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I

INTRODUCTION

This report deals with the theoretical problem of satellite interaction with a
rarefied or collision-free plasma. The specific objective of this study is to de-
termine the wake produced by a conducting prolate-spheroid moving in the iono-
sphere at a speed intermediate to electron and ion thermal speeds. Because the
object is not spherically symmetric, the significance of angle of attack on the flow
field characteristics is considered. The earth's magnetic field is neglected in all
calculations.

Previous workers (1, 2, 3, 4) in the field have, in general, considered ob-
jects of small size (less than a Debye length) which allowed them to emphasize
electro- and magneto-hydrodynamics over ordinary hydrodynamical phenomena.
Large size objects have received less attention due to the great complexity of the
problem. References 5 and 6 are examples of studies of flow fields associated
with large objects. In the present discussion, only steady state conditions in such
flow fields are considered; therefore, time dependent plasma phenomena are neg-
lected. It will be assumed that the ion flow can be obtained by neglecting the
effect of the satellite electrostatic force field on the ions, i.e., the ion wake
results mainly from the shadowing effect produced by the satellite.

It is assumed that the electrons are always in equilibrium in the potential



ficld surrounding the satellite; i.e. due to their mobility, they adjust themselves to
the ion distribution, the potential on the satellite surface, and zero potential at in-
finity. As mentioned previously, this is a steady state approach and does not treat
other phenomena such as electron plasma oscillations, ion waves, Alfvén waves, etc.
The electron density is obtained from a solution of Poisson's equation, and is a quasi:
self-consistent approach in which a constraint is placed on the ion density.

For the electron equilibrium conditions to be valid, it has to be assumed that
the satellite surface has little influence upon the Maxwellian distribution for the
electrons. Due to the present lack of knowledge concerning particle-surface inter-
actions, especially charged particles, for want of a better model it will be assumed
that particles reflected diffusely or specularly from the satellite are neutralized
near or at the satellite surface. Consequently, re-emitted particles need not be con-
sidered since only the behavior of ionized particles is of interest here.

During final preparation of this report some algebraic and geometric errors
were discovered. These errors affected all cases except @=0° and 90°, hence the
data presented here for #=45° are quantitatively in error. It is believed that the data
are qualitatively correct and therefore can be considered as representative of near
wake conditions at that flight attitude. The far wake flow field configuration depicted
is believed to approximate closely the correct solution since it is less sensitive to

body orientation.



II

BASIC EQUATIONS

1. Formulation of Problem

For a highly rarefied plasma in which both binary and Fokker-Planck (grazing)
type of collisions are neglected, the problem of describing the characteristics of
the flow field surrounding a charged body moving in a weakly ionized plasma may

be formulated in terms of the collision-free Boltzmann equations, namely,

ot er+(e/mH7¢-vae =0, )
A AL —(e/M)§¢-5f =0 (2)
ot ! Vi ’

and Poisson's equation,

v - €/ eg))[ffed\—/}':/‘fid\?:J, (3)
where,

e = electron charge,

m = electron mass,

M = ion mass,

f = electron distribution function

e

fi = ion distribution function,



-
V' = total velocity of gas particle

n, = ambient electron or ion density,

p = potential field,

® =KT =ion or electron ambient temperature,

€, = dielectric constant of free space
Under present assumptions that the satellite speed is intermediate to that of the
positive ions and the electrons and that the electrons are in equilibrium at all
times, the satellite appears to be at rest with respect to the electrons and the
electron distribution function will be Maxwellian in the resulting potential field,

that is,

fo = 1, <E?9_>3/2 eésb i m;,lZ)/e' @)

The corresponding electron density is

n, = noeep/e. (5)

As far as the positive ions are concerned, the problem is much more dif-
ficult to solve. Formally the ion distribution may be written as

§(T,7,t) = [(F¥) + 5(T,7,1), (6)

where f1 (?, v) denotes a steady state condition. At large distances from the

satellite, equation (6) may be written as

£(5,7,t) = £(5,9) + {'(F7) + (LW, t), (7

with fo Maxwellian and f' a small perturbation. In this region fz('f', v, t) is



also a small perturbation and accounts for collective ionic oscillations. This
aspect of the problem was treated by Yoshihara (2) based on the work of Kraus
and Watson (1).

While fl (T, V) in equation (6) can be used directly to deduce ion densities,
the same result can be obtained without actually specifying this function. (See
reference 5.) That is, by ignoring the influence of the electrostatic field on the

ions, the ion density can then be defined as

n, =ffidi? =ffod§z‘. (8)
bt x

The asterisk on the integral sign denote s that integration over velocity space is
subject to conditions on the velocity vectors. Specifically, in the present case,
it is necessary to exclude all particles that fall within the shadow cone from the

point of interest to the spheroid.

2. Ion Distribution

Determination of the positive ion flow is based on the kinetic theory method
used by Dolph and Weil (5) to solve the flow field problem for the motion of a
sphere in a dilute gas. This method is now extended to the case of a conducting
prolate spheroid moving in an ionized medium with uniform velocity, U', and
with an angle of attack, @, which is restricted to the X-Z plane. This mathematical

simplification introduces no limitation to the scope of the problem when the ambient



atmosphere is quiescent. The presence of appreciable atmospheric streaming
velocities would necessitate a modification of the problem to include side-slip. Both
the angle of attack and eccentricity of the spheroid are arbitrary. The resulting ion
density distribution can also be considered to be an estimate of the electron den-
sity, since charge separation is constrained by the presence of coulomb forces,

For convenience, l—}' and \7' are normalized with respect to ionic thermal

speeds, namely,

v ?*/.IZkT/M = v/ [a6/m (9)
t'}/fz_k'f/_M’ = ﬁ'/,/ze/M .

The ion distribution function, equation (8), is considered to be Maxwellian,

-
u

Hence, using a reference system in which the satellite is at rest in a uniform

-
stream having a velocity U', the ion distribution is given as

£y = no<M> v ul, (10)
270
and the density at points of interest in space is
3/ A g2
_ 1 Zf -lv -u|”
n; = n, (1;> e dv,, dvy dv, . (11)

The geometrical configuration used in formulating the present problem is
shown in Figure 1. At any point P (X 1’ Yl, Z 1) equation (11) is to be integrated

over velocity space excluding velocities which characterize particles within the
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shadow cone from P to the spheroid. Unfortunately, unlike the case of the sphere,
the shadow cone is not symmetrical about the position vector R; hence, it is nec-
essary to align the coordinate system, whose origin is at P, in such a manner

that the z axis is colinear with the principal axis of the cone from point P to the

spheroid. Writing the equation of the spheroid as

X% + v2 2

Z
a c

the equation of the tangential cone becomes

2 2 2 2
X3+ Yr oz X% + v , Z XX +YYy | 22 2
7 2N TE Y 7 = Y =0

a c a a
(13)
We now translate coordinates to (Xl, Yl’ Zl) and obtain the shadow cone in the

new coordinate system by setting X = X

1 = !
1+x, Y Y1+y, and

Z = Zl + z'. This yields

2
AX'2+By'2+Cz' +2Fx'y'+2Gx'z'+Hy'z' = 0. (14)

The coefficients in explicit form are as follows:

-
A= |0+ = -1
_3.2 2 (a)
|37
SO e (b)
| a c
- 1
X; 72
c = |2 4 1 _IJ (c)
| a? c?




F = -XlYl/a4 (d)
G = —xlzl/azcz (e) (15)
B Y2 [2 ®

The next step is to rotate the new coordinate system about point P to
establish colinearity with the principal axis of the cone. Points of configuration
space in this coordinate system are denoted by (x, y, z).

Equation (14) may be written in matrix form as

A F G
(x', y', z') F B HI| ¥ = 0, (16)
G H C

and the eigenvalues are obtained by solving the determinant of the corresponding

secular equation, namely,

(A-X) F G
F (B-2) H = 0. (17a)
G H (C-2)

or

2

2 2
2 _(A+B+C) A+ (AB+AC+BC - F° - G2 - H2) A-(ABC + 2 FGH - AH” -

~BG2_CF%) = 0 (17b)



The roots of equation (17b) are denoted by dy, d2’ and -dg. The direction

cosines corresponding to the total transforma tion are obtained from solutions of

ARG\ [ey 1
GHC @, a3y

etc. The principal equation of the cone is then

2 2
d X + d2y2 - dg2° = 0. (19)

The actual formulas for the direction cosines and their coding as used in the
problem are given in detail in Appendix A and Table I~A. With the above results

taken into consideration, equation (11) may now be written as

3/ 2 2
IN2 [T - vg-uy) +(vy ~uy) + (v, -u )ﬂ
ni(Xl, Yl’ Zl) = n, <7r—> /e [ x X y oy zZ "z dvxdvydvz,

(20)
with
u, = (u sin @) @, + (u cos @) a1 (a)
uy = (u sin @) @, + (u cos @) g (b) (21)
u, = (u sin @) a3 t (u cos @) agq (e)

To exclude the particles within the shadow cone it is necessary that certain con-

ditions be satisfied (5), namely,

10



vz < = __il‘_'_. (22)

2 2 2 2 2
/vx'*'vy+vz p +L

Here, L is the height of the cone defined in such a way that the base passes
through the origin of the original coordinate system (X, Y, Z) and p is the radius
vector of the ellipse defined by the plane z = - L. The distance L is also equal

to the projection of the position vector, ﬁ(Xl, Y Zl) on the principal axis

1’
( z axis) of the cone. Since the direction cosines of the latter are known, this

gives

L = (1/13X1 + 023 Yl + Aaq Z1 . (23)

From equation (19), the equation of the elliptical base of the cone becomes

B D

(& %
Obviously the major and minor axes of the ellipse are L and

= 1. (24)

Y
2
L —l—- respectively; therefore, in terms of polar coordinates

dg

2 =19 2 [4, +(d; - dy) cos2] ", (25)

11



where /( is always measured from the positive semi-major axis ( x axis) of the

The condition specified by equation (22) may now be written as

%
¢ - | L | (Vz N vz)l/z : Vi+v§) 2 [d2+(d1 -d,) cosz{l 1,
7 (o)

base of the cone.

(26)

©

where & equals the limiting value of v,. Then equation (20) may be written as

+% +o &
2
(--) f j f exp[ {(v —u) +(v -u) +(vz-uz)}] dedVdeZ-
-9
(27)
Integration over v, can be carried out directly to yield
+a) + 2
_ / om0’ + ry-uy)”]
n, = J X
i
L] 2 2%k
X erf [——p— (vX+vy) - u, dvxdvy. (28)
If the following mathematical transformations are now made (5),
1
v, = v_cosX = u2--u2 /2 @
% ) Uy 7 cos
(29)
o . (2 2\ .
vy TV, sin Y uy = Q -uz> sin (L

12



equation (28) becomes

® 5 2w
2 2
n n -(u _u) -V f 1
= _9 o z P 2 /4
. T e - 2 -
n - =+ 2% fvpe aw, ) oo [zvp(u w2 cos (2 ¢>] x
0 0

] 1
AR cos2] Ty
X erf 1 -y | dX (30)

(1%1) " :

which is also written in more convenient form for analysis as

2 2 (0] 2T
e-(u —uz) : -v2 1
n; - ng 1- T fvpe P dvp /exp [2Vp(u2"l1§)2 cos (ﬂ-‘#)] X
0 0
_ )
2 [dz +(d; -dy) cosz;{f] 1/2
X erfc T -u, |dX L (31)

B (! dg |> /o

Positive ion distributions in the wake are shown in Figures (2, 5, 8, 10, and 13).
Equation (31) will be used as a source term in Poisson's equation; however, it is

first necessary to determine the potential of the satellite.

Satellite Potential

For a particular angle of attack, the potential of the satellite will be constant;

therefore, the total flux of ions and electrons to the surface must be equal. Since

13



an exact calculation of fluxes is extremely difficult, approximations must be used.

The equation for the flux per unit area is

1 2
n 2 /2 -
d]?‘i . o (2% {e s T u(1+erfu)} . (32)

ofr M
The accretion of positive charge is due mainly to the ""ram' effect of the ions over
the frontal area of the satellite. Consequently, the total ion flux may be approxi-
mated by multiplying the flux per unit area by the cross-sectional area the satel-
lite presents to the mean flow. The frontal area of the prolate spheroid at angle
of attack, or the cross-sectional area of the enveloping stream tube, is derived in

Appendix B. Hence, the total ion flux is

s 1 2
Fy -1-1-9—- (Ef_ ﬂaz[z’: cos2 a+ 1] /2 [e—u + [7 u(l+erf u)] (33)
- M
2/1r

The total electron flux is calculated by considering the satellite to be at rest
relative to the electrons, and using the equilibrium electron distribution function in
the presence of the satellite potential field. The flux per unit area is then uniform

over the satellite surface and is given by

1/,
dF. = > <-29— o P/ 0 (34)
e 2‘/7? m

where ¢0 is the surface potential of the satellite. The total flux is found by multi-

plying equation (34) by the total surface area of the satellite or,

14



n 20\ 1
F, = — (——— o Po/0 [zwaz + 4qa? ST € e] (35)

2fr ™ €
(o2 - az)llz
where € = ————  the eccentricity of the prolate spheroid.
c

Since c¢ = 2a in the present case

€ =t = T (36)

Equating equations (33) and (35) and taking the logarithm of both sides yields

_ . o A\
2 (M/m) l2 <1 + 2 _s_1_n__€>
0 €
B, = — log (37)
e 2 rears
L(e + Jr erfu) [3cos” a+l
For u > 1, equation (37) may be approximated by
! 1N
(26/m) 2 (14,8 ¢
g = Lig | F (39
o - 2
© L\/w u J3cos a+1

4. Electron Density

Determination of the electron density distribution in the medium surrounding

15



the satellite and in the wake is obtained through the use of Poisson's equations,

(equation (3)). By rewriting this equation in the form

o 2 €
P = = [ne - ni]
and substituting equations (5) and (31), Poisson's equation is expressed in terms of

the parameters of the problem, namely,

5 n e 0 ~(u* -u )
vg = ?0_ PO, e T ffvp exp[év (uz_uz)% cos (X - (/)]

20 Y%
v_|d, +(d, -d,) cosZ| 2
2
X erfc[p[ 1 2 ]

(1)

Then using equation (38) and an iteration procedure, quasi-self-consistent solu-

- uzJ de dx (39)

tions of equation (39) for the values of § are obtained. Substitution of these values
of ¢ into equation (5) give the corresponding values of the electron density, ne.
Electron density distributions in the wake are shown in Figures 3, 6, 9, 11, and

14.

16



III

NUMERICAL PROCEDURES FOR DETERMINING THE ELECTRON, ION,
AND EQUIPOTENTIAL DISTRIBUTIONS

The numerical analysis utilized both IBM 709 and 7090 electronic computers.
The programming was performed by the Computation Department of the Institute of
Science and Technology, and this work is described in detail in a separate report
(8). Only a brief summary will be given here.

The computational program falls naturally into two main parts: the deter-
mination of the ion densities as given by equation (31) and the electron densities
from the solution of equation (39). Only normalized values of densities are of

interest and are denoted by
g = njy/n, and h = ng/n, = ee¢/6' (40)

In determining the g values, the characteristic cubic equation (17b) was
solved numerically on the computer and the direction cosines obtained according
to the formulas given in Appendix A. The double integral of equation (31) was
evaluated using Simpson's rule. The limit 0 to oo was replaced by 0 to 4,
the latter condition being determined by trial and error convergence tests of

equation (31).
The second major phase of the program was the solution of Poisson's

equation using the Gauss iterative procedure (9). The following formula was used:

17



N, 11 (M P ey, Pe-uem
(a8, hihy  kiky 13l hg(hythg) by (hythy)

+ ¢(Q’1 B+1,Y) + ¢(a’1 ,B-1,7) + ¢(a’1 . B.¥+1) + ¢(Q1 ,B8,7-1) +
1
ky(kp+ky) ki (ktky  L(ely)  13(1+ 1)

N_
1 g@_f il
- 6 -
g A G 8a, B/Y) ’ (41)
Here
N = Iteration number,
p (a,B8,v) = Value of the potential at the point («a,B,%),
A = noe/ €0
h, k, £ = Distance from a mesh point to the adjacent mesh point or the
boundary of the satellite, whichever is shorter, in the
X, Y, Z direction.
( )1 = Measurement made in a positive direction.
()9 = Measurement made in a negative direction.

g(a, B,y) = Value of g at the point (a,8,7),
In performing the iteration process, the satellite and its flow field were
considered to be enclosed in a rectangular box which was subdivided by a three-

dimensional grid, the mesh size of which could be varied automatically. For all

18



angles of attack, the body centered axis (X, Y, Z) was used to orient the grid of the
box and initial box dimensions were determined by the distances required for the
ion densities to approach their ambient values. The value of the potential on all
surfaces of the box was chosen to be zero. In order to double the number of mesh
points near the satellite, the volume of the box was reduced, and the iteration
process repeated. This procedure was adopted because of the limited core storage
of the IBM 7090 computer.

Two such runs were made for each angle of attack. The initial lattice spac-
ing was one meter and the latter one-half meter. The initial values of the poten-

tials (™) were such as to make the electron density equal to the ion density or
K - 9
P = ©lng gy (42)

When data of the two runs were compared, good matching of the values of the
potential was obtained in regions remote from the satellite, i.e., at distances
greater than 3 ¢. This was not the case in the vicinity of the satellite where steep
potential gradients demand that a much finer mesh be used due to rapid variation of
the potential field. Since the present program was written for computer core stor-
age, use of a finer mesh size would have exceeded its storage capacity. Conversion
of the present program to utilize tape storage instead of core storage to obtain a

much higher accuracy in the computation of electron densities is planned.

19
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CONCLUSION AND DISCUSSION

In the previous sections, the motion of a conducting prolate spheroid in a
rarefied plasma was considered. Results of numerical calculations for a prolate
spheroid having a major axis of 4 meters and a minor axis of 2 meters and mov-
ing at 8 km/ sec at an altitude of 500 km have been plotted for angles of attack of
0°, 45°, and 90°. At this height the ambient temperature and electron density
are approximately 0.1 electron volts and 106 / cm3, respectively.

The ion distribution, subject to the approximations used, was successively
extended beyond the previous sphere case (5). The electron density was deter-
mined from an iterative solution of Poisson's equation and yields results which
are more realistic than those obtained using the assumption of equal electron-ion
densities in the wake. In the near wake the results for the electron density dis-
tribution are not as accurate as those in the far wake. This was due to the fact
that the computer program was originally written to utilize core storage, the
capacity of which was inadequate to accommodate the fine mesh needed to describe
the larger gradients. The program is to be converted to tape storage.

The diagrams present separate plots for the positive ion and electron den-

sity distributions and for the net charge distribution in the wake for each angle of

20



CONCLUSION AND DISCUSSION (Continued)
attack. Figures 2 through 14 are enclosed at the end of the report. Figures 2,
3, and 4 refer to the zero angle of attack case. Figures 5, 6, 7, 8, and 9 repre-
sent the a =45° case. The first three figures are representations of major plane
variations and the last two, of similar variations in the minor plane. Figures 10, 1],
12, 13, and 14 refer to the o =90° case and are arranged as in the a =45° case”
Comparison of the drawings illustrates the dependence of wake length on the
nature of the cross-sectional area the satellite presents to the mean flow. In ad-
dition, the depletion of both electron and ion densities immediately behind the sat-
ellite indicates a similar dependence. Due to their mobility, the electrons tend to
fill in the wake cavity much more rapidly than the ions, and this accounts for the
shallower gradients in their flow field. In the vicinity of the satellite, as pre-
viously mentioned, the mesh size was too large to give a proper representation of
sheath thickness on the frontal region of the satellite. The fact that a sheath
thickness greater than reality is calculated means that indicated gradients are
shallower than they should be while total populations remain unchanged. There-
fore, the accuracy of the electron density calculation could be improved by the use
of a smaller mesh length. To emphasize this point, the flow lines around the
front of the satellite have been omitted in the drawings. It should be noted that as

the mesh size decreases, the flow field contour lines near the satellite will move

*See page 2 for explanatory note on @ = 45° case,

21



CONCLUSION AND DISCUSSION (Continued)

progressively closer to the body until the mesh size becomes the order of a Debye
length.

The satellite potential for each angle of attack was determined on the basis of
equal total ion and electron fluxes. The values of § o for the three angles of attack

are listed below.

Angle of Attack (Q) Satelht(zvlo’i)g,;ntlal (¢0 )
0° -0.36
45° -0.33
90° -0.29

Since the total electron flux is constant and independent of angle of attack
while for ions the frontal area is angle of attack dependent (the maximum oc-
curring at 900), the negative potential will decrease in magnitude with increasing
angle of attack. The calculated results are of the same order of magnitude as the
experimental values given by Bourdeau, et a1, (7) for a satellite which approxi-
mated the shape of an oblate spheroid. Since the existence of an electron shadow-
ing effect would tend to reduce the total electron accretion on the surface, and

since present results take into account neither the effect of the earth's magnetic

22



CONCLUSION AND DISCUSSION (Continued)

field nor the photo-electric effect, which would tend to lower the magnitude of the
potentials, it appears that the results given here are reasonable for the level of
approximation being used.

It should be noted that while equipotential contours have not been drawn, these
are similar to those for the electron density, and their magnitude can be obtained
from § =(6/e) log (n /n).

Figures 4, 7, and 12 illustrate the net charge distribution and show the
plasma sheath characteristics in the wake. In general, the wake sheath consists of
a negative inner core of conical shape surrounded by a positive layer. An interest-
ing feature in the wake is the nature of the maximum negative density contours
which are centered along the axis of mean flow for zero angle of attack but move
off the axis at a = 90° toward the top of the satellite and to an intermediate posi-
tion at o =45°.

Since satellites in general are not spherical, the results of the present work
should provide a better understanding of the flow field associated with satellites
and thereby permit a better evaluation of ionospheric measurements made aboard
such vehicles. An extension of this work would include a study of the flow fields
of prolate spheroids of large eccentricities, which approximate cylinders, as well

as the effects of dielectric surfaces instead of perfect conductors. Refinement of
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CONCLUSION AND DISCUSSION (Concluded)

the iteration program to obtain results which may be used to investigate approxi-
mate methods of solution to reduce the time and effort required to attain satisfac-

tory results is also contemplated.
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APPENDIX A

EQUATIONS FOR DIRECTION COSINES

The cubic characteristic equation is solved numerically for the three roots,

and the resulting eigenvalues are kept in the following form:

d1 = the smaller positive root,
d2 = the larger positive root,
d3 = the single negative root.

The direction cosines are evaluated according to the following scheme:
A. For j=1and3,

[Fr -a(B -d))]
b {[FH "G(B- dj)]z + [FG - H(a - dj)]‘2 + [F2 - (a- d,)(B - dj)]z}l/z

’

[FG - m(a -a))
a5, |
ZJ {[FG mh ) -0 ) 5 - 4 -apen -dj)]z}l/z

[FZ - (A - d)(B - dj)_]

& {[FZ - (& - d)(® - )* + [FH - 6(B - 4] + [FG - H(A—dj)]z}lé '
For j =2,
. F (A -dp) 0.

12 - [(A—d2)2+F2]15 b [:(A-dz)2+F2J1/2; “32
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B. Whenever the point of interest is on one of the coordinate planes, then

if X =0,
all"O,
@, =1,
013"0,
if y =0,
G
o

H
o =
21 ,
[(B -d1)2‘+H2] %
=0
%2
H

oy = 0,
aZZ =1,
=0
23 !
@ =0,
(A -dy)
%27 T 2, 2\’
l_(A —dz) +F ] 2
(A -dg)
o

23" [(A —d3)2+F7];§

28

_ (B -dl)

(04

o = (B —d3)
33 .2 2
[(B -d3) +H ];5

)

(A-dy)
03 = 2 2 ’
[G +(A -dl) ]}'z

(A -dj)

e ra —d3)2] %




The signs used are given in Table A-I. In this table a polarity sign alone
indicates that the formulas in Appendix A are to be used. However, when a

value such as zero or unity appears, this quantity is to be used directly with-

out any additional equations.

TABLE A-I

Direction Cosine Polarity Coding

0 |72 41| % |1 || Yo | %2 | %2 Y3 | %3 | %3
b
+ + + + + - - + 0 + + +
+ + - - - - - + 0 + + -
+ - + + - - + + 0 + - +
+ - - - + - + + 0 + - -
- - + - - - + - 0 - - +
- - - + + - + - 0 - - -
—r.___
- + + - + - - - 0 - + +
- + - + + - - - 0 - + -
0 + + 0 + - -1 0 0 0 + +
0 + - 0 - E - -1 0 0 0 + -
t
1
0 -] - 0 + | - | +1 0 0 0 - -
—_—— . —_—— - - L.
|
0 - + 0 - - +1 0 0 0 - +
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TABLE A-I (Concluded)

Direction Cosine Polarity Coding

X “11 [ %1 [ %1 | %12 | %22 | %32 %13 |%23 | %3
+ 0 0 -1 - + Q0 + + 0
* 0 0 -1 + + 0 + N 0
- oo | -1+ | - o | -1]-1o0o
- 0| 0 -1 - - 0 - + 0
+ + 0 - 0 +1 0 + 0 +
+ - 0 - 0 +1 0 + 0 -
- + | 0 -l o -1 {0 | - |o |-
- - 0 - 0 -1 0 - 0 +
0 +11 o o] o |+1 | o 0 0 |+1
0 1] 0 ol o |-11]o 0 0 | -1
+ 0 0 -14 0 +1 0 | +1 0 0
- 0| o -1 0 | -1 0 | -1 0 0
0 0| o -1 -1 0| o o |+1 | 0
0 0 0 -1 41 0 0 0 -1 0
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APPENDIX B

FRONTAL AREA OF PROLATE SPHEROID AS FUNCTION OF ANGLE OF ATTACK

X
Zl N
U' \
a
k‘\
Z G G -7
X1
a
>
>
-X
Y1
Figure B-1

The equation for the enveloping stream tube may be written as:

}_(_2_.+Y_2_.+2_2_.— _/4_2__’_ 112_ - 'lX + nZ—]Z: 0 (B—l)
2 2 2 2 2 az CZJ )

a a (] q I

The enveloping stream tube is then oriented along the principal axis,

namely,
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Z z1 cos a - x1 sin o zln —xl,l
(B-2)

X Z Sina+x1 CcoS o

+xXn
1 o b+ x)
To get the cross-sectional area of the ellipse we merely set z 1 ° 0, which
then yields an equation for the ellipse of the form.
(4-% 2
2 2 2 2 2
x5 n° | 4 _lznz a c + I oo (B-3)
Y !2 nZ a2
( + 2
2 2
L a c

If we set ¢ = 2a, according to our specific problems, equation (B-3) becomes

2 2

Xl yl

+ — =1, (B4)
aZ

a2 (4[2 +1n9

One notes that

if @ = 0, then x?+y? = az’ a circle;

and XZ yz
. — an© 1 1\ : -
ife = 907, then (4—;2— + ;2—> =1, an ellipse. (B-5)

Expressed in terms of angle of attack (@), the frontal area intercepted by the cylin-

drical stream tube is given by

1
A = 7ra2 (3 sin a + 1) é . (B-6)
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ANGLE OF ATTACK = O°
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