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CHAPTER T

INTRODUCTION

During recent years an increased interest has been focused
on oscillatory phenomena associated with problems of fluid flow and
convection heat transfer. An important contribution to this subject
was made by Lighthill(l6) who analyzed the laminar boundary layer and
temperature distribution for a two dimensional body when the oncoming
stream velocity oscillates sinusoldally with small amplitudes about a

steady mean value.

(10) (25)

Glauert and Rott have considered the case of a two
dimensional laminar boundary layer on an infinite flat plate normal
t0 an oncoming stream when the plate vibrates sinusoidally in its own
plane. An interesting aspect of this problem is that the temperature
distribution, and therefore the heat transfer, is not affected by the
vibration for the case of a constant temperature plate.

stuart(30) mas obtained an exact solution of the Nevier-Stokes
equations for fluctuating flow past an infinite plane wall with constant
suction. The corresponding temperature distribution is also given under
the condition that no heat transfer occurs between the wall and the
fluid.

The use of successive approximations for calculating boundary
layer flows resulting from oscillations in the free stream has been

<26), Lin<17), and Gibson<9) . Rosenblat(24>,

13)

discussed by Schlichting
Carrier and DiPrima(5), and Kestin and Persen( have investigated

rotational vibration of bodies in viscous fluids.

-1~
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Experimental measurements of heat transfer to air from

(15)

vibrating wires have been made by Lemlich and also by Anantanaraynan
(1

and Ramachandran. ) The influence of sound waves on the heat transfer

from heated bodies has been studied by several investigators inecluding

8) 12)

Fand and Kaye( , Jackson, Harrison, and Boteler( and Holman and

(ll>. Shine(28) has obtained interferometer photographs of

Mott-Smith
a free convection boundary layer on a vertical heated plate vibrating
normal to its own plane. Approximate values for the increase due to
vibration in the convection heat transfer coefficient are also given.
The effect of transverse wall vibration on laminar free
convection boundary layers has received no analytical treatment so
far, and a start is made on this subject as a part of the present study.
In addition, the case of a thin plate of finite length vibrating trans-
versely in an ambient fluid at rest is considered, and the corresponding
potential and boundary layer flows are investigated. An experimental
program has been conducted along the lines suggested by these problems.

Measurements of velocity and heat transfer are given and the results

are discussed in terms of the analtyical work.



CHAPTER II

THE RESPONSE OF A IAMINAR FREE CONVECTION
BOUNDARY TAYER TO TRANSVERSE WALL VIBRATION

Statement of the Problem

Consider an infinite plane wall in contact with an ambient
fluid of temperature‘ew, The fluid has constant viscosity u, constant
thermal diffusivity «k , and constant coefficient of thermal expansion
B. The wall is heated to a constant temperature 0, for X > O where X
is the linear distance along the wall, The wall temperature for X < 0
is 8, A uniform force field g acts in the negative X direction
inducing buoyancy forces on the lower density fluid adjacent to the
wall. This action in turn causes a free convection boundary layer to
develop along the wall,

The wall is now vibrated normal to its own plane with velocity
Vo = aOQ sin Ot where N is the amplitude of vibration and O is the
frequency. A sketch of the physical system is shown in Figure 1. The
problem is to find the boundary layer response to the transverse vibra-
tion described above. The analysis will be regtricted to an investi-
gation of the two dimensional incompressible boundary layer. These
restrictions require that the system be uniform in the Z direction and
thet the boundary layer thickness & be small compared with the acoustic
wavelength C/QﬁQ. As normally done in the case of free convection
systems, thermally induced density variations are considered in the

momentim equations, but are neglected elsewhere.
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Figure 1. ILaminar Free Convection Boundary layer Adjacent to a

Heated Wall with Transverse Vibration,



The Basic Mechanism

The basic mechanism under investigation can be qualitatively
understood by the following explanation. Consider the sketch in Figure
2 which shows a section of the boundary layer. It is known that the
boundary layer thickness ® grows with increasing distance downstream.
In the absence of vibration pressure Py exceeds pé by the same amount
that Pz exceeds p), that is, by an amount corresponding to the hydro=-
static head produced by force field g.

In the presence of vibration, however, the system accelrates
with a periodic motion. Consider an instant of time during the eycle
when the system is accelerating to the right. Since the boundary layer
is thicker along line 2-4 than along 1-3, a greater proportion of low
density fluid lies between 2 and 4 than between 1 and 3. Therefore,
the mechanical inertia of the fluid between 1 and 3 exceeds that between
2 and 4 so that the pressure rise at 1 exceeds that at 2. This in turn
causes a negative component of pressure gradient with respect to distance
downstream. Acceleration of the system to the left likewise produces a
positive component of pressure gradient.

As the acceleration of the system oscillates periodically,
the induced pressure gradient in the boundary layer follows in phase.
The detailed analysis of the magnitudes involved together with the
effects on the velocity and temperature profiles will now be given

a more rigorous treatment.

Fundamental Equations and Transformation of Coordinates

Considering the fixed axis system XY, the equations of

momentum, continuity, and energy can be written as
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Figure 2, ©Sketch Showing a Section of the Boundary
Layer and Illustrating the Basic Mechanism
Being Investigated.
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(2.1c)

=K 7o . (2.14)
DZ
S o)

D/DT 1s the substantial derivative operator —_ _ y = +V¥ — 5
., IT oX Y
and V2 1s the laplacian operator Jgi. +£%F&,

For mathematical convenience these equations are transformed
to a new coordinate system X¥* Y* which is fixed in the boundary so that
X=X¥ Y=Y%+7Y,, u=u¥, and v = v¥ + Vo+ The two operators are
invarient with respect to the transformation and the description of
continuity remains unchanged. Velocities parallel to the wall, temper-
atures, pressure gradients, and body forces are also independent of the
transformation. The second Navier-Stokes equation is altered, however,
since there is relative acceleration between the two systems in the Y
direction.

Consider the sketch in Figure 3 which shows the stationary
element dX dY in the fixed system XY and the moving element dX¥* dy*
fixed with respect to the moving system X*¥Y*., The right hand sides

of {(2.1a) and (2.1b) comprise the forces acting on element dX 4.
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Y
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Figure 3. Sketch Illustrating the Stationary and
Moving Coordinate Systems,



These consist of pressure forces, body forces, and viscous forces.

The viscous forces depend only on relative changes in velocities.

It is clear that all these quantities will appear in exactly the

same form when written for the element dX* dY* since they are independ-
ent of whether the coordinate system i1s moving or not. The left hand
sides of (2.1a) and (2.1b) represent the time rate of change of momentum
within the element dX dY plus the net momentum flux leaving the element.
The corresponding relations can now be written for the element AX¥* dY*
as follows.

In the X* direction,

%(ﬁ WX )+ 2 (p T U AY)dE” + 2. (pull o e ) oY
—_[ LSS u]dX Iy (2.2)
a ¥*

- QU™ KU L U 2p  APL) AP e Y
ﬁ[av QX*+ JY*]’L 57~ ox* T oyF dXdY.

By continuity,

2D AF (2.5)

T X" oY

so that the result is

JD ED_U_ - U E_U.; + 1 Qﬂ* = _2_/_0 + R 'T“ﬂ‘/'j* (2.4)
aT x” JY” X~

The form of this equation is exactly the same as that of (2.1a).

In the Y* direction,
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[ p( Ve Az*dv’jﬂLéx[f(vow") u*oly*] dx*

d . * o ¥ P *2 * %
+ S [)o(vo ¥ dedY -[-;?*+By -rﬂVﬂ}jdX dY
P[22 2 2] o

o[ 30P4) P Vo (4 Y™
+(VOH})[5% 2% oYt +ff} ox Y

QU IV I P o dV%e  (2.6)
f[;w: 5z }QY:’ BRI A

This equation is in the same form as (2.1b) with the exception of the
inertial force term.

Applying the law of conservation of energy to the volume
dX* dY¥* in a way analogous to the treatment of momentum above yields
the energy relation in the same form as that given in Equation (2.1d).
Using this result together with Equations (2.3), (2.4), and (2.6), the

transformed egquations are now written as

f D*ﬂ* fﬁ* + Be + M V*?:U* (2.72)
JU IV (2.7¢)
oX* Y™

06 _ K v% . (2.72)
DT
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D*/DT is the substantial derivative operator in +the moving system

%2 ;Z DZ.
> _Q o 9 . and correspondingly, == 4 ==
SE"% (i‘lz* —+ QY* 7 Jx* JY!Z
In this problem By = - pg, By = 0, and dVo/dT = g4 cos T,

although the problem may be interpreted as the case of a stationary boun-
dary with By = -pg cos Q1. Effectively then, the vibration produces a
d'Alembert or body force due to the vibratory acceleration of the fluid

coupled with its own inertia.

Recombination of Equations and Non-Dimensionalization

Pressure can be eliminated as a variable by cross different=-

iation of Equations (2.7a) and (2.7b) yielding

'DX* (1 Drz) ?:%/ / /"[9 (V) - *(v*v*()!.g

2, (P3)- 2 (P 2E):

In accordance with boundary layer theory,

:;_ D*,l}-x» << —2 D*/b(*

D (7| « 2 V) and | 24| | 2
az"( ) v (7)) Ix" Iy

Making these approximations and integrating Equation (2.8) with respect

to Y¥* from infinity to any finite value gives
*

D'y’ fo=f fé’f AV co o U (2.9)
D'Z' ( )-/. )’ CS.Q.'Z'-I-.F QY*Z

This result can also befobtained by applying boundary layer approximations

to Equation (2.7b) and solving for pressure p. (Within this approxima-

tion the inertial force term is balanced by Op/dY*.) Entering p into
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the boundary layer form of (2.7a) then gives the result in Equation
(2.9).
From the definition of the thermal expansion coefficient B,

p=g[1-~ B(6 - 6,1 so that Equation (2.9) becomes

o0
% 2 ,,%
D” gﬂ[@ égﬁ/gg ayY 095527‘4./_" U (2.10)
p x* P aY* ¢
Y#
As long as fractional changes in density are small the coefficient p /p
will be close to unity and u/p can be replaced by ¥ = u/pm. Entering

these conditions into Equation (2.10) and applying to Equation (2.74)
QP << 28

the boundary layer approximation that 7 Y2 , the
system of Equations (2.7) is now rewritten as
U _ -
ell+/1*gx* L 95 (6= b)
2,11
+ 2.4 28 AV usny 4y 2K o
i Y* DX* DY*Z
* *
%u + _%_7:4 =0 (2.11p)
XX 3Y*
1
AL =) L S (2.11c)
QT ;x* QY* QY*Z s

The boundary conditions are u, = v, = 0 and 6, = 6, at the wall, while
u, =0and € = 6_at large distances from the wall.

The effect of the vibration can be seen from Equation (2.11&).

o
The driving force for fluid motion is # [ﬁ3x>- 25;*-]. which is given
by 48 (6 - by ) +g‘ﬂj 99 Ay ws RT . In the absence of

¥ 9 N
vibration (g, = 0) this quantity consists of the usual buoyancy term.
o]

In the presence of vibration, however, an additional time varying pressure
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gradient is produced by the variation of density with X* coupled together
with the vibratory acceleration of the fluid. It is the response of the
boundary layer to this additional pressure gradient that will be of
interest in the work that follows.

Equation (6) can be made non-dimensional by introducing the

following relationships.

}K*zz x ¢ (Jf = llﬁg __Q
£ Jy
YX =iiy_£— ’U‘*-.—_- ——V"UE 2y
G 2 X
v tt o 8o
14 ] 6 - B0
T o= YK G < 3tC(6-b)
7)1
5P =;‘)—£L_Q E = %
g2 G

V 1s the stream function which is defined in such a way that
u* and v¥* automatically satisfy the continuity condition (2.11b).

Equations (2.11a) and (2.1lc) now become

Sy 2 ¥ NIV 3 1, e (T g caswt (2122)
Jgat+ 4 Ixdy  x g Y K yjax 4

ST ¥ 2T Qv 2T _ + o7 (2.12b)
ot JY X  x Y o 2y

The boundary conditions are



-1k

2 = an = 0.
2= (3), o e

Solutions are now desired in the form of V(x,y,t,e,w,0) and T(x,y,t,c,w,0).

Perturbation of Equations

The complexity of the system under investigation is due mainly
to the following three factors. First, since free convection is involved,
the momentum and energy relationships are coupled together making it
necessary to consider both simultaneously. That is, it is not possible
to solve the momentum problem independently and then use the resulting
velocity distribution in the energy equation to obtain ftemperature as is
done in the case forced convection systems.

Secondly, both the momentum and energy equations are non-linear
as indicated by products of the derivatives of ¥ and T in Equations (2.12a)
and (2.12b). Third, the system involves quantities which vary with time
in addition to space so that the problem is transient in nature.

Due to these complexities, a perturbation technique will be
used. The functions WO(X;Y,G) and To(x,y,c) are defined to be solutions
of Equations (2.12) when € = 0, that is, when no vibration is present.

In the case of a vibrating wall, € > 0, but if the effect of the vibra-
tion is small compared with the free convection effect, then the vibra-
tory effects can be represented as perturbations about Vo and Ty In

other words, if € is small, then the following expressions are valid.
w(x;y,t,e,w)(r) A ly,(x,g,o‘) +eV (xyt,w,T) (2.13a)

T(xyte,wa) ~T(xy0)+eT (xyt,wr) (2.13b)
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Equations (2.13) are now substituted into Equations (2.12)

to obtain

Sy wy X oy 3y
XV (XY TR W) ok Ju T D

+| 27 Yo , Yy, W

[ ” ( oY +9xc>g 93¢> (Dx ¢ T Ig g% éx) (2.1ka)

..3_3‘23_,7,]6 L3 u sy Py
33 ngy Ix 33‘

[éw" XV 3% >y _ Py ,T] £

" am 2 (or
— e v d < t j ]
jfg—ax y csw -r-eg =T dy cos wt.

[W o _ % M]éj

TR AR - S
5 2 3% 3y +[9 (V LS 9"’) (2.14)

5t T\3y 3 T Yy
(9% of T JV/) 4134 T W IT |2 4 I
X 33 93 ¥ 9} x X 3!4 —Fag

Since € is assumed small, terms involving € are retained, but those in-

bE 2T
T Iy

rle

volving the squares of the perturbations are neglected by comparison.

The coefficients of the zeroth power of € in (2.14) yield

. % _% Yu _ 2% -
%axay Qx% 5_9—3'—7;-0 o ae)

% o6 2% % _ 1 2T (2.15b)

The boundary conditions are

(G (315l (7)o (om0

The coefficients of the first power of € yield
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;‘ur.,,(é% IV, 3% w,)_(é% 3% T gy_,)

Jy ot 2y Oxéy Xy 3y X Iy __Ll IX
(2.16a)
3
- ELlﬁ -77 = 97- dy Cos wt
333 ¥y ==
(2.16Db)

T (.m T 3% i_@) (gm DIICE] ) N
2t 3y 3x 3¢ Iy Ix 3y Y N/ o

ST
Y-,
Since the boundary conditions for (2.15) satisfy those of (2.12), the

boundary conditions for (2.16) are all zero. Thus,

(%) (ax,> (%mz (T)y = T)e = o

Equations (2.15) and (2.16) represent successive approximations

of Equations (2.12). Equations (2.15) do not contain ¥, or T; and can be

treated independently of these quantities. Equations (2.15) can be handled

more conveniently by using the similarity variable “7) = ﬂ/AVZ} . They

can be changed to ordinary differential equations by taking

T = /4>()%F/“7) (2.17a)
o= H7). (2:270)

Introducing the above relationships into (2.15) gives

Vi

F9) +3F/7),L/7/_z F/%) w H(9) <0 (2.18a)

7 /
a-"”/?j +3F/7n) Hiy) =o. (2-18v)
The boundary conditions are

F(0) =F'(0) = F'(w) =0, H(0) =1, and H(x) =0
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Equations (2.18) were solved numerically by Schmidt and Beckman<27> for

(23)

air and also more recently by Ostrach for a wide range of Prandtl
numbers. Ostrach's results were obtained by programming Equations (2.18)
for an IBM 650 computer. These results are tabulated in Appendix Ia and
are shown in Figures 4 and 5 which give the velocity and temperature
distributions in the free convection boundary layer adjacent to a
stationary wall.

Experimental verification of the theory of free convection from
a stationary wall has been established by measurements made in air by
Schmidt and Beckman(27), and also later by Eckert and Soehngen(7).
Schmidt and Beckman used a quartz-filament anemometer for measuring
velocities and manganese-constantan thermocouples for obtaining the
temperature profiles. Some of their data are shown in Figures 6 through
9 as reproduced from Ostrach's report. The data in Figures 6 and 7 were
obtained using & short heated vertical plate 12 centimeters in length,
while that in Figures 8 and 9 were obtained using a longer plate 50
centimeters in length. It is apparent that the temperature data show
more consistent agreement with the theory. Eckert and Soehngen have
also obtained similarly consistent data on the temperature profiles
with the use of a Zehnder-Mach interferometer. The velocity data shows
congiderable deviation from the theory near the outer edge of the
boundary layer where slight room turbulence disturbed the measurements
to some degree. Eckert and Soehngen also observed this effect. The
deviation is more pronounced far downstream from the leading edge of
the larger plate where large oscillations in the flow were detected.

These oscillations were due to the fact that the boundary layer was
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approaching a turbulent condition in this region so that the laminar
theory can not be expected to predict the results accurately here, The
limiting Grashof Number for stability of laminar flow is known to be about
109. The velocity data from the short plate is more consistent due to the
more stable condition of the boundary layer, especially close to the wall
where the room turbulence had a smaller effect, The data from the short
plate that are farthest from the theoretical solution were obtained very
close to the leading edge. Here the boundary layer approximations made in
the theoretical development are not satisfied very well so that some limi-
tation of the theory may be expected in this region.

Although agreement of the experimental measurements is not
perfect as polnted out in the previous paragraph, the general validity
of the theory has been verified by these measurements. Of equal import-
ance, the regions of limited applicability of the theory and the reasons
for these limitations have been ascertained, It will be well to keep
these limitations in mind when evaluating the vibratory effects on the
boundary layer.

The vibratory perturbations are to be derived from Eguations
(2,16) and these will now be considered, The underlined terms in (2,16)
are obtained from the solutions to (2,15) which are available from Ostrach's
results, The derivatives of wo and. To appear in the form of variable co=-
efficients, variable, that is, with respect to x and y. Although product
terms are involved, each one consists of a variable coefficient which is known
and a derivative of either ¥, and T, to the first power, OSince the derivatives
of {7 and Ty appear to the first power in every term, Equations (2,16) are lin-

ear, They are forced by a sinusoidal function of time by the term on the
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right hand side of (2.16a), and the steady periodic solutions will
oscillate at the same frequency.
In view of the above discussion it is possible to eliminate
time from Equations (2.16) by taking
4ufﬁ
Y/{(X/g/f/w, OV):‘ /W/X/y/ ) 0") = (2.19)
Wt
T/X/y/f w,7”) /\//X w,o) e (2.19b)

With this representation only the real parts of Wl and Tl have physical
significance. M and N are complex functions and each will have associated
with it a magnitude and a phase angle. Thus, the velocity oscillations
parallel to the wall and the temperature oscillations are represented by

the real parts of

;# 9# ‘ (2.20a)
N = //\/, ez('wfwx) (2 20b)

The angles ¢ and ¢ indicate by how much the perturbations either lead or

lag the oscillating pressure gradient. An angle of 0° corresponds to

the in phase condition, while positive angles indicate lead and negative

angles indicate lag. As previously pointed out, the oscillating pressure
gradient itself is in phase with the wall acceleration. Equations (2.16)

now become

2 /U M R
“w I+ T5 X% oy ) (

+§E%")

(2.21a)

S
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. % oy L% gﬁ)_ Qi v T M|, AWV 2.21b
LwN+ 2% Si Zg.y /9— }‘g‘*g_g_'?)'; 292 - ( )

The boundary conditions are

(3A4 / gﬁd) // - vV - Aéx =0

The function on the right hand side of (2.2la) can be calculated

a8

1
f Ty = () j 0 Uiy dy (2.22)

where the function j“fz f//‘w 4/7 is designated as q(ﬂz)

<§ (ﬂz) Wlll be called the forcing function since it forces the
momentum Equation (2,21a). This function has been calculated by numerical
integration of Ostrach's results and the tabulated values are given in
Appendix Ib, Plots of the forecing function are shown in Figure 10 for
various Prandtl numbers, Its value at any point in the boundary layer
indicates the amplitude of the oscillating pressure gradient produced
by the wall vibration, Its value reaches a meximm value at the wall
where a zero slope condition exists., The value drops off with increasing
distance from the wall and becomes zero at the outer edge of the boundary
layer.

An order of magnitude comparison can now be made between the
free convection buoyancy effect due to density variations and the pressure
gradient caused by the coupling of the density field with the wall vibra-
tion. In Equation (2,12a), the buoyancy term T can be approximated as H(ﬁ)

neglecting the higher order temperature perturbations, The first
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-%
: 4
approximation to the vibratory pressure gradient is é,( 4X) §’ ( ‘17) cos Wt

The approximate ratio of the peak to peak variation in pressure gradient

to the steady buoyancy force is
-2 go
2€(4x) t:(v‘))/ﬂ(‘?) g §M}////'7) (2.23)

This quantity can be rewritten as g%ﬁ Jﬁi&

e /)

For air close to room temperatures with AQ = 100°F, the expression reduces
to roughly O. 04 Z Q("’]A/ ), where X is in inches, From Figures 5 and
8 it can be seen that for o = 0.72, S (n)/HE(q) has a value of 1.25 at the
wall and increases to slightly higher values farther out in the boundary
layer., For example, at 1 =2, S (2)/H(2) & 2,9, For air with A® = 100°F,
the ratio of the vibratory variation in pressure gradient to the steady
buoyaney force is roughly 0,05 ——Z? at the wall, At a point two inches
from the leading edge with 8o = g%g, the value is about 60% at the wall,
and becomes larger farther out in the boundary layer., This illustration
with the nominal values given above will serve to indicate the order of
magnitude of the oscillating pressure gradient,

Although the vibratory pressure gradients may be sizeable com-
pared with the steady buoyancy forces, the corresponding velocity and
temperature oscillations are not necessarily proportionate fractions of
the steady velocity and temperature values., The reason for this is that
if frequency is high, the induced vibratory forces are absorbed primarily

by the local acceleration of the fluid, and not much time is available

within a single cycle to accelerate the fluid to an appreciable velocity,
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The details of these relationships will become clear in the next

section where asymptotic solutions are obtained,

Asymptotic Solutions for Large Values of @~ X

Asymptotic solutions to Equations (2.21) can be obtained by
considering large values of frequency, In this case the initial terms
of (2,212) and (2,21b) are expected to be of major importance since they
contain the coefficient w. The highest order derivatives must be retained
in order that the boundary conditions be satisfied, but the convective

and buoyancy terms are ignored. Under these conditions Equations (2.21)

become
..3/
. 3M 4
,uui?_iw = [4X) Q("]) (2.258)
AwN —-L 2N _ 2T M IT oM (2.2M0)

Ty 2y ¥ Ix 2y

A new variable is defined as y = o NLX, Using this new variable together

with the definition of 7, Equations (2,24) are now rewritten as

23M . a
3o y 24 7 =-S(9) (2.258)

LIN_syN = (2L M _ V£
T S cEN (_Qx__ >y 9; 9x> (2.25p)

Since large values of ® are being considered here, not much

additional restriction is caused if y is taken to be large also, The
corresponding asymptotic solutions will then be valid for large values

of vy.
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Equation (2.258) does not contain N &nd can be solved independ-
ently of (2.250b). The particular solution of (2.25a) for large y
approaches ;;(n)/iy. An estimate of the error incurred for a given
value of 7y can be made by replacing oM/dn by ;;(n)/iy in Equation

(2.25a). This results in

Sin/st) , .

-

— 1
,{ J/ ]
The error incurred is then ) }%(W] ;{ §("?)

becomes large. f;”(n)/g(n) varies throughout the boundary layer, but in

(2.26)

which approaches zero as y

general its value is fairly low for low Prandtl numbers and increases
in magnitude as the Prandtl number increases. For a given tolerable
error then, the allowable range of y is smaller for the higher Prandtl
mmbers, For example, if o = 0,72, C?(q)/g(n) has a value of about
unity or less throughout most of the boundary layer. For this Prandtl
number then, an error of roughly 5% or less may be expected provided
that 7 1s 20 or larger. This illustration will serve to show the range

of validity of the particular asymptotic solution given above.

. . ~\[i7n \/_iyn
The homogeneous solution to (2.25a) is c e +cge
The full solution is written as
oM _ &) el /<r
- =21 4, e + C, e . (2.27)
> LY
oMy _ - - ,(__9"” - 0.
Slnce/,a’z - - 0, 02 = 0, and C, is determined so that Br7y

Equation (2,27) now becomes

M _ SO Sm) @'m% (2.28)
o it Lo o |
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Equation (2.28) is an asymptotic solution for the oscillating velocity
profile and is valid for large values of y. Expressions for the magnitude

and phase of oM/dn from (2.28) are written as

j wy  E% “r-Ey 2
{%%z §%@_e W@?% ) M@L?] o

Y/
qﬁ = _ Aretan q("f)ég(o) _ GV;? s IE 7 (2.29b)
€% i /4

Figure 11 and 12 show the magnitude and phase of oM/dn for two values of

7y and for several Prandtl numbers,

It is apparent from (2.28) that the velocity oscillations
approach asymptotically to zero as y — o, This is to be expected for
two reasons, TFirst, as X increases, the vibratory pressure gradient
decreases, Second, as w increases, the time within a given cycle during
which the pressure gradient acts in a single direction is reduced., In
this case there is not sufficient time for an appreciable velocity to
be‘attained éven though the local acceleration of the fluid may be fairly
high,

As 7 becomes larger the veloeity oscillations tend to lag at
90° throughout most of the boundary layer since the oscillating pressure
gradient 1s balanced primarily by local acceleration with viscosity
having a negligible effect, Very close to the wall, however, viscosity
becomes important since it causes the velocity to be zero at the wall
no matter how large y is. This causes the phase lag to be reduced to
L5° as a limiting value at the wall, The in phase component of velocity
disappears when 7 = ﬂ~]§7;—so that all velocity profiles have a phase lag

of 90° at the same distance from the wall for a given value of v,
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The oscillating shear stress is obtained by differentiating

(2.28) which gives

2 / -V<Y
M _ 8w | Sm) | Iy ew—b}?

dyt Ly St

At the wall&'(n) = 0, so that the oscillating wall shear stress is

. (2.30)

proportional to
(9.1'!‘) _Swe) , (2,51a)
oY v VI V4x |

The magnitude is

(?_ﬁ) _ St (2.31b)
Q%L W ﬁm ¥

and the phase lag is 45° as expected since the velocity oscillations
close to the wall lag by 45° also,

If is interesting to note at this point that the velocity
oscillations close to the wall are & relatively larger fraction of the
steady velocity values than is the case farther out in the boundary
layer. This can be seen by considering the ratio of the peak to peak
velocity variation to the steady velocity at the same point. This
quantity is given by
ﬁ{w — | &€ ) [§(“7) _ zem?] (2.32)

Y/ay @)% Er) | S (o)

Since y is large, the exponential will decay more rapidly than the func-

tions of n, Thus, at distances removed from the wall,

oM
2¢ |5y /26 _ 2&  &(1)
2 {9?/ 5 S ) - (2.33)

On the other hand, close to the wall, the same quantity approaches the
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ratio of the shear stresses. Therefore,

2¢ la%ﬂ _ 26/(%;%)“ _ _2¢€ S °) (2.34)
Wloy (W), ¥ @0% Fho) -

Thus, the relative magnitude of the oscillations is proportional to l/y

away from the wall, but is larger close to the wall where it is propor-
tional to 1/ 7. |

In order to obtain the temperature perturbations the convective
forcing terms on the right hand side of (2,25b) must be evaluated, The

integration of (2,28) gives the oscillating stream funetion as

1 -1 | ‘
e

Differentiation of (2,35) gives the y component of the oscillating

velocity as

;_/_yi zS/O) S{"l) A S(’?) _‘\/;}-72] (2.36)
X 4xiy (jg(o) ‘7+7S(o)) (’ ) )

Entering Equations (2.28) and (2,3%6) together with the derivatives of T

into the right hand side of (2,25b) results in

IN _ iyoN _O‘S“)W’Z) jﬁﬂ_ {/_ém?+7éﬁ” (2.57)
>7° i (4x)% S(o) .

Since asymptotic solutions for large y are being considered,
BEN/BnE can be neglected in comparison with yoN throughout most of the

boundary layer, If this approximation is made, the solution becomes

_ Sto) r‘///‘_fz 5("7) c{ 2 /i_e (737 —e\hz ??J (2.38)
KZMXJ3/4 [j S() ( ) * 7 .
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This expression is valid away from the wall where the exponential terms
have small magnitudes, For small values of n, however,the approximation
is not valid,

The physical significance of Equation (2.38) is that the temper-
ature perturbations at a point occur mainly due to the velocity oscillations
with conduction having a negligible effect, This is explained by the fact
that for large values of y there is little time for conduction to occur
within a given cycle, The expression for N as given in Equation (2,38)
satisfies the boundary condition that N, = O so that no further consider-
ation is necessary in that respect. Expressions for the magnitude and
phase are given in Appendix II,

At the wall N = 0, and indeed, N —» O for n —» O from Equation
(2.38). However, (BQN/BnE)W # 0 from (2,38). Therefore, close to the
wall, 82N/Bn2 can not be neglected in comparison with yoN. On the other

7
hand, if 7 is small, H'(y) and f S(W)‘iﬁ can be expressed as
[

/ / 7 w 2
H(n)= Are) + Hre)n + H/o) .’ZZ 4o (2.39.)

”
jS(vq) dn = §(o) N+ g/(o) _g_" "ND ﬁ; oo s (2.39b)

It can be noted, however, that the second term in each series is zero
since B"(0) = 0 from (2.18b), while N'(n) = qH'(n) so that Y (0) =0
17
also. Close to the wall then, H'(n) & H'(0) and “W 4;,2 ~o §{0)VL
[}

Equation (2.37) is now rewritten for small values of 4 as

IN _ iygn = TSeIAN e ") o7 SV ’7:} (2.40)

7= (1=
o AY (ax)% by




The particular solution is of the form

AT vy

Np =b, +bm+b e b4 byn e (2.41)

By entering this expression into (2,40) and equating coefficlents, the

values of bo, by, by, b5, and by are obtained, The particular solution is

NP:S(o) H;O) 3 27 7 ﬁﬁ 72 -\/737‘7] (2.428)

R —
—— o —

by ()% (% AY 44 4/7
ifo=1, and

Np- St)Hi) [ 3 27 | [z-37) é" 7 _’Z,;;__ (2.420)
()4 | (ke e (-0 % i)

if o # 1.

The homogeneous solution is

-V (44T 7

Nt, =C, € -+ Cz € (2,43)
The total solution is (NP + Nh). The coefficients of 71 in the arguments
of the exponentials in (2,38), (2.42),and (2.43) contain+/y, For large
values of y, the negative exponentials will decay fairly close to the wall
while the positive exponential in (2,43) will grow indefinitely unless
Co = 0, 1In order to meke the solutions from (2,42) and (2,43) fit
smoothly with (2,38) as the negative exponential terms become small, Co
must be zero, while C; is determined so that N = O at the wall, The

full solution is now

-VaTy ST
N = §(0)1‘/f°) //_ )+__=(77+J~7) (24kha)
Y (4)()3/‘/-
if 0 = 1, and
§’°),H[°) [ 7__(/ -/W“ﬁ Al scr)( /_’7 W’})___ ik
¥ rax)4 (/-0‘) XA 7°
(2.4hp)

If 0 # 1
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Expressions for the magnitude and phase of N from Equations
(2.38) and (2.44) are given in Appendix II, Figures 13 and 14 show the
magnitude and phase of N for two values of y and for several Prandtl
numbers. The curves at low values of 7 correspond to Equation (2.4b)
while those at larger values of 1 correspond to (2,38), The dotted
lines have been faired in to show how the solutions may be expected
to behave in the intermediate region,

It may be noted at this point that the temperature perturba-
tions are proportional to l/yg‘and are therefore relatively smaller than
the veloelty perturbations which are proportional to 1/7 throughout most
of the boundary layer, This fact adds support to the neglect of the
buoyancy term of (2.21a) in the writing of (2.25a) as an asymptotic
limit of (2.21a) for large values of 7. As expected, the temperature
perturbations qualitatively follow the same pattern as those of velocity.
That is, the magnitudes decrease with distance downstream and with fre-
quency. The reasons for this behavior in the velocity perturbations
have already been discussed, As y becomes larger the temperature
oscillations tend to approach a lag of 180° throughout the boundary
layer, or 90° behind the velocity oscillations, In addition, the phase
lag at the wall always approaches 180°,

The oscillating temperature gradient at the wall is obtained

by differentiating Equations (2,44). Thus,

(_D__r\i) _ 3 Sw) Hio) (2.458)
Spw 4 8% (4X)

if o=1, and
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(2, - St [ 2200 e
MW ¥ (4x) L (1-0) (14V7)

if o # 1,

It can be seen from these equations that since H'(0) is negative,
(ON/dy)y, 1s negative also for all Prandtl numbers, This is to be
expected on the basis of the 180° phase lag in the temperature oscilla-

tions near the wall,

Solutions for Low Values of ww ix

The previous section was devoted to the finding of asymptotic
solutions for large values of the variable y = o \/T + JIn this section
solutions will be obtained for low values of y using the integral method,

In order to do this some manipulations must be performed on Equations (2,21),

2 2
The terms| 2% 22 A -+a M oM ]are replaced by — ;x 2¥. M

oY ;%ax Ixdy 3¢ 3” 2y
and [ 2% N _ 2w .,.?:ﬁ + 2% oM E 2M ] is rewritten as
oy KT ox oy T X vy o o

[—%((N gq%fr T ;M/&«;) ;?(N QV% +T; cDM/gx:, Meking these

replacements in Equations (2,21) and integrating with respect to y from

the wall to infinity yields

LW Mo 4 oY oM (¥ 2 Fvoomy
oj 5y oy Dx 2‘3 2yr Ix )4}

—-ﬂ 4*;;+/§;Afw= (4x)° f?(“z)dy
4wf/\/d/+/(9/‘” f;x aua T )y J%(NQV E 3. bb)

Since [N Oy,/ox + T, OM/Ox] is zero both at the wall and at infinity, the

(2.468)

last integral in (2,46b) vanishes, The second integral in (2,46b) can be

integrated by parts to give
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o]
_[(2% M Ty oMy 4 _[OW oM oM dy 2 MM W D
Ji 5223 v 3030 ) (55 55,8 T e
0o

{:2%’9Y+,2ﬂ %ﬁ?‘] is zero both at the wall and at infinity while

ax Yy X Y

oW, "M J° 2
( V’Ayg 4(97.,. V/;g)can be written as éx(w/% QM/gg) . Thus,

oYy 2 lM PR QM v
- g( Ix 9;7- 97 3 j ( 29 }% (2.48)
Eouations (2.46) now become
(wM, + ZJ (9% QM a’% f/&/&/g-f (4X) j§(‘7) dy (2.49a)

g
o
4
wf/\/d+-’-ﬂ’ f—%- W T Mgy =0

" O'(Og)w—*‘ (N oy T 93«) ¢ : (2.490)
By Leibnitz's rule partial derivatives with respect to x can be taken
outside the integral signs giving

\ 7 ~ (3 "34 7
1w M, + 23‘3—(;%% %—”;dy - j:\!dw(%?f)wz- (4X) jgm) 47 (2.508)

A 3/V Al Yo oM\ A, = 2.,50b
LUJ{/\/(% é—;}N@"‘Gj\;)JJ O. (2.500)

Equations (2.50) represent the integral form of Equations (2.21),
Solutions have been obtained in the previous section for

large values of y which implies that o is large also since O < x<L 1.

Consider now the opposite extreme, that is, the case of ©w = 0, TFor this

condition Equations (2.50) become

2 " -3
2‘5';5;%}3 );fdy-—oj/\///y +/‘i);—?;2)w= [4x) ;?(7)‘{»} (2.51a)
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2 3 QY IM /7N .
';}j(f\,‘i:tg"'%'é?)df* b—,—/-;—%)w=0, (2.51p)

It should be pointed out at this point that since Equations (2.51) are
valid for ® = 0, this also implies that y is necessarily zero also.
Solutions to Equations (2,51) will therefore be valid for 7y = 0, the
opposite extreme to the asymptotic solutions obtained for large values
of v in the previous section,

The present problem can be interpreted as a boundary layer
subjected to a steady force field 8 acting either toward the wall or
away from the wall depending on whether go is taken to be positive or
negative, The first case can be realized physically in the case of a
cylindrical tank with heated walls rotating about its axis at constant
speed, The enclosed fluid would have a free comnvection boundary layer
along the wall subjected to a transverse force field acting toward the
wall due to centrifugal forces as shown by the sketch in Figure 15,

One limitation 1s that the radius of the tank must be large compared
with the boundary layer thickness & in order that the force field &6
may be considered approximately constant across the entire width of

the layer, The second case can be realized in the case of rotating
cylindrical container with inner and outer concentric walls as shown
in Figure 16, If the inner wall is heated, the boundary layer adjacent
to its surface would be subjected to a force field acting normal to the
wall in the direction away from the wall,

In both cases, in order to successfully simulate the problem,
it is necessary that no rotational slippage occur between the fluid and

the container walls, That is, the fluid must rotate with the container
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at constant speed as a rigid body with the exception of the free
convection boundary layer flow,

Solutions to this steady problem are now sought in the form

Moo= (497 B F(n) (2.522)
g , ,
N = (4x) 8, H' () (2.52p)
BO, SO, r, and s are constants to be determined. Plots of F?(n) and

nH'’5) are given in Figures 4 and 17, and tebulated values are given

in Appendices Ia and Ic respectively, The functions F(y) and nH!(n)
satisfy all boundary conditions on M and N. In addition, these functions
will give to the perturbations the proper range of 7 which is especially
important when the Prandtl number is not close to unity. For example,

it can be seen from Figures 4 and 5 that if ¢ = 10, the velocity boundary
layer has thickness of about 5 while the temperature layer has a thickness
of only about 2, For this Prandtl number then, the velocity perturbations
may be expected to occur in the range 0 < 7 < 5 while those of temperature
may be expected to occur in the range 0 < 1 < 2, The form of Equations
{2,52) are in accordance with these observations. They can be illustrated
more clearly, perhaps, by studying Figures 4 and 17 which show the velocity
function F'(y) and the temperature function nHE'(n) respectively, One

N P Id 2 2‘
additional point is worth mentioning concerning the fact that (J7N/dy )y =0

4

from Equation (2.21v), This condition is also satisfied by [2.52b) since

J / ) H”/ H// { v
;?-;)7. ‘:77 H(7):, =% H(n) + 2 H(y) (2.53)

At the wall this quantity is zero since H"(0) = O from Equation {2,18b),

Equations (2.52), together with the functions by = {hx}a/uF(ﬁ)

and T, = H(n), are now entered into Equations (2.51) to give
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©o

2 39;( § R, (4xl)-+z[ F//vz)]za/g —fo)s S. " Hiy) Ay

bt 4 -% (2.5ka)
+ R, /4-X) < F/co) = 4x) ]g("’?)d?
Sig r-—
%§[(4X) So 7”{7)/‘/7)‘/‘ /4)() I?o /4/7) F/ﬁ)] dy (2‘5413)

+ L (ax) ¥s, W) =0

Since the integrations are to be carried out with respect to
1/
y and with x held constant, dy can be replaced by (lx) / dn, all powers
of x can be taken outside the integral signs, and the integrations can be

carried out with respect to n alone. Equations (2.54) now become
ol
z
2 R f[F/’/)] =7 7 (4x) - s, 5’7 H/’z)c/v /4><) (2.558)
+ R, F70) (4x) "2 /4x) f§('7) a4

S, 5’7 4/77“/17)47 4(4x) R, fﬂ/»z)m)/7 (ex)

(2.55b)
+ L S AL (4x) % =0
Carrying out the derlvatlve operations ylelds
4Rs (2r+1) {4x) f[m;)]dy - S, (g7 j‘*z Hin) 4y (2.6a)
+ R (4) /"N) (+)° ﬁ () &
5-_
Se (45+3) (4x) J Ui ///7) F/»;) A (2.56b)

F- S~z
+ 4 Ror (ax) f/w»;)F/v;) Ay +5, ‘gja) (4%) =0
o
x can nov be eliminated from both equations provided that r = O and

s = -3/k. Entering these values into (2,56) gives
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4&}[7‘?7)]247 -5 fﬁ Hen) A9+ R, Fio) = f§(‘7) dy (2.57a)

EELjiﬁgg =0. (2.57b)
O_
Solving (2.57) for R, and S, gives the result that
S
Ro:: _i;_ﬁl_ﬂ“ , 2 (2,58&)
F10)+4 [[Fiy)] #
J, =0, (2,58b)

Finally Equations (2,52) are rewritten as
&) d
M: J‘NQ(ﬁ) j LN

N =0, (2659b)

Frm) (2,59.)

From (2,59b) it is seen that for the zero frequency case the
temperature perturbations are zero everywhere even though the velocity
field is altered in accordance with (2,59a), This can be easily recon-
ciled, however, by the fact that the velocity perturbations occur along
lines of constant n as shown by (2,59a), which are also lines of constant
steady temperature by virtue of T = H(n). This argument gives strong
support to the result given in (2,59b), It is recalled that Glauert(lo)

(25)

and Rott obtained a similar result in their investigations as
mentioned in Chapter I, The explanation in their case is essentially
the same as that given here,

It is worth while to point out here that the large y solutions

given in the previous section represent the behavior of the boundary
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layer when the perturbated convective effects are negligible in com-
parison with those of local acceleration and local time rate of change
of energy. The solutions given by Equations (2.59) are valid when the
reverse is true., This can be made more clear by recalling that
Equations (2.59) satisfy Equations (2,51) which are the same as
Equations (2.50) when time rates of change of velocity and temperature
ignored. Consider now the case when these effects are small, but not
negligible, It is clear that the magnitudes of these effects relative
to the convective effects will depend on w, and 1t is plausible that
they will also depend on X. It is proposed that this dependency may
be determined by a single variable now defined as A\ = m(”xjm where m
is a constant to be determined later,

It is obvious that the convective terms will dominate completely
when A = 0, and for this case the solutions are given by Equations (2,59).
If N is small, but not zero, it would seem reasonable to assume that
solutions can be expressed as power series in A\ expanded about A = 0, a
condition for which the solution is known. In this case Equations (2,52)

are modified by power series in A, and again teking r = 0 and s = -5/4,

solutions are sought in the form

M= [ R+ % Rn X Fre) (2.60a)

-3

N = (4x) [SD -+ o% S, )\”J ” /—/'{—q). (2.60Db)

. . . TR _
Entering these relations together with v = (kx) F(n) and T, = H(n)

into Equations (2.50) gives
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2
A w F(oo)Z R, A" 4 2-— jZ Rn A" /45" [F//)y):} Ay (2.61a)

-5

j/4x) Z Sy N Himpdy 4 (49° 2 Ry X 7o)

0

< (40 f?(md&,

°° 3 4 (2.61b)
A wj(:;x) Sn 47 H/v; dy +52 f@x) ZSM 7 e, f/v)/%

~/ oo

2 Jm}‘ Z & X A Fly Ay + ‘”” (60 Z 3 h w0,

Since the integration is done with x held constant, dy can be replaced by

1/4 : . .
(k)™ ‘dn, all powers of x and A can be taken outside the integral signs, and
the integrations can be carried out with respect to 1. Equations (2.61) now

become

. > n Y , L 3 < h

4w /‘—("")2 Rn A -/-Zj[F/?])J”/Oé‘ [@(f Rn A J
—fn Himdn (45 Z S, s Flo) (43)° 2 Rn X

= (4%)° ﬁ(’?)dq
dw Hen) dy (4x) Z 5,0 in #//v))F/%M;f nf: Sy N

(2.62a)

(2.62b)
o) 20 / -/ ©e
+°§ #(m) F?n) /7}% Zm;en A4 'gﬁ) (4X) ;_ s N =

] m-/
Since )\=W(4X) 9 9—/—\-= 4.mw/4)() = 4‘”7/‘, .

X (4x)

Now,:Q_ZRn)n Z°° ,\J 4m “”’?n)‘n,

X h:o‘ /4X h=o

and similarly, 3% § S, A = 7 zZ s, A,

n=p 4 )
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With this information the derivative operations in Equations (2.62) are

carried out giving

-m %0 n+ % ; 2 -3 o
(o) (1) = R Nt [F)] dy 25) 5 Ry
i —oz o y (2.632)
—+ 8mj[f‘//77)] 4/7 /4)()2 Z n /?n/\n

oo

M Him dy (45 2. 5, 000 i) (43 2 Ro 0 03] ) 4

s , -M- = / y S0
i,f?] Hin) 4y (4X) Z Sy A + 4 (4x) f?) () F/;7)/;7Z 7S, N :
0 n=e - (2.6%Db)

-/ y S0 / -/ ©®o0
ram /o0 [ W) Fl) g 2 B B2 (] 3,47 = 0,
=0 N=0

It is readily seen that x can be eliminated from both (2.63%a) and

(2.6%b) provided that m = 1/2, In this case M =@~Nkhx =y so that Equa-

tions (2.60) now become
M= () Z Ry & (2.6%)

N=op

_34 , oo
(4)() 7 /7’/77),12_ Sh Y (2.64)

The solutions are now expressed as power series expansions in y about



~53=

y = 0 so that Equations (2.64) can be expected to be valid for small
values of vy.
The conditions that m = 1/2 and y = A are nov entered into

Equations (2.63) giving

Co

‘ = N4l i 2 n 2 "
FeZ R 4 4 [ [rimi] dy [Zom + Z Ry Y ] (2.652)
%o ° pad
/ s n _// & n
«Ofoy Hin) 4y %osn Y+ Fyo) %OPN’ = 5§(77) An

o Co
, , 0o / / = h
i §‘7 Hop dn 2 S, K”“”fﬂ HM) Fim)dnZ 7 Sy ¥ (2.650)

, 00 / 0o
+2 § H/v)) Fim) dn %on R, b’h_,. .%{12 %ﬂ = 3"~ 0 ,

For the sake of simplicity it is convenient to redefine some of

the quantities appearing in Equations (2.,65). These new definitions are

R = ﬁ(ﬂ)@ (2.662)

R = Fro) (2.660)
a4 2

R = 5 [F?m] dn (2.66¢)
o]

B = F (o) (2.662)
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0o

-2 J"ﬁ H/('q) Fl(n) dn (2466¢)

0

+~9
i

Fs = = Hio /3 (2.66¢)

o]

co
In addition, it can be shown thatof H(n)F'(n)dn = P; and - [ nE'(n)dn =
o
(Pl + 5P2). The details of these relations are given in Appendix I-d along
with tabulated values for different Prandtl mumbers, Eguations (2.65) are

now rewritten as

e o
4 R Z_o Rn Yn+'+4 F?nzo(n-n) R, ¥" (24672a)
+(R+SB)Z S0 ¥4 A2 Ryt R,
= N+t 2
—i(ﬁ+58)?’05n¥ - Z nsyy" (2.670)
s Nn=o

00 [oe]
* and 2, S 7nﬁl, can be replaced by 2. R yn and.
n=0 o n=1

o0
. n+
The quantities nzb Rn7 n~1

9]
nZi Sn_lyn. Also, since R, and S, do not exist for n<O0, the lower indices

of the summations can be changed from one to zero resulting in

> n+l
ZE; RHVX -

neo

Rn

0

0o oo
Y ad Z M= 205, %
Nns=0o nao

It
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Meking these modifications in (2.67) yields

g"?[ﬂ +4(n+l)a] Rp+4 3 Rn_ + (P, 45/’2_)5,.,} B’n.—: F (2.68a)

%{(3%+3n)5n +i(B+SB)S, —2n R R "0 (2.680)

The coefficients of all powers of y must be zero except for
that of y° in Equation (2,68a) which must be equal toKPo. These conditions

can be restated as
[Raatne) ] &4 i8Ry s (Fash)sy = Suf (26
(3%-”’4%)5” + 4 (F+ 5@)%_,—2/%;422,1:0, (2.69p)

Sno is the Kronecker Delta 6ij defined so that Sij =1if 1 = j, and

Byy =0 1f 1 # j. Solution of (2.69a) for S  gives

o _ Snoh-{lR+4mt)RIR + < B R (5700
! Te5k

This expression can also be written as

S = S};ﬁ—%[ﬂ*‘lgnj’?n-r “r'{% Rn-—z (2 70b>
" P, + S PZ .

Substituting (2.70a) and (2,70b) into (2,69b) and solving for

Ry, gives the recursion formula for R, as

3R Ps3no +4'/?>{’D/"‘5@)g”’ + 1 (/?*5/2) Kn-z (2.71)

_4;[@/34 4P /P,w@)]n +[3§@+/?//?f 53)]} Kn-1

n:‘.
4 BE e[ RB4 4 RE 12 B8 +2R(FesE)ln + R (R14R)
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It can be seen from Equation (2.71) that R, =P _/(P; + 4p,) =

fg(»q) d74’ﬁg)+4_f[ﬁ%)]2,7] which agrees with (2.58a). Entering this

°

value of R, into (2,70a) gives S, = O which agrees with (2.58b). Equa-
tion (2.71) can be written in a more concise form by defining the

following parameters,

o - 32% (2,72a)
214
s (R+5h
0 = AlRSR). (2.720)
4R
P
QZ — FéiRp“';l) (2‘720)
z I3
Q, - PR +4R(F+5R) (2.724)
4R R
@ =3 @%4;17)(%5%) (2.72¢)
214
G = FP +12 RRR+2 RR(R+5R) (2.72f)
4+ RBR
0 = 3R(R+4R) (2.72¢)

4F2P4_ .

Tabulated values of these parameters are given in Appendix Ie for several
Prandtl numbers., In terms of these new definitions Equation (2.71) be=~

comes

R, - Sno Qo + 48 8n+ CQ Rnz -i (Qsn+ Qs)Rn, (2.73)
h*+(Qs +1)n + G .



The limiting form of (2.73) as n increases without limit is

Rh = =4 @3 Rh-l/n 2 (2-71")

and the ratio of the n-th term to the preceding term in the series
(o]

. Rnyn is - iQ57/n. Now, taking the limit as n increases gives
n=

n—» 0o

Tim {0 %] =0 (2.75)

for 0 <y < w, Thus, the series . Rnyn converges for all values of 7.
= n=0

The limiting forms of (2.70a) and (2.70b) as n increases are

5 _ —[4&” Rn+i5 En-,]
n =

(2.76a)
f+5k
Sh—l = —[4'@ h Rn-/ + 4’ @ Pn-z] (2.76'b)
F+5R y

. -iPzR,_1 -iPzRy_o o) )
Also, since R —>———éﬁ——— » Ry_1 —;———éﬁ———, and R, —a-(P5/n) R, ». Applying
this information it is found that

Lim /Sn”"/=ﬁ;n

n»ce | S, ¥

RY

——

in

=0 (2.77)

n—e

for 0 <y < w. Thus, the series n; Snyn converges for all values of y also.
Inspection of (2.73) shows that Rn is real if n is even, but

imaginary if n 1is odd. Applying these conditions to (2.70a) shows that

Sn behaves in the same way., This makes it possible to write the magnitude

and phase of M as

(M’ - F('y))\j(Ro"'Rz 52+R4 34-{- .“>2+( RY + R35’2+R555+.‘. .)2 (2.78&)

4

b = Arctan [ LA LA L EALE (2.78v)

R+ RE 4+ R ¥ .. ) ,
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while the magnitude and phase of N can be expressed as

/
N=_ wn Hey) (52x2+s4x4+56x’+...>z+(_5_,b’+53x3+ Se ¥+ - > (2.79)
(4x)% ¥ ¢

A = Aretan | S3 S5 o (2.79b)
A(S0esstes, v L. )

In the next section some attention will be given to the oscillating wall

shear stress and temperature gradient, These are obtained by differentia-

tion of Equations (2,782) and (2.79a) and are written as

(92“4) - F;O)J(Eonezar%mxt...>2+/’?'3'”’3”3+P=2‘{“"')‘ (2.80a)
3y £

‘e

l/ .ﬁ) =_.E’_'i?flj(szxz-rs,;xuséxﬁ..-)z+(5'“53*3“‘5"6*"")2(2.8%)
3yl T ;

The first few values of the coefficients Rn and Sn have been
calculated from Equations (2,73) and (2,70a) and are given in Appendices
If and Ig for several Prandil numbers. Using these values the magnitudes
and phase angles of M and N have been calculated as functions of y from
Equations (2,78) and (2.79) above. Plots of these functions are given in
Figures 18 and 19,

Figure 18 shows that the oscillating stream function exhibits
a very slight peaking phenomens at small values of y while approaching
the value given in (2,58a) at y = O. This point represents the limiting
condition when the local acceleration of the fluid has no effect, that is,
either the steady or quasi-steady case. Here the velocity perturbations

are completely in phase with the applied pressure gradient as expected,
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As y increases, the convective processes have less effect so that the
oscillating pressure gradient tends to be balanced more and more by
local acceleration, This produces a phase lag and a deecrease in the
magnitude of the oscillating stream function, This behavior is to be
expected on the basis of Equation (2.28) which shows that the stream
function drops off with the reciprocal of y and lags at about 90° at
higher values of 7.«

Figure 19 shows that the temperature perturbations are zero
in the steady case as indicated by (2459b)s Since this is true, only
the lagging component of velocity produces temperature perturbations so
that their phase i1s 90° with respect to the oscillating pressure gradient
in the limit as y approaches zero., As y inereases, the tendency to lag
with an eventual decrease in magnitude occurs, This behavior is to be
expected since the local time rates of change of momentum and energy become
relatively more important as y becomes larger, It also is consistent with
the high y solutions which decrease with the reciprocal of 72 and lag at
about 180° as y becames very large.

An integral method has been used in this section to obtain the
velocity and temperature perturbations for low values of y, An alternate
method for obtaining the ocrresponding exact solutions is given in Appendix

IIT.

Comparison of Solutions Based on the Wall Shear Stress and Temperature
Gradient

The behavior of the solutions at high and low values of ¥y
has been shown to be qualitatively consistent by the discussion in the
latter part of the last sectiony It would be desirable, however, to

plot the solutions as functions of y to see 1If corresponding pairs of
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solutions really approach each other in a satisfactory manner in the
intermediate region of y., This is mot convenient in general since too
many variables are involved, but 71 is eliminated if the osecillating

wall shear stress and temperature gradient are considered. Fortunately,
these guantities can be represented as functions of y alone in each

region, The oscillating wall shear stress is given by Equations (2.31b)
and (2,802) in the high and low regions respectively. Correspondingly,

the fluctuating wall temperature gradient, and therefore the oscillating
component of local heat transfer, is given by Equations (2.45) and (2.80b),
Plots are given in Figures 20 and 21.

The solid lines were calculated from the equations while the
dotted lines have been faired in 1o show the probable behasvior in the
intermediate region of y. It can be seen that the solutions tend to
approach each other, in a qualitative way at least, in this région.

This graphical illustration adds more vivid support to the apparently

consistent behavior of the two sets of solutions.

Further Discussion of Results

In connection with the velocity oseillations, it can be observed
that the oscillating stream function takes on finite values when y is
small and decreases as y becomes larger. Since the boundary layer is
thin at the leading edge and becomes thicker downstream,the velocity
oscillations are largest at the leading edge and decay to smaller values
with increasing distance downstream. The temperature oscillations follow
the same pattern, being largést at the leading edge and dropping off down-

stream, The decrease of the perturbations with x agrees with the fact
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that the oscillating pressure gradient also is large at the leading
edge but decays with distance downstream, Both velocity and temper-
ature show a tendency to lag with increasing x, the velocity osccila-
tions being in phase at the leading edge. At low values of x, the
velocity oscillations occur approximately along lines of constant
temperature, Here only the lagging component causes oscillations

in temperature so that their phase approaches 90° at the leading edge,
The behavior of the perturbations near the leading edge indicates that
the convective effects are dominant in this region while the time rates
of change of momentum and energy are smaller by comparison even when
the frequeney is high, This can be explained by the fact that the
magnitudes of the convective effects are dependent upon gradients in
velocity and temperature, These gradients are high at the leading
edge but decay downstream, Therefore, if the frequency is high, the
convective effects dominate near the leading edge, while local
acceleration and time rate of change of temperature dominate farther
downstream,

It is clear from the analysis that the perturbations are
proportional to €, If € 1s held constant it is implied that for a
given physical system the vibratory acceleration aong is held constant
also, Under these conditions the amplitude of the oscillating pressure
gradient is constant at any given point in the boundary layer, but the
frequency may vary. At zero frequency the velocity oscillations are in
phase and occur along lines of constant n. At a given distance from
the leading edge, except for the slight peaking phenomena shown in

Figure 18, the velocity oscillations decrease with increasing frequency.
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This behavior is due to the fact that although the oscillating pressure
gradient is the same, less time is available within a given cycle for
accelerating the fluid when frequency is high. At high values of wNIZ;
the velocity oscillations are proportional to the reciprocal of frequency
except in the region very close to the wall where they are proportional
to l/~Jb. The temperature oscillations follow a slightly different
pattern, In the quasi-steady case of w —» O the temperature perturbations
are zero and approach a phase of 90° since the in phase components of
veloclty lie along lines of constant temperature. At a given distance
from the leading edge the temperature perturbations at first increase
linearly with frequency, then reach a maximum, and then decrease as
frequency is varied from zero to increasingly higher values, At high
values of mAfE; the temperature oscillations are porportional to the
reciprocal of the sguare of frequency, Both temperature and velocity

lag more and more with inereasing frequency at a given distance from

the leading edge. This behavior is due to the increasing importance

of local acceleration and the time rate of change of temperature,

In regard to the phase of the perturbations it has been
pointed out in the last two paragraphs that the tendency to lag becomes
more predominate with increasing distance from the leading edge and with
increasing frequency. This lag is primarily dependent on the variable
y = a>v535, although a fairly significant dependence on 7 may be expected
at intermediate values of y. The velocity and temperature oscillations
have a phase of 0° and 90° respectively as either x or « approaches zero,
In the limiting case of very large values of the product w~fZ;, the

temperature oscillations lag by 180° while those of velocity lag by 90°
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throughout most of the boundary layer, Very close to the wall, however,
viscosity becomes important so that the velocity phase lag is only 45°
in this region when m@_;x is large,

The effect of frequency on the magnitudes of the velocity and
temperature oscillations has been discussed previously in this section
for the condition that €, or in other words the acceleration aoﬂg, be
held constant for a given physical system, If this condition is now
relaxed the effect of the amplitude a4 and the frequency  together can
be observed, It is clear that if y is very small, the velocity oscilla-
tions at a given distance from the leading edge are proportional to aOQZ,
while those of temperature are proportional to aOQE. If y is large,
however, the temperature oscillations are proportional to the amplitude
a5 alone, while the velocity oscillations, except in the region very
close to the wall, are proportional to the amplitude of vibrational
velocity aOQ, Very close to the wall the velocity perturbations vary
with aOQl‘S.

The effect of the Prandtl number has not been discussed in
any great detall here, However, it can be seen from all of the results
presented that, with all other things being equal, the velocity and
temperature perturbations are largest for the low Prandtl numbers. It
is certainly reasonable that the temperature perturbations follow the
same trend as those of velocity and it is to be expected that the
velocity perturbations will have an inverse relationship with the
Prandtl Number for; the following reasons, First, the combating effect

of viscosity is small if the Prandtl number is low, Also, the oscillat-

ing pressure gradient is larger and extends over a greater width as
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shown in Figure 8, This is due to the fact that the thermal boundary
layer is thick for low Prandtl numbers thus emphasizing the basic mech-
anism discussed at the beginning of this chapter, This follows a
similar line of reasoning that can be applied to the steady velocity
profiles, That is, the steady free convection velocities are larger for
the low Prandtl numbers because the total buoyancy effect is large due
to the greater thickness of the thermal layer., Conversely, for high
Prandtl numbers the buoyancy effect is restricted to a very thin layer
adjacent to the wall and is opposed by large viscous forces thus causing
the total momentum to be small, In addition, high viscosity requires
the the veloeity layer to be relatively thicker than that of temperature,
Therefore, the avallable momentum effect is distributed over a sizeable
thickness causing the average velocity level to be low,

One additional parameter will be discussed here and that is
the temperature difference /O = (Go - ©,)s The steady free convection
flow veloclities are proportional to Jé, which indicates that they vary
directly with the square root of the temperature difference, If y is

3/k

high, the velocity osecillations are proportional to A

/2

1
the wall where they are proportional to A® ' . Also, in the high y

3/

region the temperature perturbations are proportional to A® . Thus,

except near

the high y oscillations show an increase with increasing temperature
difference, In the region of very low y the velocity oscillations
are proportional to A@l/h, but those of temperature vary directly
withAAb5/u. Here the temperature oscillations show a decrease with

increasing temperature difference, It would seem in this case that

very large temperature oscillations could be produced in the low y



region by continually decreasing the temperature difference, This is
not correct, however, since all of the analysis presumes the existence
of a boundary layer type of flow which, as pointed out by Ostrach,(25)
occurs only in cases where the Grashof Number is very large. It is also
important to note when speaking of y as being either large or small that
y itself varies in proportion to AQ-I/E.

The problem discussed in this chapter involves the response
of a free convectlon boundary layer on an infinite plane wall to trans-
verse wall vibration, Due to the fact that the wall is infinite in
extent, the fluld outside the boundary layer, just as in the non-vibrating
case, remains stationary with respect to the wall, The boundary layer
then responds to the pressure gradients distributed throughout its volume
as a result of density variations, In the next chapter the problem of a
finite plate will be considered when density variations are absent., In
this case, however, potential flow exists outside the boundary layer
and is directly attributable to the vibration, The response of the
boundary layer i1s then determined on the basis of the potential flow

existing at its outer edge,
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List of Symbols for Chapter II

Amplitude of wall vibration

Body force per unit volume parallel to the wall
Body force per unit volume normal to the wall
Constants in Equation (2,41)

The specific heat per unit mass of the fluid
Constants in Equations (2.27) and (2,43)

Speed of sound in the fluid

The substantial derivative operator in the stationary
coordinate system, 0/0T + u O/OX + v 3/dY

The substantial derivative operator in the moving coordinate
system, 0/0T + u¥ O/dX¥* + v¥x /Y%

Components of the oscillating stream function defined in
Appendix ITI

Base of the natural logarithms

Defines the steady velocity distribution v, = (#x)5/4F(q)
The Grashof Number gﬁﬁB(Oo-Qm}/;g based on the length £
The Grashof Number gBXE(OO-Gm)/;/2 based on X,

Body force per unit mass acting parallel to the wall,
Amplitude of wall acceleration aoﬂg.

Defines the steady temperature distribution T = H(n)
Subscript indicating a homogenous solution

Components of the osecillating stream function defined in
Appendix III

The square root of ~1

Components of the oscillating temperature profile defined
in Appendix ITI

Thermal conductivity of the fluid
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Components of the oscillating temperature profile defined
in Appendix IIT

Characteristic length along wall
The oscillating stream function defined by wl =M ejmt
The exponent in the definition of X = w(lx)"
The oscillating temperature defined by Tl =N ejmt
Index on the summation f%io » on the coefficients R, and S5,,
and on the functions En(nS, I, (n), J,(n) end I, (q) In
Appendix ITT
Parameters defined by Equations (2.66)
Pressure
Subscript indicating a particular solution
Parameters defined by Equations (2.72)
The coefficient defined by Equation (2,52a)
Coefficients in the series é%ﬁnkn defined by Equation (2.60a)
The exponent of (4x) defined by Equation (2.52a)
The coefficient defined by Equation (2.52b)
oo
Coefficients in the series ; ;sn)\n defined by Equation (2.60b)
The exponent of (4x) defined by Equation (2.52b)

Dimensionless temperature ©-0,/6y=0c

The steady and oscillating components of the temperature
distribution, T & Ty + €T7.

Dimensionless time (v NG /gg) -1

Velocity in the direction parallel to the wall in the
stationary coordinate system,

Velocity in the direction parallel to the wall in the moving
coordinate system, u¥ =u

Velocity of the wall, Vo = aoQ sin QT

Velocity in the direction normal to the wall in the stationary
coordinate system
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Velocity in the direction normal to the wall in the moving

coordinate system, v¥ =v - VB

Subscript denoting a condition at the wall

Distance in the direction parallel to the wall in the
stationary coordinate system

Distance in the direction parallel to the wall in the
moving coordinate system, X¥ = X

Dimensionless distance in the direction parallel to the
wall, x = X*/4

Distance in the direction normal to the wall in the stationary
coordinate system

Distance in the direction normal to the wall in the moving
coordinate system, Y*¥ =Y - Y,
Motion of the wall normal to its own plane, Y, = -a5 cos Qr

Dimensionless distance in the directio%.normal to the wall in
the moving coordinate system, y = %ﬁ ~fé

Coordinate normal to the XY plane

Indicates a condition far away from the wall

Greek Letters

io
Phase angle of the temperature oscillations defined by N = lNle

Coefficient of thermal expansion of the fluid defined by
p=p, [1-ple-0)]

Defined by o~ bx
The temperature difference (@o- )

The Laplacian Qperator in the stationary coordinate system

32 /%8 + d2/av2

The Iaplacian Operator in the moving coordinate system
32 /ox*2 + 3B Joy*®

The boundary layer thickness
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The Kronecker Delta, &;; =1 if 1 =j, and Byy =0 if 1 £ J

Defined by € = E%ég

¢ Y
The forcing function, g(n) = 5 nH' (n)dn

&

The similarity variable, 3 = y/(lkx)l/4
Temperature
The wall temperature for X > 0
The fluid temperature far from the wall
The thermal diffusivity of the fluid k/pCp
Defined by X = a(kx)"
The absolute viscosity of the fluid
The kinematic viscosity of the fluid u/poo
The density of the fluid
The density of the fluid far from the wall
Denotes a summation operation
The Prandtl Number of the fluid, ¢ = v/k
Time

Phase angle of the velocity oscillations defined by

u Py
oy oy u\[
d
The stream function defined by u” = —ié N and v¥ = - 2 G éi
L Oy L ox

The steady and oscillating components of the stream function,
L

The frequency of wall vibration defined by V, = aQ sin Qr

Dimensionless frequency of wall vibration, w = EEQ/V“JG



CHAPTER TII

THE POTENTIAL FLOW AND BOUNDARY LAYER RESPONSE TO
TRANSVERSE VIBRATION OF A THIN PIATE OF FINITE IENGTH

Statement of the Problem

Consider a thin plate of length 2c immersed in an infinite
ambient fluid and vibrating normal to its own plane with a sinusoidal
motion of amplitude a, and frequency w. The velocity of the plate is
Vo cos wt where Vg = age A sketch of the physical system in Figure 22,
The analysis will be restricted to the two dimensional incompressible
flow pattern, This requires that the system be uniform in the direction
normal to the xy plane, and that the velocity of the plate be small com-
pared with the speed of sound in the fluid.

A boundary layer will form adjacent to the wall, but its be-
havior will depend on the potential flow at the outer edge of the layer.
Therefore, the potential flow pattern will be considered first, and its

effect on the viscous layer will be discussed later,

The Potential Flow Response

For bodies moving with translational motion in a constant
density fluid it is immaterial whether the problem is analyzed with
respect to a stationary frame of reference or a coordinate system fixed
in the body., It is usually more convenient to fix the coordinates in
the body, and this procedure will be used here, With respect to this
frame of reference the velocity of the fluid at large distances from
the plate is AVO cos wt in the y direction., The y component of velocity

along the plate is zero,

~Th-
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INFINITE
INCOMPRESSIBLE

FLUID AT REST

4 PLATE VELOCITY
V,Cos wt

Figure 22,

Sketch Showing a Thin Plate of Finite
Length Vibrating Transversely in an
Infinite Incompressible Fluid at Rest.
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The equations governing the behavior of a frictionless

incompressible fluid are the continuity relation
U | JdV
e~ = 0 3.1a
5x ? (5.12)

and the condition for irrotational flow that

oU Qv

=z _2V¥ =0 , (3.1Db)
3? X

The stream function and velocity potential are related by the Cauchy-
Riemann equations written as

U = ;_l_b _ Dé (3.22)

~— —_—

2y T Tox

- 20 .
\/..-jg_ - gf (3.2D)

Substituting the stream function from (3.2) into (3.la) gives
2 2
(-ﬂ-ﬁw):O
Dny Xy

Entering the velocity potential from (3.2) into (3.1b) gives

2 2

(23 . 2%) .0,
ox Sy ox 9y

Therefore, Equations (3.2) automatically satisfy the conditions prescribed

by Equations (3.1). Two additional relations are obtained, however, by

entering the velocity potential and stream function respectively into

(3.1a) and (3.1b). These relations are

Ve =0 (3.38)

k3
Solutions to the problem must satisfy laplace's equation as given by

Equations (3.3) compatible with the boundary conditions that
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Uo = - (gw/ga‘)w r*‘(gé/ﬁx)a° =0
Vo = (3¥5), = - (P%h )= - Vo cosut

(v>%,=o= ( 91&/9}(%’0 = —(315/99) =0 for ~c<x<c

4o

I

The infinity subscript indicates conditions far removed from the plate,
Due to the linearity of Laplace's equation, time can be eliminated as a

variable in the equations and solutions can be expressed as

P(xiy,t) = P(x,y) S (3.ka)
V(xyt) = ¥Vixy) &, (3440)
Correspondingly, the velocities are represented as

U-T ¥ _ oy &t Yoy gt (5.hc)
Vo=V EY L U, o L 3, &£ (5.4)

Equations(3,3) now become
2
Vg =0 (3.52)
V' =0 . (3.5b)

The boundary conditions are

e =iy ), = - (3%, =0

Ve (9. = - (%) -

(\7)%0: (QL%X%: _(;4)/;)?)?:(): 0 For -CL XL e \
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The problem is now equivalent to that of finding the potential flow
pattern around a stationary plate immersed in an infinite fluid moving
with constant velocity Vo in the negative y direction,

Complex variable theory offers a convenientkmeans of handling
many potential flow problems and it will be used here. A function of &

complex variable is defined as
W(Z)--R(x,g) + 4 I(x,%) (3.6)

where z = x + 1y, and R and I represent the real and imaginary components
of the function. The function w(z) is said to be analytic in a region if
for every point in the region w(z) and its derivative are single valued,
and the value of the function is finite, Points in the xy plane where
w(z) is not analytic are called singular points, If the derivative of
w(z) is to be single valued, it must be independent of the direction of

the element dz. For example,

QLW — {4/}’) W(Z+52)-—W(z) ~ Aim V\/(Z+$Z)_W(z)

4z AZ >0 Az ﬁgfi Ax+ i ay
= tun WEIS2)-W(Z) oW _ g, W(zeS2)-wiz) 1w
AX>0 AX oX Ay >0 LAL? 4 &% .
Thus, if w(z) is an analytic function, then
_a___ = s_lg ;_W- . (5.7>

o % 4 9&
Substituting Equation (3.,6) into (3.7) gives

(25__91)-#/ 21 IRV _yp (3.8)

X  dy X 2y .

Both the real and imaginary parts of Equation (3.8) are zero so that
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R _ 2T _, (5.9)
Ix 2y

R .9b
9;—'- 3x =0, (59)

Differentiating (3.92) with respect to x and (3.9b) with respect to y
and adding gives

VR =o0. (3.108)
Differentiating (3.9a) with respect to y and (3.9b) with respect to x
and subtracting gives

VI =0, (3.100)
Therefore, both the real and imaginary components of an analytic function
w(z) satisfy Laplace's equation, If R = @ and I = ¥, Equation (3,6)

becomes
Wiz) = ¢rxy) + LWy (5.11)

w(z) is called the complex potential., As long as w(z) is an analytic
function it represents the solution to a potential flow problem since
Equations (3.5) will be satisfied automatically, One additional point
will be made here in connection with the calculation of the velocity
vector from the complex potential, Since w(z) is analytic, dw/dm =
ow/dx = Of/ox + i Oy/Ox, Therefore, using the relations given in

Equations (3.le) and (3.4d), the velocity vector is written as

Q_Wﬁ_U—f—A‘V (3.12)
>z

Methods for obtaining potential flow patterns éﬁsociated with

various geometric configurations are given in classical books on the

(14)

subject such as Lamb's Hydrodynamics, The potential flow about an
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elliptic cylinder will be redeveloped here, The reason for introduc-
ing this work is that by allowing the semi-minor axis to approach
zero, the steady potential flow about a thin plate can be approximated.
By introducing the elliptic coordinate transformation
z = ¢ cosh ( (3.13a)
where { = t + 1B, the original coordinates are represented as
X = c cosh t cos B (3.13b)

c sinh ¢ sin B, (3.13c)

N

Consider now the complex potential function

-C

wW(z) = 4 Ke, (3.1%)
The corresponding velocity potential and stream function are
-&
bP-Ke awng (3.152)
- &
Zb = K e mﬁ , (3-l5b)

For a body moving with constant velocity Vo in the y direction, the

velocity of the body normal to its own surface is given by

3%5 = \/0 %’;é 9 (3.16)

where s 1is the distance along the surface of the body, An illustrative
sketeh is shown in Figure 23. Integrating around the periphery gives the

result that along the surface of the body,

¥ = V,_ x + constant. (3.17)

The constant 1s arbitrary and can be taken as zero. Equating the ex-

pressions in (3,15b) and (3.17) gives

EE =V, C cosh & (3.18)
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FLUID
A}y

Vv
° dY .. dx

>s Vo ds

+ X
dx
ds dy

BODY MOVING WITH
VELOCITY V, IN THE
Y DIRECTION

Figure 25. Sketch Showing the Boundary of a Solid Body
Moving in a Fluid,
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along the body. This relation is satisfied by only one value of ¢
désignated as Eo- Bubt & = &, = constant is the equation of an ellipse
of semi-major and semi-minor axis a and b respectively, where

a

|

c cosh ¢, (3.19a)

b

n

c sinh ¢ _ . (3.19b)
¢ can now be expressed in terms of a and b by
c = Na“ - b=, (3.20)

Solving Equations (3.19) for £, vields

§O= n gj: . (3.21)

Entering (3420) and (3.21) into (3.18) gives

a+b
K=Y a\—F, (3.22)

Equation (3.14) now becomes

| vg
W(z) = + V, a\822 ¢ (3.25)

Correspondingly, Equations (3415) become

-§

b
P = Vo a —Z—’:g e cos 3 (3.2ba)
Vo=V, g—f% e 4ing, (3.240)
Differentiation of (3.24a) shows that ( §_§-> = ( %)g_ﬂo: 0.

From Equation (3.413), x —» » as t — = except for f = + x/2 which is the
y axis. Also, y » o for & — = except for B = 0 or B = n which is the
x axis, Therefore, the fluid is at rest at large distances from the body.

Thus, Equations (3.23) and (3.24) give the steady potential flow pattern
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for an ellipse moving broadside with constant velocity Vo in the y
direction in a fluid otherwise at rest.

By superposing a flow of V0 in the negative y direction the
steady flow about a stationary ellipse is obtained, In accordance
with Equation (3.12), this is done by subtracting i VO z in Equation

(3.23) which gives

, 3 =S : 2
W=4iV,q % € — iV |d-b coshS . (3.25)

The corresponding velocity potential and stream function are

il

| -§
¢ =V, [a g e 4\ a-p whé’] o f5 (5.262)

Y

Equations (3.25) and (3.26) give the flow pattern about a stationary

]

Vo[a %il 65— a-B  cosh 5_7 s (3.26b)
ellipse immersed in an infinite fluid of wvelocity Vo in the negative

y direction;@ = 0 for B = + x/2 which is the y axis, and also for

% = go = Q”J%T—:-f, which is along the surface of the éllipse, Now
that the potential flow about an ellipse is available from Equations
(3.25) and (3.26), the case of a thin plate can be investigated,

By letting b approach zero, in which case a = ¢ and éo = 0,

Equation (3.25) becomes
W(z) ==iVoc smh§ , (3.27)

and Byuations (3.26) become

® = Voc cosh & 4ing (34288)

'L/J = -V, ¢c smnh & cosfB v (3.28b)
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Equations (3.27) and (3.28) give the flow pattern about a thin plate
immersed in an infinite fluid of velocity Vo in the negative y direction.
The streamline pattern has been obtained by plotting Equation (3.28b)
for constant values of ¥/V C and is showm in Figure 2k,

Equations (3.28) satisfy Equations (3.5) and &lso the correspond-
ing boundary conditions so that the solution to the oscillating plate prob-
lem is now determined by Equations (3.4),

Equation (3.27) can be rewritten as

W(z) = V,\/ c*-2Z* . (3.29)

Differentiation of (3.29) gives

o(W - Vo Z - _ \/g(x+£g)

aW - L (3.30)
dz ez \!CZ—XZ-H#Z—ZJX% .
By virtue of Equation (5,3?2) , Equation (3.3()shows that
U=
Vo ) x| JD= (R + () T+ 4 () (0T + [ - (%ef + (417 ]
C 2 272 el
VZ [l - <X/C) 4(&/6) J + 4()(/6)2(.#/5) (5.51@-)

—

y / [~ (% ) ] + 4 Xte) () - (1 (/) + (41c Y]
¢ [1-(%6) +(41eF T 4 & (X (95
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<l
I

(3.31p)

ﬂ/ 00+l T 4 (X 1 = [ = () 4 1e) ]
[1-0) 49 ] + 4 ()" (406)°

Ofx

DS

+?_ /[/ - (X/c)z-r(b‘/C)zf-/- 4 (%) (¥e) + [/ —[X/c)&,u(%/cjzj
- [ I = (x/c)z-f-(g/c)l_]z + 4 (X)) (He)

—

Plots of the velocity profiles U and \/ are shown as functions

of x/c and y/c in Figures 25 through 28, Equations (3.31) show +hat close

to the stagnation point where x/c << 1 and y/c < 1, the velocity is given

by
U

V = -V, Y (3,320}

—

Along the y axis, of course, U = 0 due to symmetry, but the y component

I

\/o X/C (5&5?8.)

of velocity is given by

(V) =-v 2

- {3.33)
\J I+(%/c)z

Along the plate, y = 0 so that (V) 0= 0 and

U=\, "k

= (3434)
\} / -(X/c)z

where Uo designates (U)y_o.
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Equation (3.34) gives the potential flow at the outer edge of
the boundary layer and it will be used in the next section where the
boundary layer response is discussed, A plot of Equation (3.34) is
given in Figure 29‘ Close to the center of the plate LL,varies directly
with distance along the plate. Farther out toward the edge the value
increases at a faster rate. At x/c = 4707 the amplitude of the
oscillating velocity along the wall is equal to the amplitude of
velocity of vibration, The velocities increase indefinitely as the
edges of the plate are approached. These points are singular points.

In this region the theory can not be expected to accurately describe

the behavior of an actual fluid. This is due to the fact that viscosity
becomes important in this region so that the condition of irrotational
flow used in the analysis is not valid. Within this limitation, however,
the potential flow field has been determined and the potential flow along

the wall can now be used to investigate the boundary layer.,

The Boundary lLayer Response

The potential flow at the outer edge of the boundary layer

has been given in the last section as

X
U=V, _.__.{,C__.__ cos wt . (3.35)

J | = (X/cjl
Due to this velocity distribution, the pressure gradient imposed upon the

boundary layer is given by

| 9k _ U Bl
F——;ﬂ_"—’;‘g-‘- UE:(' (5»56)
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The relations governing the boundary layer are the equations of momentum

and continuity written as

U U v o_ )l 3 U 37a
3F+M9X+’Vag:_f3;+1)271 (3.372)

2X Qg
where the pressure gradient is given by Equation (3.36).

The method of successive approximations will be used so that

U= Uy +u‘+ s (3438a)

(R R (3.380)

u, and v, represent initial approximations to the actual exact values
of u and v, while the additional terms can be taken as correction terms
thus achieving a successively higher degree of accuracy as more terms

are taken, This should be a useful method provided that it can be shown
that Iul] < Iuol, lWi' < va[,luEI < [ul], and so on, The use of
successive approximagions for calculating periodic boundary layer flows

has been discussed by Schlichting(26), Lin(l7), Gibson<9), and others.(Q:B)
Seme of the more recent work has been done in connection with problems of

(2,3)

acoustics, Schlichting has applied his work to the case of a
cylinder vibrating in a fluid at rest, This will be discussed further
at the latter part of this section,

Only the first two approximations will be discussed here and

the probable accuracy will be indicated during the discussion, Entering

Equations (3.38) into Equations (3,37) gives
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(?_W LY 92““) [2.&‘; VM Ly e,y ;m] (3.3%)
o Sy? ot 971 I 2y
+[(u QH; + u ;Vo (V gul; _‘_v QUO ] ({/ L +1/~ Q{;})
.., = 2U U
-+ T + U =

(%J’gﬁ)_*(;“%*%“@*'” =°. (5.390)

For a first approximation only the underlined terms are retained giving

2 Ue D Yo ; U

'E— ’V 9‘3" = Q‘t (5.”0&)
QU W _
= ——; =0, (3.40p)

Equation (3.40a) would appear to be a valid first approximation to Equation
(3.37a) provided that the local acceleration effects are larger than the
convective effects, For example, the solution to (3,40a) will satisfy

(3437a) except for the error caused by the neglect of the terms

RIS 2ﬂb> and 2U . A comparison of the terms 2U
(UO-jS-(J-Vo ;_% U 72X D ng
and Qtygt.can be made directly since (] is known from Equation (3.35).
The order of magnitude of the terms (u0 gu" Vg ﬁ' relative to

éuo/ét cannot be given directly, since Us and v, are not known at this
point, However, the velocities in the boundary layer may be expected
to follow, in a qualitative way at least, the potential flow existing

at the outer edge. For this reason, a fair idea of the magnitude of
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the convective effects relative to those of loeal acceleration in the
boundary layer can be obtained by considering the ratio of the convective
term (J %gﬁ to the local acceleration %;% in the potential flow,

The convective acceleration of the potential flow is calculated from

(3435) as

pA
U %_U. = ,\/i X1 cos* wt
X C [-tf ’ o)

and the local acceleration is given by

X/ ,
QQ1=_.Q)% _C _ sinowt (3.42)
af \ l—-(x/c)L 5
Thus, (J QQ oscillates from zero to ﬁ _XC___—Z , while =2U oscillates
oX c [,_(X/c){] 21
between plus and minus w VY, Xe __, The importance of the convective

V/_O%f

term |J %g relative to é%é can now be found by computing the ratio
X

Lu %X]MAX/MUM _ %ofe (3.,4%)
273,
EJQ%QHJNMMMW4 ["0%)J/

Thus, the method can be expected to yileld useful results if the amplitude

of vibration is small compared with the length of the plate, except in
the regions very close to the edges, Here the potential flow may be
expected to be in error anyway, as pointed out in the last section,
indicating a pressure distribution in the boundary layer quite different
from that given by the expressions used in this analysis, Except in the
edge region, however, the ratio given in (3,43) may be small in many
casess For example, consider a plate 10 inches long vibrating with an
amplitude of 050 inches, The ratio given in (3.43) has a value of ,01
at x/e =0, ,02 at x/e = ,6, and .05 at x/c = ,8, It should be pointed

out that even when the ratio is not negligibly small Equations (3,40)
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can still be used to obtain a useful first approximation since the
overall error can be reduced to a smaller value by carrying the second
approximation,

Now that the validity of neglecting the convective terms in
comparison with local acceleration for a first approximation has been
demonstrated, Equations (3.,40) will be considered, Although comvective
terms are ignored in the first approximation, it is necessary that the
viscous term be retained in order to satisfy the boundary condition of
zero velocity at the wall. Physically this means that although convective
effects may be small compared with local acceleration, viscosity must
eventually become important very close to the wall and completely domi-
nate at the wall, This is because both local and convective accelera-
tion are zero at the wall leaving only viscosity to balance the pressure

gradient corresponding to oU/dt. Equation (3.40a) can be satisfied by

/ ‘wt
U, =V _Ke Lin e‘w 5 (3.,44)

1= ()

where n = y~Nw/v. Equation (3.40a) now becomes

Sl i S = i o5

Since the velocity must be zero at the wall and must approach Vo __§LE___

N1-(x/c)
at the other edge of the boundary layer, the boundary conditions
are f‘o(o) = 0 and f(’)(oo) = 1. The solution to (3.L45) is
Wy
e

-7 7
_/.

ﬁ,/(n) =/+C e Ca (3.46)

In order to satisfy the boundary conditioms, 02 = 0 and Cl = =1 so that

the result is



/ -7
Fo(ﬂ?) = /-8 17. (3,47)

The function fé(n) 1s complex and has associated with it a magnitude and
a phase angle, Therefore, it can be represented in the form [fé(n)]elao .

1
The magnitude and phase of fo(n) are expressed as

i | = ([~ 3F o 3T [ 3% oo ] 00

..7?/

A 7N
<, = Arc %an[ e sn Az ] (3.48D)

/- .§705 cos /3

Plots of Equations (3,48) are shown in Figure 30, The amplitude of the
oscillating velocity close to the outer edge of the boundary layer
exceeds that of the potential flow outside the layer., The oscillations
are in phase in the outer regions of the boundary layer, but the effect
of viscosity causes a phase lead close to the wall that approaches a
limiting value of 45° at the wall, The boundary layer thickness is
given by 1/N2 & 4, or 61¥)+J2576, although most of the velocity
varlation occurs between the wall and y = 1.5 J‘EE7Z). As frequency
increases the boundary layer becomes very thin, For air at 80°F,

v R LT x lO"’LL ftg/sec so that if the frequency is 50 cycles per second,
the boundary layer thickness is about ,050 inches, As the boundary
layer becomes thinner with increasing frequency it can be expected that
the wall shear stress will increase, This is verified by differentia-

tion of (3,44) which yields

(Wt + )

gg} -V, Xk \/—Fi o (3.49)
3# W \ / _(X/c)z —l)
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Figure 30, Magnitude and Phase of the First Approximation to
the Oscillating Velocity Distribution in the Boundary
Layer.
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The shear stress has a phase lead of 45°, the same as that of the veloeity
oscillations close to the wall,
The y companent of velocity in the first approximation is obtained

by entering Equation (3.44) into Equation (3.40b) and integrating., The re-

sult is
= _ [ Nl ém (3.50)
\/: Ak Rl S
where £ (n) is obtained by integrating (3.47) to give
_\/"11
fom) = ('- ) (3.51)

Writing £_(n) as a complex number fop(n) +1 foi(n) makes it

possible to write the convective terms of the first approximation as
al s\ N \/‘,2 X/c , 2 ~72
S e g e D) e
- (o
/ /] 2 12 " Y
- (For ?[or * 76; 7(;4')_] +[( ﬁr - 7[;)4‘) - (7Ez>r- 7[0/- ‘Jg;ﬁi‘)] cos 2wt
" ” / / ’
'+[( 7Cor ./[t)(v + 7(0‘4' ’gf') - 2 76/— 764_7 Sin 2 MJZ_

The same quantity expressed in complex notation is

DUo DL{O _ \/a X/c —’__i ]
( Ao x T K )— 2 ¢ [/—()Vc)_] ["FO 2(65 (3.53)

ISIE [F’z (6] ‘“‘”j

where the bar notation indicates the complex conjugate. The local

acceleration of the first approximation is
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, ‘wt
e = Lw 75(77 e . (3.5k)
It )/_p%
Since the function fo(n) and its derivatives have values whose order of
I Us
9% )
relative to Buo/ét from Equations (5.5;) and (3.54) is seen to give the

ratio % /e which agrees with the estimate given in Equation

[1-(%)* %

(3.43). This quantity gives a rough idea of the error involved in

magnitude is roughly unity, a comparison of (L% %;é

o

Equation (3.37a) by approximating it with Equation (3.40a), It can
therefore be expected that the error involved in the solutions u and v
will be about the same order of magnitude when only the first approxi-
mations u, and vV, are used.,

A second approximation can be obtained from Equations (3.39)

by writing

o
U _ ) Iu _ JU Duo QU (3.55a)
ot dy - (4 K ’g)

U 2V~

:5; + 5, ) (3.55D)

Terms involving products of the first and second approximations and also
those involving products of the second approximations are neglected in
Equation (3,39a) at this point, but these smaller effects could be
accounted for by taking successively higher approximations., Using

Equations (3.41) and (3.53), Equation (3.55a) is now rewritten as

2

SEL)
2

_
-2

0|°<

;; é(o C” (3.56)

;‘el‘ié

)
] ['_7( . 2[0_7 tzwt
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It is clear that u; will have a time varying component of frequency
20 and also a steady component. In view of this fact it is possible

to write u = Ujy + Uy, and

<Dy,
U= = (X/C) 0, [F e+ £ /77)] (5.57)

Entering this expression into (3.56) gives

¢2wt'

it , p:

fom=24f,m) =-g+2 L L £F (5.588)
fom) =<3+ 3 RE -4 (EE+LE) (.58,
Substituting the expression for fy(n) into Equations (3,58) yields
w . -V
fel) =2ifyin) == 2 (1277 n) (3.5%)
-V¢ —Fﬂ
(%) i)z (244
() = "~ (2-4) ) € .
7 s
_\/_»7 EARR \/— n e ﬂ}
The particular solution to (3.59a) is of the form
/ F o
[{t/w] = b & b gt (5.60)
P
Entering this expression into Equation (5.59&) ylelds bo = i/2 and
b, = —i5/2/2 . The homogeneous solution to (3.59a) is
/ -Ve4 27
[Etm):} = C S c, e’ (3.61)
h

The full solution to (3.59a) is fit(n) = [fit(n)]p + [fit(n)]h . Since
fit(o) = fit(w) =0, C, = 0and Cy = -i/2, so that the full solution to

(3.59a) is now
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I —E7j)+

o -4 (&M (.60

Since fit(n) is a complex function it is possible to represent it as

1

i
Iflt(n)]e 1 where the magnitude and phase are given by

nl—

(3.63b)
_r] . -’7
s rotand D) =T =0 75] - € e

[z oY + (1<) in Yy |- € ingy

Plots of the magnitude and phase of fit(n) are given in Figure 31. The
magnitude rises from zero at the wall, reaches a maximum and drops off
to zero at the outer edge of the boundary layer. The p@ase shows a lag
of 45° at the wall with an increasingly larger lag farther out in the
boundary layer. The component of shear stress oscillating at frequency
2p is obtained by differentiation of (3.62) which gives

) -(57)

(-t

9 ¢ Yk el' (2wt -T) (5.64)
C
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Magnitude and Phase of the Second Approximstion to the
Oscillating Velocity Distribution in the Boundary Layer.,
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The 45° lag in the wall shear stress agrees with the lag in the velocity
oscillations near the wall as indicated by Figure 31.
The steady component uls is obtained by the double integration

of Equation (3.59b) which gives

. ) 7 .
A N R E T (56

_(/_1)777_2_é — 1+ )77 FOJ-«-C,7+C2 ,

where C; and C, are integration constants, It is clear that the velocity
will increase. indefinitely with increasing distance from the wall unless
Cl = (0, Also, 02 = - 5/4 in order to satisfy the no slip condition at
the wall, All imaginary components cancel in Equation (3.65) so that

the steady component of velocity is now written as

-z ~U
+Z’e ,)+2 eﬁs/}a%g

F,;m) = -

N

(3.66)

+ % g//i cos 77//2— __é__;l_ e%(cosl _sz'nﬁ_)

z Vz z/,

A plot of Equation (3.66) is given in Figure 32, Close to the
wall the steady motion is directed away from the stagnation point and
toward the edges of the plate. At q/'Jé ~ 1.15, however, the direction
reverses so that flow occurs from the edges toward the stagnation region
farther out in the boundary layer. At the outer edge of the layer the

steady flow does not go to zero but approaches a value of

Qo X/e (5.67)
c 0

[ 1~ )jz

Us(=) = - %
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The Steady Velocity Distribution.,
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Thus, the effect of viscosity in the thin oscillating viscous layer is
to produce a steady flow at the outer edge of the layer and beyond.

This effect has been observed experimentally by Schlichting(26)

who
vibrated a circular cylinder in water, Fine metallic particles placed
on the surface were photographed using long exposure times. The resulting
photographs showed the trajectories followed by the particles, The parti-
cles far outside the boundary layer moved with a steady motion toward the
stagnation region of the cylinder. This behavior agrees with the result
given in Equation (3.67) in this analysis for a flat plate. Additional
investigations of induced steady flow as a result of fluid oscillations
have been made in connection with acoustics and some of these are given
in the references.(2’5’4’18’20’21’22’31) The steady flow in *these prob-
lems 1s called acoustic streaming. This phenomena occurs when a sound
wave impinges upon a stationary object.

The steady component of shear stress is obtained by different-

iating (3.65) which gives

_ a /¢ o
( JQU; _ [k ) \/_ 7 (:I X(;)z-]z (3.68)

The oscillating and steady components of vy can be obtained if desired

by integrating the expressions for Uy in accordance with the continuity
Equation (3.55b). The details of this operation will not be carried out

here, but it can be verified that vy will have an order of magnitude given

1+ 3(%
P a° V C +3( /c) ] « By comparison, Vo 1s seen to have an order of
Vo/c . -
magnitude glven by J—- T from Equation (3.50). Therefore,
W [~ ]

vy has an order of magnitude that is smaller than that of S by a factor

a Cr+3 (XS]
© [r-te "

+ Similarly, since uy is proportional to
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Qs X/e . . .

= Vo —— from Equation (3.57), and uy is proportional to
[r=(%)"]

V, Xe from Equation (3.44), u, has an order of magnitude that

Vi =P Qo /c

is smaller than u_ by a factor of —m ——— __
o [ :-(xk)ﬁ]”ﬁ

are smaller than u, and Vo, respectively if the amplitude of vibration is

.« Thus, both g and vy

small compared with the length of the plate except in the regions close
to the edges.

The higher order terms not carried in this analysis can be
expected to be somewhat smaller than the second approximation given here.
In order to briefly summarize the results of this section the boundary

layer vell@city is now rewritten as

Wt +,)

W= v, Xk e

e L)

(3.69)
Go/c ) lzwtso, ) J
AL [Gm] e+ fopm e ,

where fé(n), £1:(n), and fis(n) are given in Figures 30, 31, and 32.

This is the boundary layer response to an oscillating potential flow

X/e cwt
U=V, —=—=—== € . The potential flow oscillations increase with

V=)
increasing distance from the stagnation point., The boundary layer re-

sponds with both oscillating and steady components whose magnitudes also

increase with distance from the stagnation point,
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List of Symbols for Chapter IIT

The semi-major axis of an ellipse defined by Equation (3.19a)
The amplitude of vibration of the plate

The semi-minor axis of an ellipse defined by Equation (3.19b)
Constants in Equation (3.60)

Constants in Equations (3.46), (3.61), and (3.65)

One half the length of the plate

Base of the natural logarithms

First approximation to the boundary layer velocity profile
defined by Equation (3.4k)

The imeginary component of £,(n), £,(n) = £,.(n) + if_;(n).
The real component of f,(n), f,(n) = £,.(n) + if ;(n).

The steady component of the second approximation to the boundary
layer velocity profile defined by Equation (3.57)

The time varying component of the second approximation to the
boundary layer velocity profile defined by Equation (3.57)

Subscript indicating a homogeneous solution.

The imaginary component of w(z) defined by Equation (3.6)
The square root of (-1)

Constant in Equation (3.14)

Pressure

Subscript indicating a particular solution

The real component of w(z) defined by Equation (3.6)
Distance along the surface of a solid body moving in a fluid
Time

Potential flow velocity in the direction parallel to the plate
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Amplitude of the potential flow velocity.oscillations in the
direction parallel to the plate, [J = 0 e it

Amplitude of the potential flow velocity oscillations along.
the plate, |J = (0) o for 0 < |x/c] <1

y=0
Boundary layer velocity in the direction parallel to the plate
The first two approximations to u defined by Equation (3.38a)
The time varying and steady components of uy, where U = Uy toupg

Potential flow velocity in the direction normél to the plate

Amplitude of the potential flow velocity oscillations in the
direction normal to the plate, V = V el®t

Amplitude of velocity of vibration of the plate, VO = agW
Boundary layer velocity in the direction normal to the plate

The first two approximations to v defined by Equation (3.38b)

A function of a complex variable defined by Equation (3.6)
and also the complex potential defined by Equation (3.11)

The coordinate in the direction parallel to the plate
The coordinate in the direction normal to the plate
The complex variable x + iy

Indicates a condition far from the plate

Greek Letters

The phase angle of the flrst approximation to the boundary
layer velocity, fé lf |elao .

The phase angle of the oscillating component of the second

approximation to the boundary layer velocity, £' () = If‘

1 lt(n)leml

The imaginary component of { where { = ¢ + ip
Indicates an increment of a quantity such as Ax or Ay
The Laplacian Operator O°/dx> + 3°/dy° .

The boundary layer thickness
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The elliptic coordinate defined by Equation (3.,138)
Dimensionless distance from the plate, 7 = y‘ngg
Kinematic viscosity of the fluid

The density of the fluid

The real component of { where =t + ip

A constant defining the equation of the ellipse in the elliptic
coordinate system

The velocity potential defined by Equations (3.2)

The amplitude of the velocity potential defined by Equation (3.ka)
The stream function defined by Equations (3.2)

The amplitude of the stream function defined by Eguation (3.4b)

The frequency of vibration of the plate.



CHAPTER IV

EXPERIMENTAL WORK

Introduction

An experimental program has been carried out in the Heat
Transfer and Thermodynamics Laboratory of the Department of Mechanical
Engineering, and the results will be discussed primarily in relation to
the phenomena described in Chapters II and III., These results involve
data obtained from velocity measurements made with a hot wire anemometer,
and also some data from heat transfer measurements made to determine the
effect of wall vibration on the time averaged heat transfer rate., Air
1s used as the fluid for all of the experimental work reported here.
Although the major emphasis of Chapters II and III is applied to fluid
mechanics rather than heat transfer, it is extremely helpful to have
experimental measurements of heat transfer so that the order of magnitude
of the effects of vibration as predicted by the analysis may be verified.
Also, future heat transfer work beyond that described in this report is
contemplated as a part of the vibration research program being continued
in the Heat Transfer and Thermodynamics Laboratory. For these rsasons
the construction of the test apparatus has been strongly oriented toward

the problem of heat transfer measurement,

Description of the Test Apparatus

A general view of the test apparatus is shown in Figure 33,
The main components are a 10 inch square plate 3/4 of an inch thick
provided with a 6 inch square heated section, and a mechanical vibrator

whose moving element is attached to the plate by a suitable mounting

-111-



-112-

Figure 33. General View of the Experimental Apparatus.

Figure 34. Rear View of the Experimental Apparatus.
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system. This system consists of a set of rods 3/8 of an inch in diameter
which fasten to the plate normal to its surface., The rods slide in teflon
bushings mounted in a stationary bearing wall 2 inches thick, and connect
to the moving element of the vibration exciter on the other side. A
sketch of the physical arrangement described above is shown in Figure 35.
The vibration equipment was built by the MB Manufacturing Company. The
vibration exciter is a model C-5B and its control unit is a model T-51D.
The vibrator together with its control unit can be seen in Figure 3k,

Also shown in this figure and in Figure 33 is the celotex enclosure
surrounding the test area. Its function is to insure that the measurements
are not influenced by drafts and stray air currents from the ventilating
system of the building 5r the cooling fan on the vibrator. The plate in-
side the enclosure is shown in Figure 36. Further modifications, such

as the bracket for mounting the hot wire anemometer probe, will be
indicated later after the detailed construction of the test plate and

the instruments associated with it have been discussed.

The construction of the test plate is shown in Figure 37. The
center section of the plate consists of a heating element sandwiched
between two aluminum plates 6 inches square and approximetely 3/8 of
an inch thick, These plates are clamped together by four hex nuts at
the corners which attach to the ends of the four mounting rods that are
threaded into one of the plates. The heating element was made by wind-
ing chromal ribbon 1/8 of an inch wide by .002 inches thick on a thin
sheet of mica, Two additional mica sheets insulate the heating element
from the aluminum plates., The energy input to the heater is controlled

electrically by means of a variac, while the current and voltage drop
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are measured with an ammeter and voltmeter respectively so that the
energy rate can be determined. The heating element has an electrical
resistance of about 30 ohms. A diagram of the electrical heating

system is shown in Figure 38. The ammeter and voltmeter have been
calibrated by the Calibration Laboratory of the Electrical Engineering
Department. The heating circuits shown in Figure 38 in addition to the
circuit described above are concerned with the four guard heaters which
surround the heated aluminum plates in the center of the test plate.
These heating elements consist of Chromal ribbon wound on transite strips
whose ends are fastened to the outside section of the test plate as shown
in Figure 37. A view showing the instruments discussed intthis paragraph
can be seen in Figure 39,

The purpose of the guard heaters is to prevent any of the
measured energy input to the central section from being conducted away
from the edges of the aluminum plates to the outside section of the test
plate. Thin magnesium strips insulated from the guard heater elements
by mica are glued to the transite strips facing toward the central heated
section, An air gap of approximately l/lO of an inch separates each mag-
nesium strip from the edges of the aluminum plates in the center. With
the exception of a few very small transite spacers for maintaining
relative locaiion, there is no mechanical contact within the test plate
between the aluminum plates and the magnesium strips which surround them.
The air gaps, therefore, provide a high thermal resistance between the
two., Each magnesium strip, having low thermal resistance, achieves a
uniform temperature which is determined by the controlled energy input to

its respective guard heater element. By maintaining the temperature of
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Figure 36. View of the Test Plate.
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Figure 39. View of Some of the Instruments.

Figure 40, View of Some of the Instruments.
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each strip at the same level as that of the aluminum plates, heat trans-
fer from central section across the air gaps to the outer section of the
test plate is prevented. The method of temperature measurement and
control will be discussed after the description of the test plate con-
struction has been completed,

Although the transite strips are fastened to the outer section
of the test plate at the ends, no contact occurs along the length of each
strip as air gaps are provided here also., This minimizes the heat trans-
fer from the guard heaters to the outer edges of the test plate, but the
top and side portions, which consist of a single U-shaped section, do heat
up to some extent during operation since the ends of all four transite
strips are fastened mechanically to this piece, The bottom portion of
the outside section is separate and its only mechanical connection with
the U-shaped section is provided by means of two small locating strips
at the extreme outer edges of the test plate. This bottom section,
therefore, is insulated fairly well from all sources of heat within the
apparatus so that its temperature rise during operation is very slight.
Ideally this portion should remain at ambient temperature for free
convection studies so that the condition of a step change in wall temper-
ature may be approached at the bottom edge of the heated section,

In order to provide a continuous flat surface over the entire
arsa of the test plate and still maintain the high thermal resistance
between the heated and outside sections provided by the air gaps, thin
glass cloth with a thermosetting adhesive is extended between the two
sections as shown in Figure 37. This conceals the guard heaters, the

air gaps, and internal wiring from the view in Figure 36.
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The reason for the large number of rods in the support system
should now be apparent, The fact that the test plate consists of
mechanically isolated sections to achieve proper thermal control
requires that each section be supported independently by its own set
of rods, Although the test plate is suspended about 16 inches beyond
the bearing wall, no particular difficulty has been encountered due to
the bending moment exerted on the rods by the weight of the test plate.
The reason for this rather large overhang is that the test plate must
be removed sufficiently far from the bearing wall so that the test
plate and the air around it form a symmetrical system. This is
especially important when investigating the problem discussed in
Chapter IIT where it is desired to simulate the hydrodynamics of a
finite plate vibrating in an infinite fluid at rest. Another instance
when symmetry required is that of heat transfer measurement where it is
necessary to assume that the measured energy input to the test section
is transferred equally from the faces of the two aluminum plates. The
rods are 3/8 of an inch in diameter, but are necked down in the region
where they attach to the test plate. In this region the bending problem
is not important and the smaller diameter of the rods here was intended
to minimize any possible disturbance that the rods would exert on the
flow pattern,

An attempt was made to keep the vibrating members of the
apparatus as light as possible and to maintain a high degree of stiffness
in most places., For this reason magnesium was used in fabricating the
outside section of the test plate, the rods which support it, and the

plate connecting all of the rods on the opposite side of the bearing
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wall, The plates comprising the central section were made of aluminum,
as previously mentioned, the reason for this being that radiation losses
from this section are kept small by using highly polished aluminum for
the heated surface., The rods supporting the heated section were made
of stainless steel because of its low thermal conductivity, and these
rods are necked down to a diameter of ,140 inches for a distance of
about one inch from the plate., The objective here was to minimize the
conduction losses from the heated section through the rods supporting
it, The radiation and conduction losses are important in those measure-
ments involving heat transfer and will be more fully discussed later,
Now that the mechanical construction of the test plate, its
mounting system, and its heater components have been explained, the
problem of temperature measurement and control will be discussed. Thermo-
couples made from number 24 guage copper-constantan wire are used to
indicate temperature, Seven thermocouples are imbedded at various points
in each aluminum plate of the central section. This was accomplished by
drilling small holes from the back side of each plate to within 5/52
of an inch of the polished surface, inserting the thermocouples so
that they were in contactiwith the ends of the holes, and glueing them
in place with epoxy thermosetting resin., Slots milled on the inside
face of each aluminum plate from the holes to the lower edge provide
space for leading the wires out into the bottom section of the test
plate from which all wires emerge as shown in Figure 36. These thermo-
couple wires are connected to a system of rotary switches, shown on the
wall of the celotex enclosure in Figure 33, making it possible to switch

to any single thermocouple and read its indicated output voltage using a
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Leeds and Northrup Model 8662 Portable Precision Potentiometer. An ice
bath 1s used for the reference junction and the thermocouple wire has
been calibrated in the laboratory. Due to the large therml inertia and
low thermal resistance of the aluminum plates, and also the relatively
low heat transfer coefficient at the surface, all thermocouples in both
plates read very close to the same value at any given time during opera-
tion, This indicates a high degree of uniformity of temperature through-
out the heated portion of the test section. The fact that essentially no
temperature difference exists between the two plates indicates that the
previously discussed symmetry condition has been achieved.

Four additional thermocouples are mounted in contact with the
magnesium strips on the guard heaters., These are connected by means of
the switching arrangement shown in Figure 41 with the leads coming from
four other thermocouples imbedded in the aluminum plates near the edges.
The resultant voltage difference from each pair of thermocouples is
applied individually to a sensitive galvanometer by depressing the
proper switch as shown in Figure 41, If the galvanometer does not
deflect, both thermocouples are at the same temperature indicating
that the particular magnesium strip in question has the same tempera-
ture as the aluminum plates. This means that the particular guard
heater involved is adjusted properly so that no heat transfer can
occur from that edge of the central heated section. A negative deflec-
tion of the galvanometer indicates that the variac controlling the
current to the guard heater requires an increase in its setting.
Correspondingly, a positive deflection indicates too high a setting

that needs to be reduced. It is estimated that the magnesium strips
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can be kept within 3°F of the temperature of the aluminum plates during
operation of the system for measuring heat transfer if the galvanometer
readings are sampled and the variacs properly adjusted periodically.
The galvanometer and the four double switches used to connect it +o
each pair of thermocouples can be seen in Figure 39,

The operation of the vibrator is controlled by means of the
control unit shown on the right in Figure 39. The desired frequency
is set on frequency control dial of the oscillator whose signal is used
as input to the power amplifier driving the vibrator. The amplitude is
monitered by means of a Schaevitz Linear Differential Transformer Model
100-AS-L and a movable core attached to one edge of the test plate with
a small brass rod. The transformer has a stationary mounting provided
with fine position adjustment by means of a sliding member controlled by
a threaded shaft., The transformer and movable core system can be seen
Just to the right of the test plate in Figure 36. A Hewlett-Packard
Model 200 CD Audio Oscillator set at 10 kilocycles carrier frequency
is used for an input to the transformer. The output is displayed on
a Dumont Oscilloscope Type 304-H. A diagram of this system is shown
in Figure 42, In order to calibrate the system the transformer is first
placed in its null position with respect to core by moving it until a
zero signal is shown on the scope. If it is desired to operate at an
amplitude of ,050 inches for example, the sliding member of the trans-
former mounting system is moved against a spacer .050 inches thick
placed in a slot provided for that purpose. This displaces the trans-
former .050 inches with respect to the core away from the null position

so that the high carrier frequency causes a blurred signal on the scope
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as shown in Figure 43, The oscillator output or scope gain is then
adjusted until the signal occupies the full scale of the scope screen.
This calibrates the system so that full scale on the scope corresponds

to a displacement of ,050 inches. During vibratory conditions the

sweep frequency on the scope 1s set equal to the frequency of vibration,
The signal appears as the envelope of a sine wave as shown in Figure Lk
when the transformer position adjustment is properly set so that motion
occurs equally to either side of the null position. The region between
the limits of the sine wave envelope is blurred by the sinusoidal signal
corresponding to the 10 kilocycle carrier frequency. The amplitude of
vibration is then increased by means of the power control on the control
unit until the sine wave envelope occupies full scale on the scope screen.
The amplitude of vibration is then known to be that for which the system
was calibrated originally which is .050 inches in the example. In
addition to the measurement of vibration amplitude described above, the
uniformity of vibration of the test plate has been checked periodically
using a Model 11l-A Televiso Vibration Meter with a manuval vibration
pickup. The procedure is to hold the pickup on each of the four corners
of the test plate under vibratory conditions to see if the meter readings
are the same at each corner. The vibration meter, oscilloscope, and audio
oscillator -can be seen in Figure Lo,

In evaluating heat transfer measurements it is important to
know the magnitude of the radiation losses from the polished aluminum
plates of the central heated section of the test plate. For this reason
the emissivity of these plates was measured using a Model 810C69 Cenco

Thermopile. The output of the thermopile was measured using a Leeds and
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Northrup K-3 Universal Potentiometer. This instrument is capable of
measuring voltages to an accuracy of about one microvolt. A black
body was constructed of copper 1/8 of an inch thick formed into a
cone of square crossection. Additional pieces of copper 1/4 of an
inch thick were soldered on all four sides of the cone to increase
temperature uniformity during operation. The open end is 6 inches
square and the included angle at the apex is about 12°., The inside
surface was blackened by means of an acetylene torch. This type of
geometry is known to cause the open end of the cone to approach very
closely the characteristics of a theoretical black body even when the
surface emissivity inside is much lower than unity. The cone is
insulated with a layer of asbestos paper and many turns of high resist-
ance wire are wound around the cone over the paper. This wire is
connected to a variac supplied with 110 volt AC power. The heating
of the cone is controlled by means of this variac while the temperature
of the cone is measured by means of several thermocouples imbedded in
the copper. Heavy fiberglass insulation surrounds the cone and its
heating element. Its purposes are to help maintain a uniform temper-
ature throughout the cone, to keep the cone at a relatively stable
temperature level thus preventing rapid temperature drops during
operation when readings are being made, and to minimize the time
necessary for heating the cone to a prescribed temperature by prevent-
ing losses that would otherwise occur. The constructed black body can
be seen just to the left of the celotex enclosure in Figure 33,

The procedure for obtaining the emissivity of the aluminum

plates was to focus the thermopile on one of the plates and to record
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the output of the thermopile for various plate temperatures. This
process was then repeated for the black body. The ratio of the
voltages at a given temperature level gives the emissivity of the
plate. For a more thorough discussion of emissivity measurement the
reader is referred to papers on this subject such as those given in
references 6 and 29, The emissivity of the polished aluminum plates
was found to be very close to .05 over a temperature range of 20°F +to
100°F above ambient.

For the purpose of making velocity measurements a hot wire
anemometer system is used. All velocity measurements have been made
with respect to the vibrating wall, that is, the hot wire probe is
mounted to the moving plate under vibratory conditions. This was done
in view of the moving coordinate systems used in Chapters II and III.
The probe and its mounting system providing a means for changing the
position of the probe are shown in Figure 46, Although the control
unit contains a standard cell with bridge and potentiometer circuits
for accurate measurements of resistance, current, and voltage, only
the circuit used during operation for measuring oscillating velocities
will be discussed here. This circuit is shown in Figure 45, The
current is adjusted by means of the rheostats and remains constant
during operation due to the relatively low resistance of the hot wire
as compared with the other resistance in the circuit. The hot wire
probe itself is made of ,00015 inch diameter platinum etched Wollaston
Process Wire. Velocity fluctuations cause the wire to alternately
change its temperature and the resistance of the wire varies in response

to these temperature changes. Since current is constant, a fluctuating
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voltage drop across the wire is obtained, and it is amplified by a
Tektronix Type 122 Low Level Preamplifier, This signal is then dis-
played on a Dumont Oscilloscope Type 304-H, The hot wire control unit
and preamplifier can be seen on the right in Figure L0 and the oscillo-
scope is just to the left., More details on the use of this esquipment
will be given later.

This concludes the description of the test apparatus, although
some additional points will be mentioned in the following sections on
procedure and results.,

Obgervations Made in Connection with a Free Convection Boundary Layer
Subjected to Transverse Wall Vibration

In order to properly simulate the problem discussed in Chapter
IT it is necessary to eliminate the potential flow that would otherwise
occur due to the finite dimensions of the test plate. This is done by
attaching additional plates to the test plate which completely enclose
the air space adjacent to the test plate. This arrangsment is shown in
Figure 48 which also shows the hot wire probe inserted into the free
convection boundary layer along the heated wall., The plates forming
the enclosure were made of 1/8 inch thick magnesium. They prevent flow
from occurring around the edges of the test plate thus eliminating the
potential flow phenomena discussed in Chapter III. A photograph of this
system is shown in Figure L7,

The attempt to measure the velocity oscillations discussed in
Chapter II by means of the system described above was not successful.
For this reason the exact procedure used will not be discussed here,

but the two most probable causes of the difficulty will be reviewed,
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The first results from the small order of magnitude of the velocity
perturbations, The second concerns the behavior of the hot wire probe
under vibratory conditions when operating at necessarily high gain con-
ditions. Both of these features will be discussed.

In regard to the order of magnitude of free convection
velocities and their perturbations, reference is made to the analysis of
Chapter II., In terms of the symbols used there the free convection vel-
ocity profile under non-vibratory conditions is obtained from Equation

(2.17a) and is given by

UW=2\g@ 86X Fry) (4.1)

For air at ambient temperature or slightly above, B & 1.7 x 1072 (°F,)'l,

and taking A® = 100°F. for example, the expression becomes

U= 16.2 J—)E F//?]) inches per second (4,2)

where X is in inches, The maximum value of F'(n) for air is .276 which
occurs at n = 1. At 2 inches from the leading edge the maximum free con-
vection velocity is therefore asbout 6.3 inches per second,

In Chepter II, referring now to the result in Equation (2.33),
it was shown that for large values of y the ratio of peak to peak velocity
variation to the steady velocity at the same point is given approximately
by 2€ g(h) except in the region very close to the wall, This ex-

Y (4x)°4 F(7)

pression can be rewritten as
o 4
Sl Mgmas S
250 X% Fn)

b2
For air at ambient temperature or slightly above, v & 2 x 10 ft /second,

while A@ = 100°F, X = 2 inches, and 1 = 1 in this example. For these
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conditions the ratio becomes .072 ;(1)go/g/F'(1)9, or ,265 go/g.

Consider now a vibration amplitude of 1/10 of an inch and a
frequency of 50 cycles per second. The value of y is given by 2(2\/%——;9 ,
or y = 110 at 2 inches from the leading edge. This rather large vj;ue of
7y Justifies the use of the ratio discussed above., For the particular ampli-
tude and frequency used in this example, Q = 314 radians per second and
go/g = 25.5., Thus, at a point 2 inches from the leading edge with 5 = 1,
the peak to peak velocity variation is only 2.2% of the steady velocity at
that point, or about .14 inches per second. This example illustrates the
low order of magnitude of the oscillations for which measurement was
attempted. The steady free convection velocities have values of only a
few inches per second, while the perturbations are small percentages of
these values at nominal ranges of frequency and amplitude available with
the vibration equipment used.

It is interesting to note here that in the example above the
varying component of velocity is only about 2% of the steady velocity,
while the oscillating pressure gradient is much larger relative to the
steady buoyancy force at the same point. From Equation {2,23) in Chapter

IT, the ratio of the oscillating pressure gradient to the steady buoyancy

Fg S (m)
X% Hm)

value of about 1.2 under the conditions given for the example discussed

force is calculated approximately from .O , which gives a
above. Thus, in this particular case the oscillating pressure gradient

is 20% larger than the steady buoyancy force, but the oscillating velocity
is only about 2% of steady velocity at the same point. The reason for the
difference in the order of magnitude of each comparison is explained in

Chapter II,.
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Although the velocity perturbations are small, it would appear
feasible to measure them with a hot wire anemometer on the basis that this
instrument can be made very sensitive by using a fairly high wire temper-
ature together with large amplification of the output signal. When this
was done under vibratory conditions, however, an oscillating signal was
obtained from the probe, mounted inside the enclosure as shown in Figure
48, even when the test plate was not heated at all, Ideally no signal
should be obtained since the air inside the enclosure may be expected to
move as a rigid body under these isothermal conditions., The probe is
fastened rigidly to the test plate so that no relative motion should occur
between the air surrounding the hot wire and the wire itself. On the other
hand, the wire must be heated in order to obtain a signal when making meas-
urements, and this means that truly isothermal conditions in the immediate
region of the wire are never achieved during operation., The most feasible
explanation appears to be that the small free convection temperature field
produced by heat from the wire interacts with the vibration to produce
pressure gradients by the same type of mechanism as that discussed in
Chapter II. These gradients could logically produce velocity oscillations
causing alternate heating and cooling of the wire. In other words, if
vibration causes oscillations in a free convection boundary layer on a
flat plate, there is no reason to believe that similar oscillations will
not occur in the free convection field around the heated hot wire when
subjected to the same vibration.

No matter what the exact explanation is for the signal discussed
in the preceding paragraph, it can be regarded as a noise signal in the

system. The objective is to measure the oscillations in the boundary layer
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along a heated plate, and therefore any signal obtained when the plate
is not heated is caused by effects extraneous to the actual velocities
whose measurement is desired. It has been estimated that the noise
signal is several times larger than that expected from measurements in
the free convection boundary layer along a heated flat plate. Thus, the
noise signal obscures the latter and prevents its measurement.

It is possible in many instrumentation systems to isolate the
desired signal from that of the so-called noise by means of certain
techniques. The common methods of doing this are not feasible in this
case, however. For example, the desired signal can be increased in this
system by vibrating at higher amplitudes and frequencies., On the other
hand, the noise signal also increases with an increase in amplitude or
frequency. It is sometimes possible to use selective filtering to
separate out the noise if its frequency spectrum is markedly different
from that of the desired signal., In this case, however, both the desired
and noise signals correspond to the frequency of vibration so that filter-
ing is not possible,

In order to measure heat transfer, a set of plates similar to
those shown in Figure 47 were fastened to the test plate forming another
enclosure on the opposite side. This was necessary to achieve symmetry
and prevent potential flow occurring on that side of the test plate since
heat is transferred from both sides of the heated section, This section
was allowed to come to a steady uniform temperature of about 100°F above
ambient under non-vibratory conditions. The guard heaters were carefully
adjusted by means of the galvanometer system described in the previous

section so as to prevent edge losses. The test plate was then vibrated
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at an amplitude of l/lO of an inch and a frequency of 25 cycles per

second, After a period of about an hour no significant change was observed
in the temperature difference between the heated section and ambient, This
indicated that no significant change in the free convection heat transfer
coefficient was caused by the vibration, The result verifies that the
oscillations in the boundary layer are small for frequencies and amplitudes
available with the vibration equipment used. If the velocity oscillations
were large fractions of the mean velocities, for example, a change in the
heat transfer coefficient would most certainly be expected.

One important distinction should be made here in connection with
the fact that the above discussion is related to the time averaged heat
transfer coefficient, The instantaneous coefficient may be expected to
have an oscillating component at the frequency vibration. Its magnitude,
according to the perturbation in the wall temperature gradient given in
Chapter II, is a small fraction of the steady coefficient under the vibra-
tory conditions used in the experiment, The change in the time averaged
coefficient is smaller and can be expected to have an order of magnitude
of roughly the square of the oscillating component, For example, if a
particular amplitude and frequency produces an osecillating component that
is 10% of the steady value, the change in the steady coefficient can be
expected to have an order of magnitude of roughly 1%.

The experimental observations discussed in this section are
summed up by the following, The attempt to measure the free convection
velocity perturbations was not successful, but the small magnitude of the
perturbations at nominal values of frequency and amplitude was verified.
This verification consists of the fact that no significant change due to

vibration was observed in the time averaged heat transfer coefficient,
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Procedure and Results for the Case of Transverse Vibration of a Plate
of Finite Length

Experimental measurements of velocity and heat transfer have
been made for the problem treated in Chapter III and these are discussed
in this section.

For measuring oscillating velocities the test plate was not heated
and the hot wire probe was mounted as shown in Figure 46, The vertical
magnesium plates were intended to keep the flow pattern two dimensional
to agree with the physical model used in Chapter III. The velocity oscilla-
tlons measured in this problem are relatively larger at the same amplitude
and frequency than those discussed in the previous section. For example,
in terms of the symbols used in Chapter III, lJo= Vo at x/c = ,707., In
other words, the amplitude of the potential flow oscillations at this point
is the same as the amplitude of velocity of plate vibration. This gives a
value of 31.4 inches per second at a vibration amplitude and frequency of
l/lO of an inch and 50 cycles per second respectively. The order of
magnitude of these oscillations is large enough so that high gain is not
necessary for their measurement, and therefore the noise problem discussed
in the previous section caused no difficulty here.

In order to calibrate a hot wire for making a particular set of
measurements, the probe is removed from its mounting as shown in Figure L6
and attached to the side of the test plate. The probe is positioned so
that the wire itself is far from the plate in a region of still ambient air
essentially uwnaffected by the plate vibration. The plate is then vibrated
thus causing the wire to move back and forth with respect to the station-
ary air surrounding it at a known amplitude and frequency. The hot wire

current and preamplifier gain are held constant, but the oscilloscope gain
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is varied corresponding to various velocity ranges, The wave form of

the signal appears on the ‘scope screen as shown in Figure 49, Since

the hot wire is sensitive only to the magnitude of velocity, but not

its direction, the signal on the scope has twice the frequency of vibration.
The magnitude of the signal is determined by counting the number of grid
lines on the scope screen included by the peak to peak wave form, A typical
set of calibration curves is shown in Figure 50. The non-linearity of the
instrument is apparent by the curviture of some of these lines, With the filter
control knobs on the preamplifier properly set, the frequency response of
the preamplifier-scope combination was found to be constant over the fre-
quency range used in this investigation,

Once a set of calibration curves has been obtained, the actual
desired velocity measurements can be made, After the completion of a
particular set of measurements, a few pointS'of'the original calibration
are rechecked, The object here is 1o insure that the characteristics of
the system do not change between the time of the original calibration and
the completion of the measurements,

Two sets of velocity measurements have been made in connection
with the problem of Chapter III. The first involves measurements of the
potential flow oscillations along the plate but outside the boundary layer,
and the second involves measurements of the boundary layer oscillations
made by probing in closer to the wall,

The potential flow oscillations were measured 1/10 of an inch
from the plate at various values of x/c, 85, and w. The l/lO inch distance

from the plate is rather arbitrary, but it is slightly outside the boundary
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Figure 49. Output Signal of the Hot Wire During Measurement
of Oscillating Velocity as Displayed on an Oscillo-
scope.
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layer in all cases, yet close enough to the wall so that the resulting
data essentially correspond to y = O as far as the potential flow theory
is concerned., This was verified experimentally by noting that the scope
signal did not change as y was varied from about ,070 inches to .200
inches while holding x/c, ag, and w constant.
A summary of the potential flow data is given in Appendix IVa,
This data is plotted in Figures 51 through 68 and is compared with the
theory as given in Chapter IIT. Agreement with the theory may be described
as fair in view of the scatter involved. The experimental values are lower
than those predicted at the highest frequencies used. A dropping off of
the experimental points at high values of x/c can be seen in several cases,
It is probable that some of the discrepencies are due to the
following four causes, First, the theory assumes an infinitely thin plate
while the actual plate is 3/4% of an inch thick. Second, viscous effects
probably have some importance near the edges of plate, but are neglected
in the analysis., Third, the analysis was made assuming two dimensional
flow, while the actual system may have three dimensional effects associat=d
with it in the region where x/c is close to wnity., Fourth, the probe and
its mounting structure may have some effect on the flow pattern.
Measurements of the oscillating velocities in the boundary layer
were made 2-5/4 inches from the stagnation point at a vibration frequency
of 20 cycles per second and amplitudes of ,050, ,075, and .100 inches,
This date is summarized in Appendix IVb and is plotted in Figures 69, 70,
and 71 where comparison is made with the theory. The theoretical curve is
based on only the first approximation f;(q) as given in Chapter III. This

is permissible since the second approximation has an order of magnitude
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close to Gofc as compared with the first, Since x/c = .55
L1 =(xy ]
end ¢ = 5 inches, — @/¢ _  has values of ,0l7, .026, and .03L4 for

[1=- ()%

the three vibrational amplitudes used. Agreement with the theory is

fairly good, although those measurements made close to the wall all

show a tendency to be low., The theoretical prediction of boundary layer
thickness shows excellent agreement with the measurements. Also, the
peaking of the theoretical curve is definitely verified by the experimental
data in all three figures.

The order of magnitude of the velocity oscillations discussed
in Chapter III clearly indicates that a significant effect of vibration
on the heat transfer from a heated plate may occur. This has been verified
by data obtained from heat transfer measurements, and these will now be
discussed.,

It is true that heating the plate causes the occurrance of free
convection velocities in addition to the oscillating components produced
by the vibration and that the resulting system is very complicated. In
spite of this complication, however, +the vibration may be expected to
produce velocity oscillations of roughly the same description as that
given in Chapter III eveh in the presence of buoyancy effects. TFor a
heated plate these oscillating velocity components, providing they are
large enough, affect the temperature distribution and thus increase the
heat transfer for a given wall temperature.

Before indicating the results of the measurements a discussion
of the procedure is appropriate. The method of measuring the energy input
to the heated section and also the operation of the guard heater system
were discussed earlier in this chapter. Although the guard heaters pre-

vent losses from the edges of the heated section, some of the measured
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energy input is dost by radiation from the faces of the aluminum plates
and also by conduction through the four rods extending from the corners
of the heated section. When these two losses are subtracted from the
measured energy input the result gives the convection heat transfer,

The emissivity of the polished aluminum plates has been measured
using a thermopile as mentioned earlier, The emissivity of both plates
was found to be very close to .05, The radiation losses are calculated

from

4 4
4=0s€ A (T-Ta), (.3)

For convenience a radiation heat transfer coefficient is defined by

% = hr-A Ae » (ll-all->
r

which results in
Ts €, 4
hr = SAG (T - 7-) (405)

For determining the conduction losses reference is made to

v
)

Figure 72 which shows one of the rods where it attaches to the heated
section. Thermocouples attached at points 1 and 2 give the temperatures
at these points during operation, Applying conservation of energy to an

element of the rod gives

P46 _ ptopp = 0 s
;Xt r r b <°>

4 hs
Dk, -

2
where Ae,. = (9,- - 9,0) and My =
The solution is

46, = C, cosh myx. + C; sinh mpx, (4.7)
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The two temperatures (6,); and (©,), are known from experimental measure-
ments by means of thermocouples and these are used as boundary conditions

to solve for the constants in Equation (4,7). The result is

A6, = (46,) cosh my %, + (46r); - (48), coshnr L] Sinh my, X, (4.8)
! Sinh my L | '

The conduction heat transfer entering the rod at x, = 0 is

r
N k" %Qz(%?f)xho ’

Since there are four rods this quantity is multiplied by four to give

(4.9)

(- ooD/FED (et (o)
k

Sinh my, L
For convenience a conduction heat transfer coefficient is defined by

= L.10
which results in

hkz gﬂDVhskrD[ (46) ) coshmpL = (46r),

A 46 Sinh myl ;

(4.11)

The total radiation and conduction losses are a4, ==@T + qk), and
correspondingly,
hy = (hr +hi). (k.12)
The total measured energy input is now distributed according to
? = fﬁc -rA,,-ﬁhg) A 46, (4.13)
h, is defined by Equation (k4.12), h, is the free comvection coefficient
under non-vibratory conditions, and hv is the increase in the convection
coefficlent caused by vibration at a particular value of A8. Under non-
vibratory conditions hV = 0, and
ho= 2 b . (.14)
h, was found to be relatively constant over the temperature range used and

h, as a function of AG was obtained in accordance with Equation (4.14) from
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measurements made of AQ@ and g under steady state operatim of the gystem, The

results are shown by the graph in Figure 73 which has the equation

%
% BTU
he= .40 4% =2 __ | (k.15)
HR -FT%-°F
The result is slightly higher than that predicted by McAdams' Equation
(19)

(7.5b) given as a simplified free convection correlation for air.

In order to determine the vibratory effect on the convection
coefficient at a particular vibration amplitude and frequency, the final
temperature of the heated section for a given energy input is first esti-
mated on the basis of an expected vibratory effect. The heated section is
then brought to this estimated temperature after which the energy input,
vibration amplitude, and frequency are adjusted to their proper values. A
waiting period of about an hour or more is usually necessary to insure a
steady state condition, that is, a condition where the temperature differ-
ence between the heated section and ambient does not change with time. This
insures that the energy input to the system is being transferred awsy at
the same rate so that the normal equations of steady heat transfer can be
used to evaluate the convection heat transfer coefficient. During the
waiting period the guard heaters are carefully controlled by means of
the galvanometer system previously described, and the vibration amplitude
is monitored by means of the output signal of the linear differential
transformer displayed on the oscilloscope. Once steady state is achieved
all temperatures together with the vibratory conditions and the energy
input are recorded.

The information obtained by the procedure discussed in the
previous paragraph is used to calculate the effect of vibration on the
heat transfer in the following manner. For a particular energy input

to the heated section the heat transfer under vibratory and non-vibratory
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conditions is the same, Thus,

(hcﬂ'heo) A 4B, = (hc'*hv"'hﬂ)A 46, (.16)
where the zero subscript indicates the non-vibratory condition., Dividing
: 1/k
by h, end noting that h.,/h, is given by (AQ,/A) / from (4.15), Equation
(4,16) is rewritten as

h . (499)‘/4_/ , he [ he é@_o_;] (517)
h AB he L he 46

C
Equation (4,17) gives the comparison of the vibratory effect on the con-
vection~coefficien£ with the value of the coefficient under non-vibratory
conditions., This method places emphasis on the temperature measurement
which can be done rather accurately. Results calculated in terms of the
ratio hv/hc have a smaller error than that involved in the determination
of the absolute values of hy and h,. This can be seen by observing that
the first bracketed term of (4,17) gives the idealized result when no
losses are present. The second term is a correction term taking into
account the losses 1In the system., Its magnitude relative to the first term
is less than the ratio hz/hc since
(1] > [% & -]
a8 h A6 .
This is true because, as previously mentioned, the loss coefficient is fairly
constant over the temperature range used so that hzo/hz is very close %o
unity., For the experimental system used in this investigation hﬂ/hc has
a value of about .10 over the entire temperature range used. Thus, a 10%
error made in the overall correction due to losses would cause a uniform
error of only about 1% in the values of hv/hc as determined by Equation
(4,17). Using Equations (4,15) and (4.17), the expression for the vibratory

coefficient is now written as
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4 9
hy =« 40 Ae‘[é‘_"f"_/ he | bt A6, 418
v (AG) + hc hf Ae (Ol)

A summary of the heat transfer data as indicated by Equation
(4,18) is given in Appendix IVc. This data is plotted as a function of a.f
in Figure T4. The form of the abscissa is arbitrary and no theoretical
reason for its use can be given within the limits of the work presented
in this report. It was chosen only because the experimental data appear
to correlate fairly well with reasonably small scatter when plotted in
this way, ©Since the oscillations discussed in Chapter III increase with
both amplitude and frequency, the vibrational heat transfer coefficient,
as expected, behaves in a similar manner,

In terms of the symbols wused in Chapter III the heated section
lies in the region -.6 < x/c < .6 . Therefore, the maximum amplitude of
the potential flow oscillations that affect the heated section occur at

6
the edges of this section where the value is LJO: = 3 V@ .
{1 =(-6)

4
For a4 = l/lO of an inch and f = 50 cycles per second, this gives 23.5

inches per second at the edges of the heated section. On the other hand,
the oscillations are smaller at lower values of x/c and are zero at the
stagnation peint., For purposes of discussion a rough average value over
the heated section is taken as 10 inches per second under the vibratory
conditions given above., According to Equation (4.2), the maximum free
convection velocity at the center of the heéted section 1s about 7.7 inches
per second for A® = 100°F, Thus, the average amplitude of the potential
flow oscillations and the steady free convection velocities have roughly

the same order of magnitude in this case, It is probable then, that the
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amplitude of the oscillating component of heat transfer has about the
same order.of magnitude as the steady value under these conditions. The
change in the time averaged value due to vibration is smaller, however,
as indicated by Figures 73 and T4, With Ae = 100°F, the result is

h,/h, & 32% for a vibration amplitude and frequency of 1/10 of an inch
and 50 cycles per second respectively,

It is appropriate to mention here the work of Shine(28) who
observed the temperature profiles on a vertical plate vibrating trans-
versely by means of an interferometer., Shine also recorded the temper-
ature differences between the plate and ambient and found results similar
to those given in Figure T4. No account was made of the losses so that
the correction term of Equation (4,17) cannot be applied, It is probable
that the losses in Shine's apparatus are somewhat larger than those involved
in the apparatus used for this work. Even when the correction term for
losses is ignored, however, Shine's results show valuesof hv/hc approximately
twice as large as those given in this report for the same values of amplitude
and frequency and with all other conditions being roughly the same, The com-
parison is made by neglecting the correction term in (L4,17) to obtain the

5
approximate form, hv/hc ~ [(%%") /4__ []

The difference between Shine's results and those given in this

report is easily explained by the fact that Shine's plate was entirely
heated, while the heated portion used in this investigation covered only
the 6 inch square central section on a 10 inch square plate., In terms

of the analysis of Chapter III, the large oscillations occurring near the
edges of the test plate could not affect the heat transfer results in this
work, but probably caused large increases in local heat transfer from the

plate used by Shine. These large increases near the edges could logically
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have very significant effects on the overall mean heat transfer coefficient
based on the entire area of the plate, For a more complete description of
Shine's work the reader is referred to his original report.(28)

Thegresults of the experimental work done in connection with
transverse vibration of a finite plate are summed up by the following.
The potential flow and boundary layer velocity oscillations were measured
using a hot wire anemometer. These measurements agree fairly well with
the analysis given in Chapter III as shown by Figures 51 through 71. These
oscillations are large enough to cause significant changes in the heat trans-
fer from a heated plate at nominal ranges of amplitude and frequency avail-
able with the vibration equipment used. This data is shown in Figure Tk,
A qualitative comparison of this data and that given by Shine is made,
The reason for the differences is explained based on the analysis of

Chapter III.
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List of Symbols for Chapter IV

All discussion directly involving the analysis of Chapters II

and ITT is done in terms of symbols used in those chapters. Additional

symbols used elsewhere in Chapter IV are given below.

A

The total area of the heated section of the test plate
The amplitude of plate vibration
Constants in Equation (4.7)

The diameter of stainless steel rods where they attach to the
corners of the heated section., See Figure 72,

The frequency of plate vibration

The free convection heat transfer coefficient under nonvibratory
conditions at a particular value of A®.

The free convection heat transfer coefficient under nonvibratory
conditions at a particular energy input to the heated section
corresponding to a temperature difference of ACHN

The conduction heat transfer coefficient defined by Equation (4.11)
The heat transfer coefficient for losses defined by Equation (4,12)

The heat transfer coefficient for losses at a particular energy
input corresponding to a temperature difference of ACH

The radiation heat transfer coefficient defined by Equation (4,5)

The convection heat transfer coefficient for the rods attached
to the corners of the heated section. See Figure 72.

The increase in the convection heat transfer coefficient due to
vibration at a particular AQ,

The thermal conductivity of the rods attached to the corners of
the heated section. See Figure 72,

The distance between the thermocouples mounted on the rods
attached to the corners of the heated section., See Figure 72,

See Equation (4.6), m_ =2, ,/=— .
r Dkr

The total rate of energy input to the heated section,
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% Heat transfer loss due to conduction through the rods attached
k to the corners of the heated section. See Figure T2.
q The combined heat transfer lossed due to conduction and radia-
L tion. q, = (9 + q).
%_ Heat transfer loss due to radiation
r
1} Absolute temperature of the heated section of the test plate
Ta Absolute temperature of the ambient
Xr Distance along the rods attached to the four corners of the

heated section., See Figure T2,

Greek Letters

Ern The emissivity of the polished aluminum plates forming the
heated section

6 Temperature

. Temperature of the heated section of the test plate

900 Temperature of the ambient

9r Temperature at a point on the rod shown in Figure 72

AB Temperature difference between the heated section of the test

plate and ambient. A6 = (6, - 6,).

AB, Temperature difference AO corresponding to steady state under
nonvibratory conditions at a particular energy input to the
heated section.

Z&Gr Difference between the temperature at a point along the rod
shown in Figure 72 and ambient. A6, = (6, - ©).

The Stefan-Boltzman Constant. og = ,1713 x 10'8 - figU(°R)4

o
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CHAPTER V

SUMMARY OF RESULTS

In Chapter II a perturbation technique is used to obtain the vel-
ocity and temperature oscillations in a free convection boundary layer on
a heated flat plate of infinite extent when the plate is vibrated normal to
its own plane, These perturbations are shown to result from an oscillating
pressure gradient which arises due to a coupling of the variable density
field with the acceleration of the vibratory motion., Solutions are obtained
for high and low values of y, and the entire range of y 1s shown to be ade=-
quately covered by a comparison of solutions based on the oscillating wall
shear stress and temperature gradient., Calculated results are given for
Prandtl Numbers of ,0l, .72, 10, and 1000,

In Chapter III the potential flow and boundary layer response
is obtained for the case of a thin plate of finite length vibrating
transversely in a fluid otherwise at rest, Due to the linearity of the
irrotational flow equations the osecillatory potential flow solution is
obtained from the corresponding steady flow problem taken to be the
degenerate case of ellipse of zero thickness placed broadside to the
stream direction, The potential flow oscillations along the plate are
shown to increase from zero at the stagnation point to very high values
close to the outer edges of the plate, A method of successive approxi-
mations is used to find the boundary layer response corresponding to the
pressure gradient obtained from the potential flow solution, The first
two approximations are given and it is shown that, within certain limi-
tations, the first approximation alone often gives a fairly accurate

result .
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In Chapter IV experimental findings are reported. The attempt
to measure the velocity perturbations in a free convection boundary layer
on a vibrating plate was not successful. However, the small order of
magnitude of these perturbations for the available ranges of amplitude
and frequency was verified., This was done by observing that no significant
change due to vibration occurred in the time averaged heat transfer coefficient.
For the case of a finite plate, velocity measurements of the potential flow and
boundary layer oscillations were obtained. These show fairly good agreement
with the analysis of Chapter III, Measurements of the increase in the time
averaged convection heat transfer coefficient for a finite plate are also
given., The order of magnitude of these results are discussed in terms of

the velocity oscillations predicted by the analysis of Chapter III,
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APPENDIX I

TABULATED VALUES FOR CHAPTER II

This section gives the tabulated values of the functions,
parameters, and coefficients discussed in Chapter II of this report. Except
for Appendix I-a in which Ostrach's results are reproduced, all values have
been calculated as a part of this work by means of a desk calculator. The
method of calculation has been indicated in comnection with each individual
tabulation. All integral operations have been carried out numerically using
Simpson's one third rule. This rule states that a function f(x) can be

numerically integrated by

X, +h

fix) dx = .él F(xo-h) +4 fixo) 4 L (X -h) (A-1)
Xy~ h '

In most cases the figures are reported to three digitso
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OSTRACH'S RESULTS
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Prandtl number, 0.01

o
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RO G S

H’ 7 F F’ F” H H'
—0. 0812 4.16 1.9319 0.4037 | —0.0615 | 0.6741 | —0.0723
—. 0812 4.18 1. 9400 . 4024 —. 0614 6726 —. 0722
—. 0812 4.20 1.9480 .4012 —. 0612 6712 —. 0721
—. 0812 4.24 1. 9640 . 3988 —. 0609 6683 —. 0720
—. 0811 4,28 1.9799 . 3964 —. 0605 6654 —. 0718
—. 0811 4.32 1. 9957 . 3939 —. 0602 6626 —. 0716
—. 0811 4.36 2.0114 . 3915 —. 0599 6597 —. 0714
—. 0811 4.40 2.0270 . 3891 —. 0595 6568 —. 0713
~—. 0810 4.50 2.0657 . 3832 —. 0587 6497 —. 0708
—. 0809 4.60 2.1037 3774 —. 0579 6427 —. 0704
—. 0809 4.70 2.1411 . 3716 —. 0572 6357 —. 0699
—. 0808 4,80 2.1780 . 3660 —. 0564 6287 —. 0695
—. 0807 4.90 2.2143 . 3604 —. 0556 6218 —. 0690
—. 0806 5.00 2.2501 L3548 —. 0549 6149 —. 0686
—. 0804 5.10 2. 2853 . 3494 —. 0541 6081 —. 0681
—. 0803 5.20 2.3200 . 3440 —. 0534 6013 —. 0676
—. 0801 5.40 2.3877 . 3335 —. 0520 5878 —. 0667
—. 0800 5.60 2.4534 . 3232 —. 0508 5746 ~—. 0657
—. 0798 5.80 2.5170 . 3132 —. 0493 5615 —. 0648
—. 0796 6.00 2.5787 . 3035 —. 0479 5487 —. 0638
—. 0794 6.20 2. 6384 . 2940 —. 0467 5360 —. 0628
—. 0792 6.40 2. 6963 . 2849 —. 0454 5236 —. 0618
—. 0789 6. 60 2.7524 . 2759 —. 0442 5113 —. 0608
—. 0787 6.80 2.8067 . 2671 —. 0430 4993 —. 0598
—. 0784 7.00 2.8593 . 2586 —. 0419 4874 —. 0588
—. 0782 7.40 2.9594 . 2423 —. 0397 4643 ~. 0568
—. 0779 7.80 3.0532 . 2269 —. 0376 4420 —. 0547
—. 0776 8.20 3.1411 L2123 —. 0356 4205 —. 05627
—. 0773 8.60 3.2232 . 1984 —. 0337 3998 —. 0508
—. 0770 9.00 3.2999 . 1853 —. 0319 3799 —. 0489
—. 0766 9.40 3.3715 L1729 —. 0302 3607 —. 0470
—. 0763 9.80 3.4383 .1612 —. 0285 3423 —. 0451
—. 0760 10.20 3. 5005 . 1501 —. 0270 3246 —. 0432
—. 0756 10.60 3. 5584 . 1396 —. 0254 3069 —. 0413
—. 0753 11.00 3.6123 L1297 —. 0241 2015 —. 0397
—. 0751 11.40 3. 6622 L1203 —. 0228 2759 —. 0380
—. 0749 11.80 3. 7086 L1114 —.0215 2610 —. 0364
—. 0747 12.20 3.7514 .1031 —. 0203 2468 —. 0348
—. 0745 12. 60 3.7911 . 0952 —. 0192 2332 ~—. 0332
—. 0743 13.00 3.8276 . 0877 —. 0181 2202 ~. 0317
—. 0741 13.60 3.8771 .0773 —. 0165 2018 —. 0296
—. 0739 14.20 3.9206 . 0679 ~. 0151 1847 —. 0276
—. 0738 14.80 3. 9587 . 0592 —. 0138 1687 —. 0257
—. 0736 15.40 3.9918 . 05613 —. 0126 1538 —. 0239
—. 0734 16.00 4.0204 . 0441 —. 0114 1399 —. 0223
—. 0732 17.00 4.0591 . 0335 —. 0097 1189 —. 0197
—. 0729 18.00 4.0880 . 0246 —. 0082 1003 —. 0175
—. 0727 19.00 4.1088 L0171 —. 0069 0839 —. 0154
—. 0725 20.00 4.1226 . 0108 —. 0057 0694 —. 0137
—. 0725 21.00 4.1308 . 0057 —. 0046 . 0565 —. 0121
—. 0724 22.00 4.1343 . 0015 —.0037 . 0452 —. 0107

Prandtl number, 0.733

1 F F F” I H'

0 —0. 5046 0 0. 0000 0. 0000 0.6741
.1 5045 .1 0032 . 0625 5767
.2 5037 .2 0122 L1155 4849
.3 5016 .3 0260 . 15697 3990
.4 4979 .4 0438 .1955 3194
.5 4921 .5 0649 . 2238 2465
.6 4840 .6 0884 . 2451 1804
7 4735 7 1137 L2601 1212
.8 4607 .8 1402 . 2695 0691
.9 4456 .9 1674 L2741 0237
1.0 - 4284 1.0 1949 L2745 | —.0149
11 - 4095 11 2222 L2713 | —.0473
L2 -. 3891 1.2 2490 L2652 | —.0737
L3 -. 3676 1.3 2762 .2568 | —.0946
1.4 -. 3453 14 3003 L2465 | —.1106
L5 - 3227 L5 3244 L2348 | —.1222
L6 - 3000 1.6 3473 L2222 | —.1299
1.7 - 2775 L7 3688 L2090 | —. 1342
1.8 - 2556 1.8 3891 .1954 | —. 1358
19 -. 2344 1.9 4079 L1819 | ~—.1350
2.0 - 2141 2.0 4254 L1685 | —.1324
2.1 - 1949 2.1 4416 L1554 | —.1283
2.2 - 1768 2.2 4565 L1429 | —.1230
2.3 -. 1598 2.3 4702 L1309 | —. 1170
2.4 -. 1441 2.4 4827 L1195 ) —. 1104
2.5 -. 1296 2.5 4941 .1088 | —.1035
2.6 1163 2.6 5045 L0988 | —.0965
2.7 1041 2.7 5139 L0895 | —.0895
2.8 0930 2.8 5224 .0809 | —.0826
2.9 0830 2.9 5301 L0729 | —.0759
3.0 0739 3.0 5370 L0657 | —.0695
3.1 0657 3.1 5433 L0590 | —.0635
3.2 0584 3.2 5489 L0530 | —.0578
3.3 —. 0518 3.3 55639 L0475 | —.0524
3.4 —. 0459 3.4 5584 L0425 | —. 0474
3.6 —. 0359 3.6 5660 L0339 | —.0386
3.8 —.0281 3.8 5720 0269 | —.0312
4.0 —. 0219 4.0 5769 L0213 | —.0250
4.2 —.0170 4.2 5807 L0169 | —.0200
4.4 —. 0132 4.4 5837 L0133 | —.0159
4.6 —.0102 4.6 5860 L0105 | —.0125
4.8 —. 0080 4.8 5879 .0082 | —.0099
5.0 —. 0061 5.0 5893 L0065 | —.0077
5.2 —. 0048 5.2 5905 .0051 | —.0061
5.4 —. 0037 5.4 5914 L0040 | —. 0047
5.8 —. 0022 5.6 5921 0032 | —.0036
6.2 —.0013 5.8 5927 0025 | —.0028
6.8 —. 0006 6.0 5032 0021 | —.0022
7.3 —. 0003 6.4 5938 0014 | —.0013
6.8 5943 L0010 | --.0008

7.2 5946 .0007 | —.0004

7.6 . 5040 .0006 | —.0002

8.0 5951 ,0005 | —.0001
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Prandt]l number, 1 Prandtl number, 2
) F F’ K" H H' 7 F F’ F"
0 0. 0000 0. 6421 1. 0000 0. 5671 0 0. 0000 0. 0000 0.5713
.1 . 0030 . 5450 . 9433 —. 5669 .1 0027 . 0523 L4749
.2 0115 . 4540 —. 5657 .2 0101 . 0952 3861 -
.3 . 0246 . 3694 —. 5627 .3 0215 . 1297 3049 -
.4 . 0413 . 2916 —. 5572 .4 0358 . 1565 2318 -
.5 L0610 . 2208 —. 5488 .5 0525 L1763 1666 -
.6 . 0829 L1572 —. 5371 .6 0709 .1901 1095 -
N 1064 . 1008 —. 5221 7 0904 . 1985 0602 -
.8 1308 L0516 —. 5038 .8 1104 L2024 0185 —.
.9 1558 . 0093 —. 4826 .9 1307 . 2024 —.0161 -
1.0 . 1809 —. 0263 —. 4589 1.0 1508 L1994 —. 0440 -
1.1 . 2058 —. 0557 —. 4330 1.1 1705 . 1938 —*0659 -
1.2 . 2300 -. 0793 —. 4056 1.2 1895 . 1864 —. 0824 -
1.3 L2535 —. 0975 - 3772 1.3 2077 1775 —. 0942 -
1.4 L2761 —. 1110 —. 3484 1.4 2250 L1677 —.1020 —.
1.5 L2975 —. 1203 —. 3197 1.5 L2412 L1572 —. 1063 -
1.6 3177 —. 1260 —. 2015 1.6 . 2564 . 1465 —. 1078 -
1.7 3367 —. 1287 —. 2642 1.7 2706 . 1357 —.1071 —.
1.8 L3543 —. 1288 —. 2382 1.8 2836 L1252 —.1046 -
1.9 3707 —. 1268 —. 2136 1.9 2956 L1149 —. 1008 -
2.0 . 3859 —. 1233 —. 1907 2.0 3066 . 1050 —. 0960 -
2.1 . 3997 —. 1185 -—. 16956 2.1 3166 . 0957 —. 0906 -.
2.2 4125 - 1127 —. 1501 2.2 3257 . 0869 —. 0849 -
2.3 4240 —. 1064 —. 1324 2.3 3340 . 0787 —. 0789 -
2.4 L4346 —. 0997 —. 1164 2.4 3415 L0711 —.0729 -
2.5 L4441 —. 0928 —. 1020 2.5 3483 . 0641 —. 0671 —.
2.6 4527 -. 0859 —. 0892 2.6 3543 L0577 —. 0614 -
2.7 . 4604 —.0791 —. 0777 2.7 3598 L0518 ~—. 0560 -
2.8 L4673 —.0725 —. 0676 2.8 3647 . 0465 —. 0509 -
2.9 L4736 —. 0662 -. 0587 2.9 3691 L0417 —. 0461 -
3.0 . 4791 —. 0602 —. 0509 3.0 3731 . 0373 —. 0416 -
3.1 L4841 —. 0546 —. 0441 1 3766 . 0333 —. 0375 —.
3.2 . 4885 —. 0493 —. 0381 2 3798 . 0298 —. 0338 -
3.3 4924 —. 0444 —. 0329 3 3826 . 0266 —. 0303 -
3.4 4959 —. 0399 —. 0283 4 3851 . 0237 —.0272 -
3.6 5016 —. 0321 —. 0210 b 3893 . 0188 —. 0218 -
3.8 . 5061 —. 0255 —. 0155 3.8 3927 L0149 —. 0174 -
4.0 5096 —.0202 —.0115 4.0 3953 . 0018 —. 0138 -.
4.2 5122 —. 0158 —. 0084 4.2 3974 L0094 | —.0109 —.
4.4 5143 —. 0124 —. 0062 4.4 3991 L0074 —. 0086 -
4.6 5158 —. 0096 —. 0045 4.6 4004 . 0059 —. 0068 -
4.8 5169 —.0075 —. 0034 4.8 4015 . 0047 —. 0054 -
5.0 8177 ~. 0057 —. 0024 5.0 4023 . 0037 —.0042 -
5.2 5183 —. 0044 —. 0018 5.4 4035 . 0024 —. 0026 -
5.5 5189 —. 0029 —. 0011 5.8 4043 L0015 —. 0016
6.0 5194 —. 0014 —. 0005 6.4 4049 . 0008 —. 0008
. 25 5194 —. 0010 —. 0004 7.0 4053 . 0005 —. 0004
8.0 4056 . 0002 —. 0001
9.0 4058 . 0001 0000
10.0 4059 . 0001 0000
11.0 4059 .. 0001 . 0000
Prandtl number, 10 Prandtl number, 100
7 ¥ g Jag H H' 7 r F’ F
0 0. 0000 0.0000 0.4192 1.0000 | —1.1694 0.000 0. 0000 0. 0000 0. 2517
.l L0019 L0371 L3251 . 8832 —-1.1671 025 .0001 0060 L2274
.2 L0071 . 0654 . 2428 L7670 —1.1521 050 . 0003 0114 . 2044
.3 L0147 . 0861 L1723 . 65634 —1.1155 075 . 0006 0162 L1828
.4 0241 . 1003 L1134 . 5448 —1. 0526 100 .0011 0205 . 1626
) . 0346 . 1091 . 0655 L4437 —. 9640 125 .0017 0244 . 1438
.6 . 0458 L1137 L0279 L3827 —. 8545 . 150 . 0023 0277 L1263
.7 . 05673 . 1150 —. 0011 L2733 —. 7322 175 . 0031 0307 . 1101
.8 L0687 L H37 —.0221 L2064 —. 6061 . 200 . 0039 0332 . 0952
.Y L0800 L1107 —. 0367 L1519 —. 4849 L2265 . 0047 0355 . 0816
Lo . 0908 1066 —. 0462 1090 —. 3753 . 250 . 0056 0373 . 0692
1.1 1012 . 1016 —. 0518 0763 —. 2813 L2765 . 0066 0389 . 0580
1.2 111 . 0963 —. 0645 . 0522 —. 2045 300 . 0076 0402 . 0479
1.3 1206 . 0908 - . 0552 0349 —. 1445 .325 . 0086 0413 . 0389
L4 . 1293 . 0853 -, 0544 L0228 -. 0993 L350 . 0096 0422 . 0309
L6 1376 L0799 - 0627 . 0146 - 0665 376 . 0107 0429 . 0238
Lo 1453 L0748 =, 0505 . 0092 —. 0435 . 400 L0118 0434 L0176
L7 1525 L0699 —. 0480 . 0056 —-. 0278 425 L0129 0438 L0128
18 1593 L0652 —. 0453 L0034 —. 0174 . 450 . 0140 0440 L0076
Ly 1656 L0608 —. 0427 . 0020 —. 0107 ATH . 0151 0442 . 0036
2.0 1714 L0567 —. 0400 L0012 —. 0065 . 500 L0162 0442 . 0002
2.1 1769 L0528 —.0375 . 0007 —. 0038 . 525 L0173 0442 —. 0026
2.2 1820 . 0491 —. 0351 . 0004 —. 0022 . 550 L0184 0441 —. 0050
2.3 1868 L0458 —. 0328 . 0002 —. 0013 .875 . 0195 0439 —. 0070
2.4 1912 L0426 | —.0306 . 0001 . 0007 . 600 L0206 0437 | —.0087
2.5 1953 . 0396 —. 0286 L0001 —. 0004 .65 . 0227 0432 —. 0111
2.6 1991 . 0369 —. 0267 . 0000 —. 0002 .70 L0249 0426 —. 0126
2.7 2027 L0343 —. 0249 . 0000 —. 0001 .75 L0270 0420 ~.0135
2.8 2060 .0319 —. 0232 . 0000 —. 0001 .80 . 0291 . 0413 —. 0140
2.9 2090 . 0297 —. 0216 . 0000 . 0000 .85 L0311 L0406 | —.0142
3.0 2119 L0276 —. 0201 . 0000 . 0000 .90 L0331 L0399 ~. 0142
3.1 2146 . 0256 —. 0187 . 0000 . 0000 .95 . 0351 . 0392 —.0141
3.2 2170 0238 —. 0174 . 0000 . 0000 1.00 0371 . 0385 —.0140
3.3 2193 L0221 —. 0162 L0000 . 0000 1.10 0408 L0371 —. 0136
2215 L0206 | —.0151 . 0000 . 0000 1.20 0445 . 0357 —. 0132
3.6 2253 . 017! —. 0131 . 0000 . 0000 1.30 0480 L0344 —.012%
3.8 2286 L0153 —. 0113 . 0000 . 0000 1.40 0514 L0332 | —.0124
4.0 2314 L0132 —. 0098 0000 0000 1. 50 0546 L0320 | —.0119
4.2 2339 L0114 ~. 0084 0000 0000 1. 60 0578 L0308 | ~.0116
4.4 2360 L0098 —. 0073 . 0000 0000 170 0608 . 0297 —.0112
4.4 2379 . 0085 —. 0063 L0000 0000 1.80 0637 . 0286 —. 0108
4.8 2394 . 0073 —. 0054 0000 0000 1. 60 0665 L0275 | —.0104
5.0 2408 . 0063 —. 0047 0000 0000 2.0 0692 . 0265 -. 0101
5.4 2430 . 0047 —. 0035 . 0000 0000 2.1 0718 L0255 | —.0097
5.8 2446 L0035 | —.0026 . 0000 0000 2.2 0743 L0245 | —.0094
6.2 2458 L0026 | —.0019 0000 0000 2.3 0767 L0236 | —.0091
7.0 2474 L0014 --. 0011 0000 0000 2.4 0790 L0227 | —.0088
8.0 2484 L0007 | —.0005 0000 0000 2.6 0834 0210 | —.0082
9.0 2489 L0003 | —.0002 . 0000 . 0000 2.8 0874 0195 | —.0076
10.0 2491 L0002 | —.0001 | . 0000 . 0000 3.0 0912 0180 | —.0071
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Prandtl number, 100—Concluded Prandtl number, 1060
F F F H H 7 F F F” H H
3.2 . 0917 0. 0166 —0.0066 | 0.0000 0. 0000 0. 0. 0000 0. 0000 0.1450 | 1.0000
3.4 . 0979 . 0154 —. 0061 . 0000 . 0000 . 025 . 0000 . 0033 L1212 . 9009
3.6 .1008 0142 —. 0056 . 0000 . 0000 . 050 . 0002 . 0061 . 0999 . 8021
3.8 L1035 . 0131 —. 0052 06000 . 0000 075 . 0003 . 0083 L0811 . 7046
4.0 . 1061 L0121 —. 0049 0000 . 0000 .100 . 0006 L0102 . 0647 . 6096
4.4 . 1105 . 0103 ~. 0012 0000 . 0000 L1256 . 0008 . 0116 . 0506 . 5186
4.8 L1143 . 0088 —. 0036 0000 . 0000 . 150 . 0012 L0127 . 0387 .4332
5.2 L1176 . 0074 —. 0031 0000 . 0000 175 015 .0135 . 0289 L3549
5.6 L1203 . 0063 —. 0026 0000 . 0000 . 200 . 0018 L0142 . 0209 .2847
6.0 . 1226 . 0053 --. 0022 0000 . 0000 . 225 L0022 . 0146 . 0146 . 2236
6.6 L1254 . 0041 —. 0018 0000 . 0000 . 250 . 0026 L0149 . 0096 L1717
7.2 L1276 . 0032 —. 0014 0000 . 0000 .275 . 0029 L0151 . 0059 L1288
8.0 1297 . 0022 —. 0010 0000 . 0000 L300 . 0033 L0162 . 0032 . 0944
9.0 L1315 . 0014 —. 0007 0000 . 0000 .325 . 0037 . 0153 L0012 . 0675 S

10.0 . 1326 . 0008 —. 0005 0000 . 0000 . 350 L0041 . 0153 —. 0003 L0471 —. 7012

11.0 L1332 . 0004 -~. (003 0000 . 0000 .375 0045 . 0152 —. 0012 . 0321 —. 5093

12.0 L1335 . 0002 —. 0002 0000 . 0000 . 400 0018 L0152 —. 0019 . 0213 —. 3506

13.0 1336 . 0000 —. 0001 0000 . 0000 425 0052 . 0152 —. 0023 . 0138 ~—. 2467

450 0056 . 0151 —. 0026 . 0087 —. 1645

475 0060 L0150 ~. 0027 . 0053 —. 1066

. 500 0063 L0150 —. 0028 . 0032 —. 0672

. 525 0067 . 0149 —. 0029 . 0019 —. 01412

. 550 0071 . 0148 —. 0029 . 0011 —. 0245

. 575 0075 . 0147 —. 0029 . 0006 —. 0142

. 007 L0147 —. 0029 . 0003 —. 0080

. 62h 0082 . 0146 —. 0029 . 0002 —. 0044

800 L0107 L0141 —. 0028 . 0000 . 0000

1. 000 0135 . 0136 —. 0027 . 0000 . 0000

1.40 0187 L0125 —. 0025 . 0000 . 0000

1.80 0235 L0115 ~. 0023 . 0000 . 0000

2.20 0279 . 0106 —. 0022 . 0000 . 0000

2.60 0320 . 0098 —. 0020 . 0000 . 0000

3.0 035% . 0090 -. 0019 . 0000 . 0000

3.6 0409 . 0080 —. 0017 . 0000 . 0000

4.2 0454 L0070 —. 0015 0000 . 0000

5.0 0505 L0060 —. 0012 0000 . 0000

5.8 0549 L0050 —. 0011 0000 . 0000

7.0 0603 .N039 . 0008 . 0000

8.0 0638 . 0032 —. 0007 0000 . 0000

10.0 0691 . 0022 —. 0004 . 0000 0000

12,0 0727 L0015 —. 0003 . 0000 0000

14.0 0752 L0011 —. 0002 0000 0000

16.0 0771 . 0008 —. 0001 0009 0000

18.0 0786 . 0007 0000 0000 0000

20.0 0798 0006 0000 0000 0000

22.0 0809 0005 0000 0000 0000
23.6 0816 0005 0000 0000




APPENDIX I-b

THE FORCING FUNCTION ¢(n)

The forcing function is defined as

17 /
Sl =f M H(7) dn ., (8-2)

Considering that

;j’—n(n H) = MH() + Hi), (h-3)
then
n y =
Se) = {77 Him) dn = jd[r) H(n)]+j/—/(77) an (A-h)
Oo £ 7?
and
2 ")
St = [ #eny oy + mHen) = [ Hig) 4y, (15)

Thus, in order to determine {(7n) it is necessary to compute the product
nH(7n) and to integrate the steady temperature profile H(n). The function
5fé(ﬂ)dﬂ is determined by integration of the forcing function according

to the definition.
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Prandtl Number = .01
N n

y t(n) g t(n)an n t(n) J tn)an

.0 8.25 0 4.2 757 33,68

.2 8.25 1.65 bok T.51 35.18

b 8.2k 3,30 h.6 T.45 36,68

.6 8.23 4,95 4,8 7.38 38,16

.8 8.22 6.59 5.0 T.31 39.6%

1.0 8.21 8.2k 5.8 7.03 45,37
1.2 8.19 9.88 6.6 6,71 50.87
1.k 8.17 11.51 T4 6.39 56.11
1.6 8.15 13,14 8.2 6.0k 61,08
1.8 8.12 14,77 9.0 5.70 65.77
2.0 8.09 16.39 9.8 5,34 70.19
2.2 8.06 18,00 10.6 4,98 Th,32
2.4 8.02 19.61 11.4 L.6L 78.17
2.6 7.98 21.21 12,2 4. 30 81.7h
2.8 .94 22,80 13.0 3,96 85,04
3,0 7.89 24,29 14,2 3,48 89.51
3.2 7.85 25,96 15,4 3,02 9%,L40
3,4 T80 27,53 16.0 2.80 95,15

3,6 ToTh 29.08 18.0 2.13 100.1

3.8 7.69 30,62 20.0 1.55 103.7

4,0 7.63 32,15 22,0 1.03 100.3

2k,0 107.5

Prandtl Number = .72
M

7 tn) S tnan n ¢(n) ] t(n)an

.0 1.252 0 2.4 . 396 2,144

.1 1.250 .125 2.5 .363 2,181

.2 1.242 +250 2.6 <332 2.216

o3 1.230 373 2.7 .302 2.248

b 1.212 196 2.8 .275 2.277

.5 1.190 .616 2.9 250 2.%0%

.6 1.163 733 3,0 .227 2.327

o7 1.1%2 .858 3.1 .206 2,349

.8 1.097 «960 3,2 .187 2.368

.9 1.059 1.067 3.3 167 2.386

1.0 1.017 1.171 3L .152 2,402
1.1 2973 1.271 3.6 124 2,430
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Prandtl Number = .72 (Cont'd)

N M
n () J tn)an g t(n) o) tln)an
1.2 .927 1.366 3.8 .100 2.452
1.3 .880 1.456 4.0 .081 2.470
1.4 832 1.542 4,2 . 065 2,484
1.5 .783 1.622 b4 .052 2, .96
1.6 « 135 1.698 4,6 .0k2 2.505
1.7 687 1.769 4.8 .033% 2.513
1.8 .6h1 1.836 5.0 .026 2.519
1.9 <596 1.898 5.2 .021 2.523
2.0 552 1.955 50k .016 2.527
2.1 .510 2,008 5.8 .010 2.5%2
2,2 470 2.057 6.2 .006 2.535
2.3 432 2.102 6.8 .002 2.538
T.3 .001 2.538
Prandtl Number = 10
i M
ul tn)  _J tn)an g ¢(n) L tln)an
.0 .510 0 1.2 .075 .378
.1 . 504 .051 1.3 +053 . 384
.2 487 .100 1.4 .037 .388
3 458 148 1.5 .025 +391
U 420 .192 1.6 017 .39k
e5 375 232 1.7 .011 .395
.6 . 325 267 1.8 .007 396
T .273 .296 1.9 .00k . 396
.8 .223 321 2.0 .003 397
.9 77 341 2.1 .002 . 397
1.0 .137 . 357 2,2 .001 . 397
1.1 .102 . 369
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Prandtl Number = 1000

1 t(n) et
0 148 0
.025 o147 »0037
.050 .143 .0073
.075 137 .0108
.100 .129 L0141
.125 .118 L0172
.150 .107 .0201
175 .O9L . 0226
.200 .081 - ,0247
.225 .068 . 0266
.250 .056 . 0281
275 LOLL 0294
300 .03k .0304
325 .026 .0311
.350 .019 0317
375 .01k .0321
400 .010 L0324
vl .007 .0%26
450 .00k .0327
LT75 .003 .0328
.500 .002 .0329
525 .001 .0329




APPENDIX I=c

THE TEMPERATURE FUNCTION nH'(n)

Prandtl Number = .0l

~nH'(n) ul -nH'(n) ul -nH"(n)
0 0 2.8 .216 7.4 420
.2 .016 3,0 .230 8.2 432
A .032 3,2 243 9.0 I IYg)
.6 Nole 3,4 .256 9.8 b2
.8 .065 3,6 .268 10.6 438
1.0 .081 3.8 .280 11.4 433
1.2 .097 4.0 .292 12,2 425
1.k 113 h.2 .303 13.0 A2
1.6 .128 L.y .31h 14,2 «392
1.8 J1hk 4.6 324 15.4 . 368
2.0 .159 4.8 . 334 16.0 <357
2.2 ket 5.0 <343 18.0 .315
2.4 .188 5.8 376 20.0 27k
2.6 .20% 6.6 401 22.0 .235

Prandtl Number = .72

OV F O MOH OW OO &FWMOHO

©

H e
[ s e o

-nH'(n) n -nH'(n) 0 -nH' (7
0 1.7 472 3.3 171
.050 1.8 460 3.4 .156
.101 1.9 b5 3.6 .129
.150 2,0 428 3,8 .107
.199 2,1 409 4.0 .088
246 2.2 .389 4.2 071
.290 2.3 .368 b,k .058
331 2.4 T 4.6 .050
369 2.5 . 324 4.8 .038
401 2.6 . 302 5.0 .031
428 2.7 281 5.2 .025
1450 2.8 .260 5.k .020
46T 2.9 241 5.8 .013
478 3,0 ., 222 6.2 .008
.483 3.1 204 6.8 .004
48k 3,2 .187 7.3 .002
480
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Prandtl Number = 10

n ~nH'(n) n ~nH'(n) M -nH'(n)
0 0 .9 436 1.8 .031
.1 JA17 1.0 .375 1.9 .020
.2 .2%0 1.1 .309 2.0 .013
3 335 1.2 .2L5 2.1 .008
b 421 1.3 .188 2.2 .005
.5 482 1.k .139 2.3 .003
.6 513 1.5 .100 2,4 .002
.7 513 1.6 .070 2.5 .001
.8 485 1.7 .07

Prandtl Number = 1000
0 -nH'(n) 1 ~nH"(n) n =nH'(n)
0 0 .225 .509 450 LOTh
.025 .099 .250 473 475 .051
.050 197 275 42k .500 .03k
075 .290 «300 . 366 525 .022
.100 373 .325 .305 .550 .01k
.125 ko 350 245 575 .008
.150 493 375 .191 .600 .005
175 521 1400 o1k .625 .003
.200 .526 425 .105




APPENDIX I-d

VALUES OF THE PARAMETERS DEFINED BY EQUATIONS (2.66)

Equations (2.66) are repeated here for convenience.

R = fo?(")) dn (A-6a)
R = Fro) (A-6b)
7 f[F’rmjzd»; (n-6c)
R = F(o) (A-62)
Pi = -2 ﬁ? H@)F’(r)) oy (A-Ge)
% = W /3¢ . (4-61)

Pl, P5, and P5 are obtained directly from Ostrach's results as given in

Appendix I-a. P, is obtained from the integration of ((n) given in

Appendix I-c and P, is obtained by integration according to its definition.
Py can be found without the need for integration by the follow-

ing reasoning. First, Equation (2.18a) is rewritten as

4 / / 2
% Fim) + 30%/] [Fen Fim)]-s[Fim)] + Him = 0. ()
Integrating from the wall to infinity gives

F/(/n)

00 o oo
0

+ 3F(77)F?77)I _sf[F(’n)fm;,«me)dv:Oa (A-8)

S H(’?]) 0/77 = F'///eo) + SﬁF;O)]Zdn ] (A-9)

-195-



-196-

[~
From Appendix I-b,of H(n)dn = £(0), so that now

% 2
;[F’M)] ap = 5 [?(0) - F”/O)J, (A-10)
R =2[Sn) - P,], (A-11)

@ @
The integralsof nH'(n)dn and [ H(n)F'(n)dn in Equations (2.65)
0
are not explicitly defined here because they can be given in terms of those

parameters which are already defined. Thus,
- S,'? /-/?77)0/77 = §(o) = f? +5F (A-12)
Also,csince
d [ HmF = H(7) F(n) + Frm) Hf (A-13)
dn[ ) (77)] ) F(n) + Fn) Hin) ,

then

f Hin) Fro) an = Hm) F??;)/D -fF/vy) /-/277)477= - j Frm) H/:y) Ay (a-L4)

0

But from Equation (2.18b), F(n)H'(n) =-E"(0)/30 so that

Co , o0 ;) IL/;')?) % y

— 4 ___2_ T —— - . (A-l5)
!F(’?)/‘/M)dﬁ ofa A e /o Hro) [3a .
Therefore, 00

/
g A ) dn = F (4-16)
Tabulated values of the parameters discussed in this section are

given below.

Prandtl Number .01 .72 10 1000
P, 108 2.5k « 397 .0329
Py .986 .676 419 145
Py 1.45 .115 .018 . 00060
P3 L.13 .596 .249 .0816
P, 2.39 19 .102 .00391
P5 2.71 234 .039 .00132




VALUES OF THE PARAMETERS DEFINED BY EQUATIONS (2.72)

APPENDIX I-e

Using the values in Appendix I-d the parameters defined by

Equations (2.72) are calculated according to the following relations.

Q, =36% (A-172.)
45 A
Q= R(R+5hR) (A-17b)
4R R
Q, = f3(R+3R) (A-17c)
47
Q. - RR+4R(R+5R) (A-17d)
’ 4RA
Q4___. _SE?Pf‘f'E(P/“'SFE) (A=l7e)
4R A
C)S_—_ PIP4 +12 PZPS‘*Z P.S'(P/"'SPZ) (Aml?f)
4 R P
Q, = 3 (P+4R) (A-18g)
4 R Py

The values are tabulated below:

Prandtl Number .01 12 10 1000
Q 62.9 9.21 6.30 13.9
9 63.9 16.5 27.5 519
Qo 2.46 3.86 17.2 1290
Qs 4.18 4.28 8.45 71.8
Q) 3.00 6.55 33.0 2320
Qs 6.79 6.17 12.3 103
Q 3.98 4.13 7.81 62,3
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gives the recurslon formule

APPENDIX I-f

VALUES OF THE COEFFICIENTS R,

The coefficients Rn are calculated from Equation (2.73) which

Sno Qo +4 Sn Q1 +Q; Pn—z‘¢‘ (&an + @4) En_/

Rn=

Values of Q are given in Appendix I-e.

né+ (Qs+1)n + &

[ ]

(A-18)

Calculated values of Rn are given

below.
Values of Rn when n is even
Prandtl Number
n =
.01 .72 10 1000
0 15.8 2,23 5 .808 .223
2 - 232 -3,85 x 10" 1.22 x 10”2 .211
| -7.46 x 107 2,66 x 1072 ~7.89 x 10” 8,43
6 447 x 1079 2,09 x 1072 1.83 x 10-2 11k
8 -1.61 x 10~ -7.1h x 1077 .7 x 1073 8l
10 4,81 x 10 1.45 x 1070 6.76 x 107D 3960
12 2125 x 1077 -2,0L x 10 1.03 x 10~
1h 2,80 x 1072 2,09 x 10710
Values of an/i when n is odd
Prandtl Number

° 01 .72 10 1000
1 3,90 628 .270 .932 x 107%
3 .16k 4,85 x 102 9.43 x 10“2 1.70
5 2,03 x 1o:i 8,56 x 102 .33 x 107 -33.8
7 8.77 x 10 4,17 x 107 6.21 x 1072 330

9 -2,83 x 1072 -1.08 x 1070 -3.94% x 10~ ~1930
11 7.87 x 107 1.78 x 107 6.29 x 10 7400
1% -1,90 x 10-9 ~2,11 x 109
15 1,97 x 10=L
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APPENDIX I-g

VALUES OF THE COEFFICIENTS Sn

The coefficients S, are calculated from Equation (2.70&) which

gives the relation

gno Fo - [(Pl+4):2+46n)/?{) +4 /?3 Rn—l]

(A-19)
6n= -
[+58
Values of P are given in Appendix I-d and values of Rn are given in
Appendix I-f. Calculated values of S, are given below
Values of -Sn when n is even
Prandtl Number
n
.01 .72 10 1000
0 0 0 0 0
2 1.4k 236 Jh7 .268
4 - 189 | -h03x 1072 -7.48 x 1072 -8.00
6 1.2h x 10” 2,43 x 1073 1.20 x 1072 106
8 6.01 x 10™* -7.68 x 107 6.11 x 107% ~768
10 2,36 x 1072 1.54 x 10‘6 -3,11 x 1072 3520
12 |-7.61 x 1o“g -2.23 x 10 5.82 x 10~
1h 2.0k x 107
Values of msn/i when n is odd
Prandtl Number
n .
.01 .72 10 1000
1 1.97 .261 964 x 1071 2.88 x 1077
3 - .599 -.116 -.125 5 - 1.66
5 | 5.09 x 107 1,17 x 10™2 3,39 x 10° 31.8
7 | -2.81 x 1070 k.61 x 10-k -3.24 x 1075 30k
9 1.22 x 10 1.1% x 1079 3.40 x 1072 1730
11 b, 3k x 1076 -1.92 x 1077 1.72 x 1072 -6510
13 1.27 x 1077 2,46 x 1079
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APPENDIX IT

EXPRESSIONS FOR THE MAGNITUDE AND PHASE OF THE TEMPERATURE
OSCILIATIONS FOR LARGE VALUES OF w~ lx (CHAPTER II)

Away from the wall, the magnitude and phase of the temperature

oscillations are obtained from Equation (2.38) as

- Hro) @(o)
(4x) 2 (A-20a)

ui Y 2
{Zoj?(’?)/g@ d?)-%{*— fq(cosj_r)_sm/ﬁﬁﬂ \/Z’]oosgq
*{fz[ (005\/3’7+3/f7/—'7)] 7)6 /3//7/_3‘;771

and
= Arctan
) (A-20D)
Z%[ - (oos[_»7+ sm\/—q] f;e sm/_q o
(
Zg Q(Z)M 25[4-8 (oosfq smjf-q}gqe oos\[_i’)

Close to the wall, the magnitude and phase of the temperature

oscillations are obtained from Equations (2.4L) as
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APPENDIX III
AN ALTERNATE METHOD OF_OBTAINING SOLUTIONS FOR
LOW VALUES OF w~ 4x (CHAPTER II)
An integral method has been used in this work to obtain solutions
for the velocity and temperature perturbations for low values of Yy = w~fhx.
An alternate procedure for obtaining the corresponding exact solutions will

be developed here,

For this case a pair of solutions corresponding to Equations (2,64)

are written as

M = hf; [Entm) + i L) ¥

(A-23a)
N = (4x)—% %__o [J,,(n) +4Y L, {—»;)] ¥y (A.23D)

3/k

These quantities along with ¥ = (khx) F(n) and T, = H(n) are now entered

into Equations (2.21) and all derivative operations are carried out yielding

23 =
(4)()/4 ya

n " , , »
4 o{[En(n) T3F/n)E,.I77)—(4n+/)/-‘/77)t;/77)+4;7F/7;) En(n) (A-2ke)

/] 14

s b+ o ) €% i Tit) + 350 I o —(2mes) il 3

/Y / l —a/
t (4n+2)F (ML (7)+Ln(7) "En/’ﬁ XZM} + (4x)* ?(w =0,

and

(A-2kp)

n=o

+ 4n 'L/?”?) En/”])'f‘ Lﬂ-/ﬁ]ﬂ?{zn-f /‘['é: 4(7)73;/’7) 4;/’7)

(401 F (D La(m) + (40+2) H{p) () - Jn/ﬁ "o .

_5/ (24 ‘ p , ,
(x)* 2. {[ﬁ'f () + 8Fn) hnfm) (40 -3) Frm) <y (7))
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x cancels in both equations leaving only powers of y with functions of 7
as coefficients. Both real and imaginary parts of each equation must be

zero, and therefore the coefficients of all powers of y must vanish. Thus,

E('r]) +3Fm) 5?7) - [(4n+]) F/v;) E//o;) + 4n Ffv;) E,,(?/) (A-252)

+ b () + In,.,ﬁ?) + grm?(’?) =0

. , / , (A-25b)
6‘: J,,(7) + 3F/7) % (7) —(4n-3) F (%) dn() +4n H/?;) En() + Ln_’(7)=0 ,

and

(A-262)
I:yl(’?) + 3F7) Z,17) _(4%3),:}7);//7) +/4/7+2)F/7)I,,{‘7) +Ln(77) _E; (M)=0

(A-26Db)
gf-L'; (7) + 3F19) Ly (1) ~(40-1)F () Lo (7) +(4n+2) ///37)1,7/»77 —%()=0,
where n = 0, 1, 2, 3, L, cevosanes
The boundary conditions for the first pair of Equations (A-25) are
Enfo) = E,(0) = Ep(0) = Jn(0) = Jpn () = O.
The boundary conditions for the second pair (A-26) are
L, (0)=1I,(0) = I (2) = Lnfo)= Ln(eo)=0.

The problem is now reduced to two pairs of simultaneous differential
equations whose solutions for successive values of n become corresponding
successive approximations to the oscillating stream function M and the
oscillating temperature profile N. The real parts are obtained from the
first pair (A-25) and the imaginary parts from the-second pair (A-26).

The procedure is to solve (A-25) for n = 0 giving E, and J,

then to enter these functions into (A-26) for n = O which are then solved
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for Io and Lo' These are then put back into (A-25) which are solved for

= 1 giving El and Jl' This procedure is repeated as many times as is
desired to order to obtain a sufficiently large number of successive
approximations to produce results which are accurate within a given required
range of y., If this required range is large, then a large number of approxi-
mations may be necessary, A good idea of the number of terms required for
a given value of y can be obtained by studying the results of the integral
method used in this work, for example, by referring to Appendices I-f and
I-g where the tabulated coefficients of the series néb Rn 7n and ngo Sn y I
are given, Since integral techniques are known to give approximately the
same results as exact methods, the series of functions being dealt with
here may be expected to converge at about the same rate as the series used
in connection with the integral methed; Once these functions are available
the magnitudes and phase angles of the velocity are temperature perturba-

tions can be obtained from

L7 e ][5 v s e

n=9

S T
b = Arctan %,, L 1
> ¥ E, (1)

N=

(A-27Dp)

)

o

—3/ 00 2 -] 2
‘N‘ = @) (hZ ZZ”J,,M)] +[Z ¥ 2! an?j? (A-282)
=0 Y .l )

X = Arc tan] 5= d (-280)
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It can be seen that the pairs of Equations (A-25) and (A-26)
have variable coefficients formed from F(n), H(n), and their derivatives.
The equations are linear, however, but the fact that only three of the
five boundary conditions are known at the wall would tend to make their
solution difficult, The other two boundary conditions are given at infinity.
It appears that a fair amount of labor would be involved in solving these
equations, and one possible approach is the use of a high speed digital
computer,

Some results can be obtained analytically for n = O since Equation

(A-25b) is independent of (A-25a) in this case., Thus,

LUty #3707 J ) + 3F () () =0 (8-29)
or,
Lod oy ar nl= O . (A-30)
v oy ke g [F = ©
Integrating from infinity to n gives
[y s Fim) degmy]|
& Yel(m) , T3 (m) o(?ﬁ/o0 =0, (A-31)
and
Jo/("7) + 30 F/m) (1) = Oﬁ (A-32)
An integrating factor is GBQJ F(n) dn so that
M
30§, Fin)dn
d [ e Jm;)] =0, (A-33)
4
and.
3crj°7m>4r;
e’ bfp) = CONSTANT . (4-3h)
30 ? F(n)dy

But JO(O) = Jo(®) = 0 vhile € © has nonzero values both at the



-207-

wall and at infinity, Therefore, the constant must be zero and Jo(n) = 0,
This agrees with the result given by Equation (2.59b) that the temperature
perturbations are zero in the steady or quasi-steady case. The corresponding
velocity perturbations are to be obtained from

E///M?) +‘3F(’7) Eo///"])-/'_?'?) Eo’/ﬁ) + Q(’Y) =0 , (A-35)
and are written as M = Eo(n). This shows the same result as indicated by
Equation (2.59a) that the velocity perturbations occur along lines of con-
stant n in the quasi-steady case. Since Ty = H(n), these paths are lines
of constant steady temperature so that the temperature perturbations are
zero, The corresponding phase angles of the velocity and temperature

perturbations are given by

[

—

N XZn-H / / 3,
Cz) = ﬁ;ﬂ /4/’0 %dﬂ 4;0 Iﬂ(n) = &4“') A/‘C?Ld/'l XID("])'/'é Il(ﬂ)-r'u (A-56)
¥->0 Z UZH E; (7> ¥ =>0 Eo,("?) +ZZE: (77)4_'”

.—.Arav‘an(lo ) =0 ,
£, (1)

and
(A-37)

= ‘&L;ﬂ A/’C #ﬂn

Y0

X = Lwn Arc tand _r=o
o

¥Y=>0

b’L_,,(n)+XJL,/7))+ st — Lin Arc 4an Lom) = 900
Jo[vy)+2fzJ,/n)+b’4J2(77)+ ol ¥ Jim)
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These results are in agreement with the phase relationships shown in
Figures 18 and 19 for y —» 0. The 90° phase angle for the temperature
perturbations as y — 0 is in agreement with previous discussion in
Chapter II., There it was pointed out that only the lagging components

of velocity have an effect on the temperature perturbations at very small

values of y since the in phase components lie along constant 7 trajectories.



APPENDIX IV

SUMMARY OF EXPERIMENTAL DATA

APPENDIX IV-a

Summary of Data from Potential Flow

Measurements Along the Wall of a Vibrating Plate

Values of 1%9 Measured at y = 1/10 of an Inch

f(Cycles/Sec.) 15 20 25
a5 (Inches) .050{ .075| 100! .050| .075| .100|- .O50 .075] .100
V. (Inches/Sec.)]| 4.70 | 7.05 | 9.%0 | 6.30 | 9.45 |12.6 | 7.85 [|11.75 |15.7
0 0 0 0 0 0 0 0 0 0
.10 - - - - .05 .06 .09 .09 .10
.15 - W13 o1k J1h J1b JAb .19 17 .17
. e20 .12 .13 .19 1k A7 .21 21 27 .29
25 .28 23 .26 .28 23 .25 27 .29 .28
30 23 .35 ST | 29 36 BT W5 Bl
35 38 .38 .38 .38 39 Rl Lo 35 039
x/c Lo ¢35 50 .56 5P .52 H2 .60 .56 61
where | <45 S3 W52 53| W52 b9 55 49 .53 51
c=5"] .50 59 .65 67 .66 .59 Hb .72 .67 .69
55 b9 T8 70| W65 T3 W72 | LT 68 L67
.60 91 .90 .98 .96 .88 .89 .86 B7 .89
.65 88 1,01 96 | 1,06 .86 Roilt Bk .78 .96
.70 1,17 1,07 1.5 |1,00 1.08 .92 | 1.00 Ok 1,04
.75 1.2k 21,18 1,21 [1.11 1.20 1,20 | 1.00 1.19 1,18
.80 1.4 1.,3% 1.k |1.17 1.25 1,19 | 1.19 1,22  1.21
.85 1,46 1,60 1.53 | 1.67 1.60 1,47 | 1.b43 1.33 1,36

=209~
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Uo
Values of (Cont'd)

30 35 4o
050 075 .100 .050 075 .100 .050 075 .100
9.40 14,1 18.8 11.0 16.5 22,0 12,6 18.9 25,2
0 0 0 0 0 0 0 0 0
.06 .06 .06 .06 .05 .07 .05 o .05
1k .13 .13 Jh .13 Sk .12 .10 J1
.12 .13 .18 13 .19 .29 JA1 .16 .17
.22 .22 .20 .20 21 .23 .18 .18 .19
.28 <30 033 .30 32 .32 025 27 .30
33 o33 33 «30 .32 .30 .26 .28 27
Al i 43 .39 40 L3 3T .38 41
o143 L7 L7 37 S L3 .38 036 .36
.56 53 .56 .53 053 Sk M7 51 Sl
61 .59 .60 53 .52 19 L9 S 5k
63 .65 O .69 .66 .66 .62 .63 L6h
.72 .73 17 Nt .65 .71 .62 67 .69
B1 Bh 82 .83 .85 .76 .76 .68 .68
.88 1,07 .93 .83 .92 .89 .78 .83 83
1.07 1.05 .99 .88 .96 .98 1.07 .93 .80
1.33 1.27 1.18 1.20 1.23 1.07 1.37 1.25 .93




APPENDIX IV-b

SUMMARY OF DATA FROM VELOCITY
MEASUREMENTS MADE IN THE BOUNDARY IAYER

ON A VIBRATING PIATE

f = 20 cycles/sec.

x/c = 55
¢ = 5 inches
: 0 4.2
For air at 80°F, v = 1.7 x 107" ft /sec.

n/ N2 = yWJ%i'= 50.7y where y is in inches

Lu]

Values of
U

q/*Jé a, = .050" &y = 075" ay, =
.26 r-- .20 25
SOl S5l 50 L6
.76 61 .59 62
1,01 7 oTh .78
1.52 .93 <95 1,00
1.78 1,00 1,03 1.05
2,03 1,06 1,08 1.09
2.5k 1.09 1,08 1.09
3,04 1.06 1.03 1,05
3.55 1,03 1,03 1,03
L,05 1.03 1.03 1.0
5.07 1.00 1,00 1,00

~-211~
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