Inhibition of Cell Growth and DNA, RNA, and Protein Synthesis in Vitro by Fentanyl, Sufentanil, and Opiate Analgesics

M. Reza Nassiri¹, Gordon L. Flynn² and Charles Shipman, Jr.¹,³,*

¹Department of Biologic and Materials Sciences, School of Dentistry, ²College of Pharmacy, and ³Department of Microbiology and Immunology, School of Medicine, The University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

(Received November 29, 1990; Accepted January 8, 1991)

Abstract: We have studied the cytotoxic nature of two groups of narcotic analgesics. Group I consists of the opioids, morphine, codeine, hydromorphone, thebaine, and etorphine. Group II contains but two phenylpiperidine-type narcotics, fentanyl and sufentanil. To measure cytotoxicity, three different bioassays were employed using an established line of human cells. Specifically, the effects of narcotic analgesics on DNA, RNA, and protein synthesis were measured by following the uptake and incorporation of radiolabeled thymidine, uridine, and amino acids, respectively. Inhibition of cell growth also was studied by measuring population doubling times of logarithmically growing cells in the presence (or absence) of the test compounds. Lastly, cloning efficiencies of cells were determined in the presence of both groups of compounds. Group I compounds were significantly less inhibitory than Group II compounds by all three bioassays. Moreover, flow cytometric DNA analysis of cells treated with 100 and 320 µM etorphine HCl showed essentially no effects on cell cycle distribution. These in vitro results thus suggest that (1) fentanyl and sufentanil are inherently more cytotoxic than the opioid narcotics in Group I, and (2) the highly potent morphinoid drug etorphine HCl appears to have special promise as a transdermal narcotic to control pain.

As pain is the most common symptom for which patients seek medical relief (Chatton 1982), finding a reliable, convenient and safe route for the administration of analgesics to patients providing sustained symptomatic relief would be highly significant. In recent years there has been special interest in the transdermal delivery of narcotics in cancer patients (Lipman et al. 1980; Holley & Van Steenis 1984; Flynn et al. 1987). The transdermal delivery of narcotic analgesics may provide these advantages and have other clinical advantages such as (1) allowing patients to be ambulatory, (2) avoiding the pain of injections and, most importantly, (3) avoiding the peak and trough blood level phenomenon seen with other dosing. The transdermal route, however, exposes cells in the absorption pathway to unusually high concentrations of the permeating drug. This alone can preclude transdermal administration. In the light of this, it is of concern that no detailed studies of the cytotoxicity of these drugs against cells in culture have been published. The present study was undertaken to investigate the in vitro perturbations of cell growth and DNA, RNA, and protein synthesis in an established line of human cells by fentanyl, sufentanil, and the opioid analgesics codeine, etorphine, hydromorphone, morphine, and thebaine.

Materials and Methods

Chemicals. Fentanyl and sufentanil were gifts from Janssen Pharmaceuticals (Piscataway, NJ, U.S.A.). Morphine sulfate, codeine phosphate and hydromorphone hydrochloride were obtained from The University of Michigan Hospital (Ann Arbor, MI). Etorphine hydrochloride was kindly supplied by both Dr. James H. Woods, Department of Pharmacology, The University of Michigan Medical School, and the National Institute on Drug Abuse (NIDA), Washington, DC. Thebaine was purchased from Sigma Biochemical Company (St. Louis, MO). [Methyl-³H]thymidine (40 Ci/m mole), [³H]uridine (22 Ci/m mole), and [³H]-L-amino acid mixture (273 mCi/mg) were purchased from ICN Biochemicals, Inc. (Irvine, CA). Foetal bovine serum (FBS) was purchased from Hyclone Laboratories, Inc. (Logan, UT). Calf serum was purchased from Flow Laboratories, Inc. (McLean, VA). 4-(2-Hydroxy)-1-piperazinethane sulfonic acid (HEPES) was purchased from Calbiochem (La Jolla, CA).

Cell culture. KB cells, an established human cell line derived from an epidermal oral carcinoma, were routinely grown in Eagle minimum essential medium (MEM) with Hanks salts [MEM(H)] supplemented with 5% FBS. Cells were passed according to conventional procedures using 0.05% trypsin plus 0.02% ethylenediaminetetraacetic acid (EDTA) in a HEPES-buffered salt solution (HBS) (Shipman 1969). In order to increase the likelihood of detecting bacterial and/or mixed bacterial and mycoplasmal contamination, antibiotics were never employed in the routine passage of cells (Hayflick 1973). Suspension cultures of KB cells were grown at 37° in MEM with spinner salts [MEM(S)] (NaHCO₃ reduced to 1.9 g/l) supplemented with 10% calf serum. Suspension grown KB cells had an average population doubling time of 24 hr. They were maintained between 2 × 10⁷ and 3 × 10⁸ cells/ml at a volume of between 250 and 300 ml in hanging bar- type 500 ml spinner flasks (Belloco Glass Co., Inc., Vineland, NJ).

Cell counts. Total cell counts were made with a model Z Coulter Counter (Coulter Electronics, Inc., Hialeah, FL) equipped with a 100 μm orifice. Viable counts were determined by means of trypan blue dye exclusion. Population doubling times were calculated by means of a least squares program fitting the exponential portion of the growth curve.

Plating efficiencies. Log-phase KB cells from suspension cultures were diluted with medium and planted in plastic tissue culture dishes
RESULTS

Cytotoxicity measurement using labeled precursors.

Incorporation of radioactive precursors into DNA, RNA, and protein was determined in part by measuring inhibition of DNA, RNA, and protein synthesis. Cells were plated using a Costar Transplate-96 (Costar, Cambridge, MA) in 96-well plates at a concentration of 1.2 x 10⁶ cells per well suspended in 200 μl of growth medium. After incubation for 20-24 hr at 37° in a humidified atmosphere of 4% CO₂ - 96% air, 150 μl of medium was removed per well. One hundred μl of medium containing drugs at twice their final concentrations were added to each well using a Titrtek Multichannel pipette (Flow Laboratories, Inc., McLean, VA). Fifty μl of medium containing radioactive precursors then was added to each well to give final concentrations of 2 μCi/ml of [³H]Thd and 3 μCi/ml of [³H]Urd or [³H]-amino acids. In all experiments [³H]Thd and [³H]Urd were diluted with unlabeled dThd and Urd (final concentration of 2 μM) to ensure that sufficient precursor was available for uptake during the labeling period. Following addition of drugs and labeled precursors in triplicate, plates were incubated for an additional 16-24 hr. Logarithmic cell growth occurred during this time with continual uptake of labeled precursors. At the end of the incubation period, cells were harvested from each well using a Skatron Cell Harvester (Skatron, Inc., Sterling, VA). Cultures from individual wells were harvested onto filter paper and washed three times with continual uptake of labeled precursors. At the end of the incubation period, cells were harvested from each well using a Coulter Counter as described above. The numbers of cells at each time point and concentration were plotted as a function of time to construct growth curves.

Data analysis. Dose-response relationships were constructed by linearly regressing the percent inhibition of DNA, RNA, and protein synthesis against log drug concentration. The 50% inhibitory concentrations (IC50) were calculated from regression lines (Goldstein 1964). A positive control (vidarabine) was used in all assays. Results of sets of assays were rejected if inhibition by the positive control deviated from its mean response by more than 1.5 standard deviations.

Flow cytometry. The exact procedures used for the handling and staining of cells and subsequent flow cytometric evaluation have been described in a previous publication (Nassiri et al. 1990).

Table 1.

Effect of narcotic analgesics on incorporation of radiolabeled precursors into DNA, RNA, and protein.

<table>
<thead>
<tr>
<th>Group</th>
<th>Drug</th>
<th>IC50 (mM)</th>
<th>DNA</th>
<th>RNA</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Codeine</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydromorphone</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morphine</td>
<td>2.50</td>
<td>4.21</td>
<td>3.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thebaine</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etorphine</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td>>1.0⁷</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Fentanyl</td>
<td>0.47</td>
<td>0.25</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sufentanil</td>
<td>0.08</td>
<td>0.20</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

a Calculated from the regression lines of the dose-response relationship.
b Less than 15% inhibition observed at highest concentration (1.0 mM) tested.
c 95% confidence interval given in parenthesis.

Table 1 shows in the range of 10 μM to 10 mM for the incubation period of 20-24 hr. As seen in table 1, in group I narcotics, the IC50 values for nucleic acids and protein were >1.0 mM without exception, considerably higher than seen within group II. Additionally, cells treated with group I narcotics appeared normal at all drug concentrations when observed microscopically. Group II narcotics inhibited the incorporation of labeled precursors into cellular DNA, RNA, and protein at concentrations <0.5 mM. Using morphine as a reference, fentanyl and sufentanil were ≥10 times as toxic as the opioid compounds in group I. When the inhibitory concentration values in group II were averaged to give a general indication of cytotoxicity, sufentanil was 2.6-fold more inhibitory than fentanyl.

Cell growth rate. Treatment of KB cells in culture for up to 72 hr with various concentrations of group I narcotics, excluding etorphine, resulted in no suppression of cell growth (fig. 1). Etorphine inhibited cell growth moderately at the higher concentrations. Cells treated with 100 μM etorphine had a similar population doubling time (PDT) to that observed in untreated cells during the first 48 hr of incubation. Within the last 24 hr of treatment, the PDT of treated cells was prolonged, but not significantly. At a concentration of 320 μM etorphine, however, cell growth was slowed with an increase in PDT from 22 hr (untreated cells) to 35 hr.

Group II narcotics showed significant cell growth suppression when applied in high concentrations. As seen in fig. 2, both fentanyl and more exaggeratedly sufentanil, affected the growth of KB cells over the first 24 hr incubation period. Three hundred twenty μM fentanyl increased the PDT to 33 hr whereas the same concentration of sufentanil resulted in a state of negative cell growth. Direct microscopic examination of sufentanil-treated cell cultures revealed that significant cell death was occurring at a concentration of 320 μM.
Fig. 1. Effect of group I narcotics on cell growth. KB cells were planted at 1×10^5 per well in 6-well cluster dishes and incubated for approximately 24 hr. At the time indicated by arrows, the medium was decanted and fresh medium containing selected concentrations of drug was added. At subsequent times, cells were harvested and enumerated.

Cloning efficiencies. The ability of KB cells to clone in the presence and absence of the various concentrations of narcotics was examined. The results for group I and II narcotics are presented in Table 2. Fifty percent inhibitory doses were compared using Scheffe's method of multiple comparison. Among these two groups, morphine had the highest IC50 value of 1.86 mM, and, in contrast, sufentanil had the lowest IC50 value of 0.1 μM. Based on analysis of variance, morphine was significantly less inhibitory than any other drug. Etorphine, thebaine, hydromorphone, and codeine as a group were significantly less inhibitory than the group consisting of thebaine, hydromorphone, codeine, fentanyl and sufentanil. Etorphine was significantly less inhibitory than either fentanyl or sufentanil.

Effects on cell cycle distribution. The potential cytotoxicity of etorphine HCl in cell cultures was also determined by using flow cytometry. Fig. 3 illustrates the DNA histograms of untreated and etorphine-treated cells at 100 and 320 μM concentrations. There was no difference of DNA content between untreated and 100 μM treated cultures. At 320 μM etorphine, a slight effect was seen resulting in fewer cells in the G2/M phase of treated cells when compared to the control histogram. This observation correlated well with the slight prolongation of population doubling times seen in the cell growth experiments. Prior to cell preparation and staining for flow cytometry, all cultures were examined microscopically. Neither cell death nor any morphological abnormalities was noted in cells exposed to either concentration of etorphine.
Discussion

A series of narcotic analgesics was tested in three distinct bioassays for their cytotoxic effects in an established line of human cells. Experiments using radioactive precursors revealed that opioid narcotics did not significantly affect DNA, RNA, or protein biosynthesis at concentrations below 1.0 mM. In contrast, fentanyl, and to a greater extent, sufentanil, markedly decreased the rate of synthesis of nucleic acids and protein.

We examined also the ability of narcotics to affect cell growth. Results indicated that codeine, morphine, and hydromorphone had no effect at the highest doses tested (320 pM), whereas fentanyl and etorphine had a measurable impact on growth at 320 μM. Sufentanil started inhibiting cell growth at 32 μM and completely inhibited growth at a

![Table 2. Effect of narcotic analgesics on the relative plating efficiency of KB cells.](image)

![Fig. 3. Flow histograms illustrating the response of KB cells to 100 and 320 μM etorphine HCl.](image)
concentration of 100 μM. In order to ensure that the results observed were not peculiar to the transformed cell line used, similar cell-growth experiments were carried out with human foreskin fibroblasts. Virtually identical results were obtained (data not shown).

The ability of cells to clone in the presence of drugs was measured to further evaluate the cytotoxic effects of the narcotics. Cloning efficiency is a sensitive method to examine cell growth and viability and lends credibility to estimates of cytotoxicity as measured either by the uptake of radiolabeled precursors or by cell growth. Such experiments confirmed that fentanyl and sufentanil were more cell suppressive than the morphine-like analgesics evaluated. When tested at the highest concentration used in this set of experiments (1 mM), both fentanyl and sufentanil suppressed clonal growth completely. The exact mechanism(s) by which the narcotic analgesics inhibit macromolecular biosynthesis and cell growth is not understood.

Flow cytometry technology has been widely used in both clinical and research fields of medicine, especially in antineoplastic (Laerum & Farsund 1981; Barlogie et al. 1983) and antiviral (Nassiri et al. 1990; Schols et al. 1990) drug screening to monitor cellular toxicity. Utilizing this procedure, we were able to confirm the non-cytotoxic nature of etorphine HCl. The flow cytometric results showed that etorphine in relatively high concentrations did not significantly perturb the cell cycle.

Preliminary studies in our laboratories (Jolicour et al., personal communication) suggest that etorphine HCl diffuses through the skin at rates consistent with the transdermal use of this drug. A permeability coefficient of 3.5 × 10⁻³ cm/hr was obtained using human cadaver skin. Thus, amongst all compounds tested and based on considerations of high potency and low cytotoxicity, it appears that etorphine and etorphine derivatives may have considerable potential as agents for the transdermal control of pain (Shipman et al. 1990). Blane et al. (1967) have reported that etorphine HCl, given subcutaneously, was 1,000–80,000 times more potent than morphine, depending on the test situation. Although resembling the action of morphine in rodents, cats, dogs, and monkeys by causing analgesia, catatonia, and respiratory depression, etorphine, in contrast, fails to cause emesis in the dog. Research conducted by the U.S. Army (Hydro 1973) demonstrated that etorphine HCl is 36,000 times more effective in tranquilizing mice than in causing their death. Blane & Robbie (1970) administered etorphine HCl tablets sublingually to cancer patients (more than 5,000 treatments). Nausea and vomiting were not seen and the only untoward side effect was occasional slight sedation. Although further experimentation with this interesting compound obviously is necessary, it does appear that etorphine is sufficiently non-toxic and potent to be delivered transdermally at safe and effective concentrations.

Acknowledgements

The advice and assistance of Dr. Charles J. Kowalski in statistical interpretation of the data are appreciated. This work was supported in part by Public Health Service grant DA 04061 from the National Institutes of Health.

References

