosed bodies for 3:1 .

If the following variables are defined,
M=K|-Ynl) -]::Kltl) F=K|¥| (2'85),

and substituted into the differential equations for aﬁzl , then the
constant }{1 no longer appears in the system for 3= 1 . It appears
only when the series for Nm, T} and E' are assembled. The solution
of the set of equations for 321 does not depend on the body contour,
since the body contour enters the problem through the principal func-
tion. The same type of procedure is possible for 422,32 , for
blunt-nosed as well as for sharp-nosed bodies, although the algebra
becomes rather tedious. Thus; it is possible to déscribe free con-
vection around bodies of either class in terms of ordinary differen-
tial equations in which the particular body contour parameters are
absent. As a result, the solutions can be found for a particular set
of the other parameters (Sc s Pr,AA s B, 0, 0w ) and then applied

to any body contour in the class simply by assembling the series for

the stream, temperature, and concentration functions. Of course,
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when the series are assembled, then Ewm,'g , and the expansion for
the principal function must be introduced for the body in question.
There is another important point to be emphasized. If the series con-
verge rapidly it may be necessary to compute only a few terms in the
expansions and, as will be demonstrated in the next chapter, there

are cases where only the first terms ( &=(3) need be calculated. In

(22)

the latter instance the results of Ostrach could be used for

sharp-nosed bodies other than vertical plates, and those of Chaing

(7)

and Kaye for other blunt-nosed bodies. Ostrach(EE) presents re-
sults for a rather wide range of Prandtl numbers (.0l - 1000) while
Chaing and Kaye solved the differential equations only for a Prandtl

number of .7.

2.5 OSpecial Cases of the Principal Function

The implications of a constant principal function are exam-

ined by noting that if K(g) is constant, then taking
Mg ) =Mmn), TEM =Ty, Fsm= Fn) (2.86)

reduces the problem to the solution of a single system of ordinary
- differential equations. Hence 500, the sine of the angle between
the normal to the surface and the body force vector, is determined

for this situation by

%%— %%% —Q (2.87).



For Q =0, S(x) is constant.

For O.#0O , since

X s
E= fo[S(’Y )]/ dx,

then
b[S&ﬁ;ﬁ?&xﬁd%
or
[sm] D Boa] &

hence

Sx) = [%—(’X+ C)]
or

Seo= C E?ZEF

=37

This is the situation for a wedge.

(2.88),

(2.89),

g%‘g" (2.90),
3a

a0, 3 (2.91),

, a=73 (2.92).

Four of the special cases will be examined.

S constant (a.=0)

This case represents free convection near wedges of included

angle T - Sin'i(S) . For 9=1 +the body is a vertical plate. From

Equation (2.70) it is apparent that the differential equations to be

solved are the same for any wedge angle and thus the vertical-plate

solution can be used to describe the situation for any wedge angle.

This result could have been obtained without recourse to the various

transformations.
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Sx)=X, (0= 314, b=3/4,C=0)

This represents a round-nosed body. Naturally, due to the
restriction on S(x),(OéS(xyﬁl), the body is of limited extent and not

closed.

Sea= %+ C (a=3/a, b=3/4.C£0)

Here the body has a pointed nose with an ogival shape.

Swy=ce>® (¢ 50,b<O)

This case represents sharp-nosed bodies with included angle
W —2sint () . For C=1 the body has a cusped nose (ogee shape).
It is to be noted that the differential equations to be
solved (form s T and F ) differ according to the value-of the con-
stant a. However, all of the "special cases" can be treated with the
gene.raiﬁ theory if the "correction" terms Mé'- s -5 and 5 are calculated.
A case which is not included in the general theory presented
thus far is that for flat-nosed bodies where the expansion for the

function S(x) starts as

3
Se) = CX4 e (2.93),
so the principal function starts as

Rig)=1 + - (2.94).

This is not one of the two classes of body shapes for which the

general theory is developed. Of course the development of the previous



section is easily carried out for this class of two-dimensional body
shapes. The equations for 3=C> are the same as for sharp-nosed
bodies except the factor 2/3 is changed to 4/3 in the equation for
E, . In Chapter 3 a single set of results for shapes in this class

will be presented.

2.6 Behavior of Dependent Variables Near Stagnation Points

Before proceeding with the solution of the differential
equations some of the implications of the theory, as presented

up to this point, will be examined. Recall that

x 13 |/4 3
E= fo[scm.\]dx. .M :@%%i (2.66).

The velocity components are:

(a) in the direction tangent to the surface of the body,

2,
VGLn.: %) ghSR, (2.95),

(b) in the direc\tion normel to the surface,
L - [=4zh's 2 1.”24§dg_ -, %

e AL O ICIN S SR )
Consider first, sharp-nosed bodies, where as X approaches

zero,S@O approaches a constant. First of all, it is realized that

the proposed model is inapplicable in the neighborhood of the sharp

nose because here the "neglected terms'in the general equations (in-

volving derivatives with respect to X ) are large, possibly of the

same order of magnitude as the terms retained. Secondly, the orthogonal,
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curvilinear coordinate system is inapplicable in the upstream region
if the wedge angle is other than zero. Hence, the consequences of
of the proposed model will not provide a valid approximation in

this region., Now note that as X tends to zero for ¥ not zero,m
tends to infinity. Hence the veloclty in the tangential direction,
as predicted from the present theory, tends to zero. The temperature
and concentration both tend to zero. The velocity in the normal dir-
ection, however, tends to infinity. ©Now, as X tends to zero for Yy
equal to zero, the velocity in the normal direction is zero, in the
absence of mass transfer, and increases without limit with mass tréns-
fer at the béundary. Both temperature and concentration are equal to
unity. Hence, the solutions to the equaticne are functions which are

singular at the nose. The situation is summarized in Figure k4,

— BN =1

J

16,00

v —0

Figure 4. Dependent Variable Behavior Near a Sharp Nose
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For blunt-nosed bodies the situation is different. As X
tends to zero,S(mS approaches X and so the scaled normal distance, N ,
approaches Y . The tangential velocity component approaches zero
while the normal component is bounded, but not zero. Both the temp-
erature and concentration are well behaved, tending to functions of

:y . Furthermore, due to the requirements of symmetry and the smooth
behavior of the body contour near the stagnation point, the terms
neglected in the boundary-layer approximation are not large. Thus
for large Grashof numbers the proposed model can be expected
to provide a valid approximation near the stagnation point, X=0O,
and rational corrections may even be possible.

‘A situation similar to that at the lower stagnation point
on sharp-nosed bodies prevails near the upper stagnation point on any
closed body. The proposed model will break down since derivatives
with respect to X Dbecome large in the region of the plume. The
tangential velocity tends -to zero but the normal velocity increases
without Bound.

Thus the best agreement between experimental results and the
the proposed model would be expected for open, round-nosed bodies.
For sharp-nosed bodies the agreement depends, in part, on the influence
which the region near the sharp nose has on the rest of the flow and
for closed bodies the agreement depends on the influence of the plume.
For vertical plates the close agreement between the theory developed

by Ostrach(22) and the experimental results of Schmidt and Beckmann(26)
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indicates that the effect of the sharp nose is small. The situation
with respect to a horizontal circular cylinder (a closed body) will

be examined in the next chapter.



CHAPTER 3

Numerical Solutions

3,1 Comparison of Theoretical and Experimental Results

The mathematical model developed in the previous chapter
is useful only when: (i) the predictions of the model agree with
experimental results and (ii) a small number of terms in the series
are required. The first point will be examined relative to two
experimental studies reported in the literature.

The first set of experimental data to be examined was re-
ported by Jodlbauer(ls). Measurements were made of local tempera-
tures and velocities in temperature-driven free convection around
horizontai, ciréular cylinders, The fluid was air (R=.7) and measure-
ments were made at Grashof numbers of 9.4 x 105, 9.3 x lOu, 1.6 x 107
and 7.0 x 105. The surfaces of the cylinders were approximately iso-
thermal and ranged from 70°C to 151°C. The ambient temperatures were
between 13°C and 20°C. Temperatures were measured with a thermocouple
and velocities with a quartz-fiber anemometer.

The experimental data (temperatures and tangential velocity
components) at angular positions of 30°, 90° and 150°, measured from
the lower stagnation point, are shown on Figures 5 through 10. First,
an inspection of these figures reveals that the velocity data are not
in strict accord with the boundary-layer.theory. Boundary-layer theory
implies that at high Grashof numbers the quantity O LA :& should

depend only on the position in the flow, not on the Grashof number.

-43-
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The temperature data do, however, conform to the theory, as (©-6,)/(0,-8)
is independent of the Grashof number. The inference is that the
Grashof number should be of the order of 10° for the Qelocity field

to be in the "asymptotic state'" where boundary-layer theory is en-
tirely valid.

The first two sets of differential equationms, 3=(3,1)
describing temperature-driven free convection around blunt-nosed bodies
were integrated for a Prandtl number of O.7. The numerical tech-
niques are described in the appendicies, According to the development

given in Chapter 2 the tangential velocity and temperature are given

by
a L Y (ﬁz ‘_ia 1 3,
= (4 [swlised [Gen) +[5ed Fopaeve | (3.1),
3.
é%_—t%): -’;('m*[g(?‘\]z-ﬁ(m-\-n- (5.2).

These functions are also shown on Figures 5 through 10. The term
[Ewi&ﬁﬂy is generally small, for the case of the circular cylinder,
although this "correction" improves the theéry. The term[ﬁo@T&TKn)
makes a significant contribution at 150° and improves'the agreement
between theory and experiment. The overall or average rates of heat
transfer from the experimental measurements made by Jodlbauer(l5)

are compared with the theoretical predictions in Table I.



-ls5-

0.6 —
UL
Gr''?y
0.5 A
A
0.4 A
A
o A
O A
03 <> O
O o O
&
~/ TN
o/ Q
0.2 // \\\\<? 0 <>
/ O O
/ L o
S—
0 l l 1 l I
0 | 2 3 4 5 6
Ui
Figure 5., Temperature-Driven Free Convection Around a Hori-

zontal, Circular Cylinder. Dimensionless Tangential
Velocity-Dimensionless Normal Distance at 30° from
the Lower Stagnation Point. Experimental Data of
Jodlbauer: Pr = .7, Gr = 7 x 10°(Q), 1.6 x 105(0),
9.3 x 104Q), 9.4 x 107 (a) .

Series Representation: one or two terms (e=——),
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Temperature~Driven Free Convection Around a Horizon-
tal, Circular Cylinder. Dimensionless Temperature -
Dimensionless Normal Distance at 30° from the Lower
Stagnation Point. Experimental Data of Jodlbauer:
Pr=.7,0r=7zx105(0) , 1.6 x 105(00) , 9.3 x 10%(Q),
9.4 x 103(A) . Series Representation: one or two
terms ( .
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Temperature-Driven Free Convection Around a Horizontal,
Circular Cylinder. Dimensionless Tangential Velocity -
Dimensionless Normal Distance at 90° from the Lower
Stagnation Point. Experimental Data of Jodlbauer:
Pr=.7, Gr = 7x 105(Q) , 1.6.x 105 @) ,

9.3 x 10* () , 9.4 x 103 (A) . Series Representa-
tion: one term — ), two terms (
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Figure 8.
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Temperature-Driven Free Convection Around a Hori-
zontal, Circular Cylinder. Dimensionless Tempera-
ture - Dimensionless Normal Distance at 90° from
the Lower Stagnation Point. Experimental Data of
Jodlbaver: Pr = .7, Gr = 7 x 105(Q) , 1.6 x 10°(0),
9.3 x lOuGQ),9.§»x 103(A. Series Representation;
one or two terms ( ).
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Figure 9. Temperature-Driven Free Convection Around a Horizontal,
Circular Cylinder. Dimensionless Tangential Velocity -
Dimensionless Normal Distance at 150° from the Lower
Stagnation Point. Experimental Data of Jodlbaueﬂ:

Pr = .7, Gr = 7 x 102(Q), 1.6 x 10°(@), 9.3 x 10%(0),
9.4 x 105 (A) . Series Representation: one term
( — ), two terms ( ).
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Figure 10.

Temperature-Driven Free Convection Around a Hori-
zontal, Circular Cylinder. Dimensionless Tempera-
ture - Dimensionless Normal Distance at 150° from
the Lower Stagnation Point. Experimental Data of
Jodlbauer: Pr = .7.,Gr = 7 x 105(Q), 1.6 x 10°(Q0)

9.3 x 10%(¢), 9.4 x 102 (o) . Series Representa-

tion: one term ——), two terms (

).
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TABLE T

COMPARTSON OF AVERAGE NUSSELT NUMBERS DETERMINED
BY JODLRAUER(15) WITH THE PREDICTIONS OF THE BOUNDARY-IAYER THEORY (Pr=.7)

G- - el o @ atel' T o+ ooh= e (5.3)

L

Grashof Number Nubr
.8x10%* .33
1.0x10* .32
6. hx104 .3k
8.7xlo” .35
9.2x10* 3l
1.3x10 52
1.5%10° 32
7.0x10° 31
Ave. .33

The conclusions drawn from the figures and the table are
that thedry and experiment are in satisfactory agreement as far as
temperature and heat-flux density are concerned. Particularly signi-
ficant is the temperature field prediction at 150°, since this is
near the region where the "hot plume" rises from the surface. The
agreement between theory and experiment for the velocity fields is
not as good as was the case for the température fields. The general

shape and location of the maximum velocity are, however, satisfactory.
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The first set of differential equations, 3:0, describing
concentration-driven free convection around blunt-nosed bodies was
integrated for a Schmidt number of 1763, This corresponds to the
Schmidt number obtaining in an experiment reported by Schﬁtz(28).

The interfacial velocity parameter, B ; was taken as zero in the
numerical calculations since in the experiment BSc—:l was -~ 10'6 .
Schutz determined local and average mass-transfer rates to a hori-
zontal, circular cylinder immersed in a water solution of CLLSCL
and|415(% during electrolysis. The estimated experimental error was
5 per cent. Table II shows the local values reported by Schiitz and

predicted by the first term in the series for concentration. The

agreement is satisfactory.

TABLE IT

COMPARISON OF LOCAL SHERWOOD NUMBERS DETERMINED BY SCHUTZ(28)
WITH THE PREDICTIONS OF BOUNDARY-IAYER THEORY (Sc=1763)

ShGr" =- (—;‘?;‘ e sl Mio) (3.4)
Angular Position, ® Local Value of ShGA
Theory Experiment
0° 23.9 20.9
30° 25,3 23.8
60° 2l 23,1
90° 22,4 22,6
120° 19.7 20.2
150° 15.5 16.0
180° 0 1L

Average Value

ShGi™ 20.7 20.6
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It is of interest that the theory predicts a minimum in the transfer
rate at the forward stagnation point, which is in accord with the
experimental observation.

The independent variables and series expansions adopted
in Section 2.4 were chosen with the intention of providing rapidly
convergent and universal (with respect to the class of the body shape)
representations of the boundary-layer variables. The generality of
the representations was demonstrated in Section 2.4, where it was also
emphasized that the goal was a one-term representation. The major
deficiency of the method used.by Chaing and Kaye(7) is that at least
two terms are required to give accurate heat-flux densities. Although,
in the present method, two-term expansions represent the temperature
fields better near the upper stagnation point on a circular cylinder
(Figure 10) the present results (comparison of theory and experiment)
indicate that only one term in the expansions is needed for the sur-

face flux density of heat or mass.

5.2 The Effects Due to the Prandtl Number, the First Order Terms and

the Body-Shape Class

The results presented in this section show the effects of
the Prandtl number (or Schmidt number) on some free-convection phena-
mena. For the present the emphasis is on the zero-order terms in the
series for blunt-nosed bodies. The first-order terms will be examined

later in the section to estimate the magnitudes of their contributions.
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Numerical results were obtained for temperature-driven free
convection around blunt-nosed bodies for Prandtl numbers of .01, .7,
1., 1000 and 1763. These results also apply to concentration-driven
convection if the interfacial velocity parameter, B , 1s taken as zero.
The results are summarized in Table IIT and the computer output is
presented in Appendix C. The results are shown in graphical form on

Figures 11 and 12.

TABLE ITI

DERIVATIVES OF THE STREAM AND TEMPERATURE FUNCTIONS
AT THE SURFACE (w=0) FOR TEMPERATURE-DRIVEN FREE CONVECTION
AROUND BLUNT-NOSED OBJECTS

_ Fe _ Fo
P _Ro_ K -Te _ K
.0L 1.1691 ( .25 )* .0593 ( .02 )*

7 8593 . .09149 3702 . 03226

1. .8039 -—— 4100 -———
1000. 1954 (.01 )* 3.058k (.12 )*

1763. L1717 ——— 3.5%28 -——

Figures 11 and 12 show the expected behavior of the temper-
ature and velocity profiles; i.e., the temperature tends to zero quite

rapidly at high Prandtl numbers.

* The first-order term is estimated from a partial solution of the
differential equations for &:1 . See Appendix C for a discussion
of this matter.
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Figure 11. Derivatives of the Zero- and First-Order Stream Functions/
Blunt-Nosed Bodies
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Figure 12, Zero- and First-Order Temperature Functions/Blunt-
- Nosed Bodies
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The influence of the first-order terms will now be examined.
Recall, from the previous section, that by comparing the numerical
solutions with experimental data is was concluded that only the zero-
order terms need be considered if the object is to calculate the
derivatives of the temperature or concentration at the surface. This
conclusion is now reconsidered by estimating the size of the correc-
tions given by the first-order terms. From Equations (2.60) and (2.64)
the local Nusselt number (or Sherwood number) and dimensionless shear-
ing stress at the surface are given, in terms of the scaled variables,

for blunt-nosed bodies by

N ) - ! , // .
Nu (_:,rl'1 :-(%_)h[g(xyf[smja[ T.(0) [g(oqu L(on-u] (3.5),

and

Ya Vg
)

T 6@: @[E(AT[S(KJ [E?o)+ [E('xﬂ"/z L:"(ohm] (5.6).

The mean values, averaged over a distance £ , are

L E 4 ‘ By

No.Gr = -(4) B [T, . B Tioveese] (3.7),
)/ ‘,4 5/4 " 3 W

U' G’_4= %—(%—) E%—)l [E(O} + %{E(fﬂzﬁ(o)* Xz ] (5.8).

To place a numerical value on the size of the correction due to the
first-order terms consider a circular cyiinder (}(} -.115, Appendix
A). The maximum correction would be for X=1Y, (€= 2.59). The

corrections, expressed as (first-ordef term/zero-order term) 100,

are shown in Table IV.
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TABLE IV

"FIRST-ORDER CORRECTIONS'" TO THE NUSSELT NUMBER AND SURFACE,
SHEAR STRESS (CIRCUIAR CYLINDER)

B Nu Ne _T T
.01 16. % 5.49 7.1% 3.2%

.7 L.2% 1.4 5.1% 2.3%
1000.. 1.6% .5% 2.5% 1.1%

The results shown in this table, derived from the numerical solutions
summarized in Table III, demonstrate that the zero-order terms pro-
vide reasonable approximations to the derivatives of the temperature
(or concentration) and stream functions. It is true, as was shown

on Figure 10, that the first-order terms tend to improve the pre-
dictions of local values of the dependent variables. Furthermore,
for body contours where the T(€$ are large these corrections may

be necessary for accurate predictions of the surface flux densities.
This matter must be decided with reference to the body contour in
question.

The fact that the importance of the higher order terms in-
creases as the Prandtl number decreases is indicated by an inspection
of the differential equation for F (Equation (2.70)). Adopt, for
the moment, the scaling which will be used in the next chapter for
high Prandtl numbers (i.e., F—»IS:/AF) n—- Ij.ilq'rl ). The effects
of the non-linear terms, which necessitate the series expansion of F s

are seen to be "damped" by the large Prandtl number. For small Prandtl
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_|,2 -
numbers (adopting F—~F F) ‘vz—thv)) it is the linear term which

is "demped." This supports the observation that as the Prandtl number
decreases higher-order terms are necessary for accurate representa-
tions of the boundary-layer variables F ana T.

The conclusions which are drawn relative to the present
method of describing free convection are as follows:

(a) For blunt-nosed bodieé the Nusselt number-Prandtl number
relation and the surfacevshear stress-Prandtl number relation can be
determined by solving the differential equations for the zero-order
terms.  This conclusion is expected to apply for other classes of two-
dimensional bodies (e.g., sharp-nosed or flat-nosed) and for free con-
vection driven by both temperature and concentration differences.

(b) For those cases where the higher-order terms are nec-
essary, due to the body contour and/or the size of the Prandtl number,
then these corrections can be found once and for all (for given vaiues
of the parameters Sc , P ,A,B,q, ) without re-
ference to the body contour in the solution of the differential
equations, only the class of the body needs to be considered.

That matter of differences due to the body class is now
examined. The numerical results presented thus far have emphasized
the class of blunt-nosed bodies. Fortunately, the zero-order terms
for the class of sharp-nosed bodies can be derived, in terms of the
variables used in this research, from the numerical solutions of
Ostrach(zg). Although Ostrach studied free convection near a verti-

cal plate, the present work indicates that these results will provide
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a reasonable approximation for sharp-nosed bodies, when the results
are interpreted in terms of the present variables. The zero-order
equations were solved for the class of flat-nosed bodies (see Section
2.5) for a Prandtl number of 1. The results are summarized in Table
V, where the results for sharp-nosed and blunt-nosed bodies are given

for comparison.

TABLE V

THE EFFECTS OF THE BODY SHAPE CILASS

R= .01 1. 1000.
0N -T.0) o o Fo -Tolo
Sharp Nosed
ostrach(?2) 1.297 L0617 .85 A31 191 3,05
Bluﬁt Nosed 1.169 .0595 817 21 .196 3.05
Flat Nosed - —-- . 793 113 ——- ——

The differences are surprisingly small. However, the Nusselt number
and the dimensionless shear stress are also dependent on the body
contour (Equations (3.5) and (3.6)), so these small differences may

be changed by the body contours.

3.3 The Effects of the Interfacial Velocity Parameter, B, and the

Ackermann Parameter, A , on Simultaneous Heat and Mass Transfer

In the numerical results presented thus far the free con-
vection has been driven by either temperature or concentration effects.

The effects of the interfacial velocity parameter, B , and the Ackermann
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parameter, A , have been ignored. The argument is that since A ana
B are both dependent on the characteristic concentration difference
(Equation (2.36)) they are, by definition, small in a model which ig-
nores the variations in fluid properties due to concentration. To
assess the effect of choosing small but finite values of these para-
meters the equations for the zero-order terms were integrated for the
parameter values shown in Table VI. The tabulated solutions are in

Appendix C.

TABLE VI
THE EFFECTS OF THE INTERFACIAL VELOCITY PARAMETER, B , AND

THE ACKERMANN PARAMETER, A , FOR FREE CONVECTION
AROUND BLUNT-NOSED BODIES (R=Sc=1.)

[T 2 (A-BI M)

A B E - Tio ~Mio

0 0 1.37h - .501 .501 - .501

0 .1 1.372 76 76 524

0 -.1 1.376 .530 .530 7T
-.1 1 1.378 Lok 478 sk

The local Nusselt number, Sherwood number and the dimension-

less shear stress at the surface are given by

N / -1, \ 1 |

Nu G =-(F) [50e] Sl [Tior+ (ArBIM] (5.9),
_|/4 "4_ —Va “3 1

ShGr ==(2) [5] [Sea]” Mdo) (3.10),

- ‘I4 g Y "
T G- (&) (5] [Sed Bl (3.11),
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in terms of the zero-order solutions. The first observation is that
the local surface shear stress is relatively constant. For B>o s
the interfacial velocity is directed from the object to the fluid
and this flow tends to increase the concentration gradient at the
surface, lowering the Sherwood number. The situation is reversed for
B< O . This state of affairs is in contrast to the behavior of
the Nusselt number where, due to the energy transported by the flow
normal to the surface, the Nusselt number increases for B>O and
decreases for B<O . Finally, if the heat capacity of the material
undergoing transfer is lower than the heat capacity of the fluid

( A <O ) s the rate of heat transfer is lower than the case where
the heat capacities are identical (A=0O ). 1In all of these cases
the errors which would have been introduced if the parameters A

and B had been taken as zero are less than 10 per cent.



CHAPTER 4

Asymptotic Solutions

4,1 General Observations

In the previous chapter it was shown that free convection
in two dimensions around submerged objects could be described rather-
closély by the solutions to three, coupled, ordinary differential
equations. Even then the description contains five dimensionless
parsmeters (Pr , Sc¢ , A , B , 6 and G, ). The objective
of the work reported in this chapter is to ascertain the manner in
which changes in the Schmidt and Prandtl numbers affect the rates of
transfer from the submerged object to the fluid. One approach might
be to corfelate.the results of numerical solutions for a set of values
of the parameters in question. There are two arguments which make
this approach rather unappealing. Firstly, a large number of solu-
tions may be needed and secondly, the solutions are difficult to ob-
tain. Numerical solutions were attempted for Pr = .Ol,Sc = 1000
(approximating the properties of a liquid metal) and for Pr= 10,
Sc= 1000 (a viscous fluid). 1In both cases the attempts were unsuc-
cessful. The temperature tends toward zero much slower than the
concentration in both these situations and "errors," apparently due
to the size of the integration steps, caused the stream, temperature
and concentration functions to take on uﬁacceptable values. The vel-
ocity in the tangential direction became negative in some regions and

positive in other regions of the range of the independent variable.

-63-
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Both temperature and concentration took on negative values. The step
sizes used were those suggested from the numerical solutions wherein

only one driving force was present (see Appendix C) and, apparently,

much smaller step sizes must be used. In view of the amount of com-

puting time involved (the order of hours) were this approech to have

been continued it was decided to stop work along these iines.

Another method of describing the effects due to changes in
the parameters would be to use one of the approximate methods of
solution, such as that described by Meksyn(l9). Brindley(h) used
Meksyn's technique for temperature-driven free convection near a
vertical plate., The difficulty associated with Brindley's series
representations is in the interpretation of the results. Due to
the rather cumbersome series expansions it is not at all apparent
that, as B -o , Nu —~ (constant)(Gy Pr )‘/4 . This result
is readily apparent if (say) the numerical solutions or experimental
data are examined.

The approach adopted here is to examine the forms of the
differential equations as the parameters take on‘extreme values. As
will be demonstrated, this offers reliable information about the ef-
fects due to changes in the parameters. Interest is to be centered
on the effects of the Schmidt and Prandtl numbers. Within the frame-
work of the constant property assumption the parameters A and B
must be small (and will be taken as zero), since both are proportional

to the characteristic concentration difference. Some numerical studies
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of the effects due to non-zero values of A and B were mentioned
in the previous chapter. Acrivos(l) has studied the effect of the
interfacial-velocity parameter, B , when 1t assumes large positive
values or values near -1. The author is not aware of a systematic in-
vestigation of the effects of the Ackermann parameter, A . Possibly
its effects may be investigated as perturbations on the A=Q case.
Two body-shape classes are to be considered, sharp- and blunt-nosed.
The methods can easily be applied to other classes; e.g., flat-nosed.
In the following sections, rather liberal use will beymade

of the order symbol "o" (little"oh"). Its meaning is as follows:

= 3 3 g_(g.)__—
fe) = dge) 1if, glig’ 36 " @) (%.1).

4.2 Asymptotic Solutions for Lewis Number

The case of the Lewis number (Pr / Sc ) equal to unity
with A and B both zero will be treated in this section. This is
the casevfor some binary gas mixtures; e.g., for water vapor in air
P- = .7 and Sc=.6 . Fortuna{;ely, numerical solutions are available
to check the results. The differential equations to be solved are

(dropping the subscript zero)

N

i e ..
F'e FF=G)FF + aT+aM=0
T+ P-F T':O > (LI-.Q),

M+ Sc F M=0
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with boundary conditions
For= For= Fr= Too= M= O To= Moy=1 (4+.3),

where §=1 for blunt-nosed bodies while =0 for sharp-nosed
bodies. Since the Schmidt and Prandtl numbers are equal.T=hﬂ and the

scaling

F= (<TT+ch)I/4 F

_ gy
N =(0:+ 0) M

reduces the problem to temperature (or concentration) driven free con-

vection. The equations are now (dropping the "over bars")

~

"

. ° i
Fe FE-G)FF+T =0
T+ RFT=0 &  (u9).

Fo1=Fo)=Fleo)= Ty= O T =1

The case of small Prandtl numbers will be examined first. Now, let

F-’—‘P:/z?, T =o]: and ‘S = R'-Ian so that

faqll]

A S i~
RE"+FF - @FF+T-0

with the boundary conditons unchanged. Suppose that interest is in
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the solution for small Prandtl numbers. If the Prandtl number tends
to zero in the equations as they stand, then the highest derivative is
lost, and a solution of the equations in this form cannot satisfy all
of the boundary conditions. This is the classical indication of what
are termed singular perturbation problems. It is now assumed that the
equations written without the highest derivative represent the situa-
tion in some region away from the origin and another set of equations,
wherein the highest derivative is retained, describe the situation
near the origin. The former region will be termed the outer region,
the latter, the inner region. Two limits are now defined.

The outer limit
R—0 with O<LK<ILe©
and the inner limit
B-—0 with 0¢357¢R<0o0 S:S*P'Y2

The temperature and stream functions are now assumed to take on the

forms:

(1) the outer expansions for R— O, O<¢K¢geo

N

F~ (é:(s) + P

T~ 1?0(3) + o(P?
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(ii) the inner expansions for

|,2 (0)

Fa R £ + o(P?)
> (4.8),

N " M
T~ Jc);(s“) ~ o(P+?)

o

where the higher order terms are taken as being small as R—O0.
Now, upon substituting the outer expansions into the differential

equations and taking the outer limit one finds

!
© ),

£?_@tt.1.-0

t-it-0

P

while following a similar procedure with the inner expansions and the

inner limit results in

(0 O 10\, gy, (0)
%‘" + {‘ % - (%jﬁéu +4,=0
s (4.10).
t. =0

The boundary conditions at the origin are to be used with the "inner
equations” and those at infinity with the "outer equations." There
are undetermined constants to be evaluated since there are an insuf-
ficient number of boundary conditions for either set of equatiocns.
These constants are determined by requiring that the inner and outer
expansions match to terms of the same order in the Prandtl number,

since they are assumed to represent the same function. Fortunately



-69_

the equations can be solved explicitly for temperature to give

X )

to(k)-0+bf€><P f '?('“C\"- dx
(k.,11),

X 6)

(- b\ -a €><D( &(x.)doc.)dn

@1+ co (32).

Now, in order to determine the constants "Q'" and " C," the outer
solution is written in terms of the inner variables and the inner

limit process applied to give

¥~ o~ bSR® RA-—o0, 0¢TFR® (4.13).
The analogous process applied to the inner solution gives

T 1+C5P  R—0, 0¢K{Soo (b.14),
So, if both series are to match to terms of order o(P;h) , then

a=1, C=0 (4.15).

0 @, S (o) @ 0

Le-@ee 1o (4.16),
w to\ (g, $ ©, (o)
FrEE-B)84 +1 =0 (4.17),

(o}
where 't(s) is given by Equation (4. ll) Closed expressions for
o) (a)
and g; are not known, but each expression would contain one
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undetermined constant, so the argument is as follows. The inner ex-

pansion for the stream function under the outer limit process is

(o)

Fr P L) (+.18),

o)
while if the function 420(?3) has a series expansion

(o) (o}

%(S) = EO(DM- :él‘(o\§+"' (4.19),

than under the inner limit it takes the form

(0)

’!—:’\- -%:(0) + 19,,'(0) P;IIS*-» (4.20).

: "
Now if the perturbation series are to match to terms of order of rz)

then
(o) {6)

),
Lov=0, 4Llo)=Lioc* (h.21).

0,
The function aéo(o)s* is a solution for Equation (4.17), if, for §= O

(0}

Lwm=1 (4.22)

and if, for §=1,

0, .

fo=3) (4.23).

In summary, the inner problem is:

for 60,

(O)‘“ 1o\ (\" ()' (o)
PRl _E8.q-0

(b.2k),

()

() (), \
f0= =0, Ra:=1
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and for §= 1,

¥ 80 - 480120
> (4.25).

(o) (o

£ = L1=0, (;@)f(oo)-; (—'2.5”2

The problem given by Equation (4.24) is the same as that for the
boundary-layer flow past a wedge of included angle T , (where the
(25))_

mainstream velocity is LJ=1J°m i.e., stagnation or Hiemenz flow

On the other hand, if one makes the substitutions

) Yy
Qa(S') = %’) h(\j)

" (4.26),
y= (3 s
Equations (4.25) become
h +hh + % (-nKh)=0
(k.27).

hio)= hiol= O. hie)= |

However, this is the same differential equation and boundary conditions
as that for the boundary-layer flow past a wedge of included angle
2% /3 , (where the mainstream velocity is U= U.'X‘Ia ). The numerical
solutions for both of the inner-flow problems, sometimes called the

Falkner-Skan equations, are available (Schlichting(QB), p. 1hb)*,

% The author is indebted to Professor J. D. Goddard for pointing out
the correspondence between the inner flow problems and the Falkner-
Skan equations.
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Thus, the inner-flow problems can be regarded as solved, to the order
of the terms retained.

The outer problem is

- b (he8),
Q& +f€ Q;::C)

() (s)

@) ()
with 4o =1 £o = oo = {m=0
For §= O , these equations have already been solved numerically
©)
by LeFevre(l6), who reports tul0) =-.645

The dimensionless shear stress at the surface,fr , is given

by
T =G [\‘I/”]M (2.64).

Taking all of the various changes of variables into account, one

finds that the dimensionless shear stress is

) )

T =6 (e« ¢,,3)/4 (%—sq[Smﬁs [E(m]l4 ;é:'(w (4.29),
to terms of order cKFl%) , wifhin the framework of the boundary-layer
theory developed in the previous chapter. Hence, as the Prandtl number
tends to zero the description of free convection tends to approach
that of a forced-convection problem in the region near the surface of
the object. Accordingly, the shear stress approaches a limit indepen-

dent of the Prandtl number.
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The dimensionless flux densities for heat or mass transfer,
i.e,, the Nusselt or Sherwood numbers, are not found easily. First
of all, according to the inner expansion for the temperature function,
the gradient of the temperature i1s zero at the surface of the object.
To obtain an approximétion to the heat-flux density, (or the mass-

flux density since T =M ), note that from Equations (4.6)

-Tlo) = f? T'du, (4.30).

Now applying the outer limit process and assuming that the limit and

integration processes can be interchanged one finds

_T(o)—- 9“’\'\ /;de FOH-(E;AX -+ o(Plz) (L".Bl).

This may also be shown by writing Equation (4.30) as

-'T“(o)=F ' ‘ﬁt’od% fmid% (4.32).

Now, writing the first integral in Equation (4.32) as
l/z

mip [o'e)
e @G ~r, @ L
fa(F'T- %i,,)dk.+ f(-,FT gL )dx, (4.33),
P2
with Odm (o , one notes that in the second term in (4.33), X,
is restricted to the domain called the outer region as FK-*—O. Hence
the limit of the second term of (4.33) as P>01is order o Py?),
according to the series postulated for F and T (Equations (4.7)).

From the mean-value theorem of calculus the first term in (4.33) is

. 1
also indicated as order of P). So, once again, as Pr >0
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- Tlo) = ﬁ‘%‘,éx- r o(R®) (k.34).

Then, from Equations (4.28),

(-]

. ©ly (°)|
-[;falt‘od“' == '%‘o AD(\ = —uo\ (4'55)
and so

T 4.36).
Ty = Tar, PO (4.36)

Now, returning to the original variables, one finds that

TR ) ‘/4 -\14 W, '

Nu=Sh=6Ma + oy A3 [Sw] (56l o] (4.37).

()
The number -“\’:;(o) is given by the solution of the appropriate equations
and, as has been mentioned, is 0.645 for €=1 . In the case where
£=1 a very good approximation can also be obtained from the numerical

solution of Ostrach(eg) for F?-= .01 since

(),

Tio)#ﬁ"(o) RYZ’V T 0) P;-'z‘ Pr—0 (4.28).

For Pr= .01, Ostrach reports Tio = -.0616, in terms of the problem
as stated by Equations (4.5), hence, @go>== -.616. This result
differs from the value obtained by LeFevre(l6) by less than 5 per cent.
For §= 0, the approximate value obtained from the numerical results
reported in Chapter 3 is ‘-@;(o) = -.593.

The case wherein the Prandtl number is large will now be
examined, The writer has been unable to develop a formal, but sys-

tematic, treatment of this case which utilizes the concept of matched
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expansions. As an alternative, a scaling is sought which simplifies

the problem.

Let the transformation of variables be

_ 3y ~
Fa)- B Fe)
T(w)="T(s) L (1.39).
5 = R'R
Then the problem, as stated in Equations (4.5), is
Flo POFF-FF)-T =0
(4.40)

T+ FT'=0

with the boundary conditions unchanged. Now, since the Prandtl number

is large the "inertial" or non-linear terms are neglected and the re-

sult is

o (bh1).

J

=1

The boundary condition on F'oas S>00 must be discarded, since, as will

become apparent, it cannot be satisfied. The solution to this set of

equations; with the appropriate boundary conditions is
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N
_(; L Tcl« dxd¥; + Floz/2
Tis)= 1+ T _[GXP(J Fax. d'xz > (4.42),
-4
[-To)]= _{o;xp(f FA'x) J

From this solution it can be readily shown, from an integration by

parts, that

A

5 .
Floy =Ty [ao0sn . [fonsTofsdoodn s o [Foodn (509,
2

where
X
qu= expl-), Fan,) (b.b).

So, for large ?5 s ﬁlg) is proportional to'; unless the second
term on the right in Equation (4.43) is made to vanish as T tends
to infinity. TIn this case, Fis\ approaches a constant. Requiring
that the second term vanish is equivalent to setting kan) equal to

zero. Now, returning to the original variables, one finds that

= ‘g

Fw= T(o)n-{%f”d*- '*'[F(o) + T(dfx g(N)dX.]T{p}- + (L.b5).

iﬁ"

R 1: Xg(x) dx,
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So with -Vl fixed as O<K¢n , the limit of F(ﬁ) as the Prandtl

number becomes large is

Qe Femy= o PF™) (4.46),
ﬁ?. >

when the condition F’(‘co):O is used. Thus, the boundary condition on

_|/
F' is satisfied to the order O(Pr 4),
The problem given by Equations (4.41) with the boundary

(16)

condition Fle)=O was solved numerically by LeFevre, who found
Filo) = 1.08 and T = -.540. Numerical methods, however, are not
necessary for obtaining rather accurate approximations to these deriw

atives.

'The problem is to evaluate the integrals

~

~Floy = T L % G0x) o, (4.47)

and

[-T'(oﬁlz Ej(x.) 4%, (4.48),

when §('x) is given by Equation (4.44). The Laplace method, as des-

(10)

cribed by Erdelyi, will be used. The first two terms in a power

series for FX) are used as an approximation, viz.,
~ ~ 2 3
Fox)= Flo X — X4 (4.49).
2 A
Now, if the integrand is expanded by using the expansion for Fox) ana

then the integration carried out, one has
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~n ~ - ~ -3 ey -2
- F(O)-‘-T(O\[?' 613 P(VBB[F(O)] 3+ Zi[F(o)J :[ (4.50),

~ Az o 2y 4 k) ~ =53
[-Tol= 26 ruslFior]  +26 MElFio] (k.51),
where [(P) denotes the "gamma function." The solution to this set
of Equations is Flo= 1.04 and Tloy= —.546. This technique will
be employed later for the simultaneous heat and mass transfer when
the Schmidt and Prandtl numbers are not equal.
Thus, for large Prandtl numbers, the dimensionless shear

stress at the surface is

- U Y. Yo~
T = 60+ . Pt(4) [sw] 5001 Flon (4.52).

The Nusselt number is

\ \ Yo ) =Y, ~
Nu = G: + au) Pr/"(%—)ﬁ [Soa] [E60] [T (k.53).

It should be noted that in this approximation, for large Prandtl
numbers, there is no distinction as to the class of the two-dimen-
sional body.

The results given in this section show that for equal Schmidt
and Prandtl numbers the effects of heat and mass transport are additive
(in the absence of heat capacity effects and for small interfacial

velocities; i.e., A = B=0). Thus an "effective" Grashof number

may be written as

GSZGF(G’T"'G:A\: ﬂé@._e_ + SI_A__(‘U—E (ll-.5l-|-).
Yoo

3
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S0, many of the experimental and theoretical analyses for a single
"driving force" may be taken to apply for situations where both
temperature and concentration contribute to the density differences
within the fluid. Apparently, this result was first noted by
Nusselt(zl) in 1930. The one-quarter power dependence on the Prandtl
number was given by Lorenz(1T) in 1881, based, however, on some

16)

rather questionable assumptions. LeFevre , in 1956, showed that
the high and low Prandtl number behavior could be obtained from a
scaling of the differential equations. The boundary conditions were

obtained from "physical arguments" rather than by the more systematic

method employed here.

4.3 Asymptotic Solutions for ILarge Schmidt Numbers and Small Prandtl

Numbers
This situation is expected to obtain in liquid metal systems
where, although the kinematic viscosity may be of the same order of
magnitude as for other viscous liquids, the high thermal diffusivity
leads to a small Prandtl number. Thé Schmidt number is high due to a
low molecular diffusivity, which is a characieristic of liquids. If
the scalings F= H—-‘Izﬁ)T= AT', M=M and 5-—'-9-"2‘4 , along with Equations

(4.2) and the boundary conditions, Equations (4.3), are adopted, then
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along with

Flo)= Flo) = Fleo) = Tieo) = Mieo= O, T©) = K(o)= 1 (4.56).

Now, on assuming out and inner expansions, along with the appropri-
ate limits, as was done before in Section 4.2, one finds that the

outer and inner equations are

. (4.57),
(°Il o) (O)‘
£+ £+ =0
and
- Q)] @, ) L“\. (), (o) )
'(Pc +‘9¢‘Eﬁ. —@ % (2 +G'M'YY1L=O
> (4.58).
[O) P
—Y‘%“\* Sc %“(mi =0

The correct solutions for'ﬁ% andfi{ are zero and unity
respectively. For Usﬁﬁ:lz|gzyLﬂ,0;=1_ (see Equation (2.56)). 1In this
event ¢ 1 and the effect of concentration (mass transfer) is to
be treated as a perturbation on forced convection in the inner region.
The first approximation is as follows, In the inner and outer regions
the temperature problem is the same as that treated in Section 4.2
and, therefore, the shear stress and heat transfer rate are given by
Equations (4.29) and (4.37). 1If, to a first approximation, the stream

function is assumed to be independent of mass transfer effects the
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laplace method can, once again, be used to evaluate the mass flux

(o)
density at the surface. From the equation for f%i it follows that

[ )= fexp S Ban)dx (+.59).

Here, the fact that the Schmidt number is large can be used to ad-
’ (43}
vantage, since only the first term in the expansion for Q; needs

to be used. The result is

o @y, 3 -y
NI AL TR N R (4.60),

)
where ?Sb) is obtained from the proper solution to the Falkner-Skan
equations (see Section 4.2). Finally, the dimensionless mass-flux

density is

) - ! - ) g @, Y
Sh=Gi* Pl 7 25 @] [seal (el f0]°  (.60).

Free convection superimposed on a forced-convection and
vice versa have been studied by Brindley(u), using the Meksyn method
which was mentioned in Section 4.1. For those situations where mass
transfer effects are large |§Aw|>|@A®|, Brindley's approach should
also be used in the present problem. For sharp-nosed bodies Brindley's
results, in the form of asymptotic series, also indicate the one-third
power dependence on the Schmidt number, for large Schmidt numbers.
Brindley's meihod is a much more involved process than the technique

used here, but it appears that such a method would have to be used

to develop corrections to the present results.
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L.k Asymptotic Solutions for Iarge Schmidt and Prandtl Numbers

Heat and mass transfer in viscous fluids, such as water or
0il, are characterized by large Schmidt and Prandtl numbers (relative
to unity). The Schmidt number is usually much greater than the
Prandtl number since the molecular diffusivity of binary liquid sys-
tems is~10'5cm2/sec. For example, simultaneous heat and mass transfer
in systems where water is the solvent would be characterized by Prandtl
numbers of ~ 10 and Schmidt numbers of ~1000. To analyze this sit-
uvation a procedure similar to that of Section 4.2 is adopted. Equations

(k.2) and the boundary conditions, Equations (4.3), are scaled according

to
\
3 ~
Fm) = Pr F(3)
Tn) = T(s)
. > (4.62),
My = MGB)
5 = A

and the boundary condition Fleey= O is used. Thus, the differential

equations become, for large Schmidt and Prandtl numbers,
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#ET.0  p (w6,
M+ %"} FM =0 ]
with boundary conditions
For= F(o)= Floo) = Tieo) =Mie) =0, To) =Mt =1 (4.64).

~
Now, the first two terms in a series expansion for F , viz.,

)= Pl - 1 2 - (59)

are used with the Iaplace method to evaluate the following integrals,

which are obtained in the manner outlined in Section 4.2,

- Flor = Tlolos L% G dx, + Mo, Lw.%(x.\c\x. (4.66),
o -1 ff
[To]= J.3tx)dx, (4.67),
-1
IOE fjﬂ(x)dx. (4.68),
where,
Y,N
qu) = €xp- | Fix) (4.69),
and

x,
hx) = exp (- %%L [?d'x) (4.70).
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The following results are found:

-F(o) T(o)O'T[’ZG P(QIS)[F(O)] 0}"%)2 [F(o;] J (&.71),

: "”3 a2
o (6%t [Pl “(B) + (@ »x 2 el (3) |

=5h
[‘T«» ze3r’</3>[ﬁ(oﬂ + (o w”me ek ) [ Elo)) (k. 72),

=g -5l3

MG )] 26 3{‘('13 [F(o)] (%Q) a;w,n)z(, ["(5‘/3)[13101] (5!?—) (4.73).

Defining, now, @, Gy, b, 0, as

0,428, 4,500 I
1 g4 =t (4'7A))
0.2 285108, by (@2 016 T05)
one obtains the equation for E&o)’(zx ))
-l 8l
o X - [bbal —C% )—a.b, -+cr~.((;r))JX +
-4 —4!3 -\ 4
S S Sc )3 3. I3
BES) - ab(w )+ w27 1o ab a3 1X
-4z -
Sc\3
-0.5(38) (5 - S 1 =0 (5.75).

. 4’3 . e
This is a cubic equation in X which can be solved to evaluate F (o)
jaq} 00
and hence, T and M(0) . The results for three specific cases are

shown in Table VII. Mathers, Madden and Piret(lB) used an analog
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computer to solve the same set of differential equations (Equations
(4.63)) for the cases noted in the table and their results are shown

for comparison.

TABLE VII.

APPROXIMATE SOLUTIONS FOR LARGE SCEMIDT AND PRANDTL NUMBERS

Approximate Solution Mathers,et al(lS)

O G S/R -T Mo T Mg
1 1 2 614 847 .616 .812
1 .5 2 .585 .804 .585 . 760
1 1 L .59k 1.08 594 1.01

Mathers, Madden and Piret correlated their results, using
forms suggested by Somers(28). Somers, as was mentioned in Chapter

1, investigated the simultaneous transfer processes from a vertical

plate using the "integral method." . The correlations found are
¥, ~ Pry*™ (4.76)
— T(o)= constant [(TT + ()‘M(SC) ] . ’
V2 Va /g
-—,~ = + Et. & l".
Moy= constant[og_ 0’,4(5(:) ] (Tr-) (4. 77),

where the constant is approximately 0.54 in both cases. The results
from the approximate method, used in this section, can be treated in
the same manner, although the constant in Equation (4.77) is slightly

different (0.575).



-86-

Equation (4.75) indicates that as the ratio Pr/Sc approaches
~u o~y o~

zero, F (o) and T(0) approach constant values while M(0) is
proportional to the ratio Sc/Pn— raised to the one-third power For
Gr=0w=1 ;Flo=1.11,-T(@ = .50+ and -M'(o)= 638(&/Pr

In Section M.2, where the Schmidt and Prandtl numbers were
treated as being equal, the effects of the heat and mass transfer
;;rocesses were indicated to be additive. That this is not the case
for unequal Schmidt and Prandtl numbers is indicated by Equations (4.76)
and (4.77). Returning now to the boundary-layer variables one deduces
that the local shear stress and the local Nusselt and Sherwood numbers

are given by

3’4 (—49’4 [Sm] [E(x)j [Floi] (L.78),
Nu= Git A (35 ) (5001 -Fio ] (4.79),
Sh= 6" () tseof* Feon I E 0] (1.80),

~\

where F(o) T‘(o) and m'(o) still depend on 07 , G , Pr ana
SC . The derivatives can be calculated (approximately) from Equa-
tions (4.72), (4.73) and (4.75). For Schmidt and Prandtl numbers
of the same order of magnitude Equations (4.75) and (4.77) indicate
fai) 1
the dependence of [(o and M(o) on the Schmidt and Prandtl numbers,
. j v
while for R—/SC—?#O, M is proportional to the one-third power of

the quantity SC/R— This last result is to be expected since, in



-87-

this case, the region in which the mejor variation in the concentration
occurs is very near the surface. Near the surface the flow appears as
forced convection, "driven by temperature," with superimposed free
convection.

The results of the study of the asymptotic forms of the d;f-
ferential equations for the zero-order terms in the series expansions
are summarized in Table VIII, for A=B=0O . The table given the
functional dependence of the dimensionless gquantities 3' ,Nu, and Sh
on the Schmidt and Prandtl numbers, the Grashof number and the expan-
sion coefficient ratios 0; and O‘M . When interpreting Table VIII
it must be remembered,) Equations (2.56) and (2.57),)that for IpAolélewl,
Grd quQE/V,: and for |pAQ|( |3 AW ,Gr2 %XACUE/VOZ'

TABLE VIII.

FUNCTIONAL BEHAVIOR OF THE SHEAR STRESS, % , THE NUSSELT NUMBER, Nu
AND THE SHERWOOD NUMBER, Sh

T Nu __Sh

Uy uip

' 4 . g 2
(2) R=Sc, A=0 [GHa, + @] Grlea )P [Gra+a] P
| ”

3 .y v g
() R=%,R~» (6wl Rt [GrlgaiR' (600 R

3, ! Ve [
(c) R=0, S0 [GrGa] [Gro -] B GER%Se3

(d) B> S¢—o

with SC/ P.— constant

perneh] ol

\ | . Uj
1«Sc /P Gt pie Gl p,“(%rcz)3
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The equations which indicate these functional behaviors are: Case
(a)=(k.29), (4.37); Case (b)-(4.52), (4.53); Case (c)-(4.29), (4.37);

and Case (d)-for 1<Sc/Pr ¢4, (4.76), (4.77); for Sc /P 1,
(&.75), (L.79), (4.80).



CHAPTER 5

Final Remarks

A laminar boundary-layer theory of free convection around plane,
two-dimensional bodies has been developed here for arbitrary body shapes.

The flow is a result of a combination of temperature and concentration dif-
ferences between the surface of the object and the fluid. Dilute, binary
fluid mixtures were studied. For a body maintained at a uniform tempera-
ture and concentration of the species undergoing transfer it was possible
to treat a number of combinations of "driving forces" (characteristic tem-
perature and concentration differences) and coefficients of expansion (Sec.
2.2).

By means of transformations suggested by analogy with the work of
Goertler(l2) on forced convection, new series representations of the bound-
ary-layer variables were developed (Sec. 2.4), The functional coefficients
in these series are universal, and are determined by the solutions of ordinary
differential equations which are independent of the body contour for a given
class of body shapes (e.g., sharp-nosed, blunt-nosed, or flat-nosed). The
class of the body shape fixes certain numerical coefficients in the differen-
tial equations. As a consequence, numerical solutions for a particular class
of body shapes may be obtained once and for all, for a given set of the dimen-
sionless parameters appearing in the problem. Hence, the particular body con-
tour in question is taken into account oﬁly when the series are assembled to

represent the dependent variables.

-89~
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The series developed here were found to converge rapidly for the
class of blunt-nosed bodies (one term was sufficient to determine the flux
densities and shear stress at the surface. The rates of convergence of the
series were verified by comparing the numerical results for the zero-order
terms with experimental data and also by determining the corrections given
by the first order terms (Secs. 3.1, 3.2).

For blunt-nosed bodies the zero-order terms were calculated for
several Prandtl numbers between .0l and 1763. On the other hand, it was

indicated that for sharp-ncsed bodies the zero-order terms are presently

(22)

available from the tabulated solutions of Ostrach , when his results
for the vertical plate are interpreted in terms of the new dependent and
independent variables.

Next, the effects due to the class of the body shape were exam-
ined by obtaining the zero-order numerical solution for the class.of flat-
nosed bodies at a Prandtl number of 1 and then comparing this result with
the solutions for sharp- and blunt-nosed bodies., Sharp- and blunt-nosed
bodies were also compared at Prandtl numbers of .0l and 1000, The differ-
ences due to the class of the body shape were found to be small (Sec. 3.2).

In addition, the influences of interfacial velocities and of dif-
ferences between the heat capacities of the "diffusing' and 'stagnant" species
were briefly examined by comparing the numerical solutions for cases when
both temperature and concentration effects were present (Sec. 3.2).

Finally, several asymptotic forms of the differential equations

for the zero-order terms were used to describe the dependence of the flux
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densities and shear stress at the surface on the Prandtl and Schmidt num-
bers. For equal Schmidt and Prandtl numbers the "effective" Grashof number
is, as expected, the sum of the Grashof numbers for the temperature and con-
centration effects (Sec, 4.1). 1In thé cases of (a) low Prandt numbers but
high Schmidt numbers (liquid metals) or (b) high Schmidt and Prandtl numbers
(viscous liquids), the effective Grashof number is not a sum. Explicit for-
mulas were developed for these cases and, in some instances, checked with
numerical solutions available in the literature (Sec. 4.2, 4.3).

There are several other problems to which the techniques developed
in this research can be applied. One is the description of free convection
around axisymmetric bodies and another is the problem involving a three-
dimensional body with two orthogonal planes of symmetry. The latter problem
has been stuided by Poots(zu) , whose solutions are restricted to the region
near the stagnation point. The results of the present research indicate
that Poots' solutions could be expected to apply over a much larger region
of the surface when interpreted in terms of the present theory. The techniques
developed here could be used to analyse problems involving combined free and
forced convection and also for problems in which the flux density of heat
of mass 1s specified at the surface, rather than the temperature or compo-
sition,

Another aspect of the theory of free convection around submerged
objects which warrants study is the exteﬁsion of boundary-layer theory to
lower Grashof numbers. The systematic development of corrections to free-
convection foundary-layer theory, using the techniques of matched asymptotic
expansions, has received only slight attention. The only published research

on this topic, to the writers knowledge, is the paper by Yang and Jergers.(32)
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APPENDIX A

EXPANSIONS FOR THE SCALED TANGENTIAL COORDINATE
AND THE PRINCIPAL FUNCTION

Case 1 - Sharp-Nosed Bodies

The sine of the angle between the body force vector and the
normal to the surface, S('x) , is assumed to be an analytic function

of x , the distance along the surface, with non-zero Se and S'(o)

(a) & in terms of X and ‘X in terms of &

y
Since [ S ]3 is analytic in a neighborhood of

2=0, @=x+1iy) ,

Uy 2
S7=Q,* O, % + Q%+ - (A.1),
where the @ 's are found in the usual fashion. Hence

§= O‘iz +Q-_2%1‘\‘"t (A.g).
2

Since § is analytic near Z=0 , and ‘g'(o);ﬁo) § has an in-

verse (Churchill(6)),

Z=b% +b g (A.3).

Now to find the b's write

dz=;§bﬁ“az (a.4),

_93-



_94_
so that

€ dz =Z bS  dg (a.5)

and & circuit around the origin in the # plane ylelds, then,
m ‘ ’
= -i §"9g = 2mih,, (4.6).
@
According to the Cauchy integral formula and the residue theoi'em,
. - et 2a)
b.,,\ is the coefficient of '11 in the expansion of 'g in powers

of # ; e.g., b, = 1/0.,.

(b) The Principal Function, K(&)

_\_ 1_& _d§ A.
Ke) = + 4 T g (A.7)
Suppose
SR)= Se ™ SR (4.8),
then
‘_ds_: _SL. |+ Z.(S,/Q,!g *5(9115,&1+~' (A 9)
Sdx S | L+ (5/68)2+ (5U5,). "
or

1dS . ¢ | 6,0,- 62
5 Go= B [l-t- 2'“—"'"956 Z 4. (A.10).

Now writing # in terms of g one finds

_ ot
L 2 E b B g
z 5 O-."" a,‘g-r...

rL

+ *_é__é%- (A.11).
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Hence,

K()= _?'\_ + K Er (A.12).

Case 2 - Blunt-Nosed Bodies

Since the body is symmetrical and S('x) is assumed to be

analytic with Si(o)qbo s

S@)= 2 + GE +-- (A.13).

(2) € in terms of & and ‘X in terms of E

Write

[S(a)jlsda =(S(aﬁ'/3 f}g‘—d S (A.1L).

Since S(z) is analytic and S\(o\=f= 0,

a(S)= o, + %SZ.,. (A.15),

and using the same argument to find «&'s as was used for the b's

in Case 1, one finds that Ol is the coefficient of o(-:L in the

expansion of S_m in powers of A . Hence,
S 4/ /
-1 3 16,
5=) [s%dus- 2 8% 3ud™ (.16).
d:\
So
- 3
‘g‘Ez'E_d‘S‘I’ %dss =+ (A.l?),
E 553 a,5%4
3 T AT Gy e (A.18),
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and, finally,
§3: 4.2+ d22('+~- (A.19).
Now
(§3)u‘=' a®s(1+ qn' (A.20)

where Q(S) is a power series in & , so by expanding with the bino-

mial theorem one finds that

IIA

(%)= b+ b, 8%+ (A.21).

Since d[E_s/‘]/dg + O at S§=0 the series can be inverted to give

‘3[4

9
S = & '+ CyE 4er (A.22).

The C's are calculated from

féi%)w = anic. (a.25).

From Equation (A.21) the result is that

a 9,
Z:CF +&F 4. (A.2k4),

where the @'s are calculated in the same manner as the ¢'s .

(b) The Principal Function, K(g)

_ %+ K™, .. (a.25)
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Kig) for S(x)=Smk)

(a) & in terms of ~ and - in terms of &

e LA NS
Stx) = X X e X e

From the previous section,

4(3 lo[3
=35 + Eoz G+

Here, o(é' is the coefficient of i in the expansion of
in powers of # . 8o, for «,
-1
3 -4

(Z— L2+ Y =dw L o=

and for o
' -5 3 -1

(:k - "6—13"',” )= 3 +_‘i—i+'" '0(3:-‘2-_

hence,

g'ls R0
Now

B _21 3.8 es

5 T %a S e S
so that

(A.26)

(a.27).

(A.28),

(A.29),

(A.30).

(8.31),

(4.32),



_98_

and
hy
Y/
R (O TR .1
Finally
9
G= B+ G 4 (a.34)

and, in the manner outlined above,

NEZ A.
9=(%§ 4o (835,
which yields
x-(g4'E .. (8-6).

(b) Principal Function, K()

KE) —l{ [%— S +11'] {|_ .12.)(" n 5'29(5-}
:J’Z + % [ L 3 (gﬂ:f(gb/‘l ,_)][|_ "z(";?-.h%m' ]
% ¢l (A.37)
-3 - Bl
Therefore, K,=—.I5

The scaled tangential coordinate, & , was calculated and
the results are shown in Table IX. Simpson's rule was used to

evaluate the integral.
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TABLE IX.

SCALED TANGENTIAL COORDINATE, &

, FOR Sx= Sim(x)

(EVALUATED BY SIMPSON'S RULE INTEGRATION WITH A STEP SIZE= Tr/2000)

x
£

10
20
50
Lo
50
60
70
80

90

13
0

. 073092
.183823
3Lh572
594400
614822
. 778035
.9k6855
1.119306

1.293545

£l

'x.

100
110
120
130
140
150
160
170

180

&5

1.467780
1.640231
1.809052
1.972265
2.127646
2.272514

.Lho326h

no

2.513995

no

.587089



APPENDIX B

NUMERICAL TECHNIQUES AND COMPUTER PROGRAMS

The problem, stated in terms of ordinary differential
equations by Equations (2.77) through (2.84), is of the two-point,
boundary-value type. The zero-order equations are non-linear; while
the succeeding equations are linear. The higher-order equations have
variable coefficients, which are the solutions to the lower-order
equations. Closed form solutions are not known for any of these
equations and numerical or "approximate" methods must be used. A
variety of methods may be used to treat initial-value problems,
some of the more popular types are the Runge-Kutta methods (Carnahan,
Luther and Wilkes(S)). The two basic difficulties associated with
the application of initial value methods to the present problem are
the lack of sufficient information at the starting point and the
meaning of the boundary conditions at infinity. These "conditions
at infinity" are statements about the asymptotic form which the
solution assumes as the independent variable increases without bound.
As a consequence, a decision must be made as to a reasonable point
at which to terminate the calculations when a numerical method is

1

used. A third difficulty, or "error," is associated with the method
of integration. This error, due to the approximate nature of the
method of solution, is called the discretization error. Usually the

discretization error can be reduced by reductions in the step size.
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The method adopted is to treat the problem as an initial
value problem. A step size, a maximum value of the independent
variable ("infinity"), and the missing initial conditions are chosen.
For the zero-order problem the system of differential equations is
a seventh order system, when the effects of temperature and concen-
tration are both included. Four conditions are known at the origin
and three are unknown. Hereinafter these unknown derivatives will
be called the characteristic values. These are the conditions at
the origin which determine that solution which has the desired asymp-
totic character. The differential equations are integrated out to
the maximum value of the independent variable and the asymptotic
character of the solution is checked. The requirement that the
derivative of the stream function (a velocity), the temperature and
the concentration all vanish is impossible to satisfy with a numerical
method. Hence, the approximate condition used is that the sum of the
squares of': (a) the derivative of the stream function, (b) the temp-
erature, and (c), the concentration be as small as possible. The
integration procedure is repeated with successive sets of initial
values until a minimum in the sum of squares is found. The effects
due to step size and the location of infinity can be aécertained by
repeating the whole process. The numerical res;lts obtained in a
study of theserparameters are discussed in Appendix C.

The systematic location of the characteristic values, the
three missing initial conditions in tﬁe general case, is not a simple

matter. The first difficulty is associated with the non-linear
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character of the equations.  If initial values are chosen which are
not near the characteristic values then the '"solution" may "oscillate"
and generate numbers which are too large for the computer to handle.
Thus, the first problem is to find a region, in the domain of the in-
itial values, in which the solution is "bounded." The second problem
is to converge to the characteristic values.

The selection of a sequence of initial values which con-
verges to the characteristic values is accomplished with a program
which implements the "pattern search" procedure. This is a frequently
used technique in optimization problems (Wilde(53)) and is basically
a method of successive trials with a strategy. The procedure requires

" calculated on the basis of

an initial value of an "object function,'
a set of values for the independent variables in the optimization.

In the present case the independent variables are the missing initial
values. Then, small changes are made in each of the variables in

turn. The value of the object function is calculated after each change.
Improvements in the value of the object function near the initial

point determine a direction in the space of the independent variables.

A move is then made in this direction and the procedure is repeated.

The strategy is that moves made in a "successful direction" are ampli-

- .

fied. Suppose then, that at a point, \E , small changes in the in-
—

dependent variables disclose that a nearby point, Ybr‘ , 1s "better",

according to some criterion established with the object function. Then,

instead of continuing with local changes in the independent variables
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-
around qu , the behavior of the object function is investigated
- —_— — -
near Y'uz s Where Y;_,1= 2 ‘e~ Y. . This procedure accelerates

the convergence process. For the details of the method the reader
is referred to the book by Wilde.

Three types of object functions are used. In the initial
stage, where bounded solutions are sought, the object function is
simply the value of the distance, n oo at which the solution becomes
"unbounded." This object function is maximizéd. The second stage is
the minimization of the sum of squares at the value of N chosen to
approximate infinity. In some cases the minimum in the sum of squares
resulted in a small (in magnitude) negative value of the derivative
of the stream function, of the temperature or of the concentration.

In those cases the object function was modified to force these quant-
ities to be small and positive.

Several computer programs were written and used in this
work. Only three of the programs wili be mentioned here, as the others
are only simple modifications of these. The main difference is the
deletion of certain effects; e.g., those due to mass transfer in the
study of temperature-driven convection.

The two major programs are BLUNTO. and BLUNT1l.. BLUNTO. is
used to solve the zero-order problem and BLUNT1l. for the first-order
problem, for free convection around blunt-nosed bodies. Both programs
call on the library subroutine for the Runge-Kutta integration and

on the pattern search procedure, PSER., written by the author. The
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object function is a separate subroutine FN.. All of the programs
were written in the MAD language(g). The programs BLUNTO., BLUNTL.,
PSER. and FN. are reproduced next, along with the input variable

lists.
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Input Variables for BLUNTO.

Symbol Definition

A Ackermann effect parameter, Equation (2.36)

B interfacial velocity parameter, Equation (2.3%6)

CONST a scale factor for FN.

DX array of increment values for the initial changes in the

estimates of the characteristic values

DY step size for the integration

EIGEN array for the initial estimates of the characteristic
values

EPSIT final tolerance on the characteristic values

FPRNT printing counter for PSER.

FREQ printing counter for the output

M total number of steps

PR Prandtl Number

SC Schmidt Number

SIGMAT 0; parameter, Equations (2.56) and (2.57)

SIGMAM 7., parameter, Equations (2.56) and (2.57)

Input Variables for BLUNTL.

In addition to those listed for BLUNTO., they are

EVAL characteristic values for the zero-order equations
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$ COMPILE MADsEXECUTEsDUMPsPRINT OBJECTsPUNCH OBJECT BLNTO.01
R PROGRAM TO INTEGRATE THE ODE DESCRIBING NATURAL
R CONVECTION DRIVEN BY NON-UNIFORM TEMPERATURE AND
R COMPOSITION FIELDS AROUND BLUNT NOSED OBJECTS
R ZERO ORDER TERMS

START

BAD
DONE

ONE

EXECUTE FTRAP.

EXECUTE SETRKDe(79F(0)9G(0)»Q(Q)sYsDY)

PRINT COMMENT $1%

READ AND PRINT DATA PRsSCoSIGMATsSIGMAMsAsBsDYsMeEIGENSIDX
1EPSI ySTEPSMyFPRNT9FREQyCONST

SWTCH=18B

YMAX=M®DY
Reooeo CALCULATION OF EIGEN VALUESeecese

EXECUTE PSERe(3sEIGENSDXsEPSI»0BJe sFPRNTsSTEPSMsBAD)
Reeoss INTEGRATION USING EIGEN VALUESeeese

COUNT=0

PRINT COMMENT %1 TEMPERATURE AND CONCENTRATION DRIVEN NATURAL
1 CONVECTION AROUND TWO DIMENSIONAL BLUNT NOSED OBJECTS %
PRINT COMMENT $0 ZERO ORDER TERMS$

PRINT RESULTS PR»SCsSIGMAT»SIGMAMsA+BsDY s M

PRINT FORMAT OUT1

PRINT FORMAT OUT290esB*EIGEN(3)/SC20esEIGEN(1)s1esEIGEN(Z2)
11esEIGEN(3)

SWTCH=08B

EXECUTE OBJe{EIGEN)

TRANSFER TO DONE

PRINT COMMENT $0eseeeSTEPSM EXCEEDEDseses$

TRANSFER TO START

DIMENSION F(6)9G(6)9Q(6)sEIGEN(3)9DX(3)

INTEGER STEPSMsFPRNT+FREQsCOUNT M

BOOLEAN SWTCH,GO

VECTOR VALUES OUT1=31H09S14 sH®Y#,S129H*¥(FOI*4S11sH*(FQ) ' *4S10
L1oH*(FO) ' 1% 4S12sH®(TO)%9S1LaH¥(TO) ' %9512 sH®(MO)*9S11sH* (MO} * ¥¥
2%

VECTOR VALUES OUT2=%8(E16e6)*%

INTERNAL FUNCTION (EGEN)

ENTRY TO 0BJe

COUNT=0

G0=08B

M=0

Y=0e

F(0)=B*EGEN(3)/SC

F(1)=0

F(2)=EGEN(1)

F(3)=1e

F(4)=EGEN(2)

F(5)=1.

F{6)=EGEN(3)

S=RKDEQe (0}

WHENEVER SeEsels

G(0)=F(1)

G(1)=F(2)
G(2)=-STIGMAT*F (3)-SIGMAM*F (5)=F (0} *F (2)+F (1) *F (1)
G(3)=F(4)

G(G4)=—PR¥F(Q)*F (4)+A¥F (4)*F (6)

G(5)=F(6)

G(6)=—SC*F(O)*F(6)

TRANSFER TO ONE

OTHERWISE

M=M+1

COUNT=COUNT+1

lWHENEVER SWTCHYEXECUTE FNe(FsEGENsDY s YMAXsMsCONST VAL GO
START)

WHENEVER GOsFUNCTION RETURN VAL

WHENEVER «NOToSWTCHeANDeYeLE o YMAX+DY/2¢¢ANDeCOUNToE«FREQ
COUNT=0

PRINT FORMAT 0QUT2» YoF(O)sF(1)sF(2)sF(3)sFi4}sF(5)9F(6)
END OF CONDITIONAL

WHENEVER YoGEeYMAXeANDe e NOT o SWTCHIFUNCTION RETURN
TRANSFER TO ONE

END OF CONDITIONAL

END OF FUNCTION

END OF PROGRAM

$ COMPILE MADS»EXECUTE sDUMPyPRINT OBJECTsPUNCH OBJECT BLNT1.01

START

R PROGRAM TO INTEGRATE THE ODE DESCRIBING NATURAL
R CONVECTION DRIVEN BY NON-UNIFORM TEMPERATURE AND
R COMPOSITION FIELDS AROUND BLUNT NOSED OBJECTS
R FIRST ORDER TERMS
EXECUTE FTRAP.
EXECUTE SETRKDe{149F(0)sG(0)sQ(Q)sY DY)
READ AND PRINT DATA PRySCsSIGMAT sSIGMAM»AsBsDYsMyEIGEN,EVAL s
1DXsEPSI s+ STEPSMsFPRNT s FREQsCONST
SWTCH=18
YMAX=M*DY
C=b4e/3,
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ReeeseCALCULATION. OF EIGEN VALUESeosse

EXECUTE PSERe(3sEIGENsDX+EPSIsOBJesFPRNTsSTEPSM,BAD)
Reeeeo INTEGRATION USING EIGEN VALUESeeess

PRINT COMMENT $1 TEMPERATURE AND CONCENTRATION DRIVEN NATURAL
1 CONVECTION AROUND TWO DIMENSIONAL BLUNT NOSED OBJECTS '$
PRINT COMMENT $0 FIRST ORDER TERMSS

PRINT RESULTS PRsSCsSIGMAT s STGMAM A »BsDY sMsEVAL (1) eeeEVALE3)
PRINT FORMAT OUT1

PRINT FORMAT OUT290¢9B*EIGEN(3)/SC/3490e9EIGEN(1)900
1ETGEN(2) 904 sEIGEN(3)

SWTCH=0B

EXECUTE OBJe (EIGEN)

TRANSFER TO DONE

PRINT COMMENT $0eeeeeSTEPSM EXCEEDEDesess$

TRANSFER TO START

DIMENSION F(13)G(13)9sQ(13)sEIGEN(3)sDX(3)sEVAL(3)
INTEGER STEPSM,FPRNT oM

BOOLEAN SWTCHsGO

VECTOR VALUES OUT1=31HOsS14sH%Y*9S12sH®(F1)*3S119yH*¥(F1)"*,510
I,H*(Fl)"*,SIZ,H*(TI)*95119H*(T1)'*,SIZ’H*(MI)*L§11yH*(M1)'**
23

VECTOR VALUES QUT2=%38(E16+6) %%

INTERNAL FUNCTION (EGEN)

ENTRY TO OBJe

M=0

COUNT=0

GO=08B

Y=On

F(O)=B*EVAL(3)/5C

F(1}=0.

Fl2)1=EVAL(1)

F(3)=1e

F{4)=EVAL(2)

F(5)=1e

F(&)=EVAL(3)

F(T7)=B*EGEN(3)/5C/3e

F(8)=00

F(9)=EGENI(1)

FL10)=0,

F(11)=EGEN(2)

Fl12)=0,

F(13)=EGEN(3)

S=RKDEQ4 (0)

WHENEVER SeEele

G(0)=F (1)

G(1)=F(2)

G(2)==-SIGMAT*F(3)-SIGMAM*F (5)~F(Q)*F(2)+F(1)*F (1)
G(3)=F(4)

G(4)==PR*¥F(O)I*F (4)+AXF (4)*F (6)

G(5)=F (6}

G(6)==SCRF(O)*F(6)

G(7)=F(8)

G(8)=F(9)
G(9)=~SIGMAT*F{10)-SIGMAMEF (12)-F(0)*F (9)+4e*¥F(1)*¥F(B)-3¢*%F (2
1I*FCTY+C*F(1)*F (1)

G(10)=F(11)

GU11)=PR*¥(=F(0)*F(11)+2e*F(1)¥F(10) =3 %F (L) *F(T))+AR(F(4)%F (]
13)+F (111 %F(6) )

G(12)=F(13)
G(13)=SCH(—F(O)*F(13)+2*F(1)¥F(12)=3%F(6)*F (7))

TRANSFER TO ONE

OTHERWISE

M=M+1

COUNT=COUNT+1

WHENEVER SWTCHIEXECUTE FNe (FsEGENSDY s YMAX9MyCONST VAL 9GO
1START)

WHENEVER GOsFUNCTION RETURN VAL

WHENEVER oNOTeSWTCHeANDeYoLE«YMAX+DY/ 242 ANDeCOUNToESFREQ

COUNT=0

ERINT FORMAT 0OUTZ2» YoF{T7)sFUIB)9F(9)sF{10)sF(11)sF(12)9F(13)

END OF CONDITIONAL

WHENEVER YoGEoeYMAXoANDe e NOToSWTCHsFUNCTION RETURN

TRANSFER TO ONE

END OF CONDITIONAL

END OF FUNCTION

END OF PROGRAM

$ COMPILE MADsPRINT OBJUECTsPUNCH OBJECT PSER001
R

ONE

PROGRAM TO MAXIMIZE AN OBJECT FUNCTIONsFes

R THE PATTERN SEARCH PROCEDURE DESCRIBED BY WILDE-
R OPTIMUM SEEKING METHODS IS USEDe

EXTERNAL FUNCTION (NsXsDXsEPSI sFesFPRNT»STEPSMsBAD)
STATEMENT LABEL BAD

INTEGER I4JsNyFPRNT»STEPSMySTEPS9PRNT

BOOLEAN KoL

DIMENSION B(3)sT(3)sTT(3)

ENTRY TO PSERe

THROUGH ONEsFOR I=131lsl1eGeN

BtIy=xt1)

TT(I)y=XxX(1)

T(Iy=X(I)
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Reeee e CALCULATE INITIAL VALUE OF FUNCTIONeoseso

BOBJ=F«(B)

T0BJ=BOBJ

PRINT RESULTS B(1)eeeB(N)»BOBJ
STEPS=0

PRNT=0

J=0

K=08B

L=08

TRANSFER TO START
Reess«CALCULATE OBJ AT TEMPORARY HEADeosss
WHENEVER JeNEo+OsTOBJ=Fo(T)
ReesssRETURN TO OLD TEMPORARY HEAD IF NEW HEAD UNSATISFACTORY.
WHENEVER TOBJeLE+BOBJ

TOBJ=BOBJ

THROUGH REPEATs FOR I1=1s1s1eGeN
TT(1)=B(1)

T(I)=B(1)

J=0

END OF CONDITIONAL
ReeessLOCAL EXCURSIONSesess
THROUGH TWOs FOR I1=1»1s1eGeN
TTCI)=T(1)+DX (1)

TTOBJ=F 4 (TT)

WHENEVER TTOBJ+GoTOBJ

TOBJ=TTOBJ

L=18

OTHERWISE

TTCI)=T(1)=DX(1)

TTOBJ=F 4 (TT)

END OF CONDITIONAL

WHENEVER L s TRANSFER TO TWO
WHENEVER TTOBJeGeTOBJ

TOBJ=TTOBJ

OTHERWISE

J=J+1

TT(L)=T(1)

END OF CONDITIONAL

L=08

ReesesMOVE TO A NEW TEMPORARY HEADssoos
WHENEVER JoNEsNsTRANSFER TO MOVE
Reoso s CHANGE STEP SIZEswaes
THROUGH THREFs FOR I=1slsleGeN
DX(I)=DX(1) /24

T =B(1)

TT(I)=B(1)

WHENEVER DX(1)sLeEPSIsK=1B
CONTINUE

WHENEVER Ks TRANSFER TO DONE
TOBJ=B0BY

J=0

TRANSFER TO GO

Reess s CALCULATE COORDINATES OF NEW TEMPORARY HEADeesee
THROUGH FIVEs FOR I1=1s1s1eGeN
TCI)=2.%TT(1)=B (1)

B(I)=TT(I)

TT(I)=T(1)

BOBJ=TOBY

J=5

RessssCHECK FOR PRINTING OR MAXIMUM STEPSesees
STEPS=STEPS+1

PRNT=PRNT+1

WHENEVER PRNTeEeFPRNT

PRNT=0

PRINT RESULTS B(1)eseB(N)sBOBJ
END OF CONDITIONAL

WHENEVER STEPS.GeSTEPSM

PRINT RESULTS B{1)sesBI(N)sBOBJ
TRANSFER TO BAD

END OF CONDITIONAL

TRANSFER TO GO
ResssoEIGEN VALUES RETURNED TO MAIN PROGRAMesqss
PRINT RESULTS B(1)eseB(N)sBOBY
THROUGH SIXs FOR I=1slsleGaN
X(11=8(1)

FUNCTION RETURN

END OF FUNCTION

$ COMPILE MADsPRINT OBJUECTsPUNCH OBJECT FNe50001

EXTERNAL FUNCTION (FsEGENsDY9sYMAXsMsCONST »VALsGOsSTART)
ENTRY TO FNe

BOOLEAN GO

STATEMENT LABEL START

INTEGER M

WHENEVER M#DY.LE«YMAX

WHENEVER F(1)eLeOeeOReF(3)aLe0seOReF(5)eLe00

G0=18

VAL=—ELOGe (1e+F(1)*¥F (1) *CONSTHF(3)%F (3)*¥CONST+F (5)*F (5)*
LCONST+((YMAX=MADY ) #*CONST)ePs2)

END OF CONDITIONAL

END OF CONDITIONAL

WHENEVER M*DY ¢ GE « YMAX

GO=18

VAL=-ELOGs (1e+F (1} *F (1) *CONST+F (3} %¥F(3)*¥CONST+F{5)*F (5)*CONST
1)

END OF CONDITIONAL

FUNCTION RETURN

END OF FUNCTION



APPENDIX C

Numerical Results

The numerical values for the zero- and first-order terms
in the expansions of the dependent variables in the boundary-layer
equations are given in this section.

The effects of the step size in the integration (DY) and
the value chosen for "infinity" (M:DY) were investigated for a range
of Prandtl ﬁumbers. Only the zero-order equations for blunt-nosed
bodies were used. The results are shown in Table X. An inspection
of the table indicates that further decreases in step size and in-
creases in "infinity" would not result in substantial changes in
the derivatives at the origin (characteristic values).

The effects of step size and "infinity" were not investi-
gated for the first-order terms. The point in question is the magni-
tude of the derivatives at thevsurface of the object (to determine
the flux densities and shear stress). Therefore, the calculations
for the first-order terms were carried out only to the extent of esti-
mating these derivatives. The determination of these quantities for
temperature-driven free convection involves the solution of a system
of ten, simultaneous, first order differential equations (for combined
heat and mass transfer the system is of the fourteenth order). To ob-
tain one significant figure for a Prandtl number of 1000 required 11
minutes of computing time. For a Prandtl number of .7 the first-order
characteristic values were determined to four significant figures so
that an accurate comparison could be made between the numerical re-

sults and the experimental data of Jodlbauer(lS)_
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TABLE X.

THE EFFECTS OF STEP SIZE AND "INFINITY" ON THE CHARACTERISTIC
VALUES FOR THE ZERO-ORDER TERMS

Pr DY MDY (o) -T.lo)
.01 .25 25 1.16356 .06359
.01 .25 35 1.16906 .05934
.01 .25 Lo 1.16911 .05953
.01 .025 Lo 1.16912 .05934
T .25 12.5 .8593% 37024
.7 .25 20. .85935 . 37025
T 1 12.5 .85934 . 37023
1000. .01 L, 197 5.053
1000. .01 6. .19575 3.05359
1000. .005 6. .19575 3.05359
1000. .025 20. L1954k 3.05843

The parameter values for the tabulated results are shown
in Table XI.

The results for a Prandtl number of 1000 are not entirely
satisfactory. An inspection of the tabulated results reveals that,
although the first derivative of the stream function, E| , 1s tend-
ing towards zero, the temperature has leveled off at a constant, but
non-zero value for large values of the independent variable. Thus

for large values of the independent variable the differential equation

being solved is
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F"F EE"—E'E'-O-COV\S‘EO‘V‘t:O (C.l).

o

TABLE XI

SUMMARY OF PARAMETER VALUES IN THE TABUIATED RESULTS

Pr Sc A B o2 T DY MDY  "order"
0.01 ——- f——— . - -——- .25 35.0 7ero
0.7 -——- - - - - .25 12.5 "
0.7 - -—— - -——— -—— .25 12.5 First
1.0 -— - - - - .25 12.5 Zero
1.0 --- - --- --- --- .25 12.5 ¥
1000.0 - -— —— _— _— .025 20.0 "
1.0 1.0 0.0 0.0 1.0 1.0 .5 12.5 "
1.0 1.0 0.0 0.1 1.0 1.0 1 12.5 "
1.0 1.0 0.0 -1.1 1.0 1.0 .1 12.5 "
1.0 1.0 -0.1 0.1 1.0 1.0 .1 12.5 "
As a consequence, since E: is being forced towards zero, the

second derivative of E does not approach zero, as it should. In
all of the other calculations made, at lower Prandtl numbers, the
stream function and temperature behaved in the expected fashion with
F', ', T, and T. 211 tending towards zero. This unsatis-
factory behaviof is the result of "truncation errors." The computer
can carry only a finite number of significant figures in the arith-
metic operations (about eight for floating point arithmetic). Hence,

when the derivative of temperature is much smaller than the temperature,
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then no change is made in the temperature across an integration step.
This difficulty could be remedied by using a numerical procedure
which would carry a larger number of significant figures; e.g.,
"double precision arithmetic." However, in the present study, this
difficulty is of little consequence since accurate analytic methods
were developed in Chapter 4 for the high Prandtl number region and,
even with this "error," the numerical results for the characteristic
values are very close to those given by Ostrach.(22)
In all of the cases reported, the iteration process, des-
cribed in Appendix B, was continued until there was no change in the
fourth decimal place of the characteristic values. However, in some
cases the process was carried out further. The notation used in the
printed results is the same as that used in the text, except for:
(a) the independent variable M 1is denoted by Y,
(b) subscripts are denoted by upper case numericals,
(e.g.) T, appears as (TO),
(c) in the first order solution for a Prandtl number of
.7 the tabulated values are scaled by a factor |/H§
(see Equation (2.85)).
The "E field" notation is used so that a number appearing as (e.g.)
1.01 E -01 is to be interpreted as 1.0l x lO_l'z 0.101. The computing
time for the last run shown in Table XI was 7.9 minutes which is
typical for the calcﬁlation of the zero-order solutions. Naturally
this depends on the initial estimate for the characteristic values. The
runs for a single transport process (heat or mass) took sbout 5 min-
utes each to establish four significant figures of thé characteristic

values.
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TEMPERATURE DRIVEN NATURAL CONVECTION AROUND TWO DIMENSIONAL, BLUNT NOSED OBJECTS. ZERO ORDER TERMS

PR = .010000, oY = «250000, M= 149

y (FO) (FO)T . (FO)L* 470} (70)*
-000000€ 00 -000000E 00 "<6000600E 00 .116911€ 01 ~ ,100000€ 01 ~+595260€-01
.l 01 .428945E 0Q «719086E 00 «344708E 00 +940498€ 00 ~+594337E-01
+200000€ 01 -124645E 01 +B60825E 00 +930063E-02 .861269E 00 -.589445E-01
»300000E 01 2209493 01 <825354E 00 - -.5864146~01 .822773€ 00 ~.579661€-01
<400000E 01 <2B8925¢ 01 < 762480E 00 ~.840503E-01  .76548TE 00  -,565364E-01
»500000€ 01 «362000E 01 +699411€ 00 =+6177336-01 .709828€ 00 -4547231E-01
+660000€ 01 +428904E O1 +639223E 00 -.585212E-01 . 656144E OC ~.525987E-01
-700000€ 01 -489959€ 01 «582479E_00 =.5492676-01 <604711E 00 -.502344E~C1
.BOCOOOE 01 .545523E 01 +52941TE 00 ~.5118386-01 +555733E 00 - 4T69T6E-Q)
.960000€ 01 .595968E 01 +480118E 00 ~0474162E-01 +509352€ 00 -+45049TE-G.
-1C0000E 02 .641671E 01 «434563E 00 =.4370806-01 .465652€ 00 = 42344BE~01
-110000E 02 .683003E 01 «392662E 00 -+401168E-01 ©424668E 00 -+396296E-01
.120000€ 02 .720321E 01 +354277€ 00 ~.366807€-01 .386383E 00 - 369431E-01
»130000E 02 .753969E 01 »319240€ 00 -+334239€-01 #350760E 00 -¢343168E-C1
+140000€ 02 .TB4274E 01 .28T364E 00 ~.303601E-01 .317721E 00 <31TTE5E-01
.150000€ 02 +811541€ 01 £258453E 00 =+2749576-01 «28T174E 00 -4293379€-01
-160000E 02 .836C57E O1 .232306E 00 = .248314E~01 ©259006E GO = 27C1T4E=01
«170000€ ©2 .858087E 01 «208724E 00 ~¢223639€-01 ©233097€ 0G -024B226E-01
.18G00CE 02 .87788CE 01 1BT514E 00 ~.200870E-01 .209318E 00 -,227585E6-01
»190000E 02 .895663F 01 .168489E 00 ~.179927€-01 .187536E 00 -.208269E-01 _
.20000CE 02 .911645€ 01 .151471E 00 ~.160715€-01 <167620€ 00 -.190271€-C1
.210000€ 02 .926018E 01 .136292E 00 -.143133E-01 «149439€ 00 -.173565E=-01
.220000E 02 .938959€ 01 «122794E 00 -.127077E-01 .132865E G0 = 15811GE-01
+2300G0F 02 .950628E 01 .110829€ 00 ~+112442E-01 o117777E 00 -,1438556-r1
.240000€ 02 ©961171E 01 .100262E 00 ~.991231€-02 .104056E 0C ~130739€6-C1
_¢250000€ 02 .970722E 01 £909644E~-01 ~+870201€E-02 «915928E-G1 _ =,11870.0F=01
+260000E 02 .979402E O1 .828207E-01 ~.760362E-02 .B02824F-01 =~ 167672601
<270000F 02 .987321F 01 . 757232E-01 ~.666795€6-02 < 700270€-01 ~.975873E-r2
+280000E 02 .994579E 01 ©695737E-01 =.570633E-02 . 607356E-01 ~ AB3BGIE~(2
+290000E 02 L100126E 02 $642822E-01 -.489066E~02 ©523239E-01  _=,T99R59£-02
»300000F 02 . 100746E 02 «597666E-01 ~.415336E-02 44T134E-01 - 723424107
+310000€ 02 (101324€ 02 £559520£-01 ~.348740E-02 «378323E=01  -,653971F-N7
.320000€ 02 .101867€ 02 .527T7C5€-01 -,288629E-02 ©316142E-01 =.59G730F=32
2330000E 02 .192281€ 02 #501601FE-51 -0234404E-02 +259983E-01 ~4533279E-07
.340000E 02 L102872E 02 480649601 -.185514E-02 ,209289€-D1 = 481354E-02
«350000€ 02 £1033644€ 02 464340E-01 . ~,141454E-D2 «163550E-01 -.4341956-12

PR=,01,DY=e254M=140,EIGEN{1)21,169119=035952640X(11=1eE-49laE-4y

NI=1,FREQ=4, STEPSM2100,CONST=1000,®

FEMPERATURE DRIVEN NATURAL CONVECTION AROUND TWO DIMENSIONAL, BLUNT NOSED OBJECTS. ZERO DRDER TERMS

PR_= 709000, oy = . 250000, M= 50

Y (FO) (FO) ¢ (FOy*e . (10) (To1r
" .000000E 00 L000000E 00 .000000E 00 .859329E 00 .10000GE G1  ~.370236E 00
22500008 00 . .243252E-9] +184650E 00 «622567E€ 00 J907477E 00  -.369698E 00
.500000€ 00 #B8T7226E-01 .313891E 00 .417036€ 00 L815399E 00  =.366266E 00
«750000E 00 L177366E 00 .396077¢ 00 L246416E_00 724756E G0 ~,357976E 00
«T00000E 01 282591 00 L, 440016E 00 .110850E 00 L636899E 00 -,343912E 00
_al2S000F 01 _  ,394913E 00 . . _.454228E 00 __ .808279E-02 .553281E 00  .-,324135€ 00
«150000E 01 .507890E 00 «4464T0E 00 ~.656189€-01 L475239E 00 -.299507F 00
__«175000€ 01 _.____.616891E 00 +423456€ 00 -.114751E 00 «403818F 00  -.,271412E 00
.200000€ 01 .718822E 00 +390740E 09 .144017€ 00 .339689E 00  —.241446E 00
3 52717600 _=.15792)1F 00 .283122F 00 -,211151€ 00
«250000E 01 .895025E 00 W312712€ 00 ~.160514E 00 +234031E 00 -.181R32E 00
2275000 01.____.968227E 00. . .273107E 00 . =-.155242E 00. (192044E 00 . . -,154455E 09
+300000€ 01 .103175E 01 +235505E 00  =,144904E 00 (156589E 00  -.129641E 00
._«325000F 01 ___ ,108623E .01.__ .. «200890€.00 .. -.131670E 00.. . .126984E 00 . -.107697€ GO
+350000F 01 +113249€ 01 «169773E 00  =~.117150F 00 .102497€ 00  -.886832E-01

: - 00 £824073E-01 -,724850E-01 _
+400000€ 01 .120396E 01 <118482E 00  -.883966E-01 L660384E-01  ~,588770E-01
_.425000€ 01  ,123095E 01 __ .9803596-01.._ -.753T13E-01 .. . .527769E~01 ... —+475759E-01
+450000€ 01 .125323E 01 .B06BT4E-01  -.636393E-01 .420839E-01  ~-.382790E-01
__+4T5000€ 01  ,127153E Ol _ .661001E-01  -.532885E-01 ... . .3349556-01___ =.306900€-01
.500000¢ 01 .128648E 01 .539286E-01  -.443051E-01 <2661986-01  -,245343E-01
0l +129866E 01 +43839PE-01  -.366114E-01 2112976-01 __-,195669E-01
+550000€ 01 .130855E 01 .355246E-01 - ,300940E-01 . 167554E-01  =.155753E-01
__«5T5000€ 0L .131655F Ol _ ,287053E-01 _  =,2462356-01  _ .1327616-01 _ _~-.123786E-01
+600000F 01 +132301€ ol .2313676-01  -.200670E~01 .105127-01 =~,982562€-02
__.+625000E 01 ,132821E 01 ,186064E=0l __ -,162965£-01 ___ _.832031E-02  ~.779125E-02
+650000€ 01 .133238€ 01 «149329E-01  -.131940E-01 1658255E-02  -.617306E-02
&7 33573 . - -.106534E-01 .520617E-02  ~.488774E-02
+700000€ 01 .133841F 01 4956722E-02  -.858161E-02 .4116666-02  ~.386801E~02
__ +725000E 01 1340556 01 £763959E=02  -,689833E=02 _ _ ,325463E-02. . -.305975E-02
.750000€ 01 +134226€ 01 L 60914TE-02  -+553501E-02 +257285E-02  ~.241956E=02
_»TTS000E 01 .134362E QL «4850306-02  -.4 +203379E6-02_  -,191281E-02
.800000€ 01 «134471E 01 .385674E-02 +160767E-02  =.151187E-02

«825000F_01 .134557E 01 +3062476-02  ~-.2833556-02 .1270906-02  -,119477£-02
+850000€ 01 134625€ 01 . 2428276-02  ~.226124E~02 +1004786-02  -.944052E-03
Aswsonne_gl_~44;11346735_91_4 4192240E-02 _ -.180277£-02 .794517E-03 __ -.745865E-03
.900000E 0 1347226 0 1519276-02  ~.143606E-02 +628402E-03  -.589235E-03
_2925000F 01 2134756E 01 21198256-02  -,114311E-02 _ +497175E-03  -.465465€-03
+950000€ 01 134783 01 .942797E-03  -.909378E-03 +3935166-03  =-.367674E=03
<975000¢ 01 134804 01 .739627€-03 __ -.723081E-03 .3116368-03 _ -,290417E-03
+100000F 02 134820 01 4 576109E-03  -,574733£-03 L 2469636-03  -.2293856-03
.102500€ 02 1348338 01 +4497456-03 _ -,456702E-03 _ ,195681F-03  -.181175E-03
.105000€ 02 .134843E 01 L34TT51E-03  -.362864E-03 J1555356-03  -.143094€-03
.107500E 02 ,1348508 01 1266114E-03 _ -,288308E-03 .123670£-03 __ -,113016E-03
«110000E 02 .134856E 01 .2023236-03  =.2291086-03 .985032E-04  =.892592E-04
+112500€ 02 +134860E 01 J1511476-03  -.182128€-03 .786266E-04  -,704956E-04
. Y15000€ 02 . 134864E 01 .1104548-03  -,144861E-03 1629285E~04 =556 760E-04
__«I17500€ 02 «134866E 01 .780759E-04  -,115313E-03 .505304E-04 __ -,439715E-04
+120000€ 02 .134868E 01 .522890E-04  -.918946E-04 «407388E-04  ~.347275E-04

3399E-04 +330056E-04 __ =,2T4268E-04

__«I122500F 02 =~ ,1348696 01 = ,3172536-04  ~-,733399E-04 _ .330056E-04
+125000€ 02 «134869€ 01 «152991E-04 -+.586438E-04 +268981E-04 -4216609€6-04

PRA. Ty DYn , 25\N8B0, EIGENTL)%,659348 44370234 {OK(1)ul.E-byl, Ety

 LEESIsINE-GIFPANTEL FAARA1LETEPSMEL00 CONST A0k




—_ R.s .100000, = 4250000, Ma 50

. Y 13V tF1)? (F1)e ) {181 LT1)
+000000€ 00 +000000E 00 ﬁODOODDE [+]4] =-+914961E-01 «G00000E 00 «3226176~0)
+«500000€ 00 -+112096E-01 ~+435896€~01 ~«754401E-01 «160707E-01 «317401E-01
+100000E 01 -.403301E~01 -.681192E~-01 -.188923€-01 ++310679E-01 «272512€-01
- - - BAE=Q1 109511E-01 373301F-01 225892F-0])

«150000E 01 ~«T42781E-01 -+631705€-01 «346325€~01 «4224466~01 «165473E~01
_a17%000E O} ~.888081E=-Q1 =2524241E-01 49A704E=-01 455378E-01 9732G98F~02
+200000E 01 ~+100266E 00 -¢389454E-01 «566202E-01 +471074E-01 «2884C8BE~C2
_+225000F Q1 =2108222F Q0 =4241064E=01] 25621C5E=01 4703264E-01 ~2332873F-02
«250000€ 01 -.112687€ 00 ~+112292€~-01 «5085C5E-01 «45535T7E-01 -+842228E~02
2275000 - BE 0Q  L.4755B8E-03 .424364FE-0]1 = .429283E-01 121654E-C1
+300000£€ 01 -«112642E 00 +989104E-02 «3279177€~-C1 «395510E-01 146041E-CL
«325000F 0} ~.109246F Q0 168890E-Q1 232464E-01 34572712E-01 -a197999E-01
+350000E 01 -.104391E 00 «215943E-01 «146284E-01 «317329€-01 -.16C098E~01
3 = 6l4lE-01 224315TE=-Q1 21391€1E~-Q2 211830E=-01 = 154872E-C)
+400000E 01 -+923675€-01 +254182E-01 «168457€E~C2 «240300E~01 -.144718E~C1
+425000E 01 _ -.860078F-01 = = = 05709E-01.. .=.131664E-Q)
+450000E 01 -+798003E~01 +242551E~01 ~.546219€-02 +174575€6-01 -.117290€-01
#475000E QF . -.739286E-01 .2 =, - BE-02  L147076E-01  ~,102742E-Cl
«500000E 01 -«6R5082E-~CL +206810E-0L -+825952E-02 «123153E-01 6E~C2

«550000E 01
+575000€ 01
+600000E 01
+625000E 01 .
+650000E 01

«700000E 01!
+750000E 01
«775000E Q1.
+800000E O
+850000€ 01

+«900000E 01

~.592276€-01

~+520354E-01
=4491514E-C1
~¢466850E~01

~«428196E-01

=+400854E-01

-.381802€-01

~+368666E-01

=+359671E-01

«164258E-01

«909227€-02

«64B859E-02
+725000€ 01 . =.413315E=-0l . .544321E=02 _
+454939E~02
.- =a390455€=-01 _ _ .379058E=02  =,278139E-C2 _ .143640E=02 ..
+315024€-02

«216305€~02
«875000€ 01 . -,363741E-01  ,1788456-02
«147715€-02

-.B45438E-02

-+ 139884E-02

~+593554€-02

~+450559E-02

=+329406E-02
=«234577€-C2

~«164CC2E-02

-.113263E-C2

+925000€ OL .. ~-.3563L11€-01 _ ,121899E-02  -,93E5CBE-C3

+950000E 01
975

+100000E 02
«102500E 02
«105000€ 02
«107500E 02 _
«110000E 02

500 0

«115000€ 02

«117500E 02 _ .

«120000€
«122500€
«125000E

02

02

02

~«353539€-01

-+349372E-01

«346551E-01

=+344656E-01
9.
~¢343403E~01

9

42605€E-01

=¢342138E-01

«100520E-02

«681906E-03
2347824E-01  L560717€-03 ___ ~,44C612E-Q3
+460244E-03
—=+345508€~01  L376765€-03
+307191€-03

«200003€-03
«3429576=01 L,158%504€-03
. »123239€-03
T2342336E-00_ .928744E-04. ...
+6652B8E-04

=.776817€~-03

~+531€88E~C3

~+365650E-03

=+254051E~03
=.179779€-03
=+152682E-03
~.130687E-C3
112857€=03
=+SR4196E-04

304242€=03_ .. .

«851068E-02
. =e553813E-01. __ ,143615€-0} __ -.B01910€=02  .703500E-02.
«124313€E-01 +579831E-02

. «476172E-02

«391290E-02

«262507E-02
=2386750E-02 ,214749€-02
+175626E-02

«117538E-02

«789602E~03
=e136453E-C2 ~  .648931E-03

«534721E-

_ 2442084E-03
+367C09E~03

«257022E-03
_.22)72426-03 .

-.68782
- af-
- 4Z618E-C2
~2540213E-C2
-.451336E-C2
375162E-C2
31C513€~C2

-.21CE58E-C2

172681E-C2
14130€6E-C2
-2115413E-C2
~+541C97€-C3
+€22151E-C3
SQ€184E=C3
41C758E-C3
. 333018E£-03

~+Z69769E-C3

03

=,216368E=C3
~«17€€£38E-C3
«142791€-03

.185094E~03  -.115261€-C3
(155129E-03  ~,$31483E-04
J138168E-C3  =.7517376-04
.10761BE~03  -.4889C2E-C4
(96623TE=04  ~.294014E-C4

«H77E53E-04
+806304E-04

«748860E-

-.31741CE-04
=+255600E-04

04 =+205751€-C4

DX(1)=laf=3,1.E=3,EP0121,E=6,STEPSM=LCCsFREQ=1,FPRAT=1,"

CONST=1.+

PR=.7,DY=.25,M=50,EVAL{1)=,8593292,-.3702356,E1GEN(1)=.€92125,.C2225,

— . PRi=  1.000000, oy = 2250000, M. e
Y (FO} (FO) 1 (FO) ¢ (re) (17
+000000E 00  —-.000000E 00 .000000E 00 .B1T050E 00 J100009E 01
+250000E 00 .230108E-01 1742063 00 .581717E 00 JB94695E S0
+500000E 00 .825527E-01 +293654E 00 .379817E 00 . 190071E 00
«750000€ 00 .166026E 00 43617 2E 00
<100000€ 01 T263090€ 00 %03 G0 .
<125000E Ol  .365646E 00 +412494E 00 <4973708 10
+150000€ 01 1467662E 00 .400801E 00  ~-.780318E-01 L413384E 00
+175000€ 01 +564925€ 00 .375489€ 00  =~.120810€ 00 .338638E 00 =,279519F 00
+200000E 01 .654737€ 00 341989 L2T3T09E 00 ~.2399520 20
_+225000E 01 .735599E 00 .304507E 0 .218557E 00 201634E 20
+250000€ 01 . 806925E 0 L 268T36E J172647E 00 5624 1E 00
+275000€ 01 .868778E 00 .229010E 00  -.143971E 00 L135106E 00 ~.134799E 00
+300000E 01 .921653E 00 .194486E 00  -.131703E 00 .104880E 00  -.i07749E 00
+325000€ 01 +966305E 00 .163323E 00 ~-.117382E 00 .808653E-01  =.350855E~01
+350000€ 01 .100362E 01 .135839E 00  -.102481E 00 «619975E-01  -,665052€-01
.375000E 01 .103453E 01 .112046E 00 -.879831E-01 <473120E-01 __ =.515420E-01

+400000€ 01 L105994E O1 L9176026-01  =.744957E-01 .359702E=01  =.3945596-01
+425000€ 01 L10B06BE 01  .7646842E-01  ~=.623469E-01 . 272665E=01 -, 303513E-01
+450000E 01 .109752E 01 .604630E-01  -.516679E-01 .206222E-01 ' =.231155E-01
_+475000E 01 J111112E 01 J487269E-01  —.424594E-01 _  .155714E-01 175382E-01 _
+500000€ 01 .112206E OL L391171E-01 7 ~.346404£-01 L1174506-01"  =.132659£-01
.525000E 01 .113083E 01 .313011E-01 _ -.280852E-01 .885428E=02 -, lU0098E~01
.550000€ 01 L113784E 01 .249813E-01  =.226473E-01 . 667520E-02  =.753808E-02
.575000€ 01 J114342E OL __ .198969E-01  =.181765-01 _  ,503548E-02 _ =.566781E€-02
«600000E 01 +114787E 01 .1582456=01  =.145290€-01 .3803356-02  ~.425626E-02
_+625000€ 01 L115140E Ol _ .125749E=01 _ =-.115726E-01_ __ .287854E-02 __ =-.319308E-02 _
+650000€ 01 .115421£ 01 .999043E=02  ~,919026E-02 L218501E-02  ~,239358E~-02
+675000E 01 L115644E 01 . 794054E-02 L166529E-02  =.179314E-02
-700000€ Ot L115822€ 01 ~631836€-02 V127604E-02 . 134266E-02
_+125000€ 01 +115963€ 01 .503692E-02 _.»984636E-03 =+100495€6~02
+750000E 01 L116076€ 01 .402593E~02 J7665626-03  Z.751942E~03
75000€ 01 _ .116166E 01 +Q03411E~ +562491E=03 _
00000E 01 .116239€ 01 L481379E- 420686E-03
«825000€ 01 «116297€ 01 £210494E-02  -,175738E-02 .390118E-03 _ -,314580E-03
.850000E OL .116345€ 01 C171344E-02  =.138967E-02 L321879E=03  =.235204€-03
_+875000€ 01 .116383E 01 .140346E-02 o .270B62E~03 _ _ =.173838E-03
«900000€ 01 .116415E 01 . 115714E-02 L2327236-03  <.131445E-03
«925000E O ,116442E 01 ,960481E-03  -,702921E-03  .204214E-03 ~+982522E-04
$0000E 01 J116464E 01 . 802464E-03 66971E-03 .182904E-03  =.734369E-04
+975000E 01 .116482E 01 L6T44TBE=03 _ =.461404E-03 . 1669TTE-03  -,543864E~04
.100000E 02 +116498E 01 C569797E-03  -.379548E-03 J155074E=03  =.410202E-04
«102500€ 02 .116511E 01 «483174E-03 __ -,316162E-03 2146178E~03__ =,306559E-04
.105000€ 02 116522€ 01 .410526E-03  -.267138E-03 .1395306-03  ~.229096E-04
+107500€ 02 £116531E 01 +348681E-03 __=.229267€=03 £134561E=03__ ~,171202E=04
<110000E 02 <116539€ 01 +2951766-03  -,200043E~0 L130849E-03  ~.127936E-04
«112500€ 02 .116546E 01 .248105E-03  ~.177515E=0 .128074E-03  -.956022€-05
.115000€ 02 .116552€ 01 .2059906-03  -.160164E-03 .1260016-03  =-.714391E-05
+116556€ 01 +167691€=-03 _ ~.146814E-03 0124452€-03  -,533824E-05

—«117500€ 02
+120000€ 02
S00E 02

«116560€ 01
+116563E 01

.1323276-03
19921 93E-04

~«136550E~03
~.12 SE -

+123294E-03
+122429€-03

=«398893E-05
~+298065E-05

+125000€ 02

«116565E 01 +678432E-D4

~.122613

3

+121783€-03

=e222722E-05

LARReL STHPEN=100,CONSTo1an

PWeT. V=125, ETGENT11=B1-2 4, DXT1)=. 01,401, P50, EPST 1. E-5,FPRNT=1,



-115-

TEMPERATURE DRIVEN NATURAL CUNV;CTION AROUND TWO DIMENSTONAL, FLAT NOSED OBJECTS, ZERO ORDER TERMS

PR _* 1,000000, oY = +250000, M= 50
Y - _F EQ)?® FO)** (70) '
«000000€ 00 “000000€ 0G +000000€ 00 «793325€ 00 «100000€ 01 -.4131342030
«250000E 00 «222715€-01 +168302€ 00 +558501€ 00 «896769E 00 =o412352E 00
«500000E 00 +796361E~01 «2822T4E 00 +359762€ 00 «T94184E 00  -.40737TE 00
«750000€ 00 +159695¢ 00 +351463E 00 «200270E 00 «693665€ 00 ~.39%516€ 00
»100000€ 01 .252461E 00 +385525€E 00 «782030E-01 «59T097E 00 =+375724E 00
_+125000E 01 «350286€ 00 «393318E 00 =+107193E-01 +506432€_00 ~+348471E 00
+150000€ 01 +4%7583E 00 «382473E 00 «.T18229€-01 «423352E 00 ‘00’
_e175000E 01 +540506E 00 «359259€ 00 -+110559€ 00 ©349064€ 00 00
«200000€ 01 .626607€ 00 «328623E 00 =+132005€ 00 «284101E 00 00
«225000€ 01 «704522E 00 +294316€ 00 ~+160612€ 00 «228551€ 00 -.203879€ 00
«250000€ 01 «773694E 00 .259067E 00 ~.140113€ 00 +181950E 00 ~.169451E 00
_2275000€ 01 «834140E 00 «224T59€ 00 -«133521E 00 ,143528E 00 ~.13857%E 00
+300000€ 01 «886259E 00 .192612€ 00 -.123182€ 00 ©112325€ 00 ~.111742E 00
_«325000€ 01 +930689E 00 «163328E_0Q =2110857€ 00 .B873135E-01 ~+890262€~01
«350000E 01 +968192E 00 «137239€ 00 =+9781356-01 «674B74E~01 ~oT02065€6-01
«375000€ 01 2999581 00 «1144606E 00 ~2849222€-01 «519188E-01 =+548515E=C1
.400000€ 01 .102566E 01 *94T156E-01 . 727439E-01 ©3978956-01 = 426109E-31"
«425000E 91 2104718€ 01 ,779451€-01 =.616058E~01 _ #3040156-01 -.328821E-01
«450000€ 01 +106485E 01 ,6381156-01 = .516664E-01 «231744E=01 -.25251CE~01
+4T5000€_651 .107928¢ 01 +520077E-01 ~e4296T1E=01 «176356E-01 ~.193134£-01
+500000€ 01 ©109102€ 01 «422270E~01 =¢354717E-01 «134060€-01 -41647239€-01
«5250G0E 01 «110054E 01 «341781€-01 ~4290973E-01 «101858E-01 -.111954E=01
+550000E 01 .110823E 01 < 275938E-01 =,237353E-01 T73981E-02 = e849424E-02
«S5TSO00E 01 .111444E 01 +222359E-01 =.192570E-01 +588561€-02 ~e643366E=02
«600000E 01 111944 01 «178957€-01 ~o155734E~01" «44A218E~02 - 4BE615E=02
«625000F 01 .112346E_01_ __ ,143941E-01 ~.125615E-01 #342127€-02 -.367643E-02
«6500G0E 01 «112669E 01 «115785€-01 -+100683E=01 £262011E=02 $27T507€-02
«675000F 01 2112929€ 01 £932112€-02 -.806160E=02 £201558€E=~02 -.209318E=-92
< T00GGGE 01 L113139E ot . T51556€E-GZ ~.644139€-07 <155973€-G2 < A8TT926-02
o725600% Gl .113308E 01 .607402€~02 -.513886E~02 L121618€-02 -.118R94E-02
«750200€ 01 «113445€ 01 «492458E~02 =e409577E-02 «957362E-03 -+B95507E~33
775000 01 _ .1135%6E 01  +400864E-02  -.326337E-02 «762453€-03 - 676285E-C3
+890000Z 01 #113647E 01 +327876E~02 -.260120E-02 «615711E-03 «oS0T5B5E~53
4825000 01 L1137212 01 ©269667€-02 ~+207596E=02 +505259€-03 =+382C19€-03
+B5009GE 01 L113783E 01 .223161€-02 = 166043602 «422137€-03  =,287467E~u3~
«9750G0E 01 ,113834E 01  L185919€-02  =.133247E-02 +359593£-03 =e216287€-93
«9C0000E V1 .113876€ 01 #155966E-02 =.107420E=-02 «312538E=03 -e162713€-03
#925030% Gt L113912€ 01 S131751€-92  -,871216€-03 #277140€-03  -,122397€-03
«9%0000€ 01 (113943E 01 «1120626-02 -.711984E-03 £2508514£-03 -.920626E-04
_»975990€ 01 .113969€ 01 2958652E-03 ~,587286E-03 +23048BE-03 =.692414E-04
.100000F 02 . 113991 01 A24522€-03 ~.489T90E-03 @215426E-L3 =,520742E-04
102500 02  L114C10E 01  ,711985€-03 ~ob1367T4E=03 +274099E-03 -+391513E=04
«105000E 02 1140262 01 $616294E~03 -.3543326-03 #195581E-03 ~.294491E=04
#107500€ 02  _ ,114041E 3} +533730E-03  =,308127€~03 «189175£-03 -42214667E-04
+110000E 02 .114953€ 01 «461379€-03 =,272196E-03 «184359E-03 ~.166515E=06
#112500€ 92 «114054€ 01 £396968E-03 =4244281€-03 «1R0737€-03 125206€-04
+115000F 02 114973E 01 ©338721E~03 ~,222622E-03 I718014E-03  -,941422€-0%
#117500€ 02_ 0114081 31 +285256E€-03 ~,205831€~03 «175966E-03 - T07840E-05
«120000€ 02 114087¢ 01 «23%6491€-03 -.1928276-03 «174427€-03 -.532205E-05
o122500€ 02 .114093E 01 __ ,1%8597€-03 -.182765€~03 «173269€-03 ~e400143E-05
»12%000€ 02 .114C97€ 0t +143920€-03 -+174985E=03 #172399€-03 =e300R4BE=0S

PRE1,9DY5,25¢MeB0,EIRENTTI®cB038739=ehl¢NX(1)wLoE~asLloE~4oEPSTaILE=5y

STEPSM= 100, FREQs] s FPRNTSL ,CONSTs],#

TEMPERATURE DRIVEN NATURAL CONVECTION ARUUND TWO DIMENSIGNAL, BLUNT NOSED CBJECTS. ZERC CRDER TERM
PR = 1000,000000, DY = .025GC0, M= 800

Y (FO) (FO)* {Foyt? (109 (101!

000000 00 +0000600E 00 L0G0000E 00 195437E €0 ,100000€ 01 -.205843€ C1
+500000E 00 ,110020€-01 £294013E~01 $576291E-02 2213006E~01 -+330116E 00
1.000000€ 00 $262306E-01 +313834E-01 +347CCLE-C2 «199360E-02 ~.314492E-04
+150000E 01 +423335E~01 «329840£-01 $2938C5E-62 +199245E-02 ~el42344E-11
«200000€ 01 +5G61717e-061 +343773E-01 244120E-C2 194245E-02 -.786988E-22
,250000 01 ,166208E-C1 . 35431 0E~01 $197842E-C2 .199245€-02 -.£69928E-13
+300000€ 01 1945655E-01 +363124E-01 $155216E-02 199245E-02 - 113677€-317
+350000E 01 ,112899€ 00 +3698RTE-01 «115835E-C2 0 199245E-02 -ol13677E-317
400000 01 #131523E 00 »374761E-01 79654703 119926456-02  -5.2267856-39
+4500008 01 (150346E GO «377902E-01 «464962E-G3 199265E-02  -5.226785E-39
«506000€ 01 «169286E GO «379457E-01 161596E-03 1992456-02  -5.226785€-39
+550000€ 01 188267E 00 +379561€-01 -.115700£-03 ,199265E-02  -5.2267850-39
+599999E 01 ,207220E 00 +378339€-01 -¢369150E~C3 «199245E-02  -5.226785E-39
«649999E 01 £226081E 00 «375905E-01 - 600987603 199245E-02  -5.226785E-39
699999 01 $244792€ GO «372361E-01 -+813396E-03 1199245E6-02  -5.226785E~39
749999 01 1263300 00 «367800E-01 -.100847E-C2 .199245E-02  =5.:26785E-39
+799999€ 01 4281556 00 «362302E-01 ~.118818E-G2 199245E-02 +UOCCOOE 00
+849999E 01 4299516E CO «355940E-01 -4135433E-C2 ,199245E-02 «GGO00CE 00
+«899999E 01 «317137€ 00 «348778E-01 -.156857E-02 1199245E-02 «GOOCOOE 00
«949998E 01 «334381E 00 +340871£-01 ~4165235E-02 199245E-02 +CGCCOOE GO
+999998E 01 +3512126 60 +332269£-01 ~4178696E-C2 +199245E-02 200C006E 00
+105000E 02 +367596E 00 «323015€6-01 -4191351€-G2 1199245€-02 .COCO00E 00
+110000E 02 +383503E 00 313146801 -,263251€-02 +199245€-02 +066G00E 60
+115000€ 02 +398901F 00 «302696E~01 «4214596E-02 $199245E-02 «GOOOOOE 00
+120000E 02 4137638 60 429169501 ~4225327E-0G2 1199245€6-02 +000CO00E 00
+125000E 02 +428062E 00 #280172E-01 ~4235537£-02 +199245€-02 +COGO00E 00
4130000 02 4417728 00 «268149£-01 -+245263E-02 +199245E-02 «GOCCOOE 00
+135000E 02 1454869 00 +255653E=01 ~4254535E-02 «199245E-02 +000C00E 00
W 140000€ 02 467329 60 2242703€-01 - 4263375602 «199245€6-02 L006CCEE 00
+145000€ 02 «479131E 00 $229322E-01 -4271796E-02 «199245E-02 +COC000E 00
150000 02 +490254E 00 4215530E-01 -4279807E-02 «199245€-02 +GOO0OOE 00
+155000€ 02 +500678E 00 420134801 ~e2874126-62 «199245E-02 +GOOOOOE €O
«159999€ 02 «510382E 00 «1867956-01 -4294610E-C2 «199245E-02 +UOGCUOE 00
164999 02 «519351€ 00 +171893E-01 -4301359E-02 +199245€E-02 «0CCO00E 00
+169999€ 02 «527566E 00 +156662E-01 -4307773€-02 199245€-02 +GO00GOE €0
+174999€ 02 4535012 00 «141123€E-01 ~¢313727E-02 1199245E-02 +00CO00E GO
179999 02 +541673E 00 «125296E-01 -4319252E-02 «199245€-02 +000C00E 00
184999 02 «547536E 00 +109205£-01 ~¢324339E-02 4199245E-02 +GOOCODE 00
*189999€ 02 +552589E 00 +928699E-02 ~+328980E-02 +199245€6-02 +00C000E GO
_«194999E 02 +556819E 00 «T63142E-02 =+3331658-02 4199245E-02 «G0O0O00E 00
199999E€ 67 +560Z17E 00 «595610E-02 «e336685E-C2 1199245E-02 «G00000E 60

PRE1O00. ¢DV=,025, =800, EIGEN(112,19575,-3,05984,0K(1)=2.014.01

EPSTa1.E<4ySTEPSHa100 FREQSZ0) FPRNT=1,CbNST2100040



TENPERATURE AND CONCENTRATION DRIV

IERC EROER TERNS

-116-

EN NATURAL CONVECTION ARCUND TWO DIMENSIONAL BLUNT NOSED OBJECTS

. PR = 1.000000, sC = 1.0 ' SIGMAT = 1.,000000,
As .€6C000, 8= .000000, oY = +500000,
Y (£0) (FO) ¢ (FO) ¢ {10) (101
-600000€ 00 -.000C00E 00 - 000000E 00 J137351E 01 1000008 01 "=.501426E 00
500000€ 00 .1338626 00 .460963E 00 +527188€ 00 .751081E 00  ~.489885E 00
<1C0000E 01 +406151€ 00 +582744E 00 176212601 «519203E 00  -.429362E 00
J150000F O1 __ ,688296E 00 = .5247C7E 00  =-.208268E 00 3293256 00  -,326311E 00
.2CCCCOE 01 <921571E 00 «402730E 00  ~,256550€ 00 +19388TE 00  -.217687€ 00
+250000€ 01 ¢109197€ 01 +2807T61E 00 -.221862E Q0 «107842E 00 -,131298E 00

~.3C0C00E 01 .120705¢ 01 ,183878E 00 -.163813€ 00 5TT464E-01
+350000¢ 01 ,129088€ 01 +115671E 00 -.110334E 00 +302335€-01
#40CCO0E 01 +132674E 01 »710981€-01 ~+700435€-01 +156823E-01
«450000€ 01 #135479€ 01 2433685¢-01 -.427344E-01 +816424E-02
«5190000€ 01 .1371936 01 +266779E-01 -.253971€-01 +433495€-02
.550000F 01 £1352596 91 «168401E-01 -.148667E<01 _  ,240140g~02
+60C0OCHE 01 +138944E 01 L 11099CE-01 ~.B67032E-02 +143033E-~02
+65000GE 01 .139407¢ 01 «174012€-02 ~e5109656-02 +944312€-03
.7C0000€ 01 +139740E 031 +573788€-02 -.3100818-02 « 791628603
. 756000¢ 91 «139993E 01 «449544E-02 -.198397€-02 +580648E-03
.RECC00E 01 «149196E 01 +367300€£-02 ~.137047€-02 +520415€-03
«850%00€ 91 2140364€ 01 .308013€-02 -+103686E-02  ,490456E~03
.9C0CCO0E 01 L140506€ 01 .261156E~-02 <.85T045E-03 +475568€-03
,950000F 91 +140626€ 01 £220974€-02 ~«760899€-03 +468174E-03
»1€0000% n2 ,140728E 01 +184347E~02 -.709882E~03 «464504E~03
«145000€ 02 .14n811€ 01 .149601€-02 -.683022E-03 2462684€-03
110000 92 ,140877€ 01 L115841€-02 ~.669000€~-03 461781€-03
«115C00E 02 ,140927€ 01 .825939€-03 ~661746E-03 «461333E-03
.1200060€ 02 +140950€ 01 <495105€-03 ~.658030E~03 46TTI1E-03
+125000% 02 .140977¢ 01 167620E-23 -.656136E-03 +461002€-03

TEMPERATURE AND CNNCENTRATION DRIVEN NATURAL CONVECTION AROUND TWO DIMENS INNAL ALUNT NOSED NRJECTS

ZERD NRNER JERMS

SCo1, PR=1, 1 SIGMAT=1,,SIGMAM=1, A0, yB50, Y5 ,Mu25,E(GEN(L)n1,36,~

-.738044E-01
~¢396149€-01
=¢206554E-01
-.105797€-01
~-+536040€-02
~4269791€-02
~-.135218€-02
~+675838E-03
=+337145g~03
=.167949€-03
=.B8357Q8E-04
-+415470E-04
=+206394E-04
=«102465€E~04
~+508417€E-05
-+252155€-05
-.125013€-05
-+619615E-06
-.307043€-06
-+152133€E-06

“e50)DK(1)81,F=2,1,F~291,E~29EPSI=1,E~5,STEPSM=100,FPRNTa] +FREQx],

CCNST=1,E34

= 1.000000,

PR = 1.920000, sC SIGMAT
A 2090000, A «160032, oy
Y (FO) (FN) ! (FOyee (10)
L] 4] = - . o JIBO090E BT
«300000F 09 05T3040E=02 ¢329125C (O +838065E U9 «R56322E 00
«8900TGF 04 »135372E 09 +813914€ 02 «413478€ 0O «T13160E 0N
«9UOGULE 07 #303113€ 00 +549001E 00 +106209€ GO +5T5802E 00
»120050€ 11 «481225E 00 +588383E 0N ~.939292E~-01 «450365€ 00
#150500¢ Ul $651529E O 5413988 (O =0206614E 00  4341699€ UL
1B00UCE 51 BT3TZRE U0 <4 TOBAIE UJ = 284 TH0E 05 «282215€ 00
#210030E 91 +933324C 00 2392865E 00 ~4259774€ 00 +181803E 0O
«24000GE 01 L153973E 01 #317513€ 00 ~+239599E 00 +128512E 00
$270000E 01 $112466E 01 +2%0308E 0D ~,207243E 92 +894511E-01
»300U00E 01 J119996E 01 +193509¢ 02 =o171349E 90 1615454E~01
#330000E 01 4 126183€ 04 2147335€ 00 -.137010€ 0N +420050E-01
*3609) ] [/ 0 =106 TTI5E 0h #285337€-01

#39000%F 01
$4200008 U1
450000E 01
#4B0000F 0f
#%10004E 91
. DOE 9
«5T70650E 01
«600400F 01
#630500F 01
+560000F 01
+690300€ 01

. z
#750090€ 01
780000 01
+%10000€ 01
+A39999¢ o1
+8569999¢ 01

#929999€ 01
»359999F 01
+999999¢ 01
«102000¢€ 02
+105000¢ 02

111000 02
A146000F 62
117000€ 02
120000F 52
123000¢ 02

. L
»130919€ 01
133067 01
e 134660C 01
J1354418 of
136717 01
.
«137871E O1
138251 91
«134547€ N1
1387830 04
J134974F 01

¢139268E 01
«137345¢ 01
«139487¢ 01
#139478¢ 01
137659 u1
.

#139799€ 01
«139856E 01
W 1399126 01
#139959¢ 01
«140092€ 01

.

¢ 1400T0E 01
1409768 H1
P 149114E 01
14n132f 01
«147142€ 01

. 3]
+827651E-01
06145%4E-01
+455378€-01
+337818€-01
«251770E~01
. c-J
«1439079€-01
«111192€401
«B75464E-02
«7939469€=-92
«8T86TTE-02
. -0
«416442E-02
«3629%32€-02
¢320662E~02
028620902
«257172E-02
" -

12091 62£-02
188214£-)2
+1684R89€-02
1149589 -12
¢ 131256E-02

. =uT
0956214E~13

WTALILI3E-13

060T204E~)3

¢434097E-0)

+261528€-93

~eB15545E=01
~e613041E-01
~e454997€~01
~¢334325F=01
“e263774E-01
= TT8TT5E<D1
~e1277728-01
~e9221712E~02
~oH6T770E-V2
~4B5884E-02

-4356B65E=02

SAIOE-02
-0202127€-02
~.157383€-02
~e126292C=02
=o104714E-02
=e897A34£-03

T=194A38C0-03

~¢723971€-03
~0675344E-03
=e642050E6-73
~e519337€-03
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=¢5T454TE=0)
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o TH44ASE~1)
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«T43070£-93
e T42991F=03
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“eb629TH4E=03
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=¢337916E-04
=4222229E-)4
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=eh31347C-08
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«581011€-03
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~¢338147E~04
=e222381E-064
~e146217€-04
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~e631779€=08
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1.,000000,

SIGHAN o

___ PR3 1.000000, _ _ % = SICMAT = 1.000000, 1.,000000

A 2000000, B ~4100000, oY = «100000, M 129

y (F0) {FO)° (FO)*? (10) . (10)° (MO) (Mo) ¢
+000000E 00 +529726€-01 .000000€ 00 +137555€ 01 «100000€ 01 ~4529738¢ 00 +100000€ 01 ~.529726E 00
«300000€ 00 _ _.10%970€ 00 ,325138¢ 00 «812510€ 00 «042556E 00 =«518518€ 00 +842560E 00 -+518507€ 00
+600000E 00 +233084€ 00 +500660F 00 +380046E 00 «690306E 00 ~.493453€ 00 +690313E 00 -.493443E 00
+900000E 00 «395384E 00 +566234€ 00 «777297¢-01 «548424€ 00 =.449280€ 00 «548434F 00 ~.449270€ 00
«120000€ 01 «568529€ 00 +558616€ 00 -+111637€ 00 «422371E 00 ~+388949E 00 +422383€ 00 -.308941€ 00
«150000E 01 .726288€ 00 .508077E 00 -+212763E 00 +315887¢ 00 -.320312E 00 +31%902€ 00 -+32030%E 00
+180000€ 01 +868366€ 00 «437199€ 00 -.2%1360E 00 «230140E 00 -.252034E 00 «230157€ 00 -.252028€ 00
«210000€ 01 .988119€ 00 +361232¢ 00 -.250072€ 00 «163965E€ 00 -.190665E 00 .163983€ 00 -.190661E 00
«240000€ 01 .108553€ 01 +289359€ 00 -.226561F 00 +114699€ 00 -+139621E 00 +114718€ 00 -.139618E 00
«270000€ 01 +116262€ 01 +226261€ 00 -.193230€ 00 «790836€-01 -.996074E-01 +791037€-01 -+996052E-01
«300000€ 01 #122234€ 01 «<173606€ 00 -.157928€ 00 +539294£-01 -+696232E-01 +539501E-01 -+696217€-01
+330000€ 01 +126762¢ 01 «131254E 00 -.125053¢ 00 +364827E-01 ~o479068E-01 +365036E-01 -.479058€6-01
+360000E 01 .130201€ 01 «981232€-01 -+966411E-01 0 245477E-01 ~+325747€-01 «245690€-01 -.325740€-01
+390000€ 01 «132747€ 01 «7127620E-01 -.732722€6-01 +164679€-01 -+219535€-01 +164894E-01 -+219530E-01
«420000€ 01 +134630E 01 «536773€-01 -+5471756-01 +110402€-01 -+146981€-01 «110618E-01 -+146978E-01
«430000E 01 «136017€ 01 +395104E-01 ~+403697€-01 «741502€-02 -.979276E-02 +743665€-02 -.979255E-02
+480000E 01 «137038€ 01 +291077€-01 -+.295000E-01 «500394E-02 -.650119€-02 +502562€-02 -.650105E6-02
+510000€ 01 137791E 01 «215339E-01 ~.213982€6-01 +340535E~02 -.430461E-02 +342707€-02 -.430451E-02
+540000E 01 ~138351€ 01 «160549€-01 -+154390E-01 «234790E-02 -+284463E-02 «236964E-02 -4284457E-02
+570000E 01 «138770E 01 .121085E-01 -.111033€-01 «164960E-02 -+187709E-02 «1671356-02 -.187705E-02
«600000E 01 +139088E 01 .927227€-02 -.797750€-02 .118905€-02 -.123728€-02 .121082€-02 -.123725E-02
«630000E 01 «139334€ 01 .723332€-02 -+574144E-02 «885610E-03 -.814867E-03 +907381€-03 -.8164849E-C3
«660000E 01 «139528E 01 «576291€-02 -+415247€-02 «685828E~03 -+536315€-03 +707604E~03 ~+536303E-03
«690000E 01 «139684E 01 +469537E-02 =+302984E-02 «554373€E-03 -«352799£€-03 +576151E-03 -«352791€E-03
.720000€ 01 ©139812€ 01 .391178€-02 ~.224069€-02 +467916E-03 -.231979€-03 «489696E-03 -.231974E-03
- 750000€ 01 «139921€ 01 +332736€-02 -.168842£-02 «411077€-03 -.152482E-03 +432858E-03 -+152479E-03
+780000€ 01 «140013€E 01 «288206E-02 ~+130347€E-02 «373722€-03 -+«100197€E-03 «395504E-03 -+1€C195€-03
«810000E 01 +140094E 01 +253357€-02 -.103609E-02 +349178E-03 ~.65823TE-04 .370961€-03 -.658222E-04
«839999E 01 .140166E 01 «225221€-02 -.850983€-03 +333056E€-03 -+432323E-04 +354839E-03 -.432314E-C4
«869999E 01 «140230€ 01 «201727€-02 -+T23205€-03 «322468E-03 -+203888E-04 ©344252€E-03 ~-+283881E-04
«899999€ 01 «140287€ 01 +181432E~02 -+635242E-03 «315516€-03 -.186383E-04 «337300£-03 ~2186379€E-04
+929999€ 01 «140339€ 01 «163338E-02 -+574843€-03 «310953€-03 ~e122347€-04 +332736E-03 ~e122344E-04
«959999€ 01 .140386€ 01 «146752€-02 -.533469€-03 «307957€-03 -.803005€-05 +329741£-03 -,802987E-05
+989999€ 01 +140427€ 01 «131199€-02 -.505193E£-03 +305991E-03 -4526969E-05 +327775€-03 ~.526958E~05
«102000€ 02 «140464E 01 «116351E-02 ~+485913E-03 +304701E-03 -¢345781E-05 +3264085E-03 ~+345713E~-05
«105000€ 02 .140497€ 01 .101983E-02 -.472796E-03 +303854E-03 -.22686TE-05 «325638£-03 -4226862E-05
.108000E 02 .140526E€ 01 «879416E-03 -.463892€6-03 +303299€-03 -.148834E-05 +325083E-03 -,148030E-05
«111000€ 02 +140550€ 01 «741211E-03 -.457863€-03 ©302935€-03  -.976331E-06 .324718€-03 -.976310E-06
«114000E 02 «140570€ 01 +604503£-03 -+453789E-03 «302696€E-03 ~e640419€-06 «324479€-03 -+64C4C5€-06
+117000€ 02 «140586€ 01 <468806E-03 -.451043E-03 +302539€-03 ~4420056E-06 +324323E-03 -.42C047E-06
«120000E 02 .140598€ 01 +333788£-03 -.449195€-03 +302436€-03 -.275507E-06 +324220E-03 -.275501E-06
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PR=1¢¢SC=1.9DY=,1,M2125451GMAT=1.ySIGMAM=]490X(1)21.E-byleE-491sE~4,y
EIGEN{11=1,376849~.5293639-.530688% EPS1=1,E~5,FREQ=3,FPRNT=1,

CONST=1.E3,STEPSM=100,A=04 4Bx-. @

CIMENSICNAL BLUNT NCSEC OBJECTS

TEMPERATURE AND CONCENTRATION DRIVEN NATURAL CONVECTION AROUND TWO

ZERO_ORDER TERMS

PR = 1.000000, sC = . 1.000000, SIGMAT = 1.000000 _SIGMAM = 11000000
A= -.100000, 8 = .10c0CQC, _ oY = .1CC00C, M= 125
Y (FQ) (FO)! (FQ)* (10) (10)* (MO) (MC)
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_+150000€_01 «655418E 00 .544668E 00 -.208281E 00 2351448€ 00 _ --.336245E 00 .339858E 00 ~.331202E |00
+180000E 01 .808511E 00 .473537E 00 ~+256946E 00 .260149E 00 -.272236E 00 +250331E 00 -.2€657€62€E (00
«210000€ 01 <938804E 00 «394838E 00 ~.2620$8E 00 +187836E 00 -,210822E 00 .179986E 00  -,2C4266E /00
+240000E 01 <104570€ 01 .318819€ 00 ~.241676E 00 .132857E 00 -.157289€ 00 .126832E 00 -.151664E| 00
+270000E 01 .113093€ 01 .251051E 00 -+208914E 00 .924451E-01 ~.113860E 00 . «8794C2E-01 -.109362E 100
<300000E 01 «119739E 01 .193815E 00 -.172585E 00 «635320E~-01 -.804846E-01 .602078E-01 ~.770911E401

__+330000FE 0]  .124830E 01 «147331E 00 ~.137853€ 00 <432782€E-01 -.558575E-01 240826 7E~01 -.533987E10F .
+360000E 01 .128677E Q1 .110680E 00 ~.107203E 00 «293179E-01 -.382293E~01 +274898E-01 -.364978E-01
«390000E 01 .131555E 01 «824368E-01 =-.818477E-01 £198124E-01 ~+258924E~01 _ 41B8419CE-01 _  =.246973E+01
.420000E 01 «133692E 01 <610651E-01 ~<614351E-01 «133990E-01 -.174011E-01 .123035E-01 -.165877E-01
+450000E 01 .135273€ 01 <451248E-01 -+455259E-01 .910101E-02 "~ 116275E=-0L_ __.82C721£-02  -.11C795E-01
+480000E 01 «136441E 01 +333716E-01 ~+333560E-01 +623502E-02 -<173683E-02 «547661E-02 ~.T37017E02
.510000E 01 .137307 478 - 073E-01. «433094E-02 ~+513196E~02 -3663C0E- _=.488786E-02

«540000E 01 «137952€ 01 «185502E-01 -.175925€-01 «306937E-02
«570000E 01 «138437€ 01 «140471E=-01  -,126887E-Q]) 2223518E-02

«600000E 01
«630000E 01

'»138807E 01
«139094E 01

.108016E-01
8

«660000E 01
+690000E O
«720000E 01
75

+780000E 01

+839999E 01

+«899999E 01
2929999E 01

+139321€ 01
9505E
+139657E 01

B5E.
+139895E 01

«140078E 01

«140223E 01
2+140285E_01

.+676983E-02

+463043E-02

«343196E~02

+269289E-02

«217485€-02
+195965E-02

~+9142C9E-02

~+478572€-C2
2350266E-C
~+2596C7€~02

=.152358E-02

-+1003C3E-02

~+754358E-0C3
~.684€61E-03

«168443E-02
+108191E-02
924348€-0
+820662E-03

—+752463€=03  -,182999E=-03 .

«707623E-C3
1£-03

~+336€26E-02

~«148038E-02

~e£642657E~03
C3E-0
~+278284E-03

-+12C297E-03

_ =.79C542E=~04

+658786E-03  ~-.519369E-04

«637711E-03
2632225E-03

~+224013E-04

=~+1470756-04  ,140823E-03

«959999E 01

+102000€ 02

+108000€ 02
+111000€ 02

«140341E Q1
«140435E 01
0

«140509€ 01
+140538E .01

«176187€~02
«139829E-02
-02 .
«105771€-02
«891864€-03

~e636896E-03

+628624E-03

=+604241E=03 .626260€-03

-+581972E~03

=+556542E-03
~+549584E~03

«+624708E-03
90E-0
«623022€E-03
+622584E-03

~+965445E-05

=e633647E-C5

821E-C5
84]1E~

~«179005£-05
.~«117430E-05

“e415
1

«24€15CE-02

_ =a224373E-02 . .166711€~02

«114268E-02
840E-03
«568S€1E-03
8957E-0
+320235€E-03

-.—+255302E-03

+212€610E-03

-«184550€=03 .

+«166112€-03

+146046E~03

«137395E-03
_«135144E-03
«133667E-02
. 6G8E-0
+132062E-03
+131644E-03

323433E402
-1213658E-02
-+140962E-02
=+929085E-03
-.€115C1E-03
-+4C2753E-I03
-.264959E-03
=a174236E-103
~.114536E-03
=+152678E-04
~.454493E04
E-04
-.213282E-04
=214C030E-04
-+919200E-/05
=+603296E-05
-+3559C2E-05
«259772€-05
-.170431€-05
-.111805E~05

+114000E 02
00E 0
«120000€ 02

+140562E 01

0
+140596E 01

«T27739E-03
+564778E-03

~+544887€-03
~.541725€-03

+622297E-03
«622108E-03

=+770300€-C6
~«505255E-06

«131371€E-03
«131191E-03

-.7334C2E-06
-.48]0%53E-06

+402601E-03

-+539601E-03
~2538176€-03

«621984E-03

-+331391E-06

«131074E-03

~«315517E-06

+621993E~-03 =+2]11347E=Cé6 «+130996E-03 ~4206936E-06

“PR=T<1SCalo;DV=T,Fe1s%, STGAAT= 1., SIGNAN=1.,0X(11=1+E=4,1.E-4;1.E~4
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