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PREFACE

The problem of determining the scattering of an incident electro-
magnetic wave by a sphere was first solved in 1908 by Mie. Contributions
to the solution of the problem of determining the scattering of an incident
electromagnetic wave by an ellipsoidal body were made by Herzfeld in 1911,
Gans in 1920, and M3glich in 1927 (Ref. 13). As Stratton (Ref. 16, p. 573)
points out, however, none of this work on ellipsoids was carried through to
a completely useful solution and the many practical applications of the
theory show the need for obtalning a more useable solution. Such a solution,
it is believed, is contained in the following pages for a plane wave striking
nose-on a prolate spheroid. The problem is solved for both vector (electro-
magnetic) and scalar (sound) waves. It is believed that it would be a
1ittle more difficult to obtain a similar solution for the case of broad-
side incidence. Dr. Leigh Page and his colleagues have done much work on
this problem of broadside incidence. The problem of determining the scat-
tering for arbitrary angles of incidence is considerably more difficult.

As pointed out in the Conclusions of this work the usefulness of the
results obtained is limited by the lack of extensive tables either of the
prolate spheroidal functions or of the series coefficients of these func-
tions. Because of the usefulness of such tebles it is hoped that those
already existing will be greatly extended.

In conclusion the writer wishes to express his appreciation to
Mr. Gunnar Hok for many illuminating discussions and helpful suggestions,
and to Mr. Yuji Morita for his careful checking of mathematical detalls
and carrying out of the lengthy numerical calculations. Dr. L. J. Chu, of
the Massachusetts Institute of Technology, very kindly spent several hours
with the writer in investigating the possibilities of finding some special
vector functions for the expansions of the vector fields in order to sim-
plify the resulting expression for the scattered wave.
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I. INTRODUCTION

The present paper is concerned primarily with the scattering of a
plane electromagnetic wave by a perfectly conducting prolate spheroid., For
purposes of comparison, however, the problem of the scattering of a scalar
wave by a smooth, perfectly reflecting prolate spheroid, is also solved.

Five methods are known to be available for the solution of scattering
problems involving electromagnetic waves. If the wavelength of the electro-
magnetic waves being scattered is very much shorter than the significant
dimensions of the scattering object, the reflection laws of geometrical op-
tics may be used. This method was widely utilized during World War II for
the calculation of the scattering of microwave radar waves (Ref. 1,2,3,k4,5).
At somewhat longer wavelengths, yet under conditions where the wavelength
still is short compared with the important dimensions of the scatterer, the
methods of physical optics are applicable (Ref. 6,7,8). If the wavelength
is very long compared with the major dimensions of the scatterer the cel-
ebrated Rayleigh scattering law applies. At wavelengths of the same order
of magnitude as the significant dimensions of the scattering object, electro-
magnetic field theory must be used. This 1s an exact method of attack which
involves no physical approximations. It often is necessary, however, to
introduce mathematical approximations in order to achieve solutions. Fortun-
ately, at wavelengths of the same order of magnitude as, or greater than, the
significant dimensions of the scatterer, the mathematical problems arising
from the application of electromagnetic field theory are most amenable to
solutlon, so this method has its greatest applicability where the approximate
methods of geometrical optics and physical optics fail.

During the war Schwinger applied a variational method to the solution
of the problem of determining the effects caused by discontinuities in wave-
guides, under conditions where the vector problem can be reduced to a scalar
problem (Ref. 9). Recently this method has been applied to the diffraction
of electromagnetic and scalar waves through an opening in a plane screen
(Ref. 10,11,12). So far the method has not been applied to the scattering
of either scalar or vector waves by a three-dimensional object.

The principal problem solved in the present work is that of determining
the scattering of a single-frequency plane electromagnetic wave striking
nose-on a perfectly conducting prolate spheroid, which is embedded in free
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space. The method of attack 1s that of electromagnetic field theory,
although the results of applying the methods of geomstrical optics and of
physical optics also are included. Rationalized MKS units are used. Fol-
lowing engineering practice, \ﬁ:f is indicated by "J", and time variations
by the expression et T, Tne latter step 1s valid since we are concerned
with only the single-frequency, or monochromatic, case. This is not a
serious limitation since, of course, any non-sinusoidal wave, including
pulses, can be expressed as a sum of sine waves. Vector quantities are
underlined.

Moglich (Ref. 13) has attacked the problem of determining the scatter-
ing of an electromagnetic wave by a triaxial ellipsoid. His approach is
that of determining solutions of an integral equation which arises from the
use of Whittaker's (Ref. 1L4) integral solution of the scalar wave equation.
However, Mdglich's results are believed to be considerably less amenable
to numerical calculation than are those contained herein. In fact the only
numerical results obtained by Mdglich are those for the scattering caused
by a circular disc, which is a limiting case of an oblate spheroid.

1I. PRELIMINARIES

For the solution of the present problem the use of prolate spheroidal
coordinates is indicated. It is assumed that the origin of the prolate
spheroidal coordinate system coincides with the origin of the rectangular
coordinate system and that the z-axis of the rectangular coordinates is the
axls of rotation of the prolate spheroidal coordinates. The two coordinate
systems (Fig. 1) are related by these equations:

x= FAEZ-D)(1-972) cos ¢ (1)

Y= @EF-D)(1-92) sing, (2)

z=r¢cn (3)

The surfaces of oonstant.§ are confocal prolate spheroids with common
foci at f and f' on the z-axis. The surfaces of constant are two-sheeted
hyperboloids of revolution about the z-axis with the common foci f and f°.
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Half-planes through the z-axis are surfaces of constant ¢ , and 55 is the

angle between these planes and the upper half of the xz-plane, measured in
a counterclockwise direction when looking in the direction of negative z.

F is the semifocal distance. These prolate spheroidal coordinates form a

right-handed system when taken in the order 7 5 g 5 ¢ .

If "a" 1s the semimajor axis of the spheroid, "b" the semiminor axis,
and "e" the eccentricity of the generating ellipse, it may be shown that
the following relations are valid:

b:d\/]—cfz , (%)

The distance to any point in space from the origin is given by

rENJxR+yR+ z2 (6)

14:/7"/52—]+72| ] (1)

At large distances from the origin, g becomes very large compared with unity
and 7 so, under these conditions,

lim r=F§& (8)
g,rr>00

The angle € TDetween the radius vector 77 and the z-axis is given by

- -7 Z
6= CosS > - (9)

In the limit, as 7z» and £ become very large,
lim & =cos™y,
g, 1> (10)
I
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Solutions of the scalar Helmholtz equation,
VY + k¥ =0, (11)

are used as presented by Stratton, Morse, Chu and Hutner (Ref. 15).

In solving equation (11) by the method of separation of variables, three
gsecond-order linear ordinary differential equations result; one in 7) , one in
5 and one in ¢> . Hence there are two independent solutions of each equa-
tion. The separation constants are »¢ and 4. Actually a quantity ¢ , which
is related to 4 and which assumes integral values, is used instead of & .

Solutions of the equation in ¢ are eijm¢, sin mgﬁ and cos mg‘ . Ob=
viously 77 must be an integer in the present work.

The differential equations in 7) and é have regular singular points
at+1l and an irregular singular point at infinity. Consequently, when the
equations are solved in terms of a series of orthogonal functions, a three-
term recurrence relation results for the determination of the series coef-
ficients and these coefficients then can be found only as numerics.

Due to the range of 77 (—] < 77 £ +7 ) , 1t 1is necessary to use only
the first solution of the equation in 7) , since only this solution 1is regular
throughout the range of 77 . The solution given by Stratton, Morse, Chu
and Hutner is

OO/ m m
St (9)=2_ , ‘pr (7). (12)

rn=0,1

The numerical coefficients a’Z’l are tabulated by Stratton, Morse, Chu and
Hutner for wvalues of c=27”/? =AF Trom O to 5 and for values of mm+1 from
9 to 3. The prime on the summation symbol indicates that the summation is

to be over even values of 7, if [ 1is even,and over odd values of M , if [

. 7 .
is odd. ’Dn+m (77) are assoclated Legendre functions.
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& has the range 7 = g =00, Stratton, Morse, Chu and Hutner give the
following solution which is regular for all finite values of & :

(1) (52—1)”}2 . ml (m+2m)/
€)= 3 e d; (8),
ml )/ ﬂ/ Imn
5 del (n+2m —lp
n=o0,1

where jm+n(c &) is the spherical Bessel function of the first kind.

'jm+n (C‘g) = ,ZTCT———g m+n+ (C‘g) (lu)

A second solution which has logarithmic singularities at §= *71is also
given:

o) (& —1) St ml (n+2m)
(€> ’"Z dml (ﬂ+2m)/ _Zo, ”d n/ ,,,+,,(C§),(15)
n/

7701

where M en (c&) 1is the spherical Bessel function of the second kind.

L €8)= 0" T ey (€ 8), 016)

nmm(c‘g): 2C§ n+m+

2) -
When the above expression for R;?Z (&) converges very slovly ( &= 1
or m large), the following equations may be used:

l even:

2cmi (_Q'M) to m[ m (17)

2)r(m-4)d, Zd”’lmzmv . I @min (8)

(2)

a1 (8) =

r(%
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pemr (Laige) 5 i
e = T )
’ <_Zj2-—1_>r( )a’ Za/ 1_(77__'1'2_”'_)_/ mZ-oo @resn(

The Qmm (&) are Legendre functions of the second kind.

Two other useful solutions of the differential equation in é’. can be
formed as follows:

ROE) =R £+ jRE) (E) (19)
RAE) =R (E)- jRE)(E). (20)

These are noteworthy for having the following asymptotic behavior:

+1
(e Lt )

lim Ry (&)= & , (21)
cE*+o

lim A’M;(i): gfg e—j(cg— l+g+1 ") . (22)
cg~

The solutions of equation (11) which are used in the present paper are

Vot = St () B, “)(£)cosmé . (23)

The blank superscripts on wml and Rrgz;(g) indicate that any one
of the integers 1, 2, 3 or 4 may be used. Of course, the equation holds
only for a single value of this superscript used throughout the equation.

T
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From these solutions of the scalar Helmholtz equation the following
solutions of the vector Helmholtz equation may be formed (Ref. 16)
(g being any arbitrary constant unit vector):

() — )
PAR ISV AL (24)
() — ,() _ ()
My =L xa=VV¥,/xa, (25)
() — 17 0)

Morse and Feshbach (Ref. 17) show that each pair of independent sets
of solutions of the vector Helmholtz equation forms a complete set of or-
thogonal functions. Therefore we may use series in terms of £ ,,, M,
and ;yml to express any ordinary vector function. Only_Ang and ly%l are of
use here since the propagation of electromagnetic waves in free space is
under consideration, which requires that

V-E=o0, (27)

V-H=0 (28)

and from the defining equations given above it is clear that

voLl)# o, (29

VM=V N =0, (30)
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Therefore, £ and A may be expressed in terms of infinite series of M

and N” functions and, because of equations (27), (28) and (29), éfn)l
will be of no use to us.

IIT. EXPRESSION FOR INCIDENT WAVE

Morse (Ref. 18) has developed an expansion, in terms of prolate
spheroidal functions, for a plane scalar wave of unit amplitude. The
following form of this expansion will be useful for expressing the plane
electromagnetic wave incident upon the prolate spheroid:

cIAX — 22 7n+1(2— )cos[m(¢‘§)] 5:;) (cosp) X ‘5‘;?(7]) (1)($)

where

X=xsinpcosg + ysinposing + zcosp (32)

X=F [gyco.s'/o + \f(z‘jz-z)(l—zjz)' Sinp cos (¢-—<§)] , (33)

and

o0y

_ 2(z2m+n)/ ml |2
Nt = Z (2m+z2n+1)n! ( 7 )

n=o0,1

(34)

The prime on this summation sign again signifies that the summation is
over even va.lues of n, if ! 1is even, and over odd values of 1, if ! is
odd. The a’ are the numerical coefficients tabulated by Stratton, Morse,
Chu and Hutner.
jwt‘
Now X measures distance along the line of propagation. Since &
is being used as the time factor, the expression eJ/‘X indicates wave
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propagation in the direction of decreasing X . /O is the angle between the
positive portion of the line of propagation and the positive z-axis. & 1is
the angle between the positive x-axis and the proJection on the xy-plane of
the positive portion of the line of propagation. & is positive when measured
in a counter-clockwise direction from the positive x-axis, when looking along
the z-axis in the direction of decreasing z. Due to the symmetry about the
z-axls, the coordinate system can be rotated about the z-axis until the line
of propagation lies in the xz-plane with the result that & is zero. The
resulting form of equation (31) is

e‘ikX:XZ:Amz vl (9,€,8) (35)
where
y/n(zlz)(%éaié) = S,(,f; (7)/?;2 (§)cos md (36)
and

_ 2j m+l(2_80,m) (1) .
A .= - S (cosp) . (37)

The electric field intensity vector I_é' *  and the magnetic fleld
intensity vector "_}i ¢  of an incident monochromatic plane electromagnetic
wave being propagated along the line of X in a negative direction, can be
expressed thus:

Uting,zt)= Exy et =&, ekl &It = (38)

. I . I . [ ik jwt
(i B+ 1)E, + 1,E,) eI X eIt

: . . . 7 ()
]E’: {é?o eJkX:(!Z[Ez+ _{j IEj + .Z.Z EZ) ZI Aml ‘bmll ’ (59)
m,

10
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Iy, _ ShX — o2 1 AN
W=y kX = (itz+—5yHy+—‘sz)Zz'Amz v (140)
m’

[é' “, [L{ fand the direction of propagation (along the line of which X is
measured) must be mutually perpendicular. Equations (38) and (39) make
evident the meaning of the notations used to represent the various forms
of the field vectors. ¢ I, and _iz are the unit vectors in the x, y and

X s
z directions, respectively.

By making use of Maxwell's equations for a monochromatic wave being

propagated in free space it is not difficult to derive the following re-
lations:

E=-j5\E VXA, (41)

H

. 7
J?‘\//Téi VXxA& . (42)

By using equation (40) in equation (41) one obtains

E = VE [V LA ) ()
e, Y A v
§ Ty Ly Tl T

. [ (1)
+ VX(éz['[z ;Aml lel }

11
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E= i VEH L A (V)% L)
ZAM(V Vi X i)

ZAmZ(v (”XZ)] .

()

Equation (25) can be used to simplify equation (LlL).

Z:‘JAF[IzZAmZ ‘“+"H ZAml W

[H ZA,,,z M(I)j] . (15)

)

Here M (I)Z is used to signify that the constant unit vector iz was
used for g to form IM“} and similarly for ‘yM (1) and ZMU) . The

superscript "z" indicates that 1‘?(5’(.«2) was used 1n forming ;&7(711) .

In an analogous way the following expression for ‘Z_{ is found:

=i e [ Doan v e, DAy 0o

[E Z Aml M(J)] .

Now let it be assumed that the incident plane wave is moving along the
z-axis in the negative z-direction, that the electric vector has a magnitude
E, and points in the positive y-directlon, and that the magnetic vector has
a magnitude Hy and points in the positlve x-direction. This is the situation
for & plane electromagnetic wave striking the spheroid nose-on and it is
illustrated in figure 2. Aml , as glven by equation (37), then becomes

12
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FIG. 2 INCIDENT ELECTROMAGNETIC WAVE

13
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2;7N2-8,,) o)

A = (7) .

ml le ml (47)
The following relations hold (Ref. 15, p. 68):
>’ ol
— . (2) —
m=0 sPa) = Y d; (48)
n=o,1
m>o : sHay=o . (%9)
Therefore, the expression for Aml becomes
250 7’ ol
— 0 — £J ° 0
m=0 A, = v 2 a, , (50)
ol n=o,1
m>0 A, =0, (51)
and N, ; becomes
o0 y, l
— 2 oL \Z 52
‘/Vol - 71--201 2n+1 (O/" . ( )

Equations (45) and (46) then take the forms
z
Im — _ . Lo Z, (1)
..€ - 7d Ao Aol —Af/ol ’
=0

o0

1k
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H, v 9w
o
—IZ Aoz ﬂol . (54)
=0

0f course ié_l_' can be expressed in the following form directly, by
meking use of equation (35):

o0

IQ_ o 1 dkz — 3 I (1)
__5_'—_{] Eoe T =y E'o Zvol ol ’7 g ¢) (55)
and then ¢, can be expressed in terms of i, l§ , and z¢ by means of

equation ( ‘é% Here 17] E £ and g4 are the unit vectors in the prolate
spheroidal coordinate system and the subscript of each indicates along which
coordinate direction it points. Equation (53) is used for I_é_‘._’ in this
analysis because this form of [é' makes simpler the evaluation of the inte-
grals which arise in satisfying the boundary conditions.

The vector expressions M(
follows: Dy definition

Y, 40) (1)
i A/lml and M ml BTe found as

ME=VEEx i, . (56)

m m

V( T expressed in prolate spheroidal coordinates and its gradient
may be found by using equation (78) on page 49 of reference 16. Using the
value of }&‘"g 1) given in equation (23), the gradient is found to be

() __ 53 )1 |1=92 | d (1) () o5 m
v¢ml—£7{F\/é27} [0/7 V)J ; (&) cos %}

. )1 | &3 0, N d 0
+ _lé{/r é2_72 Sml(7)[dg le (‘g)jlcos m?‘} (57)

. (-m) (1) .
’6 F x/(éZ_z)( ]-y2> l 7 7 m¢

15
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Here, again, the blank superscripts occurring on % () and A?” (}7') in-
dicate that any one of the integers 1, 2, 3 or 4 may be used, so long as the
same integer is used throughout.

—é-z also must be expressed in prolate spheroidal coordinates. One

may use the methods of tensor analysis to make this transformation.

4= by [ (82 =12 (£2- 7)) 2 cos ]
T e, £(1-92) % (82- 92 %2 cos 4] (58)
+_2¢:—.5‘in ¢:I

Then there results

M) =vel)x i, (59)

2"_1”51): £7F'1{77I£(£2—1)—1/2 (52—72)-/2 s (7):?”(5) cos ¢ sinmg

_(éz—l)z/z(gz'Vz)—/zé‘( (7)[d€z{’()(§)]sm¢ cos m,é}
+.§€F—I{(l-72)%(£2”7]2)—1/2[47 ,(7))] (&) sing cosmg
+ m7(1~7]2)—%(<§2—7]2)_% SR (E) cos Sinm¢}

+_£¢F“’{77(§2—1)(£2 )1 s (7)[45 ;}(g)]cos;é cosmd
(60)

+ 5(1_72)(52_72)-1[ (”(7)] (5) cos § cos m¢} .

16
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In a similar way one finds

M= V¥Ixi, (61)

My = i7F"{mé(€2—z>'1/2 (&2-92)" "2 SH (P &Y) (£) sing sinmp

+ (52—])1/2 (52_72)—1/2 ,5‘7(:1) (7)[0-% A’,,fz) (é)J cos ¢ cos mg }

+ —25,F {(1 72)/2(52 72) /2[017 S(l)(y)]ﬁ()(e:)cos¢ cos mg

+ m (1_72)-’72(52_?2)—/2 5(1) (7)‘? (l) (&) sirz¢ sin m;ﬁ}

+ _i,sF"{?](éz—z)(éz—?]z)'] s (77)[‘,51?(} (&)] sing cos mp

+E,(1—72)(§2 72)—1[ 5(1)(?7)] (g).s-z'ngi cosm¢} , (62)

17
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M= VEIx L, (63)

M = by (g2 P G SE R E) sinmy)
+ ng"{‘mé(iz‘f)—]/z(52“7)2)— ST Ry (&) sin msé}
+ iy F "{-5(5 )% (1-92) 2 (2o TS Y <7)[0,5A;‘;(5)}co.s m

+7(52-z)/2(1 72)/2(52 2)_1[4/7 ;11)(,7)] }(g)co.s'm;é}

Obvious simplifications result in the values of the three M-vectors
when m = O,

For the sake of completeness the following expressions for ¢, and

i, are included: -~

i o= ¢ :_7(52_1)]/2(£2_772)—]/z 35775@

+ 1, [£(-9)7% (&7 R 7% sing]

+ _2_¢:cos¢] , (65)

i, = LE(-pn) 2 (55977 ]

+ _25[77(52—1)1/2(52—772)‘% ] (66)

18
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IV. EXPRESSION FOR SCATTERED WAVE

The expression for the electric vector of the scattered wave will be
found for the special case of incident wave discussed in Section III,
namely, nose-on incidence.

The expression for the electric vector of the scattered wave must meet
the following conditions:

1. It must satisfy the vector wave equation (or the vector Helmholtz
equation for a monochromatic wave, as we have here).

2. Tts divergence must be zero.

3+ At very large distances from the prolate spheroid the scattered
wave must take on the behavior of a spherical diverging wave with
the center of the spheroild as its center.

L, The resultant of the incident and scattered waves must satlsfy the
proper boundary conditions over the surface of the spheroid.

Conditions 1 and 2 insure that the expression satisfies Maxwell's
equations and conditions 3 and 4 are the boundary conditions.

The M-vectors used in Section IIT to express the incident waves satisfy
the vector Helmholtz equation and have zero divergence, as is pointed out in
Section IT. Therefore, 1f the scattered wave is expressed as a linear combi-
nation of these vectors with constant coefficients, the resulting expression
will satisfy conditions 1 and 2, listed above. Actually an infinite series
of M-vectors, with undetermined coefficients, will be used for expressing
the scattered wave.

In forming the M-vectors the following solution of the scalar Helmholtz
equation (in prolate spheroidal coordinates) was used:

v ) =S (R ) (&) cosmé . (67)

m

19



WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-42

As pointed out in Section IT, four different forms of ﬁﬂ(,z)(g) are
avallable and their properties are given there. Since the incident plane
wave exists throughout finite space, in the expression for it given by
equation (31) it is necessary to use A’”E?(EJ) which is regular for all
finite values of §. The scattered wave exists only outside the perfectly
conducting prolate spheroid. Now a value of 5 equal to unity corresponds
to a mathematical straight line extending from z=—-F to Zz=+ F. TFor all
prolate spheroids, the minor axis of which is different from zero, 7 <£< eo.
Therefore, in representing the scattered wave in the case at hand anyone of
the four forms of R;} (&) may be used. Due to the asymptotic behavior of
/?’f:y(g) for very large values of ¢ & , as given by equation (22), one is
led to try this particular Rn(d)(g) in forming ¢rk(l) for use in expressing
the scattered wave. The final expression for the scattered wave will have
to be checked to see if it does satisfy the third condition listed at the
beginning of the section.

The fourth condition will be satisfied by using it to calculate the
undetermined coefficients in the series for the scattered wave. Since the
prolate spheroid is assumed to be perfectly conducting, this boundary condi-
tion is expressed by

[ﬂ X TEL::&, [—25 x (‘£ + 'fé")L;——goo , (68)

T . .
where "A 1s the electric vector of the total electromagnetic field and 7
is the unit vector normal to the surface of the prolate spheroid. f ° is the
value of & on the surface of the spheroid.

Then we have

{IE +’5} =0 |, (69)
Y

ya S _— 0]
[E+EJ_O, (70)
p TP,

where ()5’7 is the i -component of Q_ﬁ_’ and ”5;5 is the ¢ -component.
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Since there are two boundary equations to be satisfied, it is to be
expected that it will be necessary to use for'ﬂg the sum of two series of
vector functions, each with undetermined coefficients. At least eight sets
of such vector functions are available, the individual terms of each set
satisfying the vector Helmholtz equation and having zero divergence. These
sots ave MUy, IMy s M My, TN N N TN

—ml’ —ml

Two of these sets of vector functions have not been previously discussed.

They are

r — .

M) = VX 4., (72)
and

Zer () — 1 Ty g ()

—A-/mz -k Vv X Mml ) (72)

where éz' is the unit radius vector. Of course if, is not a constant vector,
but Stratton (Ref. 16) shows that nevertheless ZAf and ‘A satisfy the
vector Helmholtz equation. These two sets of vector functions prove very
useful in solving the problem of scattering of an electromagnetic wave by

a sphere and it is to be expected that the two sets,

Wil = vy ix iy (73)
and
_
Wal = £ VXM (74)

would be useful for the problem under consideration here. Unfortunately,
however, as Stratton infers and as calculation shows, these two sets of
vector functions do not satisfy the vector Helmholtz equation.

In choosing two of the eight sets of vector functions, listed above,
to represent the scattered wave, it is highly desirable to choose functions
each of the three components of which vary with ¢5 in the same way as do
the corresponding components of the incident wave. For setting up an ex-
pression for the E-vector of the scattered wave the vector functions which
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x z
have the proper variation with ¢ are _Mo(l) s ZA_4 1(1) s “:/_\_/o(z) , NV 1(1) ,

r
I:MI(Z) , and _"_Vz(l) . Of these % Mo(j) and ZMI(‘Z“ were chosen for reasons

of simplicity. The resulting expression for the scattered wave is

[\18

S, — (4)
E =) a, M7+ 8, M7 | (75)

~
]
o

7]
where X ol and /5“. are undetermined coefficients. Expressions for 'fM‘gl)

and M(4) are given near the end of Sectlon III.
It is necessary to investigate this expression for ‘S:é' to determine

whether or not it satisfies the third condition listed at the beginning of
this section. In Stratton, Morse, Chu and Hutner (Ref. 15) it is shown that

_j(cg__l_j:zg_t_l_ ”)

lim 5(4)(5) — (76)
cé—»eo 5 ’
It also can be shown that
. At ”)
zm[— @ﬂ ‘ (77)

c&>

By using equations (76) and (77) there results

. 4
| . (1) . . a) pa _J(C‘g_fﬁ‘>
Lim W= |1, sEepsind + 1y sBpeoss| X f e (7

Now, in Section IT it was shown that

céz—z;{zl’é (79)
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Iém FE)=r , (80)
c&E>o0
so equation (78) becomes
e s RN l
- r_.—ﬂ'
In a similar way it may be shown that
./ R Z+l
. 1 -5 r-——=nr
lim “MP = [—_z_¢ (1-9?)72 S "’(zy)cos¢] 1 TICXT ) g
c&> 00

Equations (81) and (82) show that each term of equation (75) for 'Sé'
has the correct behavior at large distances from the prolate spheroid, so
Sé will also behave correctly and the third condition listed at the begin-
ning of this section is satisfied.

The expression for Sé' , equation (75), therefore satisfies the first
three of the four necessary conditions. The fourth requirement, that of
satisfying the boundary conditions over the surface of the spheroid, will be
taken care of in the next section by using these conditions to determine the
&X,; and 3,7 of equation (75).

V. SATISFYING BOUNDARY CONDITIONS

The boundary conditions are expressed by equations (69) and (70). By
using the expressions for Ié’ and S§ given by equations (53) and (75),
respectively, in equation (69) there results
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J A - Z (7 2’5— ol afzéo -
Z«az ge-n*sf | el
é—go
—2,3117(1 772)°/2 5"’(7> R E, ) (83)

Similarly by using equation (70), one obtains,

7 o0
Jf‘-’;&z{’?(éf SN FR ”’(é)] + &1 72)[4,7 o) ”’@}

©

Zwl“oz{o(éo-1>5‘”(9>L,5:?£?’(€>]§ £F &ulr 7)[7 ":’wﬂ £ >}

l=
(84)

o

—Zﬂ”{g’o(é‘—z)z(-’ 7’ 5’(’7’[44 m(‘f)]&éo

=0

_77(52_1)2(] 7)2)/2 [017 Z)( )] (4)(4—0)}

These equations must hold for all allowed values of Y] and may be used
to determine ao[ and ,61[ . Now, according to equation (12),

Sy () = Zd ANC (85)

n=0,1

where a’ ml are the previously-mentioned numerical coefficients arlslng
from the solutlon of the differential equation for S () 7 ( 7)) m o ( 77)
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are the associated Legendre functions of the first kind and, as before, the
prime on the summation sign indicates that the summation 1s over only odd
values of M if ! is odd, and over only even values of # if ! is even.
Since, in this case, m as well as 71 takes on only integral values, the

m +n(77) are polynomials, and this fact may be used to solve equations (83)
and (84) for &, , and B,; . That 1s, the Pm’:’ﬂ(ﬁ) may be expressed as

polynomials and each side of the equations expressed as a power series Iin
7) . Then, by equating coefficients, equations would be obtained for cal-
culating the A4 7 and 3 P This, however, would involve an immense amount

1
of tedious algebra, especially since many of the Pm”:n (7) involve (1-7)2)/2

as a factor and this would have to be expanded in a power series.

What is believed to be a better method has been used here for finding
a,; and B, . Equations (83) and (84) are multiplied by 50(2’(7)) (where 4

is any non-negative integer) and then integrated from 77 =-7 to 7}=+1 .
The following results are obtained (ao is the semimajor axis of the scat-
tering spheroid):

+7

(&, a)(—g—)ZAoz(é" 1)/[‘{5/‘,0(11»(545:50 SOy SD gy =

+7

Zad(g* 1) [ (4’(5)]6 5 S2o) S5 o)y

—Zﬂuﬁ“”(& / Ty S DSy 5
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+7

(ee)(sh ) Sacie-olgaf @], [rsiopsto
=g ° oy
+7

+ éoﬁoi”<éaff—72>[f; 55 o] sl op } =
-7

+7

12 o7 {(éf‘”[fé ﬁf}”(é)lg:cf 7 S o7 ) So 7))y

7

+
T é‘o 1?0(24)(50)'/(\]_72)[0% 52?0){] 522) (77) 0/7 }
-7
00 7 +7
_Z /611 {40 (é.:_]) % [;/aé A’J(;)(é)J &= ‘\/1"772 51(;)(77) .5'0(1)(77) 0/77
(=0 o,

+7
4
- (cff-ﬂ’zﬁf?’(fo)/?\/!-')z [f,; 57 )] 5!5’(7))6/7} . (87)
-7

Stratton, Morse, Chu and Hutner (Ref. 15, pp. 42,63) show that the

) S;)z (?}) are orthogonal functions and that

+7 0 R L+ 4
_ (1) (1) _
L= [ L = ) s -
- 2 Z zn+s 0 (5L,
n=o,1

The other integrals are much more difficult to handle, especially since no
recurrence relations have been found for the S;fz’ () functions. The

method which has been used to evaluate the remaining integrals is that of
using equation (85) to express 5;:}(;7) , and its derivatives, in terms of

Pan (;7) and its derivatives. This involves manipulation of double series
and the evaluation of integrals involving Pm”: 7 (M), and its derivatives,

but the work is straight-forward and only the results are included. These
are listed below.

(2) (1)

v
g
[2:/7V—";7—T' S S,,(n)dn . (69)
-7
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odd odd
even one obtains #

For { { even }and L { even }this integral is zero. TFor 7 odd and 4

7
—L (L= 2d W e )

4 04 7 177 171
+52d, (d+d,) + S
&6 ,0L/ ,11 71 11
+ 2 (dy Ay A e

S ol b4 17 7l ..
+ ?3‘i4 (;{3 + C{s + ‘¥7 +

.
N ~—r ~—” ~—r

L, 1l ) 4 1
+Lg (S d o dy e

For ! even and 4 odd there results (90)

4 l
L) = 270+ )

2

oL ( 177 1l

4
+§'d d +a’4

!
T O GO SN

)

)
+$a/°4(a’2”+a’ )
)
PR A +a’& )
")

+ 12 42 “laf + 5

(1)
/;]5,(77)3 (y)d;? ) (o2)

* It should be noted that Jﬂm Z=0 whenever ({+#) is odd.
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7. is zero for & 4°7°® 5 even| even
3 ze oaal @ yA odd For odd and £

odd
{ } we find
even

> . ol ol ol oL
) = [k ||t e+ At |0

= Ln(nz)
I, /(z 7 ) St (77)} S,. Ny o
Z, , also, is zero for ( {ezzz} and Z {ezzg} » For { {ezzg}
and 2 { Odd} we obtain
even

i ol ol ol oL
7,(4,1) = m [(7(-1—3)5{7&1 Jn—z — (n—1) a’n—l a’m—x] _(95)
n=17

/1/1 —92 $,70) S, ey (96)

even odd even
i 1 L] F
This integral is zero if [ is { od.d.} and Z is {even} or l{ odd}

even
and £ {

on¢ finds
odd}

® , iz o 1l J ey J 1l a/oz. (97)
= — (n+4)
L5 (4,0) ,;o [2(n+1)(71+3)} [” Z-1 TF+1 2 2 ] .

+1
16(4,1):ﬁ,/1—72'[47 "’(7)} Sel (mdy . (98)
-1
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v odd
If 1 is {eozz} and 4 is {even}, ]6 is zero. For (¢ {ezzz}

[ <}

’ < 1 oL § 74 oL
= (+2) dn d nd d, J— (99)
=2, e lowody 4+ nd A2,
For both ¢ and 4 even,Zz is given by
. ot , ¢4 1 44 74
2= (G A )
4 ol , 1 41l 1 2 )
+ 5 (54, +d, + ¢ +- ++)
{ l 1
+ LN A )
L l 17 17
G T T ARE AN TR
10 b, 5 1 44 17
+ 9 67/4 (H a’4 0/6 + ala + )
ol y 5 1l 11 1l
+ % ‘/6 (ﬁ 44 + ‘/6 + da + )
. , (100)

and for both / and £ odd, Z zis given by
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22 =% c/lu( a’lll + c/;[ + 4/5” + .. )
+§40L<§dllz+d;l+d;l+ )

T AP NI G A R

+ 2 LN e )
R L )

r @G )
N N T A

(101)

We are now in a position to use equations (86) and (87) to evaluate
the coefficients aoZ and /5 E In order to handle the equations more
easily the following substitutions will be used:

+1

: L
B,,= (jé;)AoZ (502‘1)/2 L,/ u)(c‘f)]cf . /(1)(7 Sy.( ()7, (102)

+1
z
Cui= (502—1)/2[ ‘4’(5)] /m(m siopdy , )

-

(1)

D,,=-R7E,) S () Seg oy (108)

Ui
/N7

i (cg) 01{(§o 1)[0/5‘?0(1”(4) é= ¢, ﬁ 1(7)30(2”(7)0/7) (105)
+ go '?ol (‘fo)/l 72)[4;7 ;?(7))?] (7)47} ’

(2

= (&2- ”Lfg ol (cg)g f /}501 ) S,s ()

(2)

(106)
(4)
¢, £, (fo)/ ,72) 0,?7 S (7)):1 504(77)4/7 ,
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&
z\;\‘*

W, ==& (&5 L,é /Pj)@é §/1/1 7 5(1)07).5(1)(,7)@/7

+(<§f-1 (4)(§)ﬁ‘/17 C/?] (1)07)] (1)07)0/7 (107)

Using these symbols in equations (86) and (87) we obtain

o0 o0
ZZ:(O(OI CAZ + /611 DAZ) — IEO a, IZ BAZ , (108)
00 oo
Z(aol Ve T Bu Wz.l) — IEO ad, Z u,, . (109)
l=o -

Here we have 2 4 equations in 2 / unknowns and both 4 and { go from
zero to infinity. Now let us expand equations (108)and (109), allowing
and 4 to range upward from zero and using the information which we have
concerning the values of / and 4 for which the integrals, and thus the
values of B,,, C,, *-" I/V;l , are zero.

We obtain
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(
(
(
(

(ttT)

(o1T)

--+ g+ 0 + o

ceee+ 0 +%F + 0

-
o o

-+ 0 +0 +7g

-+ 0 + 0 +o0

+ %X 7)) = M+ 0 YMTI+ 0 +----+ 0 +F AW+ O +°0°W
+ o XP°F) =+ 0o ¥UTg+ o +MT+-- -+ U+ o U+ o
+u~\~XoQo...ﬂNvH...+n§QQ+ O +7M"I+ 0 A4+ 0 +N%+ 0 +%%
+ 0 (%)= -+ 0 +"M7I+ o +° MY+ ---+*UW+ 0 ¥UAFW+ o

.

+ 0 X\%®°7) =---+ 0 +¥@VPg+ o +%%C7Yg+.-.- o+ 0 + 0o + o
+ 0o XP°7) =--- 779+ o +'T"g+ o +----+ 0 ¥OP+ 0o + o
+ o XP%F)=---+ 0 +@¥%I+ o +°%@%+----+ 0o + o +D0%+ o
+ g P°y,) = --- %+ o +Yo"9+ o +----+ 0 + 0o + o +°D0%
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Fach term (&[ol ;Zflo(i) + ,511 Z,{_,[fj)) in the expression for "‘_é’ , glven

by equation (75), represents the reradiation from the spheroid for the
forced oscillation of the 72 mode. From physical reasoning it is known
that the amplitude of the higher modes becomes less the higher the order
of the mode. Hence the coefficients X,; and ,612 must approach zero as
! increases. Therefore, in using equations (108) and (109) to find &,
and B reasonably accurate values may be obtalned by assuming that X,
and B,; are zero for values of 7 above a given number ¢’. We then use
2 77 of these equations to find 4&,; and /6” for values of { up to 77 .
When these values of A,; and rdzl are used in equation (75) a solution
for Sé’ is obtained which satisfies the four conditions listed at the be-
ginning of Section IV.

It is evident that a large amount of calculating is required in order
to obtain numerical results using equation (75). Some consideration has
been given to the possibilities of obtaining a simpler solution which would
be more amenable to numerical calculation. To represent "é’ it would be
desirable to have available two sets of vector functions, one of which had
no 7 -component and the other without a ¢ -component. Then only one set of
undetermined coefficients would appear in equation (69) and only the other
set would be present in equation (70). This would simplify somewhat the
process of calculating these coefficients. Further simplification would
result if;’é' were expressed by equation (55), which contains only one term
for each value of { and this term involves, in addition to some algebraic
functions of 7, only ,5‘0(;) (7}) and not its derivatives; and if the above-
mentioned vector functions used for expressing "‘é' were to involve only
5:‘;’(77) with other algebraic functions of ” identical to those occurring
in the expression for’é’ . Then, due to the orthogonality integral (equa-
tion 88), each coefficient X,; end g,, would be given by & single equation
involving no other coefficient. It would be very desirable that the diver-
gence of each of these functions be zero for all values of the eigenvalues
! and 7t ; then each term of the series for the scattered wave would be
divergenceless with the result that the divergence of the complete expression
would be zero, as is necessary. Morse and Feshbach (Ref. 17, p. 445) develop
two solutions of the vector Helmholtz equation which have the above-mentioned
desirable properties, that one solution lacks an 7 -component and the other
lacks a ¢ -component. However, these two vector functions are independent
of ¢ and cannot be used to express the [é' or "'_é’ occurring in the present
problem because, due to their polarization, both 1_[-_;' and ’_E_ are functions
of ¢ . No other solutions of the vector Helmholtz equation have been found
which have the desired properties.
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VI. PHYSICAL PROPERTIES OF SCATTERED WAVE

Equation (75), with the appropriate values of X,; and @, as cal-
culated from equations (108) and (109), is an expression for the electric
field vector of the scattered wave ({g;) which is valid for all values of
N(-1£n=1), of &(&2£,), and of § . This means that equation (75)
can be used for calculating fg; in the immediate vicinity of the scattering
spheroid as well as at great distances from the spheroid. If it is desired
to find the magnetic field vector of the scattered wave [SA{) this can be
calculated from £ by using equation (42). -

Usually one is more interested in the behavior of the scattered field
at relatively great distances from the spheroid and to most easily deduce
this behavior it is well to take the limiting form of fg? as éé-oO, assuming
_2m

A
that neither the eccentricity of the generating ellipse of the prolate
spherold, nor the frequency of the electromagnetic waves under consideration,
become zero. To obtain the asymptotic form of equation (75) one uses
equations (81) and (82) and there results

that ¢ = £ does not equal zero. This latter requirement of course means

. - . ’ 1) .
‘Z:{£OI:ZJI+Z a;, S;l (77)5(7155}

(=0

= 1
t iy [Z jta),» Sé?(?ﬂ cos$ + jH38, (1—72)/251(;’(,7)@3515]}

=0

« 2M
R

X (‘€,a,)x £ e , (112)

’ 7 ’ 1 .
Here & , = ;7=— and = = . We notice at once the
ol ‘£, a, Y Bt £ a, B
absence of an é{ component, which is the longitudinal component for large

values of cg . This, of course, is a necessary condition that the wave be
a purely transverse wave at a large distance from the spheroid, as it must
be.
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In order to obtain more information concerning fgg it is best to ex-
press the electric field vector in terms of components along the rectangular
coordinate axes. This is done by using the following relations:

4= [ rEmnt e Rcos 4

b i [ gm0t @) Rsing

A G P I (2

7 -

0= §]e@nA Ry R cos

+ i [e@p R (g % sing

- % 4
t g N(E*-1)*(E*7%) =] (114)
_2¢: _ix_-sz'n;é} + _é.y[co.s ¢_ ) (115)

These expressions are obtainable from equations (58), (65), and (66). The
resulting expression for 525 is

‘fE {-x ZJHI/GJZ =72 S‘”(q)squ cas¢J

=0

- 00
+ i | X 5tag  sEop + W B TE 5] 0p cos % |
&

. 7 . 20
. . ) . E,a, - r
toiy| 2l iR agyn? Sj’l(msmqﬁJ} X ~2= e’ A7

(=0

(116)
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It will be recalled that the incident wave was taken as moving along
the z-axis, in the negative z-direction, with the E-vector pointing along
the positive y-axis and th> H-vector pointing along the positive x-axis.
From equation (116) it can be seen that the back-scattered wave, which is
the wave moving along the z-axis in the positive z-direction (thus 7n =1
in equation 116), has a component of the E-vector along the y-direction
only. Thus the back-scattered wave has the same polarization as the in-
cident wave, which is a well-known property of back-scattered waves from
smooth surfaces.

From equation (116) it may be seen, also, that the E-vector of scat-
tered radiation being propagated in the xz-plane (¢ =o0 or m ) has only a
y-component and that of scattered radiation moving in the yz-plane (=1%* —g )
has both a y-component and a z-component, except along the y-axis (Z): o)

where the y-component disappears, as it must for a transverse wave.

A property of considerable interest is the scattering cross-section
of the prolate spheroid. This scattering cross-section may be defined as
the interception cross-section (0" ) of an isotropic scatterer which scatters
in the direction under consideration the same power density as the prolate
spherold scatters in this direction.

The magnitude of the total power Ip  extracted from the incident wave
by the isotropic scatterer of cross-section 00 is

Prallp|=rllex =02 (£,)°, (117)

where {5? is the Poynting vector of the incident wave. The magnitude of
the Poynting vector of the wave scattered by the isotropic scatterer is
given by

[P _ 1 €o (1 o)zoa

S _ 118
2|= G2 = 7o N 72 T (129

where 7 is the distance from the center of the isotropic scatterer to the
point of observation.
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In order to compute the magnitude of the Poynting vector of the wave
scattered by the prolate spheroid we use equation (116) in the following
form:

z e 21
S~_ ] . s . S . S £ a, AU o
é—{fz TZO)"}S)-'_EJ/ 7}(77¢)+£z Tz(v"ﬁ)}x j" € ? (119)
where 9T, ,5Z} , and °7, are complex. Now let
s r .
T = ,°T, + 10T, + 4T, (120)
and
S .+ S
Ir=:,"T , (121)
where J}f and °7 are real.
Then
I . 2
E,a, - r-r)
= e, Lo IR (22
and
S ~|R S\R ({Z? )2‘702
£|F= (1) eFe (123)

r* ‘

Hence the magnitude of the corresponding Poynting vector at the point
of observation is

7
%] = 1{ 570 (°r)? (——E"fff . (124)

Now 0" in equation (118) must be so adjusted that the values of l5ﬁ2|
given by equation (118) and by equation (124) are equal. The resulting
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value of O is
o=4r(°7)*af (125)

In deriving this result it has been tacitly assumed that the polarization
of the antenna receiving the scattered energy is so oriented that its pick-
up is a maximum.

It is interesting to note the form which equation (116) takes for A0 ,
that is, when the prolate spheroid becomes a sphere. Then

c=hkF—o0 | (126)
a

CZ;’-‘—A’FF —ha > Ar (127)

since, for F—0,
r—-a—»56 |, (128)

Also

7 = cose (129)
.57:;(77) = Pm”;l (cose®) (130)

where 6 1s the angle between the radius vector and the z-axis. Then
equation /116) becomes

(o e}
o :{_zng- sine sinzg ) 5181 AL (cos o)]
L Pp
~ 0o , oo , 1
. . . 2 .
+ k# cose ) jit% X, £ (cosé) + sinecos ¢ZZJZ+1/GIZ B (cose-)]
- =0 =0
— oo I . 2m
£ r 5 r
o . . oZ 4 ofo A
+ i _smesznqﬁgd aoz/{,(cose)]} X =22 e S
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where r, 1s the radius of the scattering sphere. Thus the functions in-

volved are of the correct type for the solution of the spherical scattering
problem. Further, by noting that, forec= o0,

ml 0 n¥l

aln = 5711 = ) n=1 , (132)

it can be shown from equations (13) and (15) that
RP&E) =5, tkr) (223)
R&E) =ny(kr) (134)

ol l )
R;;)(é) = dus CAT) (125)
£E(E)= Mg (K1) (136)

.jn (2) and #, (Z) are spherical Bessel functions of the first and
second kinds, respectively.

From these last four equations 1t can be seen that the quantities &,,,
C,; 5 W, , given by equations (102) to (107), inclusive, involve
functions of the same type as those which occur in the spherical case,
hence, so also do the coefficients &,, and B8,, since these are functions
of 8,,,¢,, W, . Therefore equation (131) contains, as is to be
expected, only functions of the type which occur in the solution of the
spherical scattering problem (Ref. 16, p. 563).

VII. NUMERICAL CALCULATIONS

In order to obtain numerical results from equations (75), (112), (116),
or (125), it is necessary to first compute the coefficients &, and G&,,
from the sets of equations (108) and (109). In turn, before using equations
(108) and (109), one must calculate the quantities 8,, ,C,; , - My »
using equations (102) to (107), inclusive.

29
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It is agssumed that the major and minor axes of the scattering prolate
spheroid and the value of the wavelength are given. Then, using the
equations given in Section II, one may calculate £o for the spheroid, as
well as & and c.

The following information will be useful in calculating B, 9 €,y >
W, g e

A,; may be computed from equation (50), A,; being given by equation

(52). The coefficients a’ ml are tabulated in Stratton, Morse, Chu and
Hutner (Ref. 15).

R;Il)(‘g) is given by equation (13). The derivative of this may be
taken and this will involve the derivative of J ., (c&) , or of J mm’/ &),
which may be expressed in terms of Bessel functions by means of the dl:f'fer-
ential recurrence relations for Bessel functions (Ref. 16, pp. 360 and 406).

ﬁ vjm+n(cé) = c CTZ/&) J men (&)

2m+2n+1 [(m+n)jm+n_l (c&) — (mrn 1—1)J‘mmﬂ(c§)} , (137)

0/2/ Smins ?, (cé)= %[ 4t — (Cé) S ) (cg)] o (19)

where
J‘n+m(c£): %ﬁ, Jn+m+1/2(c€) . (139)

Values of 'imm (cg) and of J_m ﬂ(cé) , useful for computing /? (f,)
and its derivatives, are tabulated (Ref. 19).

(é) is given by equation (20), and the R(z’ (&) wused in this
equatlon is given by equation (15), or equations (17) and (18). The
7 (Cé) occurring in equation (15) can be computed from the tabulated

min
values of ,j,,  (¢&) by using these relations (Ref. 16 and Ref. 20, p. 132):

n+m-1

i _ r_
ﬂmn(cg)_ 2cé n+m+/ (c&) = 1) Reé J-n—m-%2 . (130)
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The derivative of Rm (&) involves the derivatives of A’ (;‘)
and K(Z) (&) . The derivative of £ ( &)  involves the derlvatlve of
Amen (c,_f) which can be computed by using a differential recurrence rela-
tilon exactly similar to that given by equation (137).

In the particular calculations contained herein g o 18 very close to
unity (1.00504) and A"z’(ﬁ) must be computed from equations (17) and (18).
We make use of equation (l) on page 72 of Stratton, Morse, Chu and Hutner

(Ref. 15) and obtain the following expression for Rig (£) :
~2m-1
-2)71-2 1-00/
(z) d ml _m
w0 (&)= Glemny )G Tem. ]+ X aren, |,
e i (141)
-2m
where, for Z even,
m-1 7
2¢ (lizm-i- ) .
G(c,ml) = +2 ml (ﬂ+2m)/ ’
r() b diy 5
s (1k2)
and, for { odd,
m-2 +2m+2
Gle,m1) = ~se” ()
y 77,4 = I+7 3\ yml &7  ml (n+2m)! ’
f( 2 )f'(”"z)"i-mzl I n/ (143)
n=
m{
Values of t. are listed by Stratton, Morse, Chu and Hutner for negative

values of 7 , for 7] >2m .

2)

The derivative of A&, (5) is easily written:

b1

i'i:ii nt
a/n ml
or Zam (141)
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Values of A7 (&), @F (&), and of their first derivatives, have
been tabulated (Ref. 21). However, for values of & between 1.0 and 1.1
these tables must be used with care. Actually, for such values of & , it
is believed that the best way of carrying out the computations is by the
use of equations (145) and (146), which are given in this set of tables
and are listed below.

[-n—zm-zJ

_ (éz-])/zz _f)r(‘zﬂ'Zm—Z—Zz‘)./ -2 m—-21-22
Cnms (&)= oaom rln-m-1-r)! (-rn-2m-1-2r)/ (145)

r=o0

The symbol [Zﬁ‘—iu ] indicates the largest integer contained in

—n-2m-7
2

gers or zero. In the case under consideration m7 is either O or 1 and from

equation (141) it can be seen that 7 runs from - o0 to -2m -1 or -2m-2

g0 that -rz-»7-7 goes from 72 or m+1 to + 00,

In equation (145)7 and -r-77-z must be positive inte-

For calculating 4)7;”(4) we use

V=R B &) bt~ e Pl (&)

42_] ‘Dm+n 3(,,1_3)‘/(42_])3/2 ‘Dm+n

m(m-1) & -2 ry m!(3&E%+17) m-3 (2)

m.’(f'?fcf) m-4 _[2(m+”-1)]m+271 1-4j pm &)
(m-4)/(§2-1)2 men (& i (1+25)(mn-j) = mn-I-Z .

(146)

This expression for Qmm (&) is valid for O£ m £ 4 ; for nn and 71 both
integers; for n>o0 ; and for £=27 . TFor both » and » zero, the following
equation given in the tables is to be used (Ref. 21, p. xiv):

(147)

Lo
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When m=1 and 7 -2 , the following relation may be used:

@4 (8) = — i (216

This equation may be derived by application of the following recurrence
relation listed at the top of page 62 of Magnus-Oberhettinger (Ref. 22):

Q‘[J_[(Z) ~ZQ, (Z)“-(v,a "'I)o‘/zz 1 Q'al (149)

When 77=2 and 77= ~Z there arises the problem of evaluating Oo"(g} .
Equation (146) is not valid for this calculation so the definition of

Q7€) 1is used.

i

@, (&) (éz-l)m/zj—é;, @, (&) . (150)

Then
2
()= 0% Z g (&) (151)

§,(§) 1s given by equation (147) and the application of equation (151)
gives

Q) = —(£3-1)% . (152)

In order to evaluate the derivative of /"’(2; (£) , given by equation
(lhh), it 1s necessary to compute the derivatives of P” mg (§) and
of Qmm (¢£) . This may be done by using the following differential re-
currence relation given on page 115 of Jahnke-FEmde (Ref. 20):

LRTAE = (551 (- e ) K, (6) =+ $K] (g)] (15%)

b3
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Here /(_;"(.5) may be either Pﬂm(g) or @ (L) . »n’ and m must be
integers and it is necessary that

n'=m=0 (154)

Then

d P (&) = (¢%2 )‘1[(.,27”—71)2:_72 (&) + (n+m)§P_;"_m_l (g)J .(155)

J& Lonem-s
Equation (144) shows that

-2m-1

-00 £ 1 £

-2m -2 } (156)

Therefore, in equation (155),
{ ! }é (-n-m-1) £ +00 (157)
m+7

Since, in our work, m=0 , inequality (157) shows that eguation (155) always
satisfies condition (154). Now A:_n (&) and /7_:,"_"1_1 (&) in
equation (155) may be evaluated by using equation (145).

From equation (153) we find

& o= (57D (1 0) @ (E) = (rem D E QT (B | (158

This equation is valid for

(m+n)=>2m=>0 (159)

In the calculations contained herein, mz 1is either O or 1, so the second
part of condition (159) is satisfied. The first part of the condition is
met for 7 20. From equation (14L4) 1t may be seen that for m =2z it is
necessary to find the derivative of Q::”,(g) for # = -2 and for 7 =-7 .
For 7 = -2 we use equation (148) and obtain

d A7 z y-%
@ o (&)= (E~1) 72,
de (160)

by
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When 7= -1 , we find from equation (152) that
7 _ 3
Aaler= g0 (161

The various Q;( (£) occurring in equation (158) can be calculated by the
use of equation (146).

Calculations have been carried out for _g_e_ = 720 and C= -é”—'f:z

b, p)
Here @, is the semimajor axis, and AQ, the semiminor axis of the prolate
spheroid. The tables included in Stratton, Morse, Chu and Hutner 1list
values of d;’z for Z:O,Z,2j3 and =0 ; and for /=0,7Z,2 and 7=1.
Therefore values of & ,, to &, , and of ,610 to ,812, inclusive, were
calculated, assuming that a , and G, ; vere zero for / >2 . The con~-
vergence is fairly rapid for C=2 so the accuracy of the values of X,
and—/f};; which were obtained, is fairly good. Then, using equation (125),
the value of O was found for the back-scattering case, that is, for
n=17 . This value is listed below, elong with the value of O for the
back-scattering of a scalar wave as calculated in Appendix A.

Due to the large eccentricity of the scattering spheroid, existing
tables of Legendre functions were inadequate for the calculations and all
values had to be computed by using the formulas contained in this section.
Approximately two months of full-time computing were required to obtain this
single value of @ for the prolate spheroid. Very likely no more values will
be computed until more extensive tables are available.

McAfee and Wolfe (Ref. 8) have determined the scattering of an electro-
magnetic wave from an ellipsoid by using physical optics.For comparison
purposes, the value of ¢~ calculated from their results is included below
for the same physical conditions as were used in calculating the values of
T by using electromagnetic theory and scalar theory.

0" may also be calculated by using the geometrical optics equation

— 162
T =rkkr, , (162)
where R, and Ry, are the two principal radii of curvature at the point of

reflection.
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R _ o _ . .
Then, for C="x"=2 and for -~ = 70, we obtaln the following
results: °
g
2
g,
electromagnetic theory (exact method) 0.994% x :LO-3
scalar waves (exact method) 0.57h x lO"3
physical optics (eapproximate method) 0.499 x lO'-5
geometrical optics (approximate method) 0.314 x lO'-3

The velue of the ratio 9”#72 for a sphere (ro being the radius of the
sphere) has been computed using both electromagnetic theory and the method
of physical optics (Ref. 23, p. 4). The results obtained using the two
methods display the same general type of behavior. The ratio 7./7,2 ap-
proaches zero as the wavelength increases without limit. As the wavelength
decreagses from Infinity the ratio rises to a meximum value and then drops to
a minimum as the wavelength is further decreased. This oscillatory behavior
continues as the wavelength is continually decreased but the amplitude of
the oscillations becomes less and less and the curve becomes asymptotic to
the constant value of CC/?;z='Z’==0; given by geometrical optics. The curve
of Q}fzz versus wavelength for a prolate spheroid, obtained using physical
optics (Ref. 8), shows the same type of behavior. It happens that the first
maximm below A= oo, or above c¢ = 0, occurs for c = 2.

If the values of 0" for either the spheroid or the sphere are divided by
the asymptotic value, a dimensionless result is obtained which indicates
the deviation of the particular value of O from the asymptotic value. For
purposes of comparison these ratios are listed below for both the prolate
gpheroid and a sphere. For the sphere there are listed the limits between
which the values lie after the first maximum is attained.

Prolate
Spheroid Sphere
o o
a; 0, 720
electromagnetic theory (exact method) 3.16 0.23 to 3.7
scalar waves (exact method) 1.83
physical optics (approximate method) 1.59 0.77 to 1.7
geometrical optics (approximate method) 1.00 1.00

* Some of the numerical values appearing on this page are in error.
These numbers will be corrected and additional numerical work on
the problem will be presented in a forthcoming report, UMM-126,
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VIII. CONCLUSIONS

The maximum value of < , for which Stratton, Morse, Chu and Hutner
have computed the coefficients a’:z , is 5. This corresponds to a ratio of
semifocal distance (F) to wavelength (A) of 0.796. Therefore, in order to
obtain numerical results for smaller values of this ratio (shorter wave-
lengths and therefore ¢>s ), it would be necessary to extend the tables
of coefficients. Stratton, Morse, Chu and Hutner (Ref. 15, p. 15) indicate
the procedure for doing this.

The tables of a’:l mentioned above list values of a/:z for: !=0,1,2,3
form=o0 ; 1=0,2,2 for m=1; (=0,1 for m=2 ; and /=0 for m=3.
For higher values of ¢ (shorter wavelengths) it is to be expected that the
values of & ,, and #,, will approach zero more slowly as (! increases.
Therefore, in order to use the results given herein to determine the scat-
tering from a })rolate spheroid for ¢>5, it would be necessary that the
values of a’: be found for values of ¢ greater than 3.

Much of the tedious computing required to obtain numerical results
was Que to the fact that the values of £(&) , @, (£) , and of their first
derivatives, had to be computed, using equations given in Section VII. A
value of £ =£_ = 1.00504k was being used. The available tables (Ref. 21)
1list values of an(é')) Q:(é‘) and of their first derivatives only for
E=20,1.1, Z7.&, . . .and accurate interpolation is not possible for
values of é between 1.0 and 1.1. Therefore, a great help in using the
results contained herein to obtain numerical results, would be the tabula-
tion of values of an(é') , 4):7”(4) and of their first derivatives for
7.0<& <717 .

In order to reduce still more the amount of calculating required to

apply our results to specific cases, the tabulation of values of A’SI) &),

/?,(,,21) (&) , thelr derivatives, and S’(ﬂzl) (%) would be extremely helpful.
This should be done for 1£££€00, -1 =£9n9<+7 and for a wide range of
values of the parameter ¢ . The formulas included In Sections II and VII

are useable for such a purpose.

In view of the wide applicability of the spheroidal functions it
appears that the extension in available tables, as discussed above, is
Justified.

b7
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APPENDTY 4

SCALAR SCATTERING

The problem of determining the scattering of a scalar wave is con-
giderably simpler to solve than that of a vector wave. A sound wave is
such a scalar wave, since it can be completely defined using scalar
quantities.

Let ¥ Dbe the velocity potential of such a monochromatic wave.
Then
Jwt

p:¢(7,é’¢)e ? (A—l)
and ¥ satisfies the scalar Helmholtz equation

V% + k¥ =0 (4-2)

¥ must also satisfy the two boundary conditions. Over the surface of any
smooth rigid body,

[v ¢]ﬂormal =0 ’ (A-j)

where [V ;&]M’mal is the normal component of the gradient of ¥ over
the surface, and thus is the negative of the normal component of velocity
over this surface. The second boundary condition is that, for a scattering
body of finite size, the scattered wave at great distances from the scat-
terer must behave as a spherical diverging wave.

Now let it be assumed that a smooth, rigid prolate spheroid is located
with 1ts center at the center of a rectangular Cartesian coordinate system
and that the z-axis 1s the axis of rotation of the spheroid. The prolate
spheroidal coordinate system discussed in Section IT is also used here.

Suppose that a plane scalar wave 1s moving parallel to the z-axis in
the direction of decreasing z. The velocity potential ({¥) of such a wave

may be expressed as follows:
oo

3k
LR AR S WY Y
l=0

18

(a-1)
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by using the material discussed in Section III. The time factor, e?JaJ{

has been omitted from both sides of this equation. ,491 is given by equa-

tion (50). -[¢Z is the maximum amplitude reached by the velocity potential
of the incident wave.

Let the amplitude of the velocity potential of the scattered wave be
expressed as follows:

(o o] 00
= ) g ¥ = X, s mrA ), (4-5)

where the 7’1 are undetermined coefficients and ¢>“” is a solution of

equation (A-2). The use of /aﬁ?/f) insures the proper behavior at great
distances from the spheroid.

The boundary condition over the surface of the spheroid is given by
equation (A-3), which may be written thus

5ilg [aalg 5. 20 (26

&, 1s the value of & on the surface of the scattering spheroid. By using
the values of Y% and ¥ given by equations (A-4) and (A-5), respectively,
we obtain from equation (A-6)

I > J (I) - /I) (4)
¥ ; s (77)L/£ - (5)]£=§°+ g AT [a’§ (5)].{ 3 (A-T)

If this equation is multiplied by'\SL”(y) and each term is integrated

with respect to from -1 to+1, the orthogonality relation given by equa-
tion (88) may be applied and the following result is obtained:

Y4, | LR fé)}gzéj % |5 o’j’(eg)]{ L=0 ()

Here / may be any non-negative integer. Equation (A-8) may be solved
for 7@& .

k9
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v =-‘y 4 L{%ﬁ:’(@]

0l o “%osL [ 51?(4) (é):l

=&,

go (A"9)

The use of this value of 7,, in equation (A-5) gives a completely
determined expression for the scattered velocity potential:

(1)
°° Ry (&)
S, - 1 [ £z4, o) (4)
v=-y )4, = S, MK (&) . (a-10)
o (B R E)ezg,
This expression for Syr is valid for all values ofé‘ greater than é‘o .
At great distances from the spheroid the asymptotic form of /?Z,)(f) given

by equation (22) may be used and then equation (A-10) takes the form

(1)
J‘¢ _ )4 f: [dgﬁol (5)]§:§Q €2) ) b ox l% a, 'j(/(f‘-%!”')
T e ol (4) Soz ) 7 € » (A-11)
oTro  [GR O s,
or
I _:
Sy =T %r% eJkr, (A-12)
where

) [a/ ”’(f)]
Z 11 [ (4)(5)]: :o 5 (7) . (A-lB)

Here a, is the semimajor axis of the scattering spheroid.

The scattering cross-section (0°) of the spheroid can be calculated
here as it was in Section VI. Let J be the transmission of power per
unit of area of wave-front, or the intensity, of the scattered wave. This
can be calculated by using the following equation, given on page 349 of
Morse and Feshbach (Ref. 17):

_ﬁ_ T T* (!y’ o )2, (A-14)

where P is the density of the transmitting medium, A& = 5)_:_7 and w 1is 27 f ,

£ Dbeling the frequency.
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The total incident power (IP ) intercepted by an isotropic scatterer
of interception cross-section (0°) is

I _ I, _ W, A 7 2
P=a’r = 8% (g )0 . (A-16)
The intensity 57 at a distance z* from the isotropic scatterer is

l = -
4mrr 8mr

‘P k(14,7
g = 2P fﬁ’) oo, (A-17)

0- must be so adjusted that the values of ‘SI given by equations (A-1k)
and (A-17) are equal. Then 0 must be

o= 4ra’T T* = g4na’|T|? . (A-18)

The calculation of O~ is primarily the calculation of 7. All the
terms appearing in the expression for 7 have already been computed in
Section VI for the case of 00/60: Z0 for the scattering spheroid, and
for a value of ¢ of 2 . Under these conditions the evaluation of equa-
tion (2-18) gives a value of 0" of 0.574 x 10'3a02 for the back-scattering

cross-section (7)=7).

o1
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APPENDIX B

BEVATLUATTON OF INTEGRALS

In this appendix we shall evaluate the integrals occurring in Section V.
The integrals will not be evaluated in the order of their occurrence in
equations (86) and (87), but rather in the order of their complexity, the
simpler ones being evaluated first.

By equation (92)

I,(4,1) /77 32{,’(;;).5”’(7;)47 . (B-1)

By using equation ( 85) we obtain

I, (4,1) ﬁ £ “ f?))J[Za’ A, (77):'0’7 ] (B-2)

The letter in parentheses under the summatlon gymbol indicates whether
[/ or L is to be used in determining whether even or odd values of 1 are to
be used in the summation process. In order to carry out the integration of
equation (B-2) we express the product of the summations as a Cauchy prod-
uct (Ref. 2k, p 72) :

( )(ﬂo ) chk n-k (B-3)

The result is

+1
ol
Ig(4,0) = Z Z a’ oA ‘/"7&[’?)54«/’/)"”7 y  (B-b)
~1

n=01 k=o,1

“+2) ()
even
where 4 takes on 4 ool values 17 is 40 20 and 7 takes on
0dd. odd odd

. even
values if (L+¢) 1is {odd

of the integral occurring in equation (B-4):

} . Copson (Ref. 25, p. 300) gives the value
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( 2(k+1)
-4k = k+
"y (2hk+1)(24k+3) for n-k ‘
. _ 2k -
/7/6‘,/77)/7”_/‘, (?)) a’7 = < 4/\’_2—1— for n-K -~ A-1
-7
o for all other values
\ of n and Kk

(B-5)

It is to be noted that early printings of Copson erroneously include a
factor 77 in the numerator of the evaluations of this 1ntegral. The inte-
gral is different from zero only if z#-4 = h * 1 or for k= %32 1 .k
must be an integer so 77 must take on only odd values. This means that
(L+!) must be odd and, therefore, that I, is different from zero only

dd
for L © and /7 even .
even odd

We then use equation (B-5) in equation (B-4) and obtain

_ 2 7n+1 ol ol a/ol a/ob
L0 = 2 G| s Fage ¥ Fugs x| 0

We next evaluate I, , defined by equation (9h).

+1
(2) (1)
I,(L,0) :‘/(1—772)[‘/ 1(7))] L () dn. (B-T7)
-7
The use of equation (85) gives the following result:
+7
{
7,04,0) :/},-,72) > EAA Z A B ety . (5-8)
4 7n=o0,1
g (2) i
Now use is made of the following differential recurrence relation (Ref. 20,
p. 115):
(1-93) L p (n) = n[P (7)~ P()]
77 a’;} n’)"' rz-l’] 7717} I (B-9)
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and there results
+1°°
7 ol
1,0 = [ D 4 nE Z dy’ B, () dy
Y 7 n=o0,1 n=0,1
(2) (Z)
A
/ol 27 o4
— [ 2o anEe ) Al Ay
Y 7 n=o,1 n=o0,7 B lO)
(7) (z) (B-

The use of the Cauchy product formula gives

oo 7t
a0 =37 3 ka2 / LB, (el

n=0,1 k=o0,2
(Z+2) (z)

47
haid rd n V4 o
P M)A /M@)PM () y .
=0, k:a) -
Zu; (1)1 i (51

The first integral occurring in equation (B-ll) is the well-known orthog-
onality integral for Legendre polynomials (Ref. 20, p. 116):

+7

o for k-1 # n-k
/x’f(,_, (77) F, y (7)0’77 = 2 (B-12)

~7 2k-1 f‘or k"]: ﬂ'k

The value of the second integral of equation (B-11l) has already been given
in equation (B-5). Upon substituting equations (B-5) an

d (B-12) in equa-
tion (B-11) we obtain

o0
ol oL ol oL
L(4,0 = . FrieTe [(’”3) dars dnt = (n1) dns "’1;4} . (B-13)
=
(L+])

Since n must be odd, I, 1is zero for L and { both odd or both even.

oL
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I

5 will be evaluated next. It is given by equation (96).

+7
[5(4,2)=f 1-79% SZ,’(?)) 50(2(77)0’7 (B-1k)
-7

The application of equation (85) and of the Cauchy product formula gives us

+1
S 1l o4 1
I(4,1) = Z Z a, dx 1-772 ﬁ”/vy)/i,_k /77)4/7 © (3-15)
-7

7=0,17 K=o0,1

(e+2) (1)

Magnus-Oberhettinger (Ref. 22) gives the following recurrence relation which
is useful in evaluating the integral occurring in equation (B-15):

T2 2 ) = (vt ) B )= (Va9 B . (516)

This relation is based on the following definition of Elmfy):

777
zZ d7

A E0) (B-17)

Pt = (=17 (1~93

which is the definition used by Stratton, Morse, Chu and Hutner.

When the value of 1/1~72 P/(’:l {7) , as given by equation (B-16), is
substituted in equation (B-15), we obtain

©, A, . .. +1 + ;

IL,0)= E 2 d¢ Ay (K+2) /,‘P,«z /77)[’,1_‘,/7)47 “'ﬁpkn/’})‘?z-k(’])‘/? (B-18)
n=01 k=01 -7 -7 .
(¢vl) (1)

From previous work we know that

7e2 for k= n-k and for
+7 ——
(742} n+3) k+1= n-k-17
/;;5”, DB, Py = (3-19)
-~ 0o For all other values
of nn and k.
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,
+ e for k+E=n-k
/z%z D) i P el = 3
Z; o For all other values .
L of n and Lk (-20)

Equation (B-18) yields, after the substitution of the values of the
integrals given by equations (B-19) and (B-20),

hacd /
— N+ 2 27 oL 1l oL )
]5(4[) - Z{ Z2(n+1)(n+3) [” d%—l "/gﬂ ("+4)‘/§ d% }} . (3-21)

n=0
(4+0)

This integral is different from zero only if both 4 and [ are even,
or if both are odd.

The evaluation of 7, 'will be carried out next. This integral is given
by equation (89).

+7
- i (1) (2) -
Tq(Ly1) —/IW 10 Seu Py (B-22)
By the use of equation (85) and of the Cauchy product formula we
obtain
i/ / (M) A,_, (n)d
1,(4,0) = ‘ant Vipz )Lk
2\ o /r n- +177 7 7 (B-23)
(4+2) ()

In order to change the associated Legendre function occurring in this inte-
gral to a Legendre function, the definition of the associated Legendre
function given in equation (B-17) is applied. 7, then becomes

+7

7, 1)——2 de e yP AR (B-2k)
n=0,1 k=0,1
(L+1) (1)

the prime on Pk:J (7) indicating the derivative of £, (7) with
respect to 7 .
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The following table is useful for determining when Io is different
from zero.

TABLE B-1
n_ g_dii L even

k odd k even k odd k even
n - k: even odd odd even
7 P k. odd even even odd
P 'k +1° odd even odd even
Io: 40 £0 =0 =0
l: odd even odd even
L: even odd odd even

In order to evaluate the integral occurring in equation (B-2L4) use is
made of the following formula for P'n('r)) given in example 4 on page 282
of Copson(Ref. 25):

£l = Rn=2)5,_, )+ (2n=5)4,_,(n) + (Rn=9)5,_ () + -+~

7[.73 (7)—{-3@ (7) for n even
+ (B-25)
.5'102 (y)-l— 6(7) for n odd .

The substitution of this formula in equation (B-24) yields

7,(L,0) =

+7
5 &7 il o
-3 ; dy d /;P,,_,( (77){(2k+1)€((7>+(2/(—3)5(_2(7))+<z/(—7)/,3_4(7)+----
n=1 =02
) ) -

7E,(n)+ 3£ (7) & odd a/
SE M+ /‘3(7) k even 7 - (B-26)
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It is evident from this equation that Io is zero if (n-k) > (k+l),
or k <‘E%l . For (k+l) > (n-k) we evaluate Io term-by-term. The small

number in parentheses after the integral indicates the value of k which was
used. For k even,=~Io(L,!) =

+7

n=1: Céflaﬂi;/€5f3f3‘ﬁ7 (o)

+7 +7
n = 3 +fa/2”o/1%f;@a/p(z)+ dzlld,%@ﬂ o) )
~1 1

+1 +7
n=5: +57 A B LI+ 54 A EL Sy ) + 4] Ly PPa’ @)
2 3 [ 1454297 N4z 97 7
-7 -7

n =17 +9d, a//PP 0/7(4)1—.5'0’ 77PP0/7(4)+£Q/ a’/PPo’;;(é)

+ d, a’/PPa’7(6)

+Z +7
n=9: 494 G es dya) + 945110’3%/3’—6 o &) +.5'aglc/‘?/]’@€ ol (&)
~7 —Z -7
+7

+7
1] |0l 1l o4
+ 5d; dﬁf;@ oy &)t dg 54‘/7'101!70 o/ (8)
4 ‘

-7

o ©(B-e7)

In equation (B-27) we have omitted terms which are obviously zero be-
cause the degrees of the Legendre polynomials occurring in the integral
differ by more than unity.
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The terms are collected which involve the same integrals, the integrals
are evaluated using equation (B-5), and there results (for L odd and / even)

L =2 a8+

2 4

B-28
It should be noted that c//) ml:O whenever ({ +/7) is odd. ( )

The same procedure is applied when k is odd and the following result is
obtained (L even and ! odd):

| oL ¥4 177 ¢
_JZ(L,Z):zdo<¢/I e
. o4

4 11 177 17
+ Fdy (o, vd, +d ke

+

Mlm

)
)
a2 ()l )
s LA L A )

)

2 444 b 24
+%a/4“(a’5 +d, +dy +r

(B-29)
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The last integral to be evaluated is Ig. This is defined by equation

(98).
+7
_ 2 )
I, 40 = [74/177) Lﬁ; ,1(7)] Soa N7 . (5-30)
e 4
Utilization of the Cauchy product formula and of equation (85) yields

2, (£,0) ZZa’ d, /‘/17 0,7 b,(ﬂ ey (3-m)

n=gl1 k=0,1
(A+l) ()

d
In order to reduce the term a;) Pli+l (7)) to a function of Legendre polynomials,

equation (B-17) 1s resorted to and Is becomes

+2 +7

oo n
’ 7 1l ol / 7
0= 5 XA fr ot frenimisln) o
-7 ' 4

n=01 K=0,1
(4+2) ()

The second derivative of Pk+l (Pﬁ a

ential equation which is satisfied by Pn(O):

) 1s transformed by means of the differ-

5/2

and. we obtain

© 7, +Z <
Lu,0=3"3" o1 {(/(+1)(k+2) NG bellss 7 /’; BB 0’7}
7=0,1 kz0,1 /
(4+1) (1) ’ (B-34)
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The second integral occurring in equation (B-34) can be simplified by
making use of the following relation (Ref. 26, p. 330):

71071/(77) = ﬂ@(??)-i— (Zn=3)F,_ () + (2n=7)F,_, (7)+ " . (B-35)

The result is

+7

A R
I,(L,1) :Z Z c/,: dyp KH1)k+2) [0 B, 47
n=91 k=o0,/ —7
(«+2) ()

o n +Z
- Z Z dk’laf:f}( {‘t/;izﬁ-/([(kﬂ)fjﬁﬁ Rh-1)R_+ k-5)E + ]}
-7 .

n=0,1 k=0,1
+0) ) (B-36)

Let the first summation be indicated by 37 ; and the second by 3] 2. Then

L= =2 . (B-37)

-2
Yo is zero if (n-k) > (k+2) or k < 2'2'— . Also, the construction of a table

similar to Table B-1 shows that )7 - 1s different from zero only for both L
and { odd or both even, and thus for n even and k either odd or even. X >
then is evaluated by a procedure completely similar to that used for cal-
culating Io. The results are:

L even, ! even

S C R R
+ LA A )
+ 5 "I::L(—s'f dzﬂ—’_ d41[ + dél[ + o)
T A CE A ARSI
r R (G A )
2 g )

N
|_.|
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L odd, / odd
ZZ: 2 4% 0/;14— d3’1+d;z+ )
A (- A AR LI T
t _?‘ a,;“(% 0/1]"—0/3” + dfu+ o )
+ L (Lt )
to Lot/ 4 U % 122
C R g )
o2y g g g )

(B-39)

The value of the integral occurring in 3] ; may be determined from equation

(B-5) and is:
n+ 2 - - X _
+7 L At 3) for k= 5 or £= 5 -1,
N Laktars 97 = (B-10)
—7 0 for all other values of k .

The value of ¥ ; is then found to be:

o4
n

> (11427 l: 1l os 11 ]
= d o o i
Z: ,;04(n+z)(n+3) <ﬂ+4)a/§ z s TR ] (3

It is to be noted that 3); is different from zero only for both L and {
even, or for both odd.
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