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Summary. A new class of prior distributions for metric-based models in the analysis of fully and
partially ranked data is developed. This class is attractive because it provides a meaningful way
to encapsulate prior information about the parameters of the model. Three examples illustrate
the ideas developed in the paper.
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1. Introduction

In the context of ranked data, given a set of n items, a full ranking of these items is simply an
ordering of all these items by choice or preference. Any such ranking forms an element π of the
permutation group Sn such that π.i/ is the rank given to item i and π−1.i/ is the item assigned
the rank i.

Given a set of n items, a partial ranking of k out of these n items is a ranking where only the
first k choices are specified. A partial ranking of this type forms an element of the coset space
Sn=Sn−k, where Sn−k is the subgroup of Sn consisting of all permutations which leave the first k

integers fixed:

Sn−k = {π ∈ Sn : π.i/ = i; 1 � i � k}:

Historically, models for random rankings grew out of the literature on paired comparisons.
For example, the Thurstone (1927) model specifies that item i would be preferred to item j if
Xi > Xj where the Xs are independent and identically distributed normal random variables
with different means and equal variance. Mosteller (1951) provided simple forms for the least
square estimators of the means of the Xs under this model. MacKay and Chaiy (1982) used
Monte Carlo methods to compare estimators of the means of Xs in the above model with those
under the unequal variance model. These paired comparison models were extended to rankings
by letting πi equal the rank of Xi.

Mallows (1957) also started with models for paired comparisons and used a conditional argu-
ment to extend these to models for rankings. His two-parameter models are unimodal with the
probability of a ranking π decreasing as the distance in a certain metric between π and the mode
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increases. These models were popularized by Feigin and Cohen (1978) and Schulman (1979) who
provided tables for their use. Other models for random rankings have been introduced by Luce
(1959), Plackett (1975), Fienberg and Larantz (1976), Henery (1981), Berry (1979) and Tallis
and Dansie (1983). Gordon (1979) introduced a model based on Ulam’s distance, whereas Flig-
ner and Verducci (1986, 1988) investigated Cayley’s distance and Kendall’s τ -distance. Fligner
and Verducci (1990) did a Bayesian analysis of the generalized Mallows model by introducing
prior distributions on the parameters of the model. Diaconis (1988) developed a second-order
analysis for ranked data.

In this paper, we discuss the notion of conjugacy classes on the space of permutations and
use it to define a new class of prior distributions on this space. It is called the conjugacy class
prior and it uses properties of the permutation group and the notion of metrics on conjugacy
classes to define the prior distributions. We focus on the Mallows model throughout the paper
purely for illustration, noting that the ideas developed here—with minor modifications—can be
used with other models as well. We use the Gibbs sampling algorithm to generate random vari-
ates from the distributions of the parameters of the Mallows model, leading to a full Bayesian
analysis using this prior.

The paper is organized in the following manner. Section 2 describes the Mallows model and
defines some of the different metrics on fully ranked data. Section 3 discusses the notion of
conjugacy classes of the permutation group and describes the conjugacy class prior distribution
for the Mallows model. Metric-based priors for partially ranked data are developed in Section
4. Section 5 illustrates these priors via examples.

2. Models and metrics

Mallows (1957) proposed a non-null probability model, i.e. a model distinct from the uniform
model (the model where all k! possible rankings of the k items are equally likely) for fully ranked
data. The model specifies a particular ranking π0 ∈ Sk; the permutation group on k objects,
which can be interpreted as the most likely or the modal ranking of the k items, and states that
the probability of any other ranking π decreases exponentially according to the distance from
π to π0: So, P.π/ = K.λ/ exp{−λ d.π;π0/}, for all π ∈ Sk, d.·; ·/ is a metric on Sk, π0 is the
location parameter and λ � 0 is a dispersion parameter. The normalizing constant K.λ/ is
defined as

K.λ/−1 = ∑
π∈Sk

exp{−λ d.π;π0/}

and is independent of the choice of π0. The model is centred about the ranking π0, and as λ
increases the distribution becomes increasingly peaked about π0.

2.1. Some metrics on fully ranked data
By a suitable choice of a metric on Sk, some well-known measures of association of two permu-
tations have been obtained; see, for example, Diaconis (1987). These are

R.π;σ/ =
[

k∑
i=1

{π.i/ − σ.i/}2
]1=2

;

Spearman’s ρ-distance,

F.π;σ/ =
k∑

i=1
|π.i/ − σ.i/|;
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Spearman’s footrule, T.π;σ/, the number of pairs of items .i; j/ such that π.i/ < π.j/ and σ.i/ >

σ.j/ is Kendall’s τ , H.π;σ/ = #{i = 1; : : :; k : π.i/ �= σ.i/}, Hamming distance, U.π;σ/ = k,
the maximal number of items ranked in the same order by π and σ is Ulam’s distance,
and C.π;σ/, Cayley’s distance, the minimum number of transpositions needed to transform
π into σ.

Since the labels 1; : : :; k are arbitrarily assigned to the items being ranked, it is natural to insist
that the distances between rankings do not depend on the labelling. Mathematically, this implies
that the metric should be right invariant: d.π;σ/ = d.πτ ;στ /, for all π;σ; τ ∈ Sk. All these six
metrics are right invariant, i.e. they remain unchanged under arbitrary relabelling of the items.
Some of these metrics will be used to exemplify the prior distributions that are developed in this
paper.

2.2. Conjugacy classes of the symmetric group
We collect together some relevant facts from algebra; see, for example, Diaconis (1987). The
following facts are central to the ideas in the rest of the paper.

Definition 1. For two permutations, π1;π2 ∈ Sk, π1 is said to be a conjugate of π2 in Sk (or
π1 ∼ π2), if there is an element σ in Sk such that π1 = σπ2σ

−1.

Conjugacy is an equivalence relationship on Sk and so splits the group into equivalence
classes, called conjugacy classes.

Definition 2. Given an integer k, we say that the sequence of positive integers k1 � : : : � kr

constitutes a partition of k if k = k1 + : : : + kr.

Definition 3. The set of integers .i1; : : :; ir/ is said to be a cycle of the permutation π ∈ Sk, if
π sends i1 into i2, i2 into i3; : : :; ir−1 into ir and ir into i1, and leaves all other items fixed.

Definition 4. A permutation π ∈ Sk has the cycle decomposition {k1; : : :; kr} if it can be
written as the product of disjoint cycles of lengths k1; : : :; kr; k1 � : : : � kr.

For example, in S9,

π =
(

123456789
132564798

)
= .1/.2; 3/.4; 5; 6/.7/.8; 9/

has cycle decomposition {1; 1; 2; 2; 3} and 1 + 1 + 2 + 2 + 3 = 9.
Let p.k/ denote the number of partitions of k. Each time that we break a given permutation

in Sk into a product of disjoint cycles, we obtain a partition of k; for if the cycles appearing have
lengths k1; : : :; kr respectively, k1 � : : : � kr, then k = k1 + : : : + kr.

A well-known result in algebra states that two permutations in Sk are conjugate if and only
if they have the same cycle decomposition. The reason is the following formula for computing
the conjugate: if π sends i → j and σ sends i → s and j → t, then σπσ−1 sends s → t. Every
symbol in π is replaced by its image in σ to compute σπσ−1. So, if π written in cycle notation
is .a : : : b/.c : : : d/ : : : .e : : : f/, then

σπσ−1 = .σ.a/ : : : σ.b//.σ.c/ : : : σ.d// : : : .σ.e/ : : : σ.f//:

This results in a one-to-one correspondence between the conjugacy classes of Sk and the parti-
tions of k. This correspondence will be used to develop a prior distribution on rankings based
on the conjugacy classes to which they belong.
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3. Prior distribution on Sk

Before delving into the mathematical details of the actual construction of the prior distribution,
we would first like to motivate the proposed prior.

3.1. Motivating the prior distribution
The Mallows model

P.π/ = K.λ/ exp{−λ d.π;π0/}
has two parameters: π0 the location parameter and λ � 0 the scale parameter. It is well known
(Serre (1977), pages 32–33) that a natural choice for a measure on a topological group is the
Haar measure of that group. However, for the finite permutation group Sk, the Haar measure
on this group with the discrete topology is simply the uniform distribution on the group.

In the Mallows model, a prior density for the scale parameter λ could be exponential, i.e.
P.λ/ = α0 exp.−α0λ/; λ ∈ R+. Interest here, however, is on developing a prior distribution
for the modal ranking π0.

Our approach to constructing a prior distribution for π0 must have two features:

(a) it must exploit the structure of the permutation group in which the data are observed to
encapsulate prior information about the random quantity π0;

(b) it must give the prior distribution a ‘sensible’ interpretation.

Since the notion of conjugacy classes is central in the study of permutation groups, we wish
to exploit this feature of the group to construct a prior. Thus the prior distribution on π0 will be
taken to be constant on conjugacy classes. Is this sensible? We think so because we are assigning
equal prior probabilities to all permutations that permute an equal number of items and leave
the remainder unchanged.

A simple example illustrates this. The group S4 has 24 elements. Since four can be partitioned
in five ways, there are five conjugacy classes in S4. These classes are listed in Table 1 along with
the number of elements in each class.

In this example, the first conjugacy class consists of the identity element in which the items
were ranked in the same order in which they were observed, i.e. the item that was observed first
received the first rank, the item observed second was ranked second, and so on.

The second conjugacy class, {.1/.1/.2/}, consists of those permutations in which two of
the items were assigned the same rank as the order in which they were observed, correspond-
ing to the two 1s in this partition, whereas the remaining two had their ranks interchanged,
corresponding to the 2 in the partition. For example, in the permutation .4231/ which

Table 1. Conjugacy classes of S4

Partition Conjugacy class Number of elements

(1,1,1,1) {.1/.1/.1/.1/} 1
(1,1,2) {.1/.1/.2/} 6
(1,3) {.1/.3/} 8
(2,2) {.2/.2/} 3
(4) {.4/} 6
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belongs to this class, the items that were observed second and third were assigned ranks 2
and 3 respectively, whereas the items appearing first and fourth received ranks 4 and 1 respec-
tively.

In addition to this feature shared by elements within a conjugacy class, these classes are also
invariant to a relabelling of the items, i.e., if all the items were observed in a different order, the
conjugacy classes would remain unchanged. This motivates us to assign equal prior probabilities
to all the rankings in the same conjugacy class.

For a moderately large value of k, say 10, Sk is enormous (of the order of 3 million). Conjugacy
classes thus form a useful way of developing prior distributions on the group by dividing it into
smaller classes and constructing the prior on these classes.

Yet another interesting fact about considering prior distributions using conjugacy classes
as the support space stems from considering the ‘metric’ feature in the Mallows model stated
earlier. It is clear from the model that the probability of a ranking π from the modal ranking π0
decreases exponentially on the basis of the distance from π to π0.

In the development of the prior distribution to be described later this property is pre-
served when one constructs the prior on the space of conjugacy classes. We next investi-
gate the properties of metrics on conjugacy classes that are required in developing the
prior.

3.2. Metrics on conjugacy classes
For any set X, endowed with a bounded metric d, the induced Hausdorff distance dÅ between
any two closed non-empty subsets of X is well defined and satisfies the axioms for a metric on
such subsets of X (Kuratowski (1966), pages 214–215). Since conjugacy classes are subsets of
Sk, each of the metrics on Sk can be extended to compute the induced Hausdorff metrics on
conjugacy classes given by

dÅ.Cπ; Cσ/ = max.max
β∈Cσ

[ min
α∈Cπ

{d.α;β/}]; max
α∈Cπ

[ min
β∈Cσ

{d.α;β/}]/;

where Cπ and Cσ are the conjugacy classes of π and σ respectively. The induced metric dÅ is
right invariant if d is.

Now, from a computational perspective, having a simpler form to compute the dis-
tances could be quite useful. Also, any metric can be made invariant by averaging it
(Diaconis (1987), pages 114–115). Hence theorem 1 stated below can be used to compute
induced Hausdorff distances for bivariant metrics, or metrics that have both right and left
invariance.

Theorem 1. If a metric d on Sk is bivariant, then its induced Hausdorff metric dÅ on the
conjugacy classes may be computed according to the simpler formula

dÅ.Cπ; Cσ/ = min
α∈Cπ
β∈Cσ

{d.α;β/} = min
β∈Cσ

{d.π;β/} :

Proof. We invoke properties of conjugacy classes to prove the theorem.

max
β∈Cσ

[ min
α∈Cπ

{d.α;β/}] = max
τ2∈Sk

[ min
τ1∈Sk

{d.τ1πτ−1
1 ; τ2στ−1

2 /}] by definition of Cπ; Cσ
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= max
τ2∈Sk

[ min
τ1∈Sk

{d.τ1π; τ2στ−1
2 τ1/}] by right invariance

= max
τ2∈Sk

[ min
τ1∈Sk

{d.π; τ−1
1 τ2στ−1

2 τ1/}] by left invariance

= max
τ2∈Sk

[ min
τ3∈Sk

{d.π; τ3στ−1
3 /}] where τ3 = τ−1

1 τ2

= min
τ3∈Sk

{d.π; τ3στ−1
3 /}

= min
β∈Cσ

{d.π;β/} :

By the same argument as above,

max
α∈Cπ

[ min
β∈Cσ

{d.α;β/}] = min
β∈Cσ

{d.π;β/} :

Hence,

dÅ.Cπ; Cσ/ = min
β∈Cσ

{d.π;β/} :

Also,

min
β∈Cσ

{d.π;β/} = min
τ∈Sk

{d.π; τστ−1/} by definition of Cσ

= min
τ1;τ2∈Sk

[d{π; τ−1
1 τ2σ.τ−1

1 τ2/−1}]

= min
τ1;τ2∈Sk

{d.τ1πτ−1
1 ; τ2στ−1

2 /}
= min

α∈Cπ
β∈Cσ

{d.α;β/} : 
�

Only two of the six metrics defined in Section 2.2 are bivariant: Hamming’s and Cayley’s
distances. We shall later use the above simplified versions of these two metrics to illustrate our
methods.

3.3. Prior distributions via metrics on conjugacy classes
On the basis of the development in the last two sections, we are ready to define a class of prior
distributions on the symmetric group. Let us specify a ranking πÅ which we believe a priori to
be the modal ranking. For any π ∈ Sk let Cπ be the conjugacy class containing π.

The prior distribution on the modal ranking is

P.π/ = KÅ.λÅ/ exp{−λÅ dÅ.Cπ; Cπ*/}; λÅ � 0;

where λÅ is a scalar that determines how peaked the distribution is around Cπ*: The choice
λÅ = 0 corresponds to a uniform prior on all rankings, and larger values reflect stronger beliefs
in πÅ. The normalizing constant KÅ.λÅ/; as before, is independent of the choice of πÅ.

As discussed before, this prior assigns equal probability to all permutations within a con-
jugacy class. It is to be noted that, although two permutations π1 and π2 in a class are not
necessarily ‘close’ with respect to any of the metrics d.·; ·/ discussed in Section 2.1, when each
of these metrics induce the corresponding Hausdorff metric on the space of conjugacy classes,
then dÅ.Cπ1 ; Cπ2/ = 0. Although this implies that other rankings in the modal conjugacy class,
for which we may not have prior information, receive the same prior weight, we feel that the
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advantage that is gained by reducing the (possibly very large) group into fewer conjugacy classes
in constructing the prior far outweighs this potential drawback, particularly in the light of the
desirable properties resulting from this construction; these properties are discussed a little later.

We express our prior belief about the population of rankings through our choice of πÅ. The
nature of the prior helps us to incorporate this belief to develop a prior distribution on the entire
group by using the conjugacy class Cπ* of πÅ.

Suppose, however, as one referee suggested, that we wish to express equally strong prior
beliefs on two different rankings, πÅ

1 and πÅ
2 . If πÅ

1 ∈ CπÅ
2

then this prior is still suitable. If
πÅ

1 =∈ CπÅ
2

our prior can be modified by defining a new modal class composed of CπÅ
1

and
CπÅ

2
: This would, of course, change the prior distribution on the other conjugacy classes, but

the new distance metric between the modal class and the other conjugacy classes can be easily
computed using the formula for dÅ.·; ·/ in Section 3.2.

Suppose that a group of k items is being ranked by n people. Let π1; : : :;πk! be the set of all
possible rankings of these k items.

Let the data be σ = .σ1; : : :;σn/; the rankings of these items by the n people. Assume the
Mallows model. The joint likelihood is

P.σ1; : : :;σn|π;λ/ = K.λ/n exp
{

−λ
n∑

i=1
d.σi;π/

}
:

Assigning λ an exponential prior, the prior joint distribution of the parameters is

.π;λ/ = P.π/ P.λ/ = exp {−λÅ dÅ.Cπ; CπÅ/}
k!∑

i=1
exp {−λÅdÅ .Cπi ; CπÅ/}

α0 exp.−λα0/:

Clearly, a closed form solution to the posterior (obtained by multiplying the likelihood and the
prior) is impossible. However, a Gibbs sampling algorithm to simulate from the full conditional
distributions of the location and scale parameters for the above model is easy to implement.
The full conditional distributions are

P.λ|σ;π/ = P.σ|π;λ/ P.λ/∫ ∞

0
P.σ|π;λ′/ P.λ′/ d.λ′/

∝ K.λ/n exp
[
−λ

{
α0 +

n∑
i=1

d.σi;π/

}]
;

P.π|σ;λ/ = P.σ|π;λ/ P.π/∑
πj∈Sk

P.σ|πj;λ/ P.πj/

=
exp

[
−

{
λ

n∑
i=1

d.σi;π/ + λÅ dÅ.Cπ; CπÅ/

}]

k!∑
j=1

exp
[
−

{
λ

n∑
i=1

d.σi;πj/ + λÅ dÅ.Cπj ; CπÅ/

}] :

For the examples in Section 5, the acceptance–rejection algorithm is used to sample from the
full conditional density of λ with an exponential dominating density. To sample π; a Metrop-
olis–Hastings algorithm is used to define a Markov chain with the above full conditional as its
target density.
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Even with a uniform prior on π (by choosing λÅ = 0), the form of the full conditional for
π is such that, even for moderately small values of λ, the denominator in the last expression
could be much smaller than 1, for a reasonably large data set. This could inflate the posterior
probability of the modal ranking in the observed data much beyond its observed proportion.
This drawback of the Mallows model can be overcome if we can make a more informed choice
for the prior parameters πÅ and λÅ.

From a perspective of inference, some interesting questions must be addressed. Is there a re-
lationship between λ; the scale parameter in the model, and λÅ; the scaling factor in the prior
distribution, that would determine which ranking receives the highest posterior distribution? In
the following, the proofs of the corollaries are omitted since they are straightforward.

Theorem 2. Let D.πj/ = Σn
i=1d.σi;πj/, the sum of the distances of the observed rankings

from πj, and let DÅ.πj/ = dÅ.Cπj ; CπÅ/, the induced Hausdorff distance between Cπj and
CπÅ . For π1;π2 ∈ Sk, and given λ;λÅ > 0, π1 will have a higher posterior probability than π2
if and only if

D.π1/ − D.π2/ < γ{DÅ.π2/ − DÅ.π1/}
where γ = λÅ=λ.

Proof.

P.π1|σ;λ/ > P.π2|σ;λ/

if and only if

K.λ/n exp{−λ D.π1/} KÅ.λÅ/ exp{−λÅ DÅ.π1/} > K.λ/n

× exp{−λ D.π2/} KÅ.λÅ/ exp{−λÅ DÅ.π2/}
if and only if

exp[−λ{D.π1/ − D.π2/}] > exp[−λÅ{DÅ.π2/ − DÅ.π1/}]

if and only if

λ{D.π1/ − D.π2/} < λÅ{DÅ.π2/ − DÅ.π1/}
if and only if

D.π1/ − D.π2/ < γ{DÅ.π2/ − DÅ.π1/}: ✷

When would the ranking with the highest proportion in the observed data also have the
highest posterior probability?

Corollary 1. Let π̂ be the maximum likelihood estimator of the modal ranking in the
Mallows model, i.e. π̂ minimizes Σn

i=1 d.σi;π/. If DÅ.πi/ � DÅ.π̂/, πi will have a lower
posterior probability than π̂.

Consider π1;π2 ∈ Sk. What are the conditions under which π1 would have a higher posterior
probability than π2?

Corollary 2. If π2 ∈ Cπ1 , i.e. π1 and π2 belong to the same conjugacy class, π1 has a higher
posterior probability than π2 if and only if D.π1/ < D.π2/.

Corollary 3. If D.π1/ < D.π2/ and DÅ.π1/ < DÅ.π2/, then π1 will have a higher posterior
probability than π2.
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4. Extension to partially ranked data

It turns out that with some minor mathematical modifications the ideas developed thus far also
carry over to the context of partially ranked data. We omit most of the details and only discuss
some key points.

4.1. Partially ranked data
Given a set of n items, a partial ranking of k out of these n items is a ranking where only the first
k choices are specified. An example would be when 10 candidates are contesting for an election
and people are asked to rank only their five most favoured candidates. A partial ranking of this
type forms an element of the coset space Sn=Sn−k, where Sn−k is the subgroup of Sn consisting
of all permutations which leave the first k integers fixed:

Sn−k = {π ∈ Sn : π.i/ = i; 1 � i � k}:

The equivalence relation ‘∼’, defined on Sn, is given by the following. For π;σ ∈ Sn,
π ∼ σ ⇐⇒ πσ−1 ∈ Sn−k, partitions Sn into equivalence classes such that for any π ∈ Sn

the equivalence class containing π, denoted by Sn−kπ, is {τπ : τ ∈ Sn−k}; it is called a right
coset of Sn−k. It follows that, to each partial ranking of k out of n items, there corresponds
a unique right coset of Sn−k, and two full permutations π;σ ∈ Sn belong to the same right
coset of Sn−k if and only if π and σ induce the same partial ranking of k out of n items, i.e.
π−1.i/ = σ−1.i/; 1 � i � k.

All the metrics on fully ranked data discussed in Section 2.1 can be extended to form met-
rics on partially ranked data and the Mallows model for such data (Critchlow (1985), pages
100–101) can be written as

P.πp/ = C.λ/ exp{−λ dp.πp;π
p
0 /}

for all partial rankings πp ∈ Sn=Sn−k. Here, π
p
0 is a location parameter representing the modal

partial ranking and λ � 0 is a dispersion parameter. dp.·; ·/ is the induced Hausdorff metric on
the coset space Sn=Sn−k and C.λ/ is the normalizing constant.

4.2. Prior distributions via coset classes on partially ranked data
Recall that, for fully ranked data, we divided the space of all rankings into conjugacy classes,
because we believed that rankings within a conjugacy class were similar to each other as these
rankings were assigned by permuting in a similar manner the order in which the items were
observed.

In the case of partially ranked data, we wish to argue that, among all the people who rank k

out of the n items, those who choose to rank the same set of k items are similar in some sense
as they have the same choice of k favourite items but may choose to rank them differently. With
this in mind, let us partition the coset space Sn=Sn−k into coset classes, where each coset class
consists of all partial rankings having the same set of k items out of the n items which are ranked
differently.

The metric-based prior for fully ranked data can be extended in a similar manner to form
the analogous prior distribution for partially ranked data. Since the coset classes are bounded
non-empty subsets of Sn=Sn−k, all the metrics defined on partially ranked data can be extended
to form the corresponding induced Hausdorff metrics on the coset classes (see Section 3.2).
Then, following the same argument as in the case of fully ranked data, if π

p
* is our choice of the

modal partial ranking and Cπ
p
Å

is the corresponding coset class, the prior distribution on any
partial ranking, πp, is given by
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P.πp/ = Cp.λÅ/ exp{−λÅ dÅ
p .Cπp; Cπ

p
Å
/};

where dÅ
p .·; ·/ is the induced metric on coset classes and Cp.λÅ/ is the normalizing constant.

The full conditional densities can be derived as in the previous case and the Gibbs sampler
algorithm can be implemented. We omit the details.

5. Illustrative analyses

We first discuss an example simulated to illustrate the behaviour of the posterior distributions
in the case of fully ranked data. The second example provides a comparative illustration with
the data set analysed by Fligner and Verducci (1990). The third example illustrates the prior on
partial rankings using the data in Diaconis (1988).

5.1. Example 1
A sample of 80 rankings is generated uniformly on S4. For the data, the maximum likelihood
estimator of π0 in the Mallows model, using both Hamming’s and Cayley’s distance, is (2413).
Choosing the prior modal parameter as πÅ = .4321/ and the prior scale parameter as λÅ = 0,
a Gibbs sampler is developed by using the method outlined in Section 3.3. For Hamming’s and
Cayley’s distances, the posterior means of all the rankings are computed. They are listed in
Table 2 and are classified by the conjugacy class to which they belong. Then λÅ is changed to
0.1 and the corresponding mean posterior probabilities are evaluated.

The maximum likelihood estimator of the modal ranking is π̂ = .2413/, the ranking with
the minimum value of D.π/, shown in bold in Table 2. For all conjugacy classes with DÅ.π̂/ �
DÅ.π/, the rankings in these classes have a lower posterior mean than π̂, under both the metrics
and for both values of λÅ, by corollary 1.

Within each conjugacy class, if D.π1/ < D.π2/, then π1 has a higher mean posterior density
than π2 has, by corollary 2.

Similarly by corollary 3, for any π1;π2 ∈ S4, when D.π1/ < D.π2/ and DÅ.π1/ < DÅ.π2/, π1
has a higher posterior mean probability than π2 has.

However, the posterior means vary somewhat for the two metrics. This is mainly because the
metrics differ greatly in the way in which they are defined and hence in the way in which they
measure distances. This is evident from the differences in the D.π/ columns for the two metrics.

Next consider a sensitivity analysis. On increasing the value of λÅ to 0.1, the conjugacy class
(2,2), containing the prior mode, πÅ = .4321/ (for which DÅ.π/ = 0), has the largest increase
in the posterior means whereas the conjugacy class (1,1,2), that is furthest away from this class
(for which DÅ.π/ = 3 by Hamming and 2 by Cayley), has the largest decrease in the posterior
means. So this prior parameter can be used to reflect our strength of belief in the prior mode.

The posterior means of λ from the Gibbs samplers corresponding to the fourth, fifth, eighth
and ninth columns of Table 2 were 0.038, 0.037, 0.055 and 0.056 respectively.

5.2. Example 2
This example is taken from Fligner and Verducci (1990) in which the Graduate Record Exam-
ination Board sampled 98 college students who were asked to rank five words according to the
strength of association with a target word. For the target word ‘idea’, the five choices were A,
thought, B, play, C, theory, D, dream, and E, attention. If we can assume that all students were
presented with these five choices in the same order as the above, then we can use our method of
developing prior distributions to analyse these data.
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Table 2. Posterior means of rankings in example 1

π Results for Hamming’s distance Results for Cayley’s distance

D(π) DÅ(π) λÅ = 0 λÅ = 0.1 D(π) DÅ(π) λÅ = 0 λÅ = 0.1

Conjugacy class (1,1,1,1)
(1234) 242 4 0.0378 0.0313 155 2 0.0365 0.0240

Conjugacy class (1,1,2)
(1243) 233 2 0.0531 0.0536 149 1 0.0512 0.0551
(1432) 233 2 0.0531 0.0536 147 1 0.0573 0.0618
(1324) 242 2 0.0378 0.0383 157 1 0.0327 0.0352
(4231) 242 2 0.0378 0.0383 153 1 0.0408 0.0439
(3214) 245 2 0.0338 0.0343 157 1 0.0327 0.0352
(2134) 249 2 0.0291 0.0296 159 1 0.0293 0.0315

Conjugacy class (2,2)
(3412) 236 0 0.0474 0.0584 155 0 0.0365 0.0648
(2143) 240 0 0.0407 0.0503 155 0 0.0365 0.0648
(4321) 242 0 0.0378 0.0467 153 0 0.0408 0.0724

Conjugacy class (1,3)
(1342) 233 3 0.0531 0.0485 149 2 0.0512 0.0334
(1423) 233 3 0.0531 0.0485 145 2 0.0643 0.0420
(2431) 235 3 0.0492 0.0450 155 2 0.0365 0.0238
(3241) 239 3 0.0423 0.0387 153 2 0.0408 0.0266
(4213) 239 3 0.0423 0.0387 153 2 0.0408 0.0266
(2314) 241 3 0.0392 0.0359 153 2 0.0408 0.0266
(4132) 247 3 0.0314 0.0288 157 2 0.0327 0.0213
(3124) 253 3 0.0252 0.0232 163 2 0.0236 0.0154

Conjugacy class (4)
(2413) 232 2 0.0552 0.0556 143 1 0.0722 0.0779
(2341) 235 2 0.0492 0.0497 149 1 0.0512 0.0551
(3421) 239 2 0.0423 0.0428 151 1 0.0457 0.0492
(4312) 239 2 0.0423 0.0428 153 1 0.0408 0.0439
(3142) 244 2 0.0351 0.0355 153 1 0.0408 0.0439
(4123) 247 2 0.0314 0.0318 163 1 0.0236 0.0254

For the Mallows model, Fligner and Verducci assumed a uniform prior for the modal ranking
π0 and an independent conjugate prior for the scale parameter λ.

Suppose that we have reason to believe that (ADCBE) is the true order of association of the
given words. Let us choose πÅ = .ADCBE/ as the prior mode. The choice of λÅ should reflect
our strength of belief in πÅ. To compare our method of analysis with the previous one, we shall
also choose a uniform prior for πÅ by using λÅ = 0. With the Hamming distance as the metric,
a Gibbs sampling algorithm was used to obtain posterior estimates for the rankings. The results
are provided in Table 3.

The first seven ranks with the highest observed frequencies are listed in Table 3 along with
their mean posterior probabilities under the two methods; Mallows(uniform) corresponds to
Fligner and Verducci’s analysis. The numbers in parentheses in the third and fourth columns
denote the ranks of the corresponding permutations in the posterior models. The posterior
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Table 3. Posterior means of rankings in example 2

Rank Means from the following methods:

Frequency(proportion) Mallows(uniform) Mallows(conjugacy class)

ACDEB 33 (0.337) 0.032 (1) 0.7591 (1)
ADCEB 18 (0.184) 0.026 (2) 0.1261 (2)
ACDBE 12 (0.122) 0.022 (3) 0.0217 (3)
ADCBE 8 (0.082) 0.019 (4) 0.0067 (7)
ACEDB 6 (0.061) 0.019 (5) 0.0144 (4)
CADEB 5 (0.051) 0.019 (6) 0.0040 (10)

Table 4. Posterior means in example 3

Ranking Proportion Means for the following priors:

λÅ = 0 λÅ = 0.01 λÅ = 0.1

00001 0.1988 0.20040 0.20023 0.23437
00010 0.2227 0.20357 0.20024 0.19493
00100 0.2330 0.20468 0.20015 0.19599
01000 0.1714 0.19538 0.20018 0.18707
10000 0.1741 0.19596 0.19969 0.18763

mean for λ using the conjugacy class prior is 0.053. Although our method picks the correct
modal ranking and some of the subsequent rankings, the posterior mean of the modal ranking
is much larger than its proportion in the observed data. As described in Section 3.3, even for
small values of λ (0.053), an observed proportion of 0.337 is sufficiently large for the Mallows
model to put most of the mass on the maximum likelihood estimator and to penalize other
rankings strongly.

5.3. Example 3
In this example we illustrate our prior on partially ranked data. The American Psychological
Association elects its President every year by asking each member to rank a slate of five candi-
dates. Out of the 15000 members who cast their vote in 1980, 5141 selected their best candidate
only. These rankings form elements of the coset spaces S5=S4 which we analyse below. Using the
prior on partially ranked data discussed in this paper, the full Bayesian analysis was performed
on these data. We choose the prior modal ranking to be π

p
Å = .00001/, the ranking where the

fifth candidate was selected as the favourite. Three values of λÅ are used, 0, 0.1 and 0.01, and
the results are compared.

Recall that to define our prior distribution on the coset space we need to divide the space
into coset classes, where each coset class consists of all rankings where the same candidates
are selected. In the case of S5=S4, where only one candidate is being ranked, each ranking is
a coset class. The observed proportions of each of these rankings along with their posterior
means for the above choice of the prior parameters are provided in Table 4. We see that for a
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non-informative prior .λÅ = 0/ the posterior means are in the same order as the proportions in
the data. On increasing λÅ, the highest mean shifts towards .00001/, the prior modal ranking.
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