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Abstract

Species abundance distributions (SADs) have played a historical role in the development of

community ecology. They summarize information about the number and the relative

abundance of the species encountered in a sample from a given community. For years

ecologists have developed theory to characterize species abundance patterns, and the study

of these patterns has received special attention in recent years. In particular, ecologists have

developed statistical sampling theories to predict the SAD expected in a sample taken from

a region. Here, we emphasize an important limitation of all current sampling theories: they

ignore species identity. We present an alternative formulation of statistical sampling theory

that incorporates species asymmetries in sampling and dynamics, and relate, in a general

way, the community-level SAD to the distribution of population abundances of the species

integrating the community. We illustrate the theory on a stochastic community model that

can accommodate species asymmetry. Finally, we discuss the potentially important role of

species asymmetries in shaping recently observed multi-humped SADs and in comparisons

of the relative success of niche and neutral theories at predicting SADs.
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I N T R O D U C T I O N

Most ecologists agree that species abundance distributions

(SADs) represent at least an empirical tool to draw a rough

characterization of ecological communities (McGill et al.

2007). In recent years, species abundance patterns have

played a relevant role in the search for empirical evidence to

support particular theories (Hubbell 2001; McGill 2003;

Volkov et al. 2003, 2005; Azaele et al. 2006). It has been

often argued that the same patterns of species abundances

can arise through different underlying processes (Cohen

1968; Chave et al. 2002; Purves & Pacala 2006), and,

currently, there seems to be general consensus that SADs

provide little information on these processes. However,

difficulties in identifying the leading process giving rise to a

certain ecological pattern are in part caused by the

difficulties in providing sound statistical approaches and

alternative models. General stochastic dynamical �niche�
models that are able to make quantitative predictions about

the SAD pattern are still lacking (Alonso et al. 2006, but see

Tilman 2004 and Walker 2007). Therefore, it has been

difficult to empirically test such models and compare them

to their neutral counterparts. For instance, there still exists

no satisfactory alternative null model to neutrality (Gotelli &

McGill 2006) that incorporates asymmetry in dynamics and

sampling. Moreover, the common statistical sampling theory

that has been used to carry out these analyses makes some

implicit assumptions that have been largely overlooked.

Here, we emphasize one such limitation of all current

sampling theories (Fisher et al. 1943; Pielou 1969; Bulmer

1974; Dewdney 1998; Lande et al. 2003; Alonso & McKane

2004; Etienne & Alonso 2005; Green & Plotkin 2007): they

ignore species identity, i.e. they assume species symmetry.

Evidently, species are different in their life-history traits,

such as dispersal and movement. These inherent properties,

which are independent from the observer’s eye, will

determine the distribution of species on a landscape and,

hence, the probability of observing a number of individuals

of a species from a given sampled area. This distribution

arises from the interplay between dispersal (both passive

and active), abiotic habitat preferences, and both intra- and

inter-specific interactions, processes which all can be very

species-specific. Moreover, global processes and environ-

mental variability may constrain species abundances at the
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regional level also in a species-specific and diverse manner.

Apart from these inherent characteristics, species may

simply have different probabilities of being picked up in a

sample. They may vary in how easily they are captured, or in

size and hence visibility. Therefore, these two sources of

species-specificity – inherent and observer-induced differ-

ences – warrant an asymmetric treatment of abundances at a

given sampling scale.

To our knowledge only one theoretical contribution

considers the problem of the distribution of species

abundances in the context of a fully asymmetric species

assemblage, an idiosyncratic community (Pueyo et al. 2007).

If species are idiosyncratic, i.e. essentially different from

each other, these idiosyncrasies somehow balance out and

simple descriptions emerge: the most revisited SAD

models, the logseries and the lognormal, are shown to

arise as the most likely curves under biologically reasonable

global constraints acting on the community. However,

Pueyo et al.�s (2007) approach is fully statistical. It is not

meant to study particular mechanisms, and does not focus

on the particularities of the sampling process. Although

this generality clearly is the main strength of MaxEnt

methods (Jaynes 1968), the approach developed by Pueyo

et al. (2007) is not designed to investigate plausible

dynamical processes and alternative models controlling

species abundances and community composition in eco-

logical communities.

In this paper we explain the ways in which classical and

current sampling theories ignore the possibility of species

asymmetry, and discuss the potential for it to lead to multi-

humped sample SADs that ecologists have recently

observed (Magurran & Henderson 2003; Marquet et al.

2004; Gray et al. 2005; Labra et al. 2005). Furthermore, we

show how the community-level SAD emerges as a sum over

the distribution of population abundances of the species

integrating the community. In this way, the species

ensemble can be described by a community-level property:

the SAD curve. As different ecological processes, such as

competition, mortality, immigration, niche differentiation

and species interactions determine species-level dynamics,

our approach provides a natural link and a data-driven

empirical framework to investigate the relationship between

such underlying processes and SAD patterns. We also point

out the importance of this issue when measuring the success

of niche theory predictions on the SAD against that of

neutral theory predictions, a recently popular activity that

ecologists have carried out under the assumption of species

symmetry (McGill 2003, 2006; Volkov et al. 2003).

Our paper is organized in three sections. In the first

section, we explain how to modify existing statistical

sampling theory to take into account species asymmetries,

and how an SAD, as a community-level pattern, can in

general be related to the underlying population dynamics of

the species constituting the community. In the second

section, as an example, we apply the theory to a stochastic

model community where species differ and perform an

independent birth–death–immigration process with density

dependence. We show how asymmetry can arise through

species differences in both dynamics and species-specific

sampling properties. In the third section, we summarize our

results and discuss their relevance in the search for the main

determinants of community dynamics and organization.

S A M P L I N G T H E O R Y F O R S A D S

The SAD describes the number (or fraction) of species

represented by a given abundance. For a given region,

observations of this distribution depends on the spatial scale

at which that region is sampled, or the number of

individuals collected if sampling is performed randomly in

space. Sampling models derive the form of the sample SAD

in terms of the regional SAD and the quantitative impacts of

sampling on species� abundances (see Table 1).

Historically, SADs have had a dual interpretation either as

the expected fraction or the average number of species with

a given abundance in a sample given a certain sampling

effort, for instance, the total area sampled, the total time

invested, the total number of individuals collected, etc.

Here, we focus on sample SADs defined as the expected or

average number of species with a given number of

individuals. We explore equivalent expressions for the

fraction or probability of observing a species with a given

number of individuals in a sample in Appendix S1.

In this work, we adopt the following definitions: P( y) is

the probability for a species to be represented by y

individuals in a community. This community can be either

a whole region or a locally assembled community, from

which samples are taken. Throughout this paper, we will call

it �regional community� or simply �community�. Particular

applications will make it clear what we mean in each case.

We further define E(a)[Sn] as the sample SAD, i.e. the

expected number of species that are represented by n

individuals in a sample from a community or region at a

given spatial scale or sampling effort, a. We further define

P(a)(i)(n) as the probability of observing a species i with

abundance n in a sample at a given spatial scale or sampling

effort, a.

Symmetry and species independence

The study of the distribution of species abundance in

complex communities usually starts with a list of species

abundances in observed samples from an ecological survey.

This information is fully represented by a sample abundance

vector, ~n � ðn1; n2; . . . ; nS ), where ni is the abundance of

species i in a sample which will have resulted from sampling
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a given community with a given sampling effort. A

particular spatial scale defines the community under study.

A common way to summarize this information is to count

how many species are represented by one individual

(singletons), S1, two individuals, S2, … , until Sm, which is

the number of species (usually only one – the most common

one) having observed with m individuals, where m is the

highest abundance observed in the sample.

Suppose now that we are given an SAD model, such as

the logseries (Fisher et al. 1943) or the Poisson lognormal

(Bulmer 1974). In general, an abundance model provides a

probability of observing a species with abundance n is a

sample, P(n|Q), which depends on some model parameters

Q. A well-established method to fit the model to our

abundance data is to use a maximum likelihood approach.

All we need is to build a likelihood function which is

proportional to the probability of obtaining the observed

data set under model assumptions.

In this context, a common likelihood function is given by

the multinomial distribution (Chao & Bunge 2002; Alonso

& McKane 2004; Etienne et al. 2007):

PfS1; . . . ; Sm jHg ¼
S !

S1! � � � Sm!
Pð1 jHÞS1 � � �Pðm jHÞSm ;

ð1Þ

where S is the total number of species observed in the

sample. This expression gives the probability of observing a

given data set, S1,…,Sm, when sampling a fixed number of

species, S, which can be represented by a conditional

probability given S (Etienne & Olff 2005).

As we have observed a singleton species S1 times, a

species with two individuals S2 times, and so on, and the

abundance model provides the probabilities of observing a

singleton species, P(1|Q), a species with two individuals,

P(2|Q), and so on, eqn (1) simply provides the probability

of obtaining the empirical data, S1, … , Sm, for a given choice

of model parameters, Q. One can show, for instance, that if

the abundance model is the logseries, Fisher et al.�s (1943)

recipe to calculate model parameters is recovered by

maximization of this function over parameter values given

the data. Therefore, Fisher et al.�s estimates are actually the

maximum likelihood estimates of model parameters based

on the likelihood function eqn (1) (see Appendix S3).

Likelihoods are important because when we are studying

two alternative abundance models, we can ask: �How

probable are the data given the model?� and use this

information as an objective model selection criterion

(Hilborn & Mangel 1997, p. 7).

However, an implication of the use of this multinomial

likelihood, as well as similar likelihood functions in this

Table 1 Sampling theory for SADs. Main examples of statistical sample SADs. Most of these distributions have been introduced as

compound statistical distributions without further interpretation

Reference

Type of sampling,

P(a)(n|y)

Regional or community-level

SAD, P( y)

1. Logseries, Fisher et al. (1943) Poissonian Gamma distribution

2. Poisson-lognormal, Bulmer (1974) Poissonian Lognormal

3. Dewdney (1998) Hypergeometric Generic

4. Lande et al. (2003) Poissonian and intraspecific

overdispersion

Generic

5. Neutral theory, Volkov et al. (2003) Dispersal-limited Gamma distribution

6. Neutral theory, Alonso & McKane (2004) Dispersal-limited One-dimensional representation

of Ewens distribution

7. Neutral theory, Etienne formula, Etienne &

Olff (2004), Etienne (2005), Etienne &

Alonso (2005)

Dispersal-limited Multivariate full representation

of Ewens distribution

8. Green & Plotkin (2007) Negative binomial Generic

Here, we provide a common description in terms of the type of sampling and the regional community SAD assumed. Note that both Fisher

et al. (1943) and Volkov et al. (2003) considered basically the same distribution for the regional SAD: a continuous representation of a

logseries, i.e. a Gamma distribution where one of the parameters is taken to be vanishingly small. While all these expressions consider the

sample SAD, PS(n), to be evaluated for n ¼ 0,1,…,, the abundance distribution at the regional level is assumed to be either a continuous or a

discrete function of regional abundances. In essence, all these formulas entail a summation over all possible abundances in the region

represented by a certain probability distribution. This summation can be carried out either by an integral, when the distribution at the regional

scale is represented by a continuous distribution (1, 2, 4, 5, 6, 8), or by a true discrete sum, when regional abundances are assumed to take

discrete values instead (3, 7, see also the example below). In any case, each of these expressions generally assume that the probability for a

species to reach certain abundance at the regional scale is the same regardless of species identity. In neutral theory this symmetry is a

consequence of the theory’s first principles. Unlike the other expressions, the Etienne sampling formula (7) can be seen as a multivariate

sample SAD (see eqn 3). These multivariate expressions have been generally called sampling formulas (Etienne et al. 2007).
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context (Bulmer 1974), is that all rely on the assumption that

the species abundances in the sample, n1, … , nS, are

independent identically distributed random variables. In

other words, we are assuming that the same underlying

abundance distribution holds independently for all sampled

species regardless of species identity. These two underlying

quite strong assumptions – symmetry and species indepen-

dence – have been largely overlooked or never clearly stated

in common applications (but see Etienne & Olff 2004;

Etienne 2005; Etienne & Alonso 2005; Etienne & Olff 2005

and Etienne 2007 with regard to species interdependence

and the neutral sampling theory). In the next section we

extend current sampling theory to accommodate species

asymmetries.

An asymmetric sampling theory

To take into account species asymmetry, we first note that

the regional community-level SAD, P( y), can be written as

the mean over the species-level abundance distributions

P(i)(y) of each of the S species (labelled by the subscript i)

present in the region. This was already noted by Volkov

et al. (2003) where a non-interactive community was

assumed. However, the same holds when species within

the community interact and abundances are described by a

joint multivariate abundance distribution (see Appendix S1

for a proof of this). We call this expression an �ensemble

formula� (see Table 2) because it summarizes information

about the species ensemble defining the community:

Pð yÞ ¼ 1

S

XS

i¼1

P ðiÞð yÞ ð2Þ

For each species, P (i )( y) is the probability for that species i

to have y individuals at the regional community. This

probability can be thought of as describing a distribution

across regions or over time. The regional abundance

distributions (at the either the species- or community-level)

are purely theoretical. They are not directly accessible by the

observer but only indirectly through sampling.

The effect of correlations between the abundances of

different species (species interdependence) is potentially

quite important when species differ. In the case of species

symmetry, species interdependence arising from zero-sum

dynamics leads to a sampling theory which is equivalent to

the case of species independence under reasonable

assumptions (Etienne et al. 2007). A complete sampling

theory that preserves species identity must consider the

multivariate probability distribution for species� abun-

dances (Etienne et al. 2007), and rely, accordingly, on a

multivariate version (Etienne et al. 2007) of classical

sampling distributions (Fisher et al. 1943; Pielou 1969;

Bulmer 1974; Dewdney 1998; Lande et al. 2003; Volkov

et al. 2003; Alonso & McKane 2004; Etienne & Alonso

2005; Green & Plotkin 2007). This multivariate expression

is given by (note that this is an application of the law of

total probability):

P ðaÞð~nÞ ¼
Z

PðaÞð~n j~yÞPð~yÞ d~y ð3Þ

where ~n � ðn1; n2; . . . ; nS ) and ~y � ðy1; y2; . . . ; yS ) are the

abundance vectors in a sample at spatial scale a and in the

regional community, respectively. Pð~y ) is the probability for

the community to be described by an abundance vector~y,
P ðaÞð~n) is the probability to obtain an abundance vector~n in

a sample at scale a, and PðaÞð~n j~y) is a sampling transfor-

mation distribution which characterizes the probability of

obtaining the abundance vector~n in a sample at scale a given

that the regional community abundances are exactly

described by the abundance vector~y.
In Appendix S1, we show how to relate a given

multivariate sample abundance distribution, PðaÞð~n), to a

sample SAD. Some progress can be made with this

multidimensional approach (Etienne & Alonso 2005;

Etienne et al. 2007), but this requires specific assumptions

about the sampling process and the spatial dynamics of the

community. In this paper, we focus on non-multivariate

SADs where species differ both in the sampling process and

in the inherent species specific regional abundance distri-

butions. In general terms, an equation analogous to eqn (2),

Table 2 Ensemble formulas for SADs. The community-level SAD arises from an ensemble average over the distributions for all species in

the system

Species at abundance (n) Regional Sample (S is known)

Expected number (average) E½Sy� ¼
PS

i¼1 PðiÞðyÞ EðaÞ½Sn� ¼
PS

i¼1 PðaÞðiÞðnÞ
Probability (fraction) PðyÞ ¼ 1

S

PS
i¼1 PðiÞðyÞ PðaÞðnÞ ¼ 1

S

PS
i¼1 PðaÞðiÞðnÞ

Here, we summarize the expressions for the ensemble averages of the sample and the region when the total number of species in the region is

known. These are the expressions we have used in the analysis of our model community. At the sample level, these expressions become more

complicated if we do not know the regional total richness, S, or are dealing with expectations for the fraction of abundances with abundance n

in the sample or both (see Appendix S1).
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but at the sampling scale a can also be found (see Table 2

and Appendix S1):

EðaÞ½Sn� ¼
XS

i¼1

P ðaÞðiÞðnÞ ð4Þ

where S is the total number of species in the regional

community and P(a)(i)(n) is the probability for a species i to

have n individuals in a sample taken at scale (or effort) a. If

one does not have any knowledge about the total number of

species in the region, this sum becomes more complicated

(see Appendix S1).

If species are sampled independently, we can take

asymmetry into consideration by expressing the sample

abundance distribution of each species, appearing in eqn (4)

as

P ðaÞðiÞðnÞ ¼
Z

P ðaÞðiÞðn j yÞPðiÞðyÞ dy ð5Þ

In principle, if a multivariate sample distribution, P ðaÞð~n),

can be calculated, we can check to what extent the

independent sampling assumption holds. In theory we

could also recover P(a)(i)(n) by calculating the corresponding

marginal probability distribution from the joint distribution

for a sample at sampling effort a, PðaÞð~n):

P ðaÞðiÞðnÞ ¼
X
fnjgj 6¼i

P ðaÞð~nÞ ð6Þ

where the sum is performed over all possible abundance

combinations, {nj}, with species i being represented

by exactly n individuals. In many practical cases, the

computation of this sum will be complicated if not

impossible.

By substituting eqn (5) into eqn (4), we obtain that, in the

case of species asymmetry and independent sampling, the

expected sample SAD takes the form:

EðaÞ½Sn� ¼
XS

i¼1

Z 1
0

P ðaÞðiÞðn j yÞPðiÞð yÞ dy ð7Þ

where P(a)(i)(n|y) is the species-specific sampling transfor-

mation distribution which, depending on the nature of the

sampling, can model both intraspecific aggregation and

species-specific detection probabilities.

This expression can be seen as an ensemble sum over

species-specific sampling abundance distributions where

each term takes into consideration inherent relative differ-

ences between species. Importantly, only particular distri-

butions preserve their shape under the assemblage proce-

dure represented by eqn (4) and related ensemble formulas

(see Table 2 and Appendix S1). For instance, power laws

with the same exponent are invariant under assemblage

(Pueyo 2006). Most distributions do not preserve their

shape under assemblage. The assemblage of a number of

lognormal distributions with different variances does not

produce a lognormal (Allen et al. 2001), in general. In fact,

we can only be sure that the shape will be preserved if we

can assume species symmetry. In this trivial case, the

superindex (i) can be dropped in eqn (7), all terms become

identical, and we recover a symmetric expression for the

sample SAD, E(a)[Sn]:

EðaÞ½Sn� ¼ S

Z 1
0

PðaÞðn j yÞPðyÞ dy ð8Þ

Current sampling theories do not consider a sampling

transformation distribution that explicitly depends on

species identity, and do not take into account species

differences in regional abundances either. They predict what

we observe in our samples without considering species

identity: all of them use the same basic formula for the

sample SAD (eqn 8). The expression given in eqn (7) is a

simple extension of previous theory. Importantly, it comes

from the more general eqn (4) under the assumption of

species being detected and sampled independently from one

another. In the next section we present a straightforward

application of this equation.

A S T O C H A S T I C M O D E L C O M M U N I T Y W I T H

D E N S I T Y D E P E N D E N C E

Here, we illustrate the use of ensemble formulas (eqns 2 and

4) to make a theoretical prediction of the community-level

sample SAD in terms of species-specific population

abundances in the region and sampling transformation

distributions at a given sampling effort. Our example

considers a community of S non-interacting species under-

going a simple birth–death–immigration process (Alonso &

McKane 2002). These stochastic population dynamics are

summarized in Box 1.

Our goal in this section is to show that if we assume that

species are inherently different either in sampling probabil-

ities or in species-specific dynamics, these differences

translate into a community-level sample SAD that can be

predicted by using our ensemble formulas (see Table 2). In

this way, the exact shape of this curve can be related to the

sampling and dynamical specific properties of the species in

the community. Therefore, in the context of stochastic

community process-based models of the kind presented in

Box 1, there is quite a tight correspondence between the

underlying process and the shape of the SAD curve.

Although two different processes can predict qualitatively

very similar shapes (see Figs 1 and 2) for the community-

level SAD, as these curves will be essentially different, it is

not theoretically impossible to sort out the most likely

process at work given some data. In practice, this is only
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Here we consider an ensemble of S species where each of

them performs an independent birth–death–immigration

process with density dependence (Alonso & McKane

2002). When species independence is assumed (Volkov

et al. 2005; Azaele et al. 2006), the dynamics of species

abundance can be described by a one-dimensional master

equation for the probability of that species attaining

abundance n at a given time t, P(i)(n,t). Usually it is said that

population abundances perform a random walk. This

approach has some advantages. First, it is possible to built

exact stochastic simulations by using a simple standard

algorithm (Gillespie 1976; Renshaw 1991). Second,

although the mathematics to treat with these kind of

equations can be complicated, model description is actually

very simple (see Table A1). For instance, the whole model

used to generate the results presented in Fig. A1 (and

Figs 1–3 in the main text), is described only by three

elemental processes that affect all individuals of all species:

Table A1 Stochastic community models. These are recent and classical community models based on the species independence assumption

as described by their total transition rates for either a decrease or an increase of one individual in population abundance

Reference

Birth and death transition rates

n fi n + 1 n fi n ) 1

1 Kendall (1948) b0n + m0 d0n

2 Hubbell (2001) b0 1� n
N

� �
ðn þ IpÞ b0

n
N
½ðN � nÞ þ I ð1� pÞ�

3 Volkov et al. (2005) b0n + c d0n + c

4 Azaele et al. (2006) b0n + c d0n ) c

5 In this article b0 1� n
N

� �
n þ m0ðN � n) d0n

Note that Hubbell’s standard model for the local community (Hubbell 2001) can be seen as a zero-sum reformulation of Kendall birth–

death–immigration classical model and it is equivalent to it at the stationary steady state (Etienne et al. 2007). Therefore, models 1 and 2

introduce basically the same kind of immigration-induced density dependence due to an independent term m0 in the birth rate. Models 3

and 4 introduce effectively also the same kind of density dependence due to the term c in the rates. Unlike the model presented here, none

of those is able to produce logistic growth towards a carrying capacity (see Fig. A1). Other ways of introducing density dependence are

also possible (Keeling 2000).
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Figure A1 Time evolution of two different species. Upper panels correspond to a low-immigration species invading an area where local

growth can barely compensate deaths – a sink. Parameter values are m0 ¼ 5.0 · 10)5, b0 ¼ 0.99, d0 ¼ 1 and N ¼ 104. The stochastic

trajectories – governed by the three rates given by eqns (A2)–(A4) – of two populations (red and blue) are shown in each case. When

immigration is very low, there are constant extinction and reinvasions. Lower panels correspond to a species that thrives in that area

reaching carrying capacity after invasion in a logistic almost deterministic fashion. Parameter values are m0 ¼ 10)3, b0 ¼ 1, d0 ¼ 0.5 and

N ¼ 104. On the right the corresponding steady-state probabilities for the species having abundance n at the steady-state are also shown.

The logseries shape is characteristic of the low-immigration species, while Gaussian fluctuations around the carrying capacity give rise to

the abundance distribution in the second case. These curves are calculated following Alonso & McKane (2002). In both cases, no

individual is present in the system at the initial time.

Box 1: The stochastic community model
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constrained by the statistical power associated with the

amount of data and the particular way they were collected.

For instance, if we have a single snapshot of the community,

it will be in general very difficult to tease apart alternative

models (Chave et al. 2006), but if we are provided either

sequential sampling in time or replication across space our

statistical power increases (Etienne 2007).

We have divided our study into two extreme scenarios:

(A) Species are symmetric in their dynamics but differ in

their sampling probabilities (Fig. 1), and (B) species differ in

their dynamics, but not in their inherent sampling proba-

bilities (Fig. 2). In reality, asymmetries arise both in the

dynamics and in the sampling probabilities.

For the sake of simplicity, independence in dynamics as

well as sampling is assumed. By assuming also that the

number of species in the region is known, we can calculate

the sample SAD or average number of species in a sample

with abundance n, E[Sn] (see eqn 4). Given that the regional

abundance distribution is discrete (see Box 1), the proba-

bility of contributing with n individuals to the sample for

each species can be written as:

PðaÞðiÞðnÞ ¼
XN
y¼n

P ðaÞðiÞðn j yÞP ðiÞðyÞ ð9Þ

where P(a)(i)(n|y) is a species-specific sampling distribution.

By substituting eqn (9) into eqn (4), we obtain:

EðaÞ½Sn� ¼
XS

i¼1

XN
y¼n

P ðaÞðiÞðn j yÞP ðiÞðyÞ ð10Þ

There is a potential number of individuals m out of the

total regional abundance y that will be collected in the

sample according to some probability distribution. This

potential number is determined by an overall sampling

effort, a. However, the actual number n will be usually

lower than m and, in general, will depend on a species-

specific detectability factor, pi. If pi ¼ 1, then the potential

number of individuals of that species at that sampling

1. Local birth: The percapita birth rate is assumed to be

density dependent:

bðiÞ ¼ b
ðiÞ
0 1� nðiÞ

N ðiÞ

� �
ðA1Þ

where N(i) is species-specific maximum carrying

capacity and b
ðiÞ
0 is basal percapita rate. Therefore, at

any time, the total probability for the species to in-

crease in one individual due to local births per unit

time is given by:

TB½nðiÞ þ 1 j nðiÞ� ¼ b
ðiÞ
0 1� nðiÞ

N ðiÞ

� �
nðiÞ ðA2Þ

2. Local death: The percapita death rate is assumed to be

density independent. Therefore, at any time, there is a

total probability for the species to decrease in one

individual due to death per unit time given by:

TD½nðiÞ � 1 j nðiÞ� ¼ d
ðiÞ
0 nðiÞ ðA3Þ

3. Immigration: Finally, there is also a total probability for

the community to receive an immigrant belonging to a

given species per unit time that depends on the degree

of saturation according to a species-specific maximum

carrying capacity, N(i):

TI½nðiÞ þ 1 j nðiÞ� ¼ m0ðN ðiÞ � nðiÞÞ ðA4Þ
These processes allow to define total probability rates of

population increase or decrease, gn ¼ TB[n + 1|n] +

TI[n + 1|n] and rn ¼ TD[n)1|n], respectively (see Ta-

ble A1). In turn, these total rates are used to build a master

equation (McKane et al. 2000; Volkov et al. 2003) from

which it is easy to see that a population governed by these

processes tends to a stationary abundance distribution.

Thus, each species abundance in the region will tend to a

well-defined stationary distribution, P(i)(n), that can be

calculated analytically (Alonso & McKane 2002) (see

Fig. A1). In addition, it can be also shown that average

population abundances are governed by (van Kampen

1992):

dhni
dt
¼ hgni � hrni ðA5Þ

When N is large, i.e. when Æn2æ»Ænæ2, eqn (A5) gives rise to

logistic growth towards a carrying capacity (see Fig. A1):

dhnðiÞi
dt
¼b
ðiÞ
0 1�hn

ðiÞi
N ðiÞ

� �
hnðiÞiþm

ðiÞ
0 ðN ðiÞ�hnðiÞiÞ�d

ðiÞ
0 hnðiÞi

ðA6Þ
Moreover, according to the stochastic rates above, we can

compare this process to other stochastic community

models from the literature which are also based on species

independence (see Table A1). In Fig. A1, we show the

time evolution of the abundance of two different species

and the corresponding species-level abundance distribu-

tions at the stationary steady state.

Box 1 (Continued)
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effort, m, can be fully detected (n ¼ m). In general, this can

be summarized as a compound distribution (see Appendix

S2):

P ðaÞðiÞðn j yÞ ¼
Xy

m¼n

P ðiÞðn jmÞP ðaÞðm j yÞ ð11Þ

If we assume that each individual enters the sample

according to a species-specific probability, pi, and we assume

that spatial aggregation is important, the compound

sampling distribution in eqn (11) can be written as a single

negative-binomial distribution with species-specific param-

eters a pi y and clumping parameter ki (see Appendix S2 for

further details):

P ðaÞðiÞðn j yÞ ¼ Cðnþ kiÞ
n!CðkiÞ

ai y

ai y þ ki

� �n
ki

ai y þ ki

� �ki

ð12Þ

where ai ¼ api.

In sum, a community-level sample SAD is fully deter-

mined by the abundance distributions of the species in the

region, P(i)(y), through eqn (10), and by a particular type of

sampling (for instance, eqns 11 and 12). These sampling

distributions assume a species-specific differential detect-

ability (under either random or negative binomial sampling

assumption, see Appendix S2), and have been used to

generate the predicted SADs for each scenario (right

column panels of Figs 1–3).

Scenario A

This scenario is an example of genuine asymmetric

sampling. We assume a symmetric community where all

species are described by the same regional abundance

distribution. However, we assume that the community can

be split into two groups of S1 and S2 species according to a

different detectability factor. By using again the general eqn

(10) and (9), we observe that the SAD can be written under

this scenario as:

EðaÞ½Sn� ¼
XN
y¼n

S1PðaÞðp1Þðn j yÞ þ S2P ðaÞðp2Þðn j yÞ
� 	

Pðy jHÞ

ð13Þ
where Q stands for model parameter values, b0, d0, m0, N

(see Box 1) describing the species at the region R. The

sampling distributions P(a)(pi)(n|y) are given by eqn (12).

In Fig. 1 we show the results when the detectability of

one half of the species is 90% less than the detectability of

the other half. Note that panels B0 and C0 in Fig. 1 are

identical, but sampling differences determine different

shapes for the assembled sample SAD, panels B1 and C1.

The only difference between these two plots is the clumping

parameter of the negative binomial. The sample SAD for

case B has a logseries-like shape, while for the case C the

sample SAD is bimodal. In contrast, panels A0 and B0 are

very different, but because they also differ in their sampling

properties (the clumping parameter), they actually show very

similar shapes in the sample, panels A1 and B1. See Box 1,

the caption of Fig. 1, and Appendix S2 for further details.

Scenario B

In this scenario we have assumed a heterogeneous

community where species belong to distinct guilds. We
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Figure 1 Scenario A. Here we show how

asymmetric negative binomial sampling

modifies the shape of an underlying regional

distribution. The regional community is an

ensemble of 100 species performing a birth–

death dynamics (see Box 1) with identical

parameters (A) m0 ¼ 10)4, b0 ¼ 0.99 and

d0 ¼ 1; (B, C) m0 ¼ 10)3, b0 ¼ 0.99 and

d0 ¼ 1. N ¼ 104 in all three cases. In the

three cases, we consider two sampling-

induced groups of 50 species each (a ¼
0.1, p1 ¼ 1 and a ¼ 0.1 and p2 ¼ 0.1),

which can be detected in the sample SAD

only in case C. The clumping parameter of

the negative binomial is 100, 1 and 100 in

the cases A, B and C, respectively. The

curves resulting from simulation when the

community is sampled at t ¼ 100 time units

are show in thin lines (panels A1, B1 and

C1).

100 D. Alonso, A. Ostling and R. S. Etienne Idea and Perspective

� 2007 Blackwell Publishing Ltd/CNRS



consider a resident community made up of SR species that

are constantly reinvading the community and relatively

occasional SO species that migrate into the community at a

much lower rate. Hence, immigration rate characterizes two

subguilds within the community. This framework has been

shown to be relevant both in theoretical and empirical
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Figure 3 Time evolution. Here we show the time evolution of sample abundance distribution until a steady-state stationary sample SAD arises

(thick lines). Both the time-dependent SAD (thin lines at three different sampling times, see panel A1) and the stationary distribution can be

predicted analytically. Binomial symmetric sampling has been used in this example, with a ¼ 0.1, pi ¼ 1 for all species in the system.

Parameter values are N ¼ 104, m0 ¼ 10)3, b0 ¼ 1 and d0 ¼ 0.99.
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Figure 2 Scenario B. Here we show how symmetric sampling – i.e. same sampling parameters across species – modifies a non-symmetric

regional distribution in different ways. By using the ensemble formula (eqns (9) and (10)), and assuming also a type of sampling, the steady-

state stationary sample SAD (thick broken lines) can be predicted analytically. The curves resulting from simulation when the community is

sampled at t ¼ 100 time units are show in thin lines (panels A1, B1 and C1). Negative binomial sampling has been assumed with a ¼ 0.1,

pi ¼ 1 and clumping parameter of 5, 100 and 0.5 in the sampling of A, B and C communities, respectively. The two guilds present in the

regional community (panel A0) are not recovered in the sample SAD (panel A1) where a common lognormal-like curve for the sample SAD is

observed instead. When we compare B and C cases, we observe that the two immigration guilds in the regional community (panels B0 and

C0) are perfectly distinguishable in the sample SAD of panel B1, but not in the sample SAD of panel C1. When species aggregation is

important (low clumping parameter, panel C1), it is more difficult to separate the two guilds present in the regional community. Parameter

values are (B, C) N ¼ 104, m
ð1Þ
0 ¼ 10�4, m

ð2Þ
0 ¼ 10�3, b0 ¼ 0.99 and d0 ¼ 1, and (A) b0¼0.99, d0 ¼ 1, m0 ¼ 5 · 10)4, N1 ¼ 104 and

N2 ¼ 5.0 · 103.
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studies (Magurran & Henderson 2003; Schwilk & Ackerly

2005). The presence of a mixed community made up of

resident and occasional species has been found in some fish

communities (Magurran & Henderson 2003). The commu-

nity-level abundance distribution has two clear different

components: a logseries-like curve (red) and lognormal-like

curve (black) (Magurran & Henderson 2003; Magurran

2007) (see Fig. 2). As there are no differences regarding

sampling, by using eqn (10), we can write the sample SAD as

a mixture of two different distributions:

EðaÞ½Sn� ¼
XN
y¼n

PðaÞðn j yÞ SOPðy jHOÞ þ SRPðy jHRÞð Þ

ð14Þ
where QR and QO stand for model parameter values to the

resident and accidental community, respectively, which

describe the community at the regional level, and the

sampling distribution P(a)(n|y) is given by eqn (12), when

negative binomial sampling is performed, or a correspond-

ing binomial distribution, when random sampling is

assumed. See also Appendix S2 and figure captions for

further details. Panels B0 and B1 in Fig. 2 show that the

difference in immigration rates is picked up as dual modes in

the sample SAD.

We now consider again a community consisting of two

guilds. For the first group of species the sampled locality is

assumed to be more advantageous than for the second one.

So, the first group of species is controlled by a higher

carrying capacity and reaches higher abundance levels. An

analogous equation to eqn (14) gives also the sample

ensemble SAD in this case. Panels A0 and A1 of Fig. 2

show the results for a twofold difference in the carrying

capacity between the guilds. In this case, the inherent

difference between the guilds does not translate into dual

modes, and by looking at this SAD, one may be tempted to

think that the community consists of only a single guild.

In Fig. 3 the time evolution of the sample SAD is shown

when the community is assembled from scratch, so all

abundances are set to zero at the initial time. Then the

birth–death–immigration process (see Box 1) models

successional dynamics assembling the community through

constant species-specific immigration. As the time evolution

of each species in the system can be predicted analytically by

using a Gaussian approximation (see Alonso & McKane

(2002) for details), and our ensemble formulas for the

community-level SADs apply along this temporal process,

we can also calculate a time-dependent community-level

SAD analytically. The community has been sampled at time

t ¼ 16.7, t ¼ 33.3 and t ¼ 100. At this last time stationarity

is almost reached in all simulations. It is interesting to note

that although the time evolution of species-level abundance

distributions are approximated by Gaussian curves (Alonso

& McKane 2002), the assembled community level sample

SAD is not Gaussian in general, but lognormally shaped or

more skewed (see thin black lines in Fig. 3A1). This is an

example of an ensemble sum of Gaussian curves (see eqn 4)

producing a community-level sample SAD which is no

longer Gaussian (Allen et al. 2001). Finally, a steady-state

distribution describing the community-sample SAD emerges

(thick black lines). We note the excellent match between the

theoretical predictions of the community-level SAD for

each scenario and the results from simulations. Simulated

SADs have been calculated by averaging over 250–500

replicates. The process was simulated with the Gillespie

algorithm (Gillespie 1976).

C O N C L U S I O N S

Species symmetry, either by implicitly assuming that all

species are governed by the same abundance distribution at

the regional level, or as a form of symmetric sampling

underlies all previous expressions of sample SADs (Fisher

et al. 1943; Pielou 1969; Bulmer 1974; Dewdney 1998; Lande

et al. 2003; Volkov et al. 2003; Alonso & McKane 2004;

Etienne & Alonso 2005; Green & Plotkin 2007, but see

Walker 2007 and Pueyo et al. 2007). The estimation of

species abundances has long tradition in ecology (Seber

2002). In particular, the importance of heterogeneity in

species detectability (sampling asymmetries) has been

explored before in the context of the estimation of species

richness (Boulinier et al. 1998). In this paper, we have shown

how a community-level sample SAD arises under species

asymmetry through an ensemble sum that can be linked to a

process-based stochastic community model. The way this

ensemble sum is actually evaluated will depend on how

exactly the sampling process is defined. We have first

derived a general expression for the expected sample SAD

under asymmetric and generic sampling from a species

ensemble undergoing generically coupled community

dynamics (see eqn 4, supplemented by eqns 6 and 3). Then,

we have given a much simpler expression under the

assumption of asymmetric and independent sampling (eqn

7). When independent sampling and species symmetry are

assumed, the classical expression for a statistical sample

SAD arises (see eqn 8). In general, when these assumptions

no longer hold, it is necessary to solve first a multivariate

sampling community model and use the resulting multivar-

iate sample abundance distribution, P ðaÞð~n), to generate a

prediction for the sample SAD (see eqn 4). This has been

achieved in neutral theory, where species interdependence at

the sample level is modelled as a hypergeometric or

dispersal-limited sampling distribution (Etienne & Alonso

2005, 2007; Etienne et al. 2007).

The analysis of our simple model community shows that

the claim that SADs are not informative, because different
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mechanistic models can predict essentially the same SAD

(Chave et al. 2002; Purves & Pacala 2006), is too crude (see

also Walker 2007 and Etienne 2007). Evidently, it is a trivial

truism that the consistency of a single empirical pattern with

a quantitative prediction from a single model is insufficient

to accept that the basic processes generating this pattern in

nature are precisely those assumed by the model (McGill

2006). However, a scientific theory is meant to be only an

approximation to reality. This consideration becomes

relevant when judging ecological theories (Ginzburg &

Jensen 2004). In general, science is not based on absolute

truth, but on relative evidence (Taper & Lele 2004).

Therefore, if we are able to relate empirical patterns to

several alternative process-based models and generate

quantitative predictions, model selection techniques will

allow to compare these theoretical predictions against data.

By performing these analyses across as many systems and

ecological situations as possible, we will accumulate relative

evidence for the various alternatives models and thereby

gain insight into the importance of the underlying mech-

anisms they represent. In relation to SADs, in the context of

the recent niche-neutrality debate, such an approach has

remained elusive (Volkov et al. 2005; Chave et al. 2006) (but

see also Etienne 2007). We hope that the clear link we have

established between community-level SADs, sampling the-

ory and species-level abundance distributions will help to

provide new and better tools to analyse this type of data.

Dispersal limitation tends to produce a single mode in the

community-level sample SAD as a result of neutral dispersal

limitation (Hubbell 2001). A one-humped abundance

distribution, i.e. a relative depression of the most rare and

the most common species, has been shown to arise in local

samples as a consequence of con-specific clumping (Green

& Plotkin 2007). Species aggregation can be caused by

dispersal limitation or by any other biotic or abiotic process.

In fact, many factors can contribute to this �one-hump�
effect. For instance, Zillio & Condit (2007) argue that SADs

are largely determined by the introduction process. Recently,

lognormality has been shown to arise statistically under

general global community constraints by applying the

MaxEnt approach (Jaynes 1968), i.e. without assuming

symmetry, explicit species-specific sampling properties or

any particular mechanism controlling species abundances

(Pueyo et al. 2007). The extent to which the species

belonging to a given community can differ and still produce

a single mode in the community-level sample SAD will

depend on the sampling process as well as on the

particularities of community dynamics (compare panels

A0–A1 and B0–B1 in Fig. 2, see also Pueyo et al. 2007). In

practice, very often empirical abundance distributions are

not smooth one-hump curves. Instead, they show the clear

presence of two or more distinguishable humps (Gray et al.

2005). This is so precisely because the symmetry assumption

is violated. Through eqns (4) and (7), we can see that when

we are sampling a heterogeneous community, a multimodal

distribution could arise from substantial differences either in

species-specific abundance distributions at the regional level

(Scenario B), or in species-specific sampling probabilities

(Scenario A) or both. Our ability to tease apart these two

possibilities will increase if we use spatial or temporal

replication. In the presence of differential processes

controlling species regional abundances, we usually observe

an SAD pattern that reveals the presence of different guilds,

as, for instance, Magurran and Henderson’s finding (Ma-

gurran & Henderson 2003; Magurran 2007) that a resident

community is governed by the lognormal and an accidental

community is governed by the logseries. In general, the

SAD curve results from the aggregation of different species.

If we deconstruct it into different guilds, we may be able to

identify that different processes determine the assembly of

each particular guild (Magurran & Henderson 2003;

Marquet et al. 2004; Labra et al. 2005).

As a consequence, the common oversimplifying assump-

tion that the lognormal (Preston 1948; Bulmer 1974) is the

natural output of a niche-assembled community (which

emphasizes species differences), and the use of this

distribution as an alternative model to test neutrality (McGill

2003) is unjustified (Etienne 2007), because this pattern may

arise both in a completely symmetric community (Engen &

Lande 1996) and in a completely idiosyncratic community

(Pueyo et al. 2007). If in some particular settings these two

models have been teased apart from each other, it is because

the kind of symmetry they assume is different. Neutrality

assumes effective interchangeability of individuals (hard

symmetry) or fitness equalization on a per capita basis

(ecological equivalence) in a dispersal-limited community

(Hubbell 2001), while lognormality only requires that the

community is a homogeneous species ensemble (soft

symmetry), so that species are similar enough to produce

lognormality under assemblage (see eqns 4 and 6, Pueyo

2006); Pueyo et al. 2007). Ironically, as it requires weaker

assumptions, the initial intuition that lognormality was the

simplest null hypothesis to test the neutral model may

arguably be right (McGill 2003). Here we disagree however

with the conclusion that most ecologists have drawn from

such a test. If we want to test for the importance of niche-

assembly and species differences, we should move from a

description where species identity is lost (the classical SAD)

to a multivariate description of species abundances where

species identity is taken into account explicitly (Etienne et al.

2007; Etienne 2007) and can be linked to different process-

based assumptions of community assembly (Gotelli &

McGill 2006). This is not to say that symmetrical classical

SADs are useless. Classical SADs present a simple and fast

empirical description of community complexity. For

instance, they have been used successfully as indicators of
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ecosystem health (Gray 1979). It is in this empirical context

that the classical statistical theory for sampling SADs (Pielou

1969; Green & Plotkin 2007; McGill et al. 2007) is most

valuable.
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