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Abstract

We consider the problem of choosing a discounted-cost minimizing infinite-stage
control sequence under nonstationary positive semidefinite quadratic costs and linear
constraints. Specific cases include the nonstationary LQ tracker and regulator prob-
lems. We show that the optimal costs for finite-stage approximating problems converge
to the optimal infinite-stage cost as the number of stages grows to infinity. Under a
state reachability condition, we show that the set unions of all controls optimal to
all feasible states for the finite-stage approximating problems converge to the set of
infinite-stage optimal controls. A tie-breaking rule is provided that selects finite-stage
optimal controls so as to force convergence to an infinite horizon optimal control.
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1 Introduction

Consider the following infinite stage linear quadratic control problem.

min {Z[(zk —7k) Qi 2k — Tk) + Uk Riug]
k=0

subject to (€)

Tky1 = Axzk + Bruk + di,
Zk=Ck$k, k=0,1,2,...,

and

U € ng]Rm,
. € X CR",
z € IRP, k=0,1,2,...,

where zo in IR" is given. We make the following assumptions on the problem data:
A. The data are deterministic.
B. Each matrix @, and Ry is symmetric and positive semi-definite.
C. Each X is a closed convex subset of IR".
D. Each Uy is a compact convex subset of IR™.
E. The resulting feasible region is non-empty.
F. The objective function converges absolutely and uniformly over the feasible region.

As usual, z is the state, uy is the control and 2y is the output. The quantity dy is a (known)
disturbance.

If we set dj to zero, all k, then we get the nonstationary LQ tracker problem [12] as a
special case. Alternatively, if we also set Cj to the identity matrix and 7y to zero, all k, then
we get the nonstationary LQ regulator problem [12].

The general infinite horizon LQ problem (C) is challenging in several respects. First, the
presence of nonstationary data, as well as constraints on the admissible controls, presents
a problem that is acknowledged to be difficult to solve [1,9]. It is nonetheless almost cer-
tain that in practice there will be bounds on feasible controls and states. Also, generalizing
previous work [2,9], we do not require the control space in each period to be finite. Sec-
ond, Assumption B allows the quadratic control costs to be positive semi-definite, so that in



general there will be multiple infinite horizon optima. This complicates the task of approxi-
mating an infinite horizon optimal solution though finite horizon truncations as in [2,9,10],
since, in general, finite horizon optimal controls will not converge. In the presence of a state
reachability property similar to that of [10], we show how to select finite horizon optimal
controls so as to force convergence to an infinite horizon optimal control strategy. In related
work, in a more abstract framework than ours, [5] establishes existence of an optimal infi-
nite horizon solution and [7] proves convergence of optimal values for a “moving horizon”
sequence of approximating solutions (see also [6] for related stability results).

In section 2, we introduce the finite horizon (or finite stage) approximations (C(N)) to (C)
consisting of the first N controls and N constraints of (C). We then establish that the optimal
values of (C(N)) converge to the optimal value of (C) (i.e. optimal value convergence). We
also show that for positive definite control costs, the optimal controls for (C(N)) converge
to the optimal control strategy of (C), (i.e. solution convergence). In section 3, in the
presence of a state reachability property, we show that the best approximations in the set of
optimal controls for (C(N)) converge to the best approximation in the set of infinite horizon
optimal controls. This allows for an arbitrarily close approximation to an infinite horizon
optimal solution by solving a sufficiently long finite horizon version of (C). Finally, in section
4, we illustrate the preceding development with an application to multiproduct production
planning.

2 Value and Solution Convergence

Our first objective is to characterize the set of states Vj at stage k that are reachable by
admissible controls from the initial state zy. That is, let

V1={A0$0+Bou+d0:’u€Uo}

and
Viri={Az+Biu+dr:z € Vi,ue Uy}, k=1,2,....

Then it is easy to see that each reachable set Vj is a compact, convex, non-empty subset of
R".

Next define the set S of all feasibly reachable states at stage k from the initial state z.
Let

Ty = {Aozo+ Bou+do:u € Up},
S1 = TinX,

and

Tey1 = {Akx+Bku+dk:xESk,u€Uk}
Sk+1 = Tk+lnXk+1, k=0,1,2,....
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Clearly, each T, and Sy is a compact, convex subset of IR®. Since there exists a feasible
solution to (C) by Assumption E, both Ty and Sj are non-empty, k = 1,2,.... If X; = R",
all 7, then of course Sk = T = Vj, all k. For an explicit construction of the feasibly reachable
states when controls and states are linearly constrained, see [11].

Lemma 2.1 For each k=0,1,2,..., the following are equivalent:
(2) T e Sk+1.

(it) T € Xiy1 and there ezist u; € U;, 0 < j < kandz; € S;, 1 < j < k, such that
Tjy1 = A;x; + Bjuj + dj, for j=0,1,...,k, where zpy1 = z.

Proof: Omitted. =
Finally, define the set of reachable outputs Z; by
Zr={Cx:z eV}, k=12,...

Then each Zj is a compact, convex, non-empty subset of IR?.

For convenience, we let yx = (uk—1,Zk, 2k), Y = U1 X Ve X Zk,k=1,2,...and Y =
12, Yx. Then each Y} is compact, convex and non-empty.

As in [14], we embed Y in a Hilbert space formed by the weighted Hilbert sum of its
component spaces. Letting ¢ = m + n + p, we have that Y, CIR%, k= 1,2,.... Since the Y}
are compact, for each k, there exists 7, > 0 such that || yx ||< 7, where || - || is the usual

(o]

norm on R?. Fix 0 < B < 1, such that Zﬁ,%rk < oo; for example, set B = 1/kr. Let
k=1

[o o]
H= {(yk) ‘Uk € IR‘I’ k= 1721)a‘nd2ﬁl§ ” Yk ”2< OO}
k=1
Then H becomes a Hilbert space contained in II§2,R? with inner product < z,y > given by

00
<z,y>= Z :Bl%(xk)yk%
k=1

where (-,-) is the usual inner product on IR?. From our choice of the S, it follows that
Y C H, so that Y inherits the Hilbert metric p of H, where p(z,y) = (< z —y,z — y >)'/?,
z,y € H. It was noted in [14, Lemma 2.1] that the p-metric topology on Y is the same as
the product topology, so that Y is a compact metric space relative to p by the Tychonoff
theorem. Moreover, a sequence {y"} in Y converges to y relative to p if and only if for each
k, {y#} converges to yi in IR? relative to the usual Euclidean metric.



Define K(Y') to be the space of all compact, non-empty subsets of Y and let D denote
the Hausdorff metric on K(Y) derived from p [4]. In this way, K(Y) becomes a compact
metric space, so that convergence in K(Y) is relative to D.

There is an alternate characterization of convergence in K(Y) which will prove useful in
stating our main results. Let Ky C Y, for N = 1,2,.... Define liminf Ky and limsup Ky
as follows [4,8]:

1. y € liminf Ky if and only if y € Y and, for each N sufficiently large, there exists
yN € Ky such that y¥ — y, as N — 0.

2. y € limsup Ky if and only if y € Y and there exists a subsequence {Kn,} of {Kn},
and a corresponding sequence {y*} such that y*¥ € Ky,, all k, and y* — ¥, as k — .

If K CY and K = liminf Ky = limsup Ky, we write lim Ky = K and say that {Ky}
Kuratowski-converges to K. In general, liminf K and limsup K are closed, possibly empty,
subsets of Y, which satisfy liminf Ky C limsup Ky. Suppose now Ky is not empty for N
large. Since Y is compact, we have that limsup Ky # ¢. Also, if K € K(Y) and Ky € K(Y),
all N, then Ky — K in K(Y) relative to D if and only if lim Ky = K.

The feasible region F' for (C) is clearly a closed, convex subset of Y. Thus, F is also
compact and nonempty by Assumption E, so that F € K(Y). From this it follows that the
set Sk of feasibly reachable states at stage k is non-empty, for each k. If z = (zx) € F, then
by Lemma 2.1, z} € Sk, all k. If we also write y = (yx) and abbreviate the objective function
for (C) by

Cly) = Z[(Zk — 1) Qi(2k — i) + u R,
k=0
then (C) becomes
min C(y).
yeF

In order to establish continuity for the objective function, we let
a(y1) = c1(uo, T1,21) = (20 — 10)*Qo(20 — 7o) + UBROUO + (21 — Tl)th(zl —T1)
and
ck(Yk) = Ch(Uk-1, Tk, 2k) = (2k — T%)'Qr(2k — Tk) + Uf_y Rimruk-1, k=2,...,
so that each c is a continuous, convex function on R™ x R"™ x R?. Then C(y) = ick(yk),
y € Y. Since the Uy and Z; are compact, we may define =

uk:gea(i”uk”’ k=0,1,2,...,



and
Ck=g1€a§i”zk_rk”’ k=1’27"'

o0 oo
Throughout this paper, we assume ) u? || R [l2< oo and > (Z | Q« ||l2< oo, where
k=1 k=1
| A ||la=sup, | Aw || /|| w | denotes the matrix norm of matrix A relative to the #2-norm
on R™ and R" respectively. If || ck |loo= sup,, ey, ck(yx) denotes the supremum norm of ¢
as a function on Yy, then

o0 o0 o0
Yo leklloo< D pall Rello+ 3. G |l Qk [l2< o0,
k=1 k=1

k=0

i.e. the series is absolutely convergent. Consequently, the correspondence y — C(y) de-

fines a continuous, real-valued function C' on Y which is the uniform limit of the sequence
N

{3 c}%- of continuous partial sums.
k=1
Since C' is continuous on Y and F' is a compact, non-empty subset of Y, the objective

function C attains its minimum C* on F. If we let
F*={yeF:C(y) =C",

then F* is a compact, non-empty subset of Y, i.e. F* € K(Y). Thus, under our assumptions,
(C) is a convex programming problem with continuous objective function C, compact, convex,
non-empty feasible region F, optimal objective value C* and compact, non-empty optimal
solution set F*. Note that since C is not required to be strictly convex, F* will not be a
singleton in general, so that there may be multiple optimal solutions y*.

Our primary objective in this paper is to approximate the optimal value C* and an
optimal solution y* of (C) by corresponding quantities obtained from finite-stage subproblems
of (C). To this end, let N be a positive integer and define the problem (C(N)) as follows:

N-1

min Y [ze — ) Qx(2k — Tk) + upRiux)] + (2v — 7n)'Qn(2n — TN)
k=0

subject to (C(N))

Trt1 = Akxk+Bkuk+dk, k=0,1,...,N-1,
Rk = Ck.’Ek, k‘=1,...,N,
ukEUk, :L‘kEXk, ZkEZk, k=1,2,...,

where z, (hence z,) is given.
In order that feasible solutions for (C(/N)) be comparable to those of (C), we have defined
(C(N)) to be an infinite stage problem with constraints and objective function depending
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only on the first N stages. The feasible solutions are just arbitrary extensions of the feasible
solutions to the N-stage truncation of (C). For each N =1,2,..., the feasible region F(N)
for (C(N)) is contained in Y. Moreover, F(N +1) C F(N) and F C F(N), so that F(N) is
non-empty, N = 1,2,.... Also, each F(N) is compact and convex and F = A}im F(N). If
z € F(N), then automatically zx € Sx,k=1,...,N.

For convenience, denote the objective function for (C(N)) by C(-; N). Then (C(N))
becomes

in C(y; V).

By our assumptions, the continuous functions C(-; N) converge uniformly to C on the com-
pact space Y. Moreover, each C(-; N) is convex, so that (C(N)) is again a convex program-
ming problem. We set

C*(N) = min C(y;N)

and

F*(N)={ye F(N):C(y;N)=C*(N)}, N=1,2,...,
so that C*(N) is the optimal objective function value and F*(N) is the set of optimal
solutions for (C(N)). Clearly, each F*(N) is a compact, non-empty subset of F((N).

Theorem 2.2 (i) (Optimal Value Convergence). The optimal values of the finite-stage
problems (C(N)) converge to the optimal value of the infinite-stage problem (C), i.e.

C*(N) = C*, as N — .

(ii) (Optimal Solution Convergence) If Qx and Ry are positive definite, for some k =
1,2,..., then C is strictly convez. In this event, (C) has a unique optimal solution
v*, i.e. F* = {y*}. If y*(N) is any optimal solution to (C(N)), then the sequence
{y*(N)} converges to y* in the product topology of Y. In particular, optimal controls
{up(N)}%2, of the finite-stage problems (C(N)) converge to the optimal control {u;}2,
of the infinite-stage problem (C), i.e.

up(N) — uy, as N — oo,
fork=1,2,....
Proof: (i) and (ii) follow immediately from Theorems 4.1 and 4.5 of [14] respectively. =

Remark: More generally, the last part of this theorem is valid whenever F* is a singleton
(14].

In view of this result, it remains to study the question of optimal solution convergence
when F* is not a singleton, i.e. when there exist multiple optimal solutions to (C). The
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difficulty is that in this case of multiple infinite-stage optima, optimal controls to the finite-
stage subproblems may not converge. In order to allow for convergence, we need to enlarge
the set of finite-stage controls from which we select. In particular, we enlarge F*(N) to
include optimal controls to all states. In this regard, note that if y is feasible for (C(N)),
then the only connection between the constraints of (C(V)) and the remaining constraints of
(C) is the value Ayzy, which is the dynamic programming state associated with y at stage
N. This is the motivation for what follows.

If s is any element of IR", define F(N, s) to be the set of (C(N))-feasible solutions having
dynamic programming state s at stage N, i.e.

F(N,s)={ye F(N): Ayzy=s}, N=1,2,....
Thus, F(N,s) is a (possibly empty) compact subset of F/(N). Define
S(N)=AnSn={s€R": Az =s, somez € Sy}, N=1,2....
Then S(N) is the set of all (C(N))-feasible dynamic programming states at stage N.
Lemma 2.3 For each N =1,2,...,

S(N) = {s€eR": F(N,s)# ¢}
= {se€R": Ayzy = s, for somey € F(N)}.

Proof: Follows from Lemma 2.1. =

For each N =1,2,... and s € S(N), consider the mathematical program (C(N), s) given
by
i ' N). N
,in C(y; N) (C(N),s)

Since the minimum value C*(N, s) is attained, we may define
F*(N,s)={y € F(N,s): C(y;N) = C*(N, )},

which represents the set of all solutions optimal to dynamic programming state s € S(IV)
for problem (C(N)). Each such F*(N,s) is a compact, non-empty subset of F(N), i.e. an
element of X(Y).
In order to construct a sequence of (C(/V))-feasible solution sets which converges to F*
in K(Y), define
F*(N) =UsesmyF*(N,s), N=1,2,....

For technical reasons, we also define F*(N) to be the closure of 7*(N) in Y/, so that F*(N) €
K(Y), all,N.



3 Controllability, Reachability and Solution Conver-
gence via Best Approximation

We turn next to the task of establishing conditions under which the sets F*(N) converge
to F* in K(Y). When this happens, the sequence of best-approximations from the F*(N)
(relative to any point in Y') is guaranteed to converge to the best-approximation in F* [14].
(A best-approzimation from a set K € K(Y) with respect to a point p € Y is a point in K
closest in the Hilbert metric to p.)

As we saw in [14], a sufficient condition for this convergence was a state reachability
property. As we shall see, this property in turn can be derived from a suitable controllability
property for the constraint system.

In order to define controllability for this problem, we must first express zx4; in terms of
Tj, Uj,. .., Uk, for 0 < j < k. Asis customary, for 0 < j < k + 1, define the matrix

. Ap - A, <k,
F(k’J)z{ kI, J j=Jk+1.

Also, for 0 < j < k define the matrices
| [Br,AeBi-1, AkAg-1Bx-a,. .., Ak Aj 1By, J <k,
Blkg) = { B, j=k

: I, Ag, Achier,. .. Ae- - Aiy], G <K,
g = | [ e

Lemma 3.1 We have the following properties for I',®, and ¥ :

(it) ®(k,7) = [Bk, Ak * ®(k — 1,7)], 0<j <k, where Ax* ®(k — 1,7) is the partitioned
matriz ®(k — 1, 5) with each matriz in the partition premultiplied by Ax.

(iii) Y(k,j) = [I,Ac* ¥(k —1,7)], 0<j <k, where Axx ¥(k—1,7) is defined as in (1i).
Proof: These follow immediately from the definitions. =
Lemma 3.2 For each 0 < j < k, suppose
Tep1 = Ao+ Beug +do, €=13,...,k,
where zo € R", for all £. Then

Tk41 = F(k7])$J + (D(ka])[uk’ cee 1uJ']t + \Il(kyj)[dki s 1dj]t'



Proof: By induction on j and k with k> j. =

We are now ready to define controllability. Let 0 < j < k. The constraint system for (C)
is (j,k) - controllable if, for each z; € S; and Zx11 € Sk41, there exists u; € U, j <1 <k,
such that:

(1) Tiy1 = F(k,]).’l,'J + @(k,])[uk, . ,Uj]t + \I’(k,])[dk, v ,dj]t and
(ll) F(l,])$1 + @(z,])[u,, N ,'U,J']t + \I’(Z,])[d,, NN ,dj]t € S,'+1, ] < 1 < k—1.

Remarks: Part (i) says that, for any pair of feasible states z; and z,4; at stages j and
k + 1 respectively, there exists a sequence u;,...,ux of controls which transforms z; into
Tk+1. Alternately, the U; x ... x Uy - span of the columns of ®(k, j) contains the subset of
R" given by Sk41 — I'(k, 5)S; — ¥(k,7)[dk, . . ., d;]". Part (ii) says that the states s; obtained
in the intermediate stages satisfy s; € S;, j < 1 < k, i.e., they are feasible. In the special
case where each X; is IR", this is automatically the case. Then, the constraint system of (C)
is (j, k) - controllable if (i) holds.

We say that the constraint system for (C) is controllable if, for each 7 =0,1,2,..., there
exists k;j > j such that the constraint system for (C) is (j, k) - controllable for each k > k;.
Hence, the constraint system is controllable if from any feasible state, we can eventually
reach all subsequent feasible states. A simple sufficient condition for controllability is given
in the following Lemma.

Lemma 3.3 Fiz 0 < j < k and assume X; = R", all i. Then the constraint system
for problem (C) is (j,k)-controllable if the Uk-span of the columns of By contains Sgy1 —
T'(k,7)S; — V(k,7)|dk,.-.,d;]'. Consequently, the constraint system for (C) is controllable if,
for each j =0,1,2,..., there exists k; > j such that the preceding condition holds for (j,k),
for each k > k;.

Proof: Omitted. =

The key assumption of [14] which guaranteed that lim F*(N) = F* was the notion of
reachability in the dynamic programming sense. Our next objective is to define reachability
in a control-theoretic sense (which will imply the dynamic programming reachability property
of [14]) and compare it with the property of controllability.

Let k be a nonnegative integer and sy € Sk. Then the sequence of all feasible control
states {Sn} is reachable from the state sy at stage k if, given any sequence of feasible states
{ty} with ty € Sy, N =1,2,..., there exists N; > k sufficiently large such that for each
N > N, there exists yV € F(N) satisfying =¥ =ty and 2’ = s;. (Note that F(N) C F(k),
for all N.) The feasible sequence {Sy} is reachable from all finite-stage feasible control states
if it is reachable from all s, € Sk, all k =0,1,2,....
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Remark: It is not difficult to verify that this notion of reachability implies that of [14].
Also, reachability implies that

F(N,sy) — F, as N — oo,
for all feasible state sequences {sn}.

Theorem 3.4 If the constraint system of problem (C) is controllable, then {Sn} is reachable
from all finite-stage feasible control states.

Proof: Let k be non-negative integer and s € Sk. By Lemma 2.1, there exist u; € U;, 0 <
1<k-1,z;€8;, 1<i<k-1,such that

.CL','+1=A,'SC,‘+B,"U,,'+d,', i=0,1,...,k—2,
and
Sk = Ak-1ZTk—1 + Bre_1Uk-1 + dk-1.

Let {ty} be such that ty € Sy, N = 1,2,.... By controllability, there exists Ny > k
such that the constraint system for (C) is (k, N) - controllable, for each N > Nj. Fix
N > Ni. Then there exists ufv € U;, k<1< N-1, such that sy = ty and s; €
Siyk+1<i< N -1, where

siv1 = D3, k)sk + 06, k), ..., ul ' + VG, k)[d;,. .., di]", k<i< N -1

Define
Ui, OSZSk—l,
u =9 uf, k<i<N-1,
arb. in U;, 1> N,
z;, 1<i<k-1,
' =1 s, k<i<N,
arb. in Vi, 1> N +1,
N=cazV, i=12,...,
and
w' =@MV 2), i=12,...

ThenyN¥ €Y;, i=1,2,.... Hence, yV¥ = (yN) € Y. For 0 < i < k-1, we have

T = Azi+Bui+d;,
= A,va+B,ufv+d,

11



For i = k, we have

Ty =8k = Apo1Tk—1+ BeorU—1 + di—y
N N
Ak-1Z_q + Br—1Upe_y + die—1.

For k+1 <1< N, we have

¥ =5 = T(i-LEk)se+®6G—1,k)uY,, ..., ud] + V06— 1,k)[dis1, ..., de]*

= AiiD(i—2,k)se + [Bicy, Aoy @3 = 2,k)[ul ..., ul ]t +
[, Aicy % V(i = 2,k)[di—y, . .., di]*

= A1 -2, k)sk+B_1u,_1+A, 1@ - 2,k)[uY,, ... ul ]t +
dioy + Aio1 % (i = 2,k)[dis, ..., di]’

= Aia[D(i—2,k)sk + 03 — 2,k)[ul 5, ..., ub ' + Ui — 2,k)[dis, . . ., di]'] +
Biowul | +di

= A1Tioy + Bi—luf'\.’.l +di_1,

where, in particular, z§ = sy = ty. Thus, yV € F(N), zl¥ = s and z¥ = ty. Consequently,
{Sn} is reachable from all finite-stage feasible states. =

We are now ready to state our main result.

Theorem 3.5 Suppose the constraint system of (C) is controllable. Then:
(i) A}im F*(N)=F* in K(Y), i.e., Al,im F*(N) = F*, in the sense of Kuratowski.

(ii) For each point p in Y, the sequence {yp( )} converges to y;, where y;(N) is any best-
approrimation in .7-"(N ) to p and y; is the unique best-approzimation in F* to p. In
particular, if yo(N) = ((u;)k-l(N),(x;)k(N),(z;)k(N))L";l and y; = ((up)k-1, (2 )k,
(25)k)i21, then (up)k-1(N) = (up)k-1, as N — o0, for k =1,2,

Proof: By our hypothesis and Theorem 3.4, it follows that {Sy} is reachable from all finite
horizon feasible states. It is then easy to see that this implies the reachability condition of
Theorem 5.4 of [14] (for the sets S(N) = AySn). Hence, the conclusions of this theorem
and its Corollary 5.5 follow. =

Theorem 3.5 says that we can arbitrarily well approximate an infinite-stage optimal
control by solving a finite stage subproblem of sufficiently long horizon. From the standpoint
of implementation, if we approximate the continuous control spaces Ui by uniformly bounded
discrete control sets, then two simplifications follow [13]. First, F*(N) = F*(N), thus
avoiding the necessity to form the closure of F*(N). Therefore, a standard forward dynamic
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programming algorithm will, as NV increases, automatically generate the set F*(N) of optimal
controls to all feasible states. Second, for (Bx) sufficiently small, the best-approximation
Yp(N) (with p the origin) is the lexicomin, i.e. the lexicographically smallest element of
the finite set F*(N). By Theorem 3.5, the lexicomin first-stage control from F*(N) will
eventually lock-in and agree with the infinite horizon first-stage optimal control for that and
all subsequent horizons. In this manner, the forward dynamic programming algorithm will
recursively recover the lexicomin infinite horizon optimal control. A stopping rule is provided
in [14] that determines how large the horizon N must be to guarantee agreement with the
infinite horizon first-stage optimal control.

4 Multiproduct Production Planning

In this section, we illustrate the previous development with an application to production
planning. Consider the problem of scheduling production of several products to meet a
non-stationary, deterministic demand over an infinite horizon. The objective is to optimally
balance the economies of scale of production against the cost of carrying inventory. If we
assume convex quadratic costs for production and inventory holding, then the problem may
be formulated by the following mathematical program (P) (3], where vector inequalities are
interpreted componentwise:

(o ¢]
: k|t t
min Z o [xk+1Qk+1-77k+l + ukRkuk]
k=0

subject to (P)

Thy1 = Tk + Uk — d,

-b
0

l‘kﬁa;

IN A

uk < ¢, k=0,1,2,...,

where (for convenience) the initial inventory zo = 0, zx € IR" is the multiproduct inven-
tory ending period k, ur € IR™ is multiproduct production in period k, and dx € R" is
multiproduct demand for production in period k. The quantity o is the discount factor
reflecting the time-value of money, where 0 < o < 1. We require that ¢ > 0,a > 0,0 > 0
and 0<dr <gq, k=0,1,2,.... If a component of b is positive, then backlogging is allowed

for the corresponding product. We impose the following assumptions on (P).
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Assumptions

I. For each k,Q, and Ry are positive semi-definite. Moreover,

Z k(|| Qr+1]l2 + || Rel]2) < .
k=0

II. liminfd < q and limsup di > 0.

Assumption I is similar to the cost assumptions of (C). A sufficient condition for the series to
converge is that the sequences {||Q«||2} and {||Rk||2} be uniformly bounded. Then the series
is essentially the geometric series with 0 < o < 1. Assumption II is a regularity condition
required to guarantee controllability for (P).

Clearly, (P) is a special case of (C) with r, = 0,Ax = By = Cr = I,Ux = [0,q], Xk =
[-b,a] and 2z, = z¢, k = 0,1,2,.... It is easily seen that the feasible region F for (P) is
non-empty; for example, let ug = di, so that zx = 2, =0, £k =0,1,2,.... Thus, (P) satisfies
all the hypotheses of section 2. Consequently, C* denotes the optimal objective value of (P)
and F* the nonempty set of optimal solutions.

For each N =1,2,..., the finite-stage approximation (P(N)) to (P) is given by

N
min Z a" [.’Bi+le+1$k+1 + uiRkuk]
k=0
subject to (P(N))
xk+1=xk+uk—dk, k=0,1,...,N -1,
b<z<a, k=12,...,
0<u<yq, k=0,1,2,....

Since the inventory levels zi,...,zy are defined by the production schedule uy,...,uy via

k k

zk=2uj—2dj, k"—‘l,...,N,

=0 j=1

we will say that (ug,...,un,...) is feasible for (P(N)) if 0 < u, < g, all k, and
k k k
—b+ZdJ’SZUjSG.+Zdj, k=1,...,N.
j=1 =0 j=1

As in section 2, we let F(N) denote the non-empty feasible region of (P(N)), F*(N) the
non-empty set of optimal solutions to (P(N)) and C*(N) the optimal objective value for
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(P(N)). As in section 3, let Sy denote the set of feasible control states at stage N, F*(N)
the set of (P(N)) - feasible solutions which are optimal to some state s € Sy and F*(N) the
closure of *(N) in K(Y'). Note that Sy is identical to both (1) the set of feasible inventories
ending period N and (2) the set of feasible dynamic programming states S(N) at stage N
since Ay = 1.

We next turn to the problem of establishing controllability for the constraint system of
(P). For the given data, it is clear that ['(k,j) =1, k> j — 1, and

k—j+1
Q(k’j) = [I) e 7Il = \P(khj)’

for 0 < j < k. Thus, for 0 < j < k and z; € R", the equation in Lemma 3.2 becomes
k k
Tepr =T+ ) ui— ) di,
i=j i=j

as expected. Hence, for 0 < j < k, the constraint system of (P) is (4, k) - controllable if, for
each s; € S; and sx41 € Skq1, there exist 0 <u; < g, i=7,...,k, such that

k

k
(i) skp1=s;+ Y u — Y d; and

i=j i=j
i i
(ll) Sit+1 € Sit1, where Si41 = S;j +Z’U¢ - ng, i=7,....,k—1
=5 l=j
As a consequence of Assumption II for (P), we have:
Lemma 4.1 For each producti=1,...,n:

(i) there exists 0 < o* < ¢* and a subsequence {d,_}oo_, of {d}}32, such that & < o' < ¢',
all m, and

(ii) there ezists 0 < 8 < ¢' and a subsequence {d,}2, of {d;}32, such that 0 < §' < &,
all €.
Proof: This is Lemma 6.1 of [14] for each of the n products. =

Remark: Part (i) says we may stockpile inventory for product i by at least (¢* — ai) units
in periods j,,. Part (i) says that inventory for product ¢ will be depleted by at least 6* units
in periods jp.

We are now ready to verify the main result of this section.
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Theorem 4.2 Under Assumption II, the constraint system of (P) is controllable.
Proof: See Appendix. =

Thus, we conclude:

Theorem 4.3 If (P) has the property that lim infyd; < ¢ and lim sup;d} >0, i=1,...,n,

then the constraint system of (P) is controllable. Consequently, the convergence results for
(C) in Theorem 8.5 are valid for (P).

Remark: If there is only one product, then the objective function is simply

o0

k 2 2
Y« [Qk+1$k+1 + Rkuk] )
k=0

where Qk+1 and Ry are non-negative real numbers. If they are both positive for some k, then
the objective function is strictly convex, thus making the need for selection unnecessary by
Theorem 2.3. However, for n > 2, the matrices Qx4+, and Ry can be positive semi-definite
without being trivial, i.e., without being zero, thus requiring best-approximation selections
to obtain convergence.
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Appendix

Theorem 4.2 Under Assumption II, the constraint system of (P) is controllable.

Proof: Fix ¢ = 1,...,n. For product ¢, we may have to reach at worst from (1) —b; to a;
or (2) from a; to —b;. Suppose (1) is the case. By Lemma 4.1, for each j = 0,1,2,...,
there exists a unique integer K}' > j such that

Kjt-1
bt ¥ -d) <o
t=j
while '
K}
bt S0 - ) >
=j
Now suppose (2) is the case. By Lemma 4.1, for each j = 0,1,2, ..., there exists a unique
integer K3* > j such that
Kj?-1
G- Y d>-b
t=j
while
K}?
a; — Z d; < —bi.
t=5
Set K} = max(K;‘,K;z) and K; = IIQ%{KJ‘} +1,j=1,2,.... Let =0,1,2,... and

choose k > Kj, so that k > j in particular. We will show that the constraint system of
(P) is (j, k) - controllable.

Let s; € S; and Sk41 € Sk41. By Lemma 2.1, there exist 0 <u, < ¢,0< €< j-1, and
zp €Sy, 1 <€<j-1,such that

Te41 = Tg + Uy, £=0,...,5-1,

with z; = s;.
Now fix ¢ =1,...,n. Then there exist three cases:

i i i i G
S; = Sk41r Sj < Sk41y OF 8; > Sk

i i
If s} = 8}41, define

up=d, j<L<k.
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Then 0 < u} < ¢', all £, and

8; +Zue Zd} s = Sj41-

£=j £=j
. ' e ¢
Also, —b; < sy, < a;, where sp,, = 8} + Zuh - Zdh, j<Il<k-1
h=j  h=j

If s} < s}y, then arguing as above, there exists a unique integer K <K} <K;j<k
such that

01__1
l—J

while

s+z —dy) > Sjyy-

t=j

In this case, define

¢, j<L<K—1

. K1

U= shy - 8- Z(q ~d2>+d‘-1, £=k,
&, kr<l<k

Then 0 < u} < ¢', all £, and

k k k-1 k
sty u—y dy =s}+ Zq+u.,+ Z 4| -3 4

=3 £=j £=j = k‘1+1 =3
— ot

Also, —-b; < st+1 < a;, where s¢+1 is as above, <€ < k- 1.
Finally, if s; > Sk+1, then arguing as above, there exists a unique integer Ic’2 <K; 2 <
K;<k such that
k'2 1
S - Z dy > 3k+1
t=j
while .
k2
§ - Y < shar.

£=j
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In this case, define ‘
0, j<E€<k? -1
| K}
U= sy — S+ Y dy, £=k2,
o t=j
p kP <€<k.

Then 0 < u}, < ¢', all £, and

k k k k
Ss+Y -y d =5+ u;c;2+ Y, 4| -> 4,

Z:j f:j £=k;.2+l l=j
— ot
= sk+l'

Once again, —b; < sj,; < a;, j<€<k-1.
For each i = 1,2,...,n, we have defined vj, j < £ <k, such that u} € [0,¢'] and

k k
Si+ Y up— Y dy =iy
=j =3
Define uy = (u},...,u}), j<£€<k Then0<wu,<gq, j<€¢<kand
k k
Sj + ZUz - ng = Sk+1-
£=j £=j
To complete the proof, we need to show that seyy € Seq1, j < €<k —1, where
¢ ¢
Ser1=Sj+ Y u— ) dp
t=j t=j

But this follows from s; € S;, u; € [0,g], for j <t <k, —b< 841 < g, for j< €<
k — 1, and the definitions of the Spyy, for j<£<k-1. n
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