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ABSTRACT

We consider an infinite quadratic programming problem with positive semi-definite
quadratic costs, equality constraints and unbounded variables. Sufficient conditions
are given for there to exist an optimal solution. Specifically, we require that (1) the
cost operator be strictly positive definite when restricted to the orthogonal comple-
ment of its kernel, and (2) the constraint operator have closed range when restricted
to the kernel of the cost operator. Condition (1) is shown to be equivalent to the
spectrum of the restricted cost operator being bounded away from zero. Similarly,
condition (2) is equivalent to the minimum modulus of the restricted constraint op-
erator being positive. In the presence of separability, we give a sufficient condition
for (2) to hold in terms of finite dimensional truncations of the restricted constraint
operator. We apply our results to a broad class of infinite horizon optimization
problems. In this setting, the finite dimensional truncations can be considered to
be finite dimensional approximations to our problem whose limit, in a somewhat
formal sense, is our infinite dimensional problem. Each of these approximations has
properties (1) and (2) by virtue of their finite-dimensionality, i.e., each admits an
optimal solution. However, our infinite dimensional problem may not. Thus, we
give sufficient conditions for our problem to also admit an optimal solution. Finally,
we illustrate this application in the case of an infinite horizon LQ regulator problem
(a production planning problem).

1 INTRODUCTION

We consider the infinite quadratic programming problem (Q) given by:
min (z, Q1)
subject to (Q)
Az =b,



z€H,

where H and M are separable, real Hilbert spaces, the constraint operator A : H —
M is a bounded linear operator, b € M, and the cost operator @ : H — H is a
non-zero, (self-adjoint) positive semi-definite, bounded linear operator. Recall that
Q is positive semi-definite if (z,Qz) > 0, Vz € H, and that Q is positive definite if
(z,Qz) >0, Vz € H, z+# 0. In general, the quadratic function (z, Qz) evaluated
on the linear manifold defined by Az = b is either unbounded below or Q is positive
semi-definite on this manifold. Moreover, in the latter case, if the manifold is also
finite-dimensional, then the minimum is attained.

We assume that problem (Q) is non-trivial in that there exists a feasible so-
lution, i.e., b is in the range of A. Our objective in this paper is to give sufficient
conditions on the problem data Q, A,b to guarantee the existence of an optimal
solution to (@). (Uniqueness is not an issue here since, in general, multiple op-
timal solutions will exist in this context.) For convenience, we let K = ker(Q)
denote the kernel of Q in H and L = K+ its orthogonal complement in H, so that
H = K& L. Our sufficient conditions require that the operator restriction Q|L of Q
to L be strictly positive definite (see section 2), i.e., coercive, and that the operator
restriction A|K of A to K to have closed range in M. The strictly positive definite
property is equivalent to requiring that the non-zero spectrum of @ be bounded
away from zero, and the closed range property is equivalent to requiring that the
minimum modulus (Goldberg, 1966) of the restriction A|K be positive.

As a special case, problem (Q) includes infinite horizon, discrete-time, linear-
quadratic programming. This class of problems includes the important time-varying,
discrete-time LQ tracker and regulator problems (Lewis, 1986). Our objective in
these cases is to give sufficient conditions, in terms of the time-staged data over
increasing finite horizons, for there to exist an optimal solution. Here, decisions,
costs and constraints are specified (and vary) over an infinite, discrete time-line.
By assumption, the operator restrictions referred to above (automatically) have, in
each period, positive spectra bounded away from zero and positive minimum mod-
uli, respectively. (Note that the positive spectrum of a finite-dimensional operator
is the set of positive eigenvalues.) The same is true of the finite direct sums of
these restrictions over finite horizon approximations. The problem is that these
conditions may not hold for the direct sums of these operator restrictions over the
infinite horizon. We give sufficient conditions for this to occur, i.e., for Q|L to have
positive spectrum bounded away from zero, and for A|K to have positive minimum
modulus, in terms of increasing finite-horizon approximations of these operators.

In Schochetman, Smith and Tsui (1995), the authors considered the solution
existence question for a problem somewhat similar to (Q). There, the operator
analogous to Q) above was assumed to be a direct sum ®32,Q; of positive definite
matrices Q;. The (possibly unbounded) operator Q itself need not be positive
definite. We showed that if the (positive) eigenvalues of the Q; are bounded away
from 0, then the optimization problem admits a (unique) solution. Even if @ is a
bounded operator which is positive definite, but not stictly positive definite (i.e.,
coercive), then the optimization problem will not admit an optimal solution. Sce
Dontchev and Zolezzi (1992, Theorem 32). For such positive definite @, we have
K =0, so that H = L and A|K = 0, which obviously has closed range. Thus,
the current paper can be viewed as an extension of Schochetman, Smith and Tsui
(1995) to the more general case where Q is only positive semi-definite, i.e., where



A|K is non-trivial.

In section 2, we give sufficient conditions for problem (Q) to have an optimal
solution. In particular, we show that if the restriction A|K has closed range in M
and the (positive definite) restriction Q|L is strictly positive definite, then there
exists an optimal solution for (Q). We then give an equivalent conditon for A|K to
have the closed range property. If M is separable, we obtain a sufficient condition
for range closure in terms of finite-dimensional truncations of A|K, i.e., in terms of
finite horizon approximations to A|K. (These responses are based on the relevant
operator-theoretic results established in the Appendix.) We also give equivalent
conditions for Q|L to be strictly positive definite in terms of the finite horizon ap-
proximations to Q|L. In section 3, we apply our main results to an infinite horizon,
discrete-time, non-stationary, linear quadratic programming problem with positive
semi-definite cost matrices and lower-staircase constraint structure. We obtain suf-
ficient conditions for such a problem to admit an optimal solution. In section 4,
we illustrate these results in a special case of the infinite horizon linear-quadratic
regulator problem (a production planning problem).

2 OPTIMAL SOLUTION EXISTENCE

In this section, we establish sufficient conditions for (Q) to admit an optimal solu-
tion. Since Q is positive semi-definite, it is not difficult to see that its kernel K is
given by
K={z€H:(z,Qz)=0}.
Since H = K & L, we may let Ex (resp. EL) denote the orthogonal projection of
H onto K (resp. L). Moreover, since Q is self-adjoint, it follows that K and L
are invariant under Q. Hence, Q also decomposes into 0 @ P, where 0 is the zero
operator on K and P : L — L is the restriction operator Q|L. Note that P is a
positive definite, bounded linear operator on L.
Now let F denote the feasible region for (Q), i.e.,

F={ze€eH:Az=b}
={n+€:nekK, EcL, Aln+§) =b},

so that (Q) becomes
min < z,Qz > . (Q)
IEF

To avoid trivialities, we suppose that F # 0. Also let

Fx={neK:.n+€€F, for somef € L}=Eg(F),
i.e., Fi is the image of F under Ex. It is non-empty and convex in K, since this
is the case for F in H. It is also true that F is closed in H; however, Fy need not

be closed in K.
Analogously, let

FL={€€eL:n+€€F, for somene K}=EL(F),



the image of F under Ej. As with Fi, the set Ff, is non-empty and convex, but
not necessarily closed in K. Moreover, F C Fx & F.
We may now consider the following related problem (P) :

min (¢, P§) (P)

EEFL

where, as we have seen, P is positive definite on L and Fj, is a non-empty, convex
subset of L. Moreover,

(€ P¢) = (z,Qz),

forall(eL, ne Kandz=n+¢.

Note that solving (P) is equivalent to solving (Q) in the following sense. If £*
is an optimal solution to (P) , then there exists #* € Fx such that z* =n*+£* € F
and z* is optimal for (Q) . Conversely, if z* is optimal for (Q) , then z* = n* + £*,
for n* € Fx and £* € Fi, where £* is optimal for (P) .

Given the formulation of problem (P) , it is desirable to know when Fj, is
closed in L. We have the following sufficient condition.

LEMMA 2.1. If A|K has closed range in M, then Fy, is closed in L.

PROOF. For the remainder of this paper, it will be convenient to denote A|K
by B. Let {£"} be a sequence in F, and £ € L such that £* — £, as n — oo.
By definition of Fp, for each n, there exists n* € K such that 0" + £ € F, ie,
A(m™ + &%) =b. But

A"+ €") =By + A" =b.

Hence,
Bn™ =b - A¢",

which converges to b — A£. Consequently, by hypothesis, b — A£ is necessarily an
element of the range B(K) of B. Thus, there exists n € K such that

An=Bn=b- A¢,

ie.,
An+ AE =),

so that n+£€ Fand £ € FL.

We are now in position to prove the main result of this section. We will say
that the operator P is strictly positive definite if it is coercive, i.e., if there exists
op > 0 satisfying

UP"E”2 < (f, PE): V¢ e L.

(In Lee, Chou and Barr (1972), such an operator P was called positive definite;
in Milne (1980) it was called positive-bounded-below.) This condition is known
(Dontchev and Zolezzi (1992, p.73)) to be necessary and sufficient for (P) to admit
a (unique) optimal solution. Observe that even if Fy is closed in L, (P) may not
admit an optimal solution, despite the fact that P is positive definite. See Scho-
chetman, Smith and Tsui (1995) for an example.



THEOREM 2.2. If B = A|K has closed range in M and P = Q|L is strictly
positive definite on L, then there exists an optimal solution to (Q) .

PROOF. If B has closed range, then Fj, is closed in L by Lemma 2.1. Thus,
the feasible region in problem (P) is a closed affine subset of L. If, in addition,
P is strictly positive definite, then it is well-known that problem (P) admits a
(unique) optimal solution (Dontchev and Zolezzi (1992)). (The space L can be
equivalently re-normed by ||€]|p = 1/(£, P€). An optimal solution to (P) is then
a best-approximation to the origin in the closed, convex, non-empty subset F}, of
the Hilbert space L. Such is well-known to exist (Aubin, 1979).) The proof is then
completed by recalling the correspondence between solutions of (P) and (Q) .

The previous theorem suggests the following questions. Under what condi-
tions:
(i) is P strictly positive definite on L?
(ii) does B have closed range in M?

To respond to these questions, we require some additional notation. Let T :
X — Y be an arbitrary bounded linear operator from the Hilbert space X to the
Hilbert space Y. Define the operator index ar as follows:

ar = inf{||Tz| : z € ker(T)*, |z|| = 1}.

It is shown in Theorem A.1 of the Appendix that this index is an alternate char-
acterization, in the context of Hilbert space, of the well-known minimum modulus
(Goldberg, 1966) of operator T. Thus, in particular,

ap = inf{||Bn|| : n € ker(B)*X, |9l =1} >0,

where ker(B)1¥ denotes the orthogonal complement of ker(B) in its domain K.

Now assume Y = X. As usual, let o(T") denote the spectrum of T (Helmberg,
1969). In particular, o (T") will denote the positive elements of ¢(T"). Recall that if
T is self-adjoint and positive semi-definite, then o(T') # @ (Helmberg, 1969, p.226)
and o, (T') consists of the non-zero elements of o(T’), because o(T) C [0,00). If T
is non-zero as well, then o, (T) # @ also. If T is given by a matrix on a Euclidean
space with standard basis, then o(T') is simply the set of eigenvalues of the matrix.
Finally, if S is any non-empty set of real numbers, then inf(S) will denote the
infimum of the elements of S.

In response to question (1) above, we have the following well-known result.

LEMMA 2.3. The following are equivalent for the self-adjoint, positive definite
operator P on L.
(i) P is strictly positive definite.
(i) The quantity inf{(¢, PE)/||I€|*: € € L, € # 0} is positive.
(iii) The operator P is invertible.
(iv) The quantity inf(o(P)) is positive.

Before proceeding, it is perhaps worthwhile to restate Lemma 2.3 in terms of
the original operator Q. Recall that 0., (Q) # @ because Q # 0.



LEMMA 2.3'. The following are equivalent for the self-adjoint, positive semi-definite
operator Q on H.

(i) There exists og > 0 such that og||z||> < (z,Qz), Vze H, z L K.

(ii) The quantity inf{(z, Qz)/||z|® :z € H, z#0, z L K} is positive.
(iii) The operator QK+ is invertible.

(iv) The quantity inf(o+(Q)) is positive.

In response to question (2) above, we have:

THEOREM 2.4. The operator B = A|K has closed range in M if and only if
ag > 0.

PROOF. Apply the Corollary to Theorem A.1 of the Appendix.

Since M is separable, we can obtain a useful lower bound for ap as follows.
Let {en} be a complete othonormal system for M and {m;} a sequence of strictly
increasing positive integers. For each ¢ = 1,2,..., let M; denote the span of
{e1,... ,em,}. Then {M;} is a sequence of finite-dimensional subspaces of M such
that M; C M4y, Vi=1,2,..., and U2, M; is dense in M. Let J; : M — M be
the mapping given by

[o o] mg

J()_ amem) =) amem, Vi=1.2,....
m=1 m=1

Note that J;(M) = M; C M and J? = J;, for all i. Define B; : K — M by

B; = J;B, Vi=1,2,.... Our objective is to investigate the range-closure property

for the operator B in terms of its finite-rank truncations B;, which have (finite-

dimensional) closed range.

LEMMA 2.5. Let the notation be as above. Then:
(i) {Js} converges strongly to the identity operator on M.
(ii) {B:} converges strongly to B on K.
(iii) {B}} converges strongly to B* on M.
(iv) 1By ll, ||Bill < max(||B*]l, |Bl}), Vi=1,2,....
v) {B;B;} converges strongly to BB* on M, as i — co.

PROOF. Items (i) - (iv) are straightforward. To prove (v), apply Remark 2.5.10 of
Kadison and Ringrose (1983).

Since the image of B; is finite-dimensional in M, it follows from Theorem 2.4 that
ap, > 0, for all :. However, inf; ag, > 0, in general, as the next example shows.

EXAMPLE. Let H = M be a separable Hilbert space with m; =i, Vi=1,2,....
Define A: M — M by

[ <]

o o]

1

A3 emen) = 3 Lot
m:

m=1



Then A is bounded with norm equal to 1 and ker(A) = {0}. Moreover, M; is the
span of {e;,... ,e;} and

o0 i
1 .
Bi(z ameém) = Z —amem, Vi=1,2,....
m=1 m=1
Hence, B;(e;) = 1e;, so that ||Bi(e)|| = 1, ie, aB, < 1, Vi =1,2,... . Conse

quently, inf; ap;, = 0. In fact, a4 = 0 by Lemma A.3, since the eigenvalues of A
are of the form 1/4, Vi=1,2,....

We next show that the index of the operator B is at least the infimum of the
indices of its finite-dimensional truncations B;.

THEOREM 2.6. Let the notation be as above. Then ap > inf; ap,.

PROOF. Let ¢ > 0. By the definition of g = ap (Theorem A.1), there exists
ye in M such that B*y. # 0 and

IBB*y| ¢
ap<———— <ap+-.
BBl =272

But, by part (2) of Lemma 2.5,
"Byc” = lim "Biyc”a
1—00

so that By, is eventually non-zero. Also, by part (5) of Lemma 2.5, we have that
B;B;} converges strongly to BB* on M. Hence,

I1B:Biell _ 1I1BB"yell

, asi— oo.
IIB; well 1 B*yell
Therefore, there exists i, such that
€ B; B!
oy & BB

- < ——
2 Byl
so that ap, < ap + ¢, where ¢ is arbitrary. Consequently, ap > inf; ap;.

COROLLARY. Let the B; be as above. If inf;ap, > 0, then B has closed range
in M.

We thus have the following numerical version of Theorem 2.2.

THEOREM 2.7. If inf;ap, > 0 and inf(o4+(Q)) > 0, then there exists an opti-
mal solution to (Q).

PROOF. Apply Lemma 2.3, as well as Theorems 2.2, 2.4 and 2.6.



REMARK. The previous results from Lemma 2.5 through Theorem 2.7 inclusive
are valid more generally for the operator T: X — Y of the Appendix.

3 AN APPLICATION TO INFINITE HORIZON OPTIMIZATION

As an application of the above, consider the following special case (S) of (Q).

min E(Zj, QjIj)

j=1
subject to (S)
Aiis1zio1 + Auzi =b;, Vi=12,...,

T; ER.nj, VJ= 1,2,...,
and

[o o]
3 2513 < oo,
J=1

where Ajp = 0, Q; is a symmetric, positive semi-definite matrix, V4, and b; € R™,
Vi. Of course, the A;;_;, A;; are matrices of appropriate size. Let / denote the
Hilbert sum of the R and M the Hilbert sum of the R™:. All Euclidean spaces
are assumed to be equipped with their respective standard bases. Note that I/ and
M are separable. In fact, we may let M; (as in section 2) denote the subspace

R"e..0eR™"006...

of M, Vi=1,2,.... Inthis case, J; : M — M is given by Ji(y) = (v1,.--,¥:,0,...),
Vy=(m)eM, Vi=12,....

If |Q;ll2 denotes the spectral norm (Horn and Johnson, 1988) of Q;, Vj, we
assume that sup; ||Q;ll2 < co. This will be the case, for example, if there exist
finitely many distinct Q;. We then obtain a self-adjoint, positive semi-definite
operator Q on H given by Qzr = (Q;z;), for z € H. Moreover,

(z,Qz) = Z(xj'Qj:Cj), z€eH.
=1

We also assume that
sup{[|Asi-1ll2, [l Asill2} < oc.

As above, this will be the case, for example, if there exist finitely many distinct Ay;.
We thus obtain a bounded linear operator A: H — M given by

(A.‘L‘);' = A,"i_lx.'_l + Az, Vi=1,2,..., VzeH.



The matrix representation of A has the following lower-staircase form:

An O 0
A A O

0 Az As

Finally, assume that b= (b;) € M, i.e., Yoo, |Ibill2 < oo, and the feasible region
F={zeH:Az=1b}

is non-empty.
For each positive integer k, consider the following “finite dimensional” problem
(Sx) which approximates (S):

k
min Z(:L'J', QJ'ZJ')

=1
subject to (Sk)
Aii1Zi + Auzi = by, Vi=1,...k,

z;€RY, Vj=12,...,

and
[o o]
> lixsll3 < oo
Jj=1

Note that (Sk) is essentially finite dimensional since the objective function depends
only on the first k variables and the feasible region consists of those square-summable
extensions of the first k variables which satisfy the first k constraints. If we let F
denote the feasible region for (Si), then {Fi} is a sequence of closed, non-cmpty
subsets of H satisfying Fx, C Fx, Vk,and F =N, Fy, ie, lime o Fix = F, in
the sense of Kuratowski (1966). It is then of interest to ask if the problems (Sk)
“converge” to (S) also, in the sense of Fiacco (1974). This would be the case if, in
addition to the feasible region convergence, the functions

k
f(z) =) (z;,Q;z;), z€H,

J=1

converge uniformly to the function
[@) =) (z3,Qs25), z€H,
j=1

on H as k — oco. Unfortunately, this is not so. However, it is true that the sequence
{fk} converges pointwise to f on H. Thus, the problems (Sx) do converge to (S)
in this weaker sense.



Since Q = ®;Q;, it follows that the kernel K of Q is given by K = &; K, where
K; is the kernel of Q; in R™, V5. Similarly, L = ®;L;, where L; is the orthogonal
complement of K; in R%, i.e.,, R% = K;® L;, Vj =1,2,.... If P; = Q;|L;, then
Q; =00 P;, Vj, and P = Q|L = &;P;.

LEMMA 3.1. The (real) spectrum of P is equal to the closure of U2 ,0(F;) in
R, i,
U(P) _1 IG(P)

PROOF. Note that each P; is positive definite and defined on a subspace of R"s.
Hence, o(P;) consists of a set of (positive) eigenvalues {A;1,..., Ajk;} of P;, which
are also eigenvalues of P. Consequently,

o(P) Co(P), Vi=12,...,
so that
U2 0(P;) € o(P)

and
U;.;IU(PJ) g U(P)a
since o(P) is closed.
For the other inclusion, let A € R and suppose A ¢ U2,0(P;). Thus, there
exists r > 0 such that

{teR:|jt-A<r}nuR,0(P;) =0,
ie,foreachj=1,2,...,
IA]t-’\l 27“, V1=‘l, |k]

For each j, consider the bounded linear operator P; — Al;, where I; is the identity
operator on L;. Since P; is self-adjoint and A is real, we have that each P; — A/,
is self-adjoint. Moreover, since A ¢ o(P;), it follows that P; — Al; is invertible
and hence, also self-adjoint. Consequently, if we denote the inverse of I, — AJ; by
Vi, V5 =1,2,..., then by Helmberg (1969, p.227)

o(Vy)={pt:pea(Pj=M;)} ={(Mji =Nt :i=1,... k;}

and

) -!
IVsll= max {10 = N7} <1/,

so that the V; are uniformly bounded. Now let V = @32, V;. Then V is a bounded
linear operator since
IVIi= sup Vsl <1/m,
1<j<o0

and

V(P - ,\I=éVJ P, - AlL) éIJ:],



i.e,, V is the inverse of P — Al on L. Therefore, A ¢ o(P), i.e., we have shown
equivalently that
o(P) C U2, 0(P)).

REMARKS. The previous lemma can be shown to be true for self-adjoint op-
erators in general. However, it is well-known to be false for arbitrary bounded
operators. Moreover, the spectrum of the finite-dimensional operator @, P; con-
sists of its eigenvalues, which are the eigenvalues of the P, ¢ = 1,...,n, iec,
o(@;_, P) = U,0(P:), n=1,2,..., an increasing sequence of closed sets. On
the other hand, o(@i2; Pi) 2 UX,a(P;), which may not be closed in general. But

Ugo(P) = JL";O Uie10(P)

in the sense of Fiacco (1974) (see (Kato, 1980, p.339)), i.e., in the sense of Kura-
towski set convergence. Thus, Lemma 3.1 asserts that

o(@P) = lim o(@P)
=1 =1

in the sense of Kuratowski.
As a consequence of the above discussion, we have that

Exy 0 0
0 E} 0
Ek=|l0 o E3 ;

where Ei is the orthogonal projection of R™ onto L;, Vj =1,2,....
Nowlet Cx:R" @ ... R™ - R™ &...® R™* denote the matrix opcrator
given by

AnEk 0 0 e 0 0
AnEl AnE} 0 .. 0 0
Ck = 0 AnE% AnE} ... 0 0 ,
0 0 0 Ak,k-lE;'l Ak %,

with minimum modulus given (as in section 2) by

ac, = inf{]ICk(zl,.. . ,.‘Ck)uz . (11,.. . ,Ik) € ker(Ck)l, ”(Il,. .. ,Ik)”2 = l},



Vk =1,2,.... The (doubly-infinite) matrix operator By = Ji(A|K) then satisfies

C: 0
BiExk=|0 0 ... wvk=12....

The following is the main result of this section.
THEOREM 3.2. Problem (S) admits an optimal solution if infs ac, >0 and

inf(U2,04(@;)) > 0.

PROOF. First observe that ker(BxEx) = ker(Bi) ® L, so that ker(BixEk)* =
ker(Bx)*x ®0, Vk =1,2,... . ;From this, it follows that ap, g, = ap,, Vk. By
a similar argument, we have that ag, g, = ac,, ie., ap, = ac,, Yk. Thus, by
hypothesis, ap > 0 (Theorem A.5).

Now P is strictly positive definite if and only if inf(o(P)) > 0 (Lemma 2.3).
But o(P) = U32,0(P;) by Lemma 3.1. Thus, P is strictly positive definite if and
only if inf(U32,0(P;)) > 0. However, 04(Q;) = o(P;), Vj = 1,2,... . Finally,
apply Theorems 2.4 and 2.7 to complete the proof.

The previous theorem guarantees an optimal solution for (S) if the two specified
quantities are positive. The first quantity is the infimum of the minimum moduli of
operators derived from the time-staged constraint matrices. The second quantity is
the infimum of the positive eigenvalues of the time-staged cost matrices. Although
the second quantity is not difficult to compute in general, determination of the first
can lead to significant complications, as the next section shows.

4 AN APPLICATION TO CONTROL THEORY

We consider a special case of the discrete-time, infinite horizon, time-varying L.Q
regulator problem (Lewis, 1986). Our example may also be viewed as a production
planning problem with positive semi-definite quadratic inventory and production
costs (Denardo, 1982).

Consider the following problem (R) :

oo
min 3 _[r;y] + s54])
Jj=1
subject to (R)
Vi=Yi1tuwi—di, Yi=12...,

y€ER, y;€R, Vi=12...,

where each r;, s; > 0. For the j** period, y; is the j** state (eg., ending inventory)
and u; is the contributing j** control (eg., production decision). The initial state yo



is assumed given. (Thus, its cost is constant and may be omitted.) The quantity d; is
assumed to be a known exogenous parameter (eg., demand) in period : = 1,2,....
Since it is customary for control costs to be positive definite (Lewis, 1986), we

further assume that s; > 0, for all j. For our purposes, we also assume that
inf{r; : rj # 0} > 0 and inf{s;} > 0.
Problem (R) may be rewritten in the form of problem (S) as follows:

00 y t r 0 y
i b Jj 3
mmz[“i] [0 3:'] [“j]
J=1
subject to (R)

1) 8] = im

10| ¥ 4-1n|¥|=d, Vi=23,...,
[ }[w_l]ﬂ %] = w
[yi]enz, Vi=12...,
Uj
where
_ v :
T = , Vi=12...,
? [“j] 7
= |7 0] Vi=1,2
QJ [0 sj ) J y &y )
Ao =110], Vi=23,...,
Au=[-11], ¥i=12,...,
and

b: = { —y0+dla 1=1,

YT 4 i=23,....
Let the remaining notation be as above. In particular, H (resp. M) is the Hilbert
sum of countably many copies of R? (resp. R). Obviously, b = (b;) € M if and only
if Y0, lldill3 < oo. To obtain the bounded operator Q, we assume the hypothesis
of the next lemma.

LEMMA 4.1. If sup;¢jcoofrs 8} < oo, then Q : H — H is bounded with
QN < supy<jcoo{rs ss}-

PROOF. Left to the reader.

Note that sup{|| Ais-1ll5, [ 4sill} = 1 in this case, so that the lincar operator
A:H — M is bounded with ||A|| < 1, where A has the following matrix form:

-I1] 0 0

1o -1 o ..
A= [0] [[101] 11 ...|



Recall that Kj; is the kernel of Q; in R? and E}( is the orthogonal projection
of R? onto K;, j=1,2,.... Consequently, for problem (R),

[-I NNEL 0 0 0 0
TOEY [-INEX 0 .. 0 0
c=| 0 UOER [-IDE, .. 0 0 ,
0 0 0 ... [[OESY [-I1)EY

so that CxC}, is given by

2E}( —E}( 0 0 0 0
-E} 2EX+E}, -E}¥ ... 0 0 0
: : R : : : v (%)
0 0 0 .. -EF? 2Ex'+EE?  -ER!
0 0 0 ... © -EfY 2EE +EF
for k =1,2,.... Note that our reason for computing CiCi* is contained in Lemma

A.2 which gives a lower bound for ac, in terms of the non-zero eigenvalues of C,Cy.
Thus, for each j,

o(Q;) = {rj, s},

and
{rj, s}, forr; >0

{3}, for rj = 0.

74(05) = {
Therefore,

inf(U32,04+(Q;)) = inf{r;, s;:r; >0} = min(inf{r; : r; > 0},inf{s;}) > 0.

For each j = 1,2,..., define §; as follows:
{ 0, forr; >0
65 =
1, for ;= 0.

Then the kernel K; of Q; in R? is given by K; = K} ®0, where K] = &R,
Vi =1,2,.... Consequently,

6 0

0 0}’

i.e., there are two possible values for each E3,, for each J.
Once again, our objective is to apply Theorem 3.2 to problem (R). Since

E} =

inf(Ug2,04 (@) > 0
by our hypotheses, it suffices to show that inf, ag, > 0. Observe that

ac, > W-C‘T”;inf(a+<ckc:>)



by Lemma A.2. In this case,

[-11)E) 0 0 0 0
[10)E} [-11)E% 0 0 0
Cp = 0 10E:, [-11)E} ... 0 0 ,
0 0 0 .. 1OEET [-11)EE

and CiC;, is as in (*) above, for k=1,2,....

For each k, the spectral norm ||Ci|2 of Ci is equal to /||CkCy|l2, where
[|CkChill2 is the largest eigenvalue of CxC}; (Horn and Johnson, 1988). Given the
form (x) of CiC}, and the description of the E3, j=12,..., we see from the Ger-

shgorin Circle Theorem that every eigenvalue of CC;, is at most 5. Consequently,
ICkll2 < V/5, so that

ac, > %inf(a+(CkC;)), VE=1,2,... .
Thus, to show that infx ac, > 0, it suffices to show that the sequence
{inf(0+ (CkCi )}z

is bounded away from 0.
A careful inspection of the matrix C,C}; reveals that it is of the form

Dl ... 0
s k=1,2,...,
0 ... Di*
where D}, for 1 < i < py, is necessarily either the 4 x 4 matrix
2 0 -1 07
0 0 0 O
-1 0 3 O
L0 0 0 Ol
with positive eigenvalues (5 + v/5)/2, or the 4 x 4 matrix
r2 0 -1 07
0 0 0 O
-1 0 1 0
L0 0 0 Ol
with positive eigenvalues (3 £ v/5)/2, or the 2n x 2n matrix
2 0 -1 0 0 O 0 0 0 0 0 07
0 0 0 0 0 o 0 0 0 0 0 O
-1 0 3 0 -1 0 0 0 0 0 0 O
0 0 0 0 0 O 0 0 0 0 0 O
Un=|: ¢ b0 n o
0 0 0 0 0 O -1 0 3 0 -1 0
0 0 0 0 0 O 0 0 0 0 0 O
0 0 0 0 0 O 0 0 -1 0 3 0
L0 0 0 0 0 O 0 0 0 0 0 O]




or the 2n x 2n matrix

2 0 -10 0 0 00 0 0 0 0]
0 00 0 0 0 00 00 00
-10 3 0 -10 00 00 00
0 00 00O..00O0UOTU OO
Va0 0 0o ], n=3da,
00 0 0 00 -10 3 0-10
000 0 00 00 0 0 00
00 00 00 0 0 -10 10
0000 0 0.. 00 00 0 O

or a square zero matrix; each of these is symmetric and positive semi-definite. Since
0.+(CCY) = U2k, {0 (D}) : Dy # 0},
it suffices to determine inf(o4 (U,)) and inf(0,(V,)), n=3,4,.... But
inf(o(Up)) 21, alln,
by the Gershgorin Circle Theorem. Thus, it remains to determine inf(c, (V4.)), for

all n. However,
det(Vn — AI) = £\"det(W,, — A]),

where W, is the n x n symmetric matrix given by

2 -1 0 0 0 O
-1 3 -1 0 0 O
W, = . , n=34,....
0 0 O -1 3 -1
0 0 O 0 -1 1

Consequently, 04+ (V,) = 04(W,,), for all n. Let ¢, denote the n** degree charac-
teristic polynomial of W,,, i.e.,

dn(A) =det(W,, = AI), n=34,....
It suffices to show that the positive roots of the ¢, are bounded away from 0. In
particular, we will show that if ¢,(\) =0, for any n > 3, then A > .1.
To this end, define
Yu(A) =det(Z, - AI), n=12,...,
(where Z,, is as in the first example) so that

¥n(A) = (3= A)Pn-1(A) = ¥n-2(}),

¢n(A) = (1 - A)¢n.—l(’\) - wn—2(’\)



and

6n(A) = ¥a(A) = 20p_1()), n=3,4,...
Next define p;(A) =3 -, p2()) = A2 —6) +8 and

3-2 -1 0 ... 0 0 0
-1 3-A -1 ... O 0 0
Pn(A) = det . : : y n=34,...,
0 0 0 -1 3-)2 -1
0 0 0 0 -1 3=\
so that
Pn(’\) = (3 - )‘)Pn—l(A) - Pn-?(A)y
PYn(A) = (2 = N)pa-1(A) = pn-2(})
and

!bn(A) = Pn(A) -pn_l(/\), n=34,....

For convenience, let w = (3 — \)/2, so that A = 3 — 2w. Writing 7, (w) for
pn(3 — 2w), for all n > 1, we obtain the recursion

Tn(w) = 2“”'71—1(“)) - Tﬂ—?(w)’ n= 314’ ey

with 7 (w) = 2w, To(w) =4w? -1, w € R. Restricting w to the interval [~1,1]
and letting § = cos™!(w), 0 < @ < m, the solutions to this recursion are well-
known (Davis, 1975) to be the Chebychev Polynomials of the Second Kind, i.c.,

_sin(n+1)0

Tn(cos6) sing

0<8<m, n=3,4,....
Consequently,

Yn(3 — 2c0s0) = pn(3 — 2c0s0) — pn—1(3 — 2cosh)
= Tp(cos6) — Tn—1(cosh)
sin(n + 1)8 — sin(nf)
- sind
2cos(2"2410)sin(g)
- sinf

and

n(3 — 2c080) = Yn(3 — 2c088) — 29,1 (3 — 2cos6)
2cos(25tL0)sin(§) — 4cos(22-160)sin(§)
- sind
23in(%)[cos(?-l2ﬂ0) — 2cos(22-10))
sinf
cos(28t16) — 2cos( 2271 6)

cos(3)

, 0<0<m, n=341,. . .



Hence, for -1 <w <1and n=3,4,..., the zeros of ¢, correspond to those 8 in
the interval [0, =] for which

1 -1
cos(2n2+ 6)= 2cos(2n2

9).

Fix n > 3 and let

n+1
2

Y1 = cos( 6), 0<@<m,

and
-1

2

y2 = 2cos(2n 6), 0oL

Then the zeros of y; are given by

_2k+1

—_— k=0,1,...,n,
2ﬂ + 11r1 1 4y n
while the zeros of y, are given by

2k+1
0 =
2n-1

T, k=01..,n-1

Moreover,

%+1 2kl 2Ak+1)+1 Akt D41
2n+1 2n-1 — 2n+1 2n -1 !

k=01,... ,n-1,

where

RN
and

2k+1 2k+3

o1 " my1" o F=n-l
Therefore,

2k+1 2k+3
™ M,
2n -1 2n+1

k=0,1,...,n~2,

while for k=n -1,
2k+1  2k+3

nm= =
2n-1 2n+1

(From the previous discussion, we see that in each of the n — 1 intervals

[2k+]7r 2k +3
n-1"2n+1

7, k=0,1,...,n-2,

there exists a unique 6 for which

2n+1 2n -1

cos( 5 6) = 2cos(

0),



i.e., for which ¢, (3 —2cosf) = 0. For k = n— 1, the n** such interval reduces to the
point 7. In this case, ¢, (3 — 2cos) is indeterminate of the form %. By 1.'Hopitél’s
Rule, we find that

&0 (5) = (3 — 2cosm) = (—1)*(6n — 1) # 0.

Note also that ¢y,(1) = @,(3 — 2c0s0) = —1. Hence, ¢, (3 — 2cosf) has n — 1 roots
in the interval 0 < @ <, i.e., ¢n()) has n — 1 roots in the interval 1 < A <5, n=
3,4,....

It suffices to show that ¢,(.1) > 0 in order to show that the remaining root of
each ¢, is strictly between .1 and 1. To this end, define v; = 1.9, v, = .71 and
vp = @n(.1), n=3,4,.... Also define u; = 1.9, wug =4.51 and

19 -1 0 ... 0 0 0
-1 29 -1 ... 0 0 0

Up=det| @ i . 11 1|, n=34,...,
0 0 0 -1 29 -1
0 0 0 0 -1 29

so that

Up = .QUup_1 —un_9, n=3,4,....

Next define ¢; = 2.9, ¢ =7.41 and

29 -1 0 ... 0 O O
-1 29 -1 ... 0 0 O
gn=det| : I 1 . 1t n=34,...,
0o 0 0 ... -1 29 -1
0o 0 0 ... 0 -1 29
so that
Un = 1.9¢n_1 = gn-2
and

q'n=2-9‘ln—1 = Gn-2, n=3»4"-' '

Using the techniques of Goldberg (1986), we may solve this recursion with the given
initial values to obtain

2.5n+1 _ .4n+1

= n=12... .
4 2.1 n



Consequently, for n > 5, we have

Un = JUp_1 — Un-2
=.9(1.9¢5—2 - gn-3) = (1.9¢n-3 — Gn-4)
=1.71¢n—2 — 2.8¢n—3 + gn—4

1.71 n—1 n—1 2.8 n—2 n-2 1 n-3 n-3
= 55" - AT - 28 T 4 (25 479
=17 “22 4k 5n k-2 _ 2.85 Ak 5n—k=3 4 n}_’j 4k 5n—k-4
k=0 k=0 k=0
n-3 n-3 n—4
=171) 4R25" K2 4 171(4%2) - 112 4R257 524 ) " gk sk
k=0 k=0 k=0
n-3 n-4
=59 425" %24 171(4m%) 4+ ) 4k25nR
k=0 k=0
> 0.

Since v; = 1.9, vy = .71, wv3 = 2.159 and v4 = 6.0021, we see that ¢,(.1) >
0, n=1,2,.... Also, since ¢,(1) < 0, all n, it follows that the remaining n'®
root of each ¢, is in the interval (.1,1), i.e., the roots of the ¢, are bounded away
from 0.

We have thus proved that infgag, > 0. Since we are also assuming that
inf{r; : r; > 0} > 0 and inf{s;} > 0, it follows from Theorem 3.1 that problem (R)
admits an optimal solution under our assumptions.

APPENDIX

Let X and Y be Hilbert spaces and T : X — Y a bounded linear opcrator with
adjoint T* : Y — X. We consider the question of when the range 7'(X) of 7' is
closed in Y. In Chapter IV of S. Goldberg (1966), the author showed that this is
the case if and only if a certain operator index ~r is positive. In the context of
normed linear spaces, this index is given by

_ ITz]
Yr = inf {m T é kCT(T)} ,

where, as usual,

d(z, ker(T)) =inf{|lz — y|| : y € ker(T)}.

One of our objectives here is to give alternate characterizations of yr in the Ililbert
space context. To this end, we define the following additional non-negative indices



for T:

=inf{||Tz| : z € ker(T)*, ||z|| =1}

LT ——
mf{ T z € ker(T) ,x;éo},

. JITTyl }
= inf yeY, T'y#0
pr { Tl v
=inf{|TT*y|| :y €Y, |T"y|| = 1}.
We show that all three indices are the same.

THEOREM A.1. For the bounded operator T, the indices ar, Br and yr arc
equal.

PROOF. First we show that ar = Br. Recall (Dunford and Schwartz, 1964) that
ker(T)* = range(T*)
in X. Hence,

I T
Il

Conversely, let z € ker(T)*, z # 0. Then z € range(T*), so that there exists a se-
quence {y,} in Y such that T*y,, — z, i.e., TT"y, — Tz, asn — oo. Consequently,
ITT*ynll — [Tzl and |T*yn|l — llz|| # 0, as n — oo, so that

ar < inf{ :z € range(T*), z # O} = fr.

. NTT*yall _ IT=|
lim = .
n—oo || T*yn| Iz

Thus, a typical element of the set

I ¢ pnry, 2 0)
{"I" tx€ker(T)", z#0

is the limit of a sequence from the set

{HTI”yII .
1Tyl

yevy, T'y;éO}.

Now suppose ar < Br. Then, for ¢ = fr — ar > 0, therc exists z in
ker(T)*, z #0, such that
I ar - ITI”I
Il

Also, there exists y € Y such that T*y # 0 and

IIITIII ITT"yll ITT9,
=l Tyl



so that

|TT“y|| 2¢ 2
|ar - @) l 3 = 3(r—or)
ie.,
Iyl
< = + <
Tl 36+ gor <br

by hypothesis. This is a contradiction, i.e., ar = Br.

We leave the proof of the fact that ar = vr to the interested reader. It depends
on the fact that X is the direct sum of ker(T) and ker(T)*.
COROLLARY. The range T(X) of T is closed in Y if and only if ar > 0.
PROOF. See Goldberg (1966) and Kato (1980).

The following lemma yields a lower bound for ar.

LEMMA A.2. Let the notation be as above. Suppose T # 0. Then

ar > — ||T|| inf{A: A #0, X\ = eigenvalue of TT*}.

PROOF. Let y € Y, T*y # 0. Then

ITT*yll _ 17Tyl iyl

IT*yll — Nyl 1Tyl
_ITTyl /1Tl
[yl Iyl
> inf Hﬁ?}yﬂ b Hi‘ﬁ"
€
Ty WY TY5%0 y
l *
- 2 S
Tigwo Y
”71,_" inf{A: XA #0, X = eigenvalue of TT"},

by the spectral resolution of the identity induced by TT*. See Theorem 5.2.2 of
Kadison and Ringrose (1983). This completes the proof since | T*|| = ||7’].

By a similar argument, we obtain the following alternate characterization of
in an important special case.

LEMMA A3. Let T be a non-zero, bounded operator. If T is sclf-adjoint and
positive semi-definite, then ar = inf(c (T)).
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