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1 The availability of suitable simulation models which can 
adequately predict the new powertrain performance has 
been assumed throughout. 
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ABSTRACT 

With the increase in automotive powertrain complexity, an upfront as-
sessment of powertrain capability in meeting its design targets is important 
early on in the development programs. The optimization of control policy 
based on powertrain simulation models can facilitate this assessment and 
establish limits of achievable performance for a given powertrain configu-
ration and parameters. The paper discusses several computational optimiza-
tion and user interface solutions for deploying a numerical optimal control 
approach in a user-friendly software environment. 
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I. INTRODUCTION 

An assessment of powertrain capability to meet its de-
sign targets and constraints (referred afterwards as feasibil-
ity assessment) is important early on in powertrain devel-
opment programs. The targets and constraints may be pre-
scribed for different powertrain attributes such as fuel 
economy, emissions, driveability, NVH, performance, cost, 
etc. They may also be prescribed for individual subsystems 
and components of the powertrain, depending on the scope 
of the development.  

Both powertrain design parameters and its control 
policy influence the capability of powertrain to meet the 
prescribed targets and constraints. New powertrain systems, 
in particular, are characterized by an ever increasing num-
ber of control inputs as well as by strong static and dy-
namic interactions. Thus a synergistic treatment of design 
and control issues is especially important for the analysis of 
feasibility of such powertrains and in order to fully identify 
relevant design and control requirements.  

The feasibility of given values of powertrain design 
parameters can be assessed on the basis of the best achiev-
able powertrain performance, i.e., powertrain performance 
while operating under an optimal control policy. Due to 
multitude of objectives that powertrain systems must sat-
isfy, a multi-objective optimization problem must be ad-
dressed. Thus the best achievable performance is charac-
terized by a Pareto front, and the feasibility of the power-
train means that a subset of the Pareto front is located 
within the target set. See Fig. 1 for an example. Different 
powertrain configurations or parameter values can be 
compared with each other based on selected points on the 
Pareto fronts (e.g., on the basis of best emission con-
strained fuel economy). By examining the behavior of tra-
jectories corresponding to these selected points, subsystem 
level targets can be set and an insight into required control 
system architecture, actuator coordination and calibration 
can be gained.  

In the early phases of the development programs, no 
hardware prototypes may yet exist or the technology may 
still be evolving. In this situation, the feasibility assessment 
can only be based on dynamic simulation models.1 The 
Pareto front can be computed via the numerical optimiza-
tion applied to these models. Specifically, a weighted sum 
of the objectives can be minimized with respect to the  
control input trajectory for different values of the weights. 
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2 MATLAB and Simulink are registered trademarks of the 
MathWorks, Inc. of Natick, MA. 
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Fig. 1. Feasibility assessment: Achievable performance, best 

achievable performance and target performance. 

A less computationally demanding approach is to only op-
timize certain parameters in an a priori defined parameter- 
dependent control policy. In the latter case, engineering 
judgement is necessary to define upfront a parameter-  
dependent control policy that is most likely to meet the 
targets. Also at times practical constraints make it not pos-
sible or desirable to change the control policy completely 
except for the values of a few parameters. In this case, the 
values of these parameters can be determined using pa-
rameter optimization while a complete optimal control 
policy can be used to understand the potential for further 
improvements.  

To carry out the feasibility analysis, the powertrain 
system community needs effective tools that can integrate 
the modeling, optimization, and design sensitivity analysis 
in a seamless fashion. For conventional powertrain systems, 
such assessment can be successfully carried out with quasi- 
static optimization [1-6], which ignored the dynamics and 
focused on the static relations of the performance to control 
variables and design parameters. When the dynamics are 
dominant, such as for the engine cold start problem, dy-
namic optimization is still manageable when the time hori-
zon is short [7,8]. The introduction of energy and storage 
elements, such as the battery for hybrid vehicles and lean 
NOx trap for lean burn engines, has however necessitated a 
new optimization paradigm, where the dynamics optimiza-
tion is essential to address the performance trade-offs over 
various driving cycles. Several recent publications have 
demonstrated the successful applications of deterministic 
and stochastic dynamic programming [9-13], linear pro-
gramming [14], and computational game theory [15]. 
These efforts have laid the foundation for establishing a 
model-based and optimization-enabled software environ-
ment for carrying out powertrain feasibility assessment.  

In this paper we discuss the background and some of 
the features of a recently developed software environment 
for performing powertrain feasibility analysis. The soft-

ware implements both the optimization based on dynamic 
programming [16] and the optimization of parameters in 
parameter-dependent control policies. It provides automo-
tive engineers, who may not be experts in optimization, 
with the capability to:  

• interface with powertrain models in MAT-
LAB/Simulink;2  

• define and solve state and control constrained optimal 
control problem via dynamic programming while 
taking advantage of fast/slow dynamics decomposi-
tion to deal with the “curse of dimensionality”;  

• define parameter-dependent operating policies and 
perform parameter optimization;  

• visualize solutions in different ways and analyze their 
sensitivity;  

• automatically generate analysis reports;  
• speed-up the optimization and parameter sweeps by 

taking advantage of parallel computations.  

II. IMPLEMENTATION OF DYNAMIC 
PROGRAMMING 

The optimal powertrain control policies are computed 
using the dynamic programming. It is applied to discrete- 
time system models decomposed into a cascade of a static 
nonlinear subsystem and a dynamic nonlinear subsystem,  

( 1) ( ( ) ( ) ( ) ( ) )d dx t f x t u t w t v t p+ = , , , , ,  

( ) ( ( ) ( ) ( ) )s sv t f w t u t x t p= , , , , (1) 

where x is the state of the dynamic subsystem, ud is the 
control input of the dynamic subsystem, w(t) is the vector 
of known operating variables of the powertrain (such as 
engine speed and engine torque or wheel speed and wheel 
torque), p is the vector of powertrain design parameters, v(t) 
is the output of the static subsystem, and us(t) is the control 
input of the static subsystem. The decomposition (1) can be 
viewed as an approximation of a system with slow and fast 
dynamics. Such a time scale separation is characteristic of 
and occurs quite frequently in powertrain applications. The 
fast dynamics can be approximated by the static subsystem 
for v while the slow dynamics by the dynamic subsystem 
for x. Since dynamic programming based optimization be-
comes computationally demanding as the state dimension 
increases, the main advantage of the approximation (1) is 
keeping the effective state dimension low so that the atten-
tion can be focused on the behavior of key states of the 
powertrain.  

For example, in the case study in [9], a Direct Injec-
tion Spark Ignition (DISI) engine behavior was approxi-
mated as a static subsystem so that w(t) is the vector of 
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engine speed and engine torque at time t; v(t) is the vector 
of exhaust air-to-fuel ratio, exhaust temperature, oxides of 
nitrogen feedgas flow rate, hydrocarbon feedgas flow rate, 
carbon monoxide feedgas flow rate, exhaust mass flow rate 
and fueling rate at time t; and us(t) is the vector of in-  
cylinder air-to-fuel ratio, exhaust gas recirculation (EGR) 
rate, spark timing, injection timing, fuel rail pressure, swirl 
control valve setting, and fueling rate at time t. The vector 
ud is empty in this case. The dynamic subsystem in [9] rep-
resented the behavior of the aftertreatment system and the 
state x was a vector of stored oxides of nitrogen and oxy-
gen in aftertreatment system, and aftertreatment system 
temperature. See Fig. 2. The parameters p define the prop-
erties of the aftertreatment system such as the NOx and 
oxygen storage capacities. In that case parametric models 
describing the sensitivity of performance variables existed 
and had been incorporated.  

Another computational simplification is to consider 
only a finite set of possible control policies for the static 
subsystem so that  

 ( ) 1,su g w x m m M= , , , = , ,  (2) 

where m is an integer which identifies the control policy 
out of M total control policies. Then the dynamic pro-
gramming can be applied to the optimization of the control 
input  

 du
u

m
⎡ ⎤

= .⎢ ⎥
⎣ ⎦

 (3) 

This procedure results in significant computational savings 
in those cases when the dimensionality of us is large. A 
finite set of representative control policies can be generated 
in a number of different ways, depending on the application. 
In [9], following the approach of [17], a weighted sum of 
engine fuel consumption and emissions was optimized at 
each engine speed and engine torque operating point, w, for 
a finite set of weight combinations and for two different 
combustion regimes (stratified and homogeneous); each 
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Fig. 2. Approximation of DISI engine and aftertreatment sys-

tem behavior as a cascade of a static subsystem and a 
dynamic subsystem. 

combination of a weight and a combustion regime would 
then define a separate policy for the static subsystem (en-
gine). In effect, in that application m may be viewed as an 
identifier for one of a finite number of engine maps opti-
mized for different trade-off between fuel consumption and 
emissions. See Fig. 3.  

With (2) and (3), the system (1) can be written in the 
form  

 ( 1) ( ( ) ( ) ( ) )x t f x t u t w t p+ = , , , .  (4) 

The optimization objective is to minimize a stage-additive 
cost functional,  

 
0

( ( ) ( ) ( ) ) min
t T

t
J x t u t w t p

=

=
, , , → ,∑  

where the incremental cost, J(x, u, w, p) = λTy, is a 
weighted sum of trade-off variables,  

 ( ) ( ( ) ( ) ( ) )yy t h x t u t w t p= , , , ,  (5) 

and where λ is the vector of the weights. The trade-off 
variables may include fuel consumption and tailpipe emis-
sions. The software provides flexibility to specify whether 
the weighting factors are applied at all time instants, at a 
final time instant or only at certain specified time instants. 
It can also select the weights automatically. The optimiza-
tion is repeated for a specified sweep of the powertrain 
parameters, p.  

The dynamic programming relies on backward-in-time 
value function iterations. Specifically, let V(t, x, p) be the 
cost-to-go from the time instant t and state x to the end of 
the optimization horizon, t = T. Suppose V(t+1,．, p) has 
been already determined and let  

( ) ( ( ) )Q t x u p J x u w t p, , , = , , ,  

( 1 ( ( ) ) ) .V t f x u w t p p+ + , , , , ,  (6) 

Then the state and time-dependent optimal control at time t 
satisfies  
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Fig. 3. Restricting static subsystem to a finite set of control 
policies. 



202 Asian Journal of Control, Vol. 8, No. 3, September 2006  

3 The resulting optimal control will, however, be specific to 
the selected initial condition. 

 ( ) min ( )
u

u t x p Q t x u p∗ , , ∈ , , , ,  (7) 

and V(t, x, p) is determined as  

 ( ) ( ( ) )V t x p Q x t u t x p p∗, , = , , , , , .  (8) 

To perform iterations (6)-(8) numerically, a grid of 
values of x(t), u(t) and w(t) are chosen. The grids for x(t) 
are defined via the State Grid Set, Xij, and State Grid Se-
quence Function, SX. Specifically, Xij, i = 1, …, Ix, is the ith 
element of the State Grid Set for the jth component of the 
vector x(t); SX(t) = i implies that the jth component of the 
vector x(t) assumes values from the grid Xij. The grids for 
u(t) are defined analogously with the help of Control Sets, 
Ui and a Control Set Sequence function, SU. Specifically, 
Uij, i = 1, …, IU, j = 1, …, K(i), is the jth vector in the ith 
Control Set, Ui; SU(t) = i implies that u(t)∈{Ui1, Ui2, …, 
UiK(i) } (the number of vectors, K(i), may be different for 
different i). Finally, the Operating Variable Set, W, and 
Operating Variable Sequence function, SW, are introduced 
so that Wi, i = 1, …, IW, is the ith vector in the Operating 
Variable Set, W, and SW(t) = i implies that at time t, w(t) = 
Wi. 

If the user desires to use the same state grids for all t, 
then IX = 1 and SX(t) = 1; in this case the user can specify 
the grid for each state variable as a vector using the Regu-
lar Grid option, see Fig. 4. The software can also pick the 
regular grids automatically. The Advanced Grid option is 
used if IX > 1, and in this case the State Grid Set and State 
Grid Sequence function are loaded from MATLAB work-
space or from a file. The latter option can be used to 
implement iterative dynamic programming whereby the  

 

 

Fig. 4. Optimization console of the static optimization envi-
ronment shows the status of static optimization at dif-
ferent operating points (w) after its completion. If cir-
cle is ‘filled’ then a feasible solution has been found, 
otherwise it is ‘hollow’. The user can analyze the op-
timal responses using trade-off, contour and surface 
plots which can be open by clicking on operating 
points (examples shown). 

state grid at each time instant is centered around the opti-
mal state trajectory from the previous iteration and reduced 
in size with each new iteration (the total number of the grid 
points remains the same for each iteration). The iterative 
dynamic programming may be used when the state dimen-
sion is high and the use of conventional dynamic pro-
gramming is computationally prohibitive.3 

The Control Sets, Ui , and Control Set Sequence func-
tion, SU, may be specified by the user in MATLAB work-
space or in a file. They can also be generated as a finite set 
of control policies (2), (3) with the help of the special static 
optimization environment applied to the static subsystem in 
(1). The static optimization environment is supported by its 
own set of integrated graphic user interfaces, see Fig. 5. 
The user can define multiple operating modes, where each 
mode may have its own objective function, equality and 
inequality constraints, and ranges for input variables. The 
objective function for each mode is specified as a weighted 
sum of the trade-off variables for this mode and is mini-
mized with respect to us for different values of the weights 
at different operating points (defined by w). Each m in (2) 
then corresponds to a particular combination of an operat-
ing mode and a weight in the static optimization environ-
ment. The static optimization environment can be applied 
either to MATLAB/Simulink models of the static subsys-
tem or to a static subsystem response data set (e.g., engine 
mapping data). A special interpolation procedure was im-
plemented to enable the latter option. See the Appendix. 
The Control Set reduction functionality performs a 
pairwise comparison of the vectors in each of Ui, and 
eliminates one in the pair of two if they deviate from each 
other by less than the specified tolerance. 

 
Fig. 5. The appearance of Graphic User Inteface for running 

dynamic programming. The insertion menu at the bot-
tom is opened with a right mouse click and enables the 
user to enter a previously defined variable name into a 
trade-off variable expression. 
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4 This property helps reduce computing times in a situation 
when new weights are added iteratively based on the analy-
sis of past dynamic programming results. 

The Operating Variable Set, W, and Operating Vari-
able Sequence function, SW, can be either directly specified 
by the user (in MATLAB workspace or in a file) or they 
may be generated automatically based on the built-in pow-
ertrain and drive cycle libraries. In the latter case, the user 
selects a vehicle type and a drive cycle type. Similarly to 
Control Set reduction, the Operating Variable Set reduction 
functionality can be applied to reduce the number of ele-
ments in W based on the user-defined tolerances.  

To improve the computational efficiency, the output 
map, hy(x, u, w, p) and the state update map f (x, u, w, p) are 
first pre-computed for all values of x, u, and w in the speci-
fied State Grid Set, Control Sets and Operating Variable 
Sets. Then the calculation of J = λTy and the updates (6)-(8) 
are made in the vectorized form which can be efficiently 
and rapidly4 handled by MATLAB [9]. The user is pro-
vided with several options to trade-off available RAM ver-
sus the speed of computations. If memory is limited, the 
pre-computed output map and state update map can be 
stored in multiple files and are loaded into the memory on 
“as needed” basis.  

The pointwise-in-time constraints, zmin ≤ z(t) = hz(x(t), 
u(t), w(t), p) ≤ zmax, are handled by augmenting a penalty 
term,  

 
1

( ( ))
t T

T
z

t
z t

=

=
λ φ ,∑  

to the cost function. Here φ is a built-in penalty function 
applied to each component of z, which is non-zero only if 
z(t) violates the constraints while λz is the vector of weights. 
The software provides flexibility to handle constraints that 
are either persistent (i.e., applied at all time instants), final 
(applied only at the final time instant) or intermittent (ap-
plied only at specified time instants). It prebuilds the tables 
for z in the same way as for y.  

The software environment leads the user through a se-
ries of integrated Graphical User Interfaces (GUIs) that 
load the model and model information file; define State 
Grid Set, Control Sets and Operating Variable Set as de-
scribed above; define objective function, constraints and 
desired parameter sweeps; and, finally, provide means to 
visualize and analyze the results in numerous ways. One of 
the user interfaces for running the dynamic programming is 
illustrated in Fig. 5. Prior to running the dynamic pro-
gramming (which is a computationally intensive and time- 
consuming task) the user can quickly test settings to check 
for errors and warnings; in particular, the software checks 
to ensure that it can calculate all expressions that the user 
has defined. The user-specified initialization and termina-
tion scripts are executed before the start of the optimization 
and after its completion; the initialization script may also 
be specified to run after each parameter or weight run.  

Once the dynamic programming phase has been com-
pleted, the user can analyze and visualize optimal trajecto-
ries in numerous ways. Since the dynamic programming 
provides an optimal control function, u∗(t, x), the optimal 
trajectory corresponding to any initial condition can be 
generated rapidly via simulations of the model (either of 
the same model as was used for optimization or, if neces-
sary, of a higher fidelity model). Figure 6 shows a trade-off 
plot where by clicking on any point the user can plot the 
trajectories of optimal inputs, outputs, and states corre-
sponding to that point. A smoothing utility permits the user 
to graphically change the control trajectory (e.g., smooth it 
out if it shows excessive chattering) and compare the re-
sulting cost and constraint violation with the original opti-
mal solution. The original solution is referred to as Parent 
while the solutions derived via this smoothing are referred 
to as Children; the software keeps track of Children and 
graphically shows them on the trade-off plot connected to 
Parent via dashed lines. The smoothing can be particular 
effective when it is applied to the mode m in (3). Since 
sometimes optimal solutions may appear non-intuitive, 
smoothing provides a mechanism for checking if certain 
features of optimal trajectories are really required, or if 

 

Fig. 6. The appearance of trade-off plots and trajectory analy-
sis GUI. Analysis variables used to form the trade-off 
plots can be defined from trajectory data using valid 
MATLAB expressions and functions. The points are 
color-coded and shape-coded depending on whether 
they satisfy the specified requirements and pointwise- 
in-time constraints. The user can left click on individ-
ual points to access the Trajectory Plotting GUI, Tra-
jectory Comparison GUI and Smoothing Utility GUI or 
right-click to get a summary information about the so-
lution (shown). 
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they may be caused by model irregularities. The software 
implements a database to avoid recomputing the optimal 
dynamic programming solutions or simulated trajectories if 
these solutions or trajectories have been already computed 
and the problem formulation did not change. 

III. IMPLEMENTATION OF PARAMETER 
OPTIMIZATION APPROACH 

In the parameter optimization approach [17] only cer-
tain parameters, p, in a specified control policy, u0(t, x, p), 
are optimized. To specify a control policy within the soft-
ware environment, the user is provided with a mechanism 
to define different operating modes. For each mode, an 
objective function and constraints are defined to select the 
control input at time t, i.e., select u0(t, x, p)∈Uij, j = 1, …, 
K(i), SU(t) = i. The objective functions and constraints can 
be functions of parameters and these parameters can be 
included into the vector p for the subsequent optimization. 
For example, for the DISI engine case study [9], different 
modes may correspond to stratified, homogeneous and 
purge operation.  

To complete the definition of the control policy, the 
user defines the mode transition logic. Specifically, the 
logic-based conditions that enable or disable mode transi-
tions to specified destination modes based on states, control 
inputs, and operating variables of the powertrain are de-
fined. These transition rules may depend on threshold pa-
rameters which can be included into the vector q and sub-
sequently optimized. Figure 7 illustrates a user interface for 
defining these parameter-dependent mode transition rules.  

The parameter optimization of q can be performed in a 
number of different ways including exhaustive parameter 
sweeps, designed experiments, search algorithms, etc. The 
approach provides the user with a flexible and powerful 
framework to optimize parameters in specified control 
policies and analyze the results while keeping the overall 
computational effort containable even for large simulation 
models. In fact, at this stage the use of parameter optimiza-
tion by internal customers has exceeded that of the dy-
namic programming. Still as Fig. 8 shows the dynamic 
programming based solution can be useful in delineating 
opportunities for improvement.  

IV. INTERFACE TO MATLAB/SIMULINK 
MODELS 

To correctly interface MATLAB models with the op-
timization software environment, the model must be ac-
companied by a model information file. The model infor-
mation file identifies key variables and information 
important for the optimization such as states, inputs, out-
puts, parameters, units, variable ranges, default values, and 
constraints. The supported model types are the m-file 

(MATLAB function), the mdl-file (Simulink) and the 
mat-file (MATLAB mat files) models. The model informa-
tion file is generated automatically based on the informa-
tion the user enters into a model information file editor. 
Alternatively the model information file can be created 
manually. For the mdl-files and with the model information 
file editor open, the user can click directly on the outputs of 
Simulink blocks; then the model information editor record 
the path to the relevant variable into the model information 
file. The mat-files models are used in conjunction with the 
static optimization environment for generation of a finite 
set of control policies (2).  
 

 
Fig. 7.  User interface for defining mode transition logic. 

22 22.5 23 23.5 24 24.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Average Fuel Consumption (mpg)

A
ve

ra
ge

 N
O

x 
E

m
is

si
on

s 
(g

/k
m

)

   Pareto front 
based on PO

Pareto front 
based on
DP

Performance for different
      parameter values 

 

Fig. 8. Pareto fronts (Fuel consumption versus emissions) for 
DISI engine based on parameter sweeps for fixed 
structure policies (PO) and based on dynamic pro-
gramming (DP). Parameters being swept are purge ac-
tivation threshold and feedgas NOx emission index 
(see [17]). 
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In order to run optimizations faster, the plant model 
can be implemented in the form of an s-function or in C (as 
a C-MEX file called from MATLAB wrapper). The soft-
ware environment can generate s-function automatically 
from a model with native Simulink blocks (with certain 
restrictions) using Real Time Workshop. Table 1 illustrates 
the computational speed improvements with this approach.  

Table 1. Execution times in sec for s-functions and multiple 
parallel sessions for a model with native Simulink 
blocks and for automatically generated s-function. 

MATLAB  
sessions 

native Simulink 
blocks s-function

1 1028 − 
2  524 188 
3  360 135 

V. PARALLEL COMPUTATIONS 

Parallel computations can reduce the time to complete 
weight sweeps and parameter sweeps for the dynamic  
programming-based optimization and for the parameter 
optimization. Additionally, parallel computing can be em-
ployed to build the output and state update maps faster. 
Either single processor computers connected over a net-
work or a single multi-processor workstation can be used to 
implement this approach.  

In the case of a multi-processor workstation, operating 
systems such as Windows 2000 automatically launch a new 
MATLAB session on a different processor if there is a 
MATLAB process running on one of the processors. So, 
multiple parameter sweeps can be completed faster using 
parallel sessions on a multi-processor machine as compared 
to a single processor machine. Tests were conducted on an 
eight processor Windows 2000 machine with 512MB of 
shared RAM. Standard demo example with settings for 5 
parameter sweeps were run using 1, 2, and 3 MATLAB 
sessions on this machine. The results for an example with 5 
parameter sweeps are illustrated in Table 1.  

VI. EXAMPLES 

In this section we present three additional examples 
illustrating the potential use of the software environment.  

6.1. Engine idle speed control 

We first consider an example of an engine operating 
near idle (in neutral) for 2 sec in the engine warm up proc-
ess. The engine speed is constrained between 800 rpm and 
1200 rpm. At the end of the time interval the engine speed 
must be between 980 and 1020 rpm. The control inputs are 
the indicated torque command to the engine and spark re-
tard. There is a rate limit on the indicated torque that the 

engine can develop, which is no more than 5 Nm within 
0.01 sec. The rate limit is handled by introducing an auxil-
iary state z(t) which stores the past value of the indicated 
torque; then the rate limit becomes a pointwise-in-time 
state/control constraint that the software environment can 
handle.  

To achieve best fuel economy, it is clear that the en-
gine speed must stay close to 800 rpm for as long as possi-
ble. On the other hand, for the maximum exhaust heat gen-
eration the engine speed must stay close to 1200 rpm for as 
long as possible. However, if we minimize a weighted sum 
of total fuel consumption and minus the exhaust heat the 
optimal speed trajectory can be oscillatory, see Fig. 9.  

6.2. Optimizing hydrocarbon injection for a diesel en-
gine 

Our second example is an application of the software 
to a diesel engine case study treated in [11]. The engine is 
equipped with an Active Lean NOx Catalyst (ALNC) as 
well as with a hydrocarbon (HC) injector upstream of 
ALNC in the exhaust system. The HC injector supplies 
hydrocarbons (i.e., raw fuel) to the ALNC to ensure con-
version of NOx emissions in the ALNC. The trade-off 
variables in this problem are the fuel consumption by the 
HC injector and the post-ALNC NOx emissions. The key 
dynamic states in this problem [11] are the temperature of 
the ALNC and the amount of HC stored in the ALNC.  

In the original problem formulation, the total flow rate 
through the ALNC, the concentrations of NOx, HC, and 
oxygen at the inlet of the ALNC, as well as pressure and 
temperature at the inlet of the ALNC are prescribed as 
functions of time [11]. The hydrocarbon injection rate is 
the quantity being optimized. We partition the vector of 
conditions at the inlet to the ALNC as  

 1 2[ ]T T
d d du u u= , ,  

where ud1 is the hydrocarbon injection rate and ud2 is the 
vector of the total flow rate through the ALNC, the con-
centrations of NOx, HC, and oxygen at the inlet of the 
ALNC, and pressure and temperature at the inlet of the 
ALNC. The Control Sets are generated so that the elements 
of each of the Control Set differ from each other only in the 
ud1 component but not in ud2 (which is prescribed). The 
dynamic programming is applied to the resulting problem 
formulation.  

Figure 10 illustrates the setup of the screens for ana-
lyzing and visualizing the dynamic programming optimiza-
tion results. Figure 11 illustrates the Pareto front in terms 
of average fuel consumption by the HC injector and aver-
age NOx convergence efficiency of the ALNC. Figure 12 
illustrates Graphic User Interface for plotting the trajecto-
ries corresponding to the selected point on the Pareto front 
as well as the trajectories of stored HC and HC injection 
rate. 
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Fig. 9. Optimal speed control example with state constraints: 
Fuel consumption versus exhaust heat trade-off plot. 
The plot on the bottom shows engine speed trajectories 
corresponding to minimum fuel consumption, maxi-
mum exhaust heat generation and a minimum of 
weighted sum of fuel consumption and minus exhaust 
heat. 

 

Fig. 10. The appearance of Graphic User Interface for analyz-
ing and visualizing the dynamic programming opti-
mization results. 

6.3. Optimizing marketing strategy 

The software is sufficiently flexible to also handle 
non-powertrain related dynamic optimal control problems. 
One such example is the dynamic optimization of manu-
facturer advertising and promotion strategies for a product 
(such as a car) when a retailer or a dealer first gets the 
product from the manufacturer and then sells this product 
to the customer. The manufacturer does not directly control 
the sales but can affect them and the retailer orders via 
discount and advertising. See Fig. 13.  

 
Fig. 11. The Pareto front plotted in terms of average conver-

gence efficiency versus average hybrocarbon injec-
tion rate. Right clicking on a point on the Pareto front 
provides the information menu about the point. 

 
Fig. 12. The appearance of Graphic User Interface for plotting 

the trajectories corresponding to the selected point on 
the Pareto front (Top). The trajectories are the stored 
HC in the ALNC (Lower Left) and the fuel injection 
rate by the additional injector (Lower Right). 
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Fig. 13. The process of manufacturer, retailer, and consumer 
decisions from [18]. 
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The model for this process from [18] includes the dy-
namics of the manufacturer, retailer and consumer. The 
manufacturer objective is to maximize revenues net of 
monthly advertising expenses (MADV(t)) and a per-case 
trade deal discount (MDISC(t)), i.e.,  

 
1

( ( )) ( ) ( ) max
t T

t
MM MDISC t TRO t MADV t

=

=
− ⋅ − → ,∑  

where MM is the manufacturer margin and TRO(t) are the 
total retail orders (cases). The model has four states: retail 
beginning inventories (INV), promotion intensity (PINT), 
past manufacturer trade discount and past manufacturer 
advertsing expenditures. Figures 14-16 illustrate the 
dynamic programming based solution and confirm a peri-
odic nature of the optimal promotion and discount strate-
gies. 
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Fig. 14. Trade-off between revenues and marketing expenses 
(Pareto front). 
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Fig. 15. Discount trajectory corresponding to point A on the 
Pareto front. 
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Fig. 16. Advertising trajectory corresponding to point A on 
the Pareto front. 

VII. CONCLUSIONS 

The paper discussed at a high level several computational 
and user interface solutions for implementing an optimal con-
trol based powertrain system assessment in a user-friendly 
software environment. A potential for future extensions exists 
and includes implementation of additional optimization algo-
rithm and analysis options, ways to address variability and 
uncertainty in the inputs and model parameters, as well as 
automatic generation of parameter-dependent control policies 
from the optimal control solutions. 

ACKNOWLEDGEMENTS 

Alongkrit Chutinan and Gopalan Raghavachari of 
Emmeskay, Inc. have contributed to the development and 
implementation of the software environment discussed in 
this paper.  

REFERENCES 

 1. Cassidy, J.F., “A Computerized On-Line Approach to 
Calculating Optimum Engine Calibration,” SAE paper 
770078, SAE International (1978).  

 2. Dohner, A., “Transient System Optimization of an Ex-
perimental Engine Control System Over the Federal 
Emissions Driving Schedule,” SAE paper 780286, SAE 
International (1978).  

 3. Trella, T., “Spark Ignition Engine Fuel Economy Con-
trol Optimization-Techniques and Procedures,” SAE 
paper 790179, SAE International (1979).  

 4. Rao, H., A. Cohen, J. Tennant, and K. Van Voorhies, 
“Engine Control Optimization via Nonlinear Program-
ming,” SAE paper 790177, SAE International (1979).  

 5. Rizzo, G. and C. Pianese, “A Stochastic Approach for 
the Optimization of Open-Loop Engine Control Sys-



208 Asian Journal of Control, Vol. 8, No. 3, September 2006  

tems,” Ann. Oper. Res., Vol. 31, pp. 545-568 (1991).  
 6. Schmitz, G., U. Oligschlager, G. Eifler, and H. Lechner, 

“Automated System for Optimized Calibration of En-
gine Management Systems,” SAE paper 940151, SAE 
International (1994).  

 7. Cohen, A., K. Randall, C. Tether, K. van Voorhies, and 
J. Tennant, “Optimal Control of Cold Automobile En-
gines,” SAE paper 840544, SAE International (1984).  

 8. Sun, J. and S. Sivashankar, “Issues in Cold Start Emis-
sion Control for Automotive IC Engines,” Proc. Amer. 
Contr. Conf., Philadelphia, PA, pp. 1372-1376 (1998).  

 9. Kang, J.M., I. Kolmanovsky, and J.W. Grizzle, “Dy-
namic Optimization of Lean Burn Engine Aftertreat-
ment,” J. Dyn. Syst. Meas. Contr., Vol. 123, pp. 153-160 
(2001).  

10. Brahma, A., Y. Guezennec, and G. Rizzoni, “Dynamic 
Optimization of Mechanical/Electrical Power Flow in 
Parallel Hybrid Electric Vehicles,” Proc. 5th Int. Symp. 
Adv. Vehicle Contr., Ann Arbor, MI (2000). 

11. Aswami, D.J., M.J. van Nieuwstadt, and J.A. Cook, 
“Control-Oriented Modeling of a Diesel Active Lean 
NOx Catalyst Aftertreatment System,” J. Dyn. Syst. 
Meas. Contr., Vol. 127, No. 11, pp. 1-12 (2005).  

12. Lin, C.C., H. Peng, and J.W. Grizzle, “A Stochastic 
Control Strategy for Hybrid Electric Vehicles,” Proc. 
2004 Amer. Contr. Conf., Boston, MA, pp. 4710-4715 
(2004).  

13. Kolmanovsky, I., I. Siverguina, and B. Lygoe, “Optimi-
zation of Powertrain Operating Policies for Feasibility 
Assessment and Calibration: Stochastic Dynamic Pro-
gramming Approach,” Proc. Amer. Contr. Conf., An-
chorage, AK, pp. 1425-1430 (2002).  

14. Tate, E. and S. Boyd, “Finding Ultimate Limits of Per-
formance for Hybrid Electric Vehicles,” SAE paper 
2000-01-3099, SAE International (2000).  

15. Kolmanovsky, I. and I. Siverguina, “Feasibility Assess-
ment of Operating Policy Optimization of Automotive 
Powertrains with Uncertainties Using Game Theory,” 
Proc. ASME Int. Mech. Eng. Cong. Exp., New York 
(2001).  

16. Bertsekas. D.P., Dynamic Programming and Optimal 
Control, Athena Scientific, 2nd Ed. (2001).  

17. Kolmanovsky, I., M. van Nieuwstadt, and J. Sun, “Op-
timization of Complex Powertrain Systems for Fuel 
Economy and Emissions,” Proc. IEEE Int. Conf. Contr. 
Appl., Vol. 1, Kohala Coast, Hawaii, pp. 833-839 
(1999).  

18. Neslin, S.A., S.G. Powell, and L.S. Stone, “The Effects 
of Retailer and Consumer Response on Optimal Manu-
facturer Advertising and Trade Promotion Strategies,” 
Manag. Sci., Vol. 41, No. 5, pp. 749-766 (1995).  

 
 
 
 

APPENDIX 
INTERPOLATION PROCEDURE 

The static optimization may be performed directly 
over a set of static subsystem output response data stored in 
a .mat file. The data have a general form ( )q q q

s sv f w u= , , 
q = 1, …, Q, where Q is the total number of data points, wq 
is the operating variable vector at the qth point, q

su  is the 
vector of the static control variables at that point and vq is 
the vector of output response variables of the static subsys-
tem.  

The static optimization seeks to optimize q
su  for all 

w∗ in the specified Operating Variable Set, W. To perform 
the optimization it is necessary to approximate the value of 

( )q
sf w u∗, . Accomplishing this using the conventional 

interpolation can be intricate because the data set 
{( ) 1 }q q

sw u q Q, , = , ,  may not be in the suitable form.  
The following procedure can be employed instead. 

First, all points in the data set with wq sufficiently close to 
w∗ are determined. For these points, ( )q

sf w u∗,  is ap-
proximated based on the value of ( )q q

sf w u, . To compute 
the approximation, the output response variables (elements 
of the vector v) are classified into two types. The variables 
of the first type are scaled by the power ratio 

1 2 1 2( ) /( )q qw w w w∗ ∗⋅ ⋅  while the variables of the second type 
remain unchanged between wq and w. The examples of 
variables of the first type are the flow rates which may be 
scaled by the indicated power ratio. The examples of vari-
ables of the second type are temperatures which remain 
unchanged.  

An optional “belief” function, dependent on the dis-
tance from wq to w∗ may be utilized by the user to scale the 
trade-off variables. Such a “belief” function can discourage 
using the minima based on large degree of extrapolation. 
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