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SCATTERING BY A PROLATE SPHEROID

by *
F, V. Schultz
Willow Run Research Center
of the
Engineering Research Institute
UNIVERSITY OF MICHIGAN

The problem of the scattering of a plane electromagnetic
wave by a perfectly conducting prolate spheroid is solved for
the case in which the incident wave strikes the spheroid nose-on.
The solution involves setting up for the scattered wave a series
in terms of two sets of solutions of the vector Helmholtz equation,
The wndetermined coefficients used in this series are evaluated by
using the boundary conditions on the surface of the spheroid. The

scattering eross-section is then determined,

*Now Professor, Department of Electrical Engineering,
at the University of Tennessee, Knoxville, Tennessee.
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I. INTRODUCTION

The problem solved in the present work is that of determining the
scattering of a single-frequency plane electromagnetic wave striking
nose-on a perfectly conducting prolate spheroid, which is embedded in
free space. Rationalized MKS units are used, In accordance with engi-
neering practice , A~ I is indicated by "j", and time variation is

+jwt
assumed to be of the form e J .

For the solution of the present problem the use of prolate spheroid-
al coordinates (77, , b) is indicated. It is assumed that the origin of
the prolate spheroidal coordinate system coincides with the origin of the
rectangular coordinate system and that the z-axis of the rectangular
coordinates is the axis of rotation of the prolate spheroidal coordinates,

The two coordinate systems (Fig, 1) are related by these equationss

x = F|(£2-1) (1-7°) cos ), (1)
y = 7 {(E21)(1-9?) sin §, (2)
2= Fﬁv ’ (3)

where F is the semi~-focal distamce of the prolate spheroidal coordinate

system,
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II. METHOD OF SOLUTION

The expression for the electric vector of the scattered wave must

meet the following eonditions:

1.

2.

3.

It must satisfy the vector wave equation (or the
vector Helmholtz equation for a monochromatic

wave, as we have here),

Its divergence must be zero,

At very large distances from the prolate spheroid
the scattered wave must take on the behavior of a
spherical diverging wave with the center of the

spheroid as its center,

The resultant of the incident and scattered waves
must satisfy the proper boundary conditions over

the surface of the spheroid.

In order to obtain an expression for the electric vector of the

scattered wave which meets the listed conditions, the following procedures

are followed:

2,

Solutions of the vector Helmholtz equation in

prolate spheroidal coordinates are formed from
solutions of the scalar Helmholtz equation, by
mean&yihe method described by Stratton.l Solu~-

tions are formed which have zero divergence,

1 J.A, Stratton, Zlectromagnetic Theory, McGraw-Hill, New York, (1941).
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b. The incident wave is expressed in terms of appropriate
solutions of the vector Helmholtz equation in prolate

spheroidal coordinates,

¢. The electric vector of the scattered wave is expressed
as an infinite series, with undetermined coefficients,
of appropriate solutions of the vector Helmholtz equa-
tion in prolate spheroidal coordinates. The solutions
used have the proper behavior at infinitely great
distances from the origin of coordinates to ensure

the satisfaction of condition 3 above,

d., The undetermined coefficients in the series for the
electric vector of the scattered wave are evaluated with
the aid of the boundary condition on the surface of the

scattering prolate spheroid,
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IIT. SOLUTIONS OF THE VECTOR HELMHOLTZ EQUATION

As mentioned previously, solutions of the vector Helmholtz equation
are to be formed from solutions of the scalar Helmholtz equation by means

of the procedure set forth by Stratton,

Solutions of the scalar Helmholtz equation,
2 2
A\ vf +k y’ =0, (L)
are used as presented by Stratton, Morse, Chu, and Hutner.2 When equation
(L) is solved by the method of separation of variables, three second-order
linear ordinary differential equations resylt: one in 77 » one in & , and
one in q: . The separation constants are m and b, Actually a quantity n,

which is related to b and which assumes integral values, is used instead

of b,

m
Solutions of the equation :anp are aj 4’ y 8in m¢) , and cos m¢> .

Obviously m must be an integer in the present work.,

Because of the range of?(-1$77$ +1), only the first solution of
the equation in17 may be used, since only this solution is regular through-
out the range of 7. The solution given by Stratton, Morse, Chu, and Hutner

is

’

(1) ,w nn
s Vp) =Y & Pen (7 (5)

k0,1
The numerical coefficients dim are tabulated by Stratton, Morse, Chu, and
Hutner for values of ¢ = (29/A)F = kF from 0 f.o 5 and for values of m + N
from O to 3. The prime on the summation symbol indicates that the summation
1s to be over even values of K if N is even, and over odd values of k if I

is odd. The functions P:m(‘y) are associated Legendre functions,

2 J.A. Stratton ., P, M, Morse, L, J. Chu, and R. A. Hutner,
Elliptic Cylinder and Spheroidal Wave Functions, Wiley, New York, (19Ll).
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The variable § has the range 1¢ ¥£ . Stratton, Morse, Chu, and

Hutner give the following solution which is regular for all finite values

off:

() (" 1)% Nk a2 (6)
R‘ml\(¢>. ¢m (| W2m ZOIJ k' k,‘ Jmﬂ((cg) ) .
k_.ol k HI l

where j *n+§e,(c§) is the spherical Bessel function of the first kind, It is
to be observed that the coefficients d;:’” used in equation (6) are the same
as those used in equation (5). A second solution which has logarithmic

singularities at & = I 1 is also given,

where k k(cﬁ) is the spherical Bessel function of the second kind.
m

When the above expression for R(z)(c‘,‘ ) converges very slowly
mn ‘

(A41 or m large), the following equations may be used:

N event
m-l '
@)y 2C F(M"L) 4 mr\
Rm (§) ( ) (m _;) -z,m mh (!gf%m)'z Q m+K f) (8)
N odd:
A% @ m-zr(w) T (9)

mn f‘@“) (- )d"’“ Zd*"” Ugezml Z ¢:,r G k2.

2m X! -
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The functions anr;k(E ) are Legendre functions of the second kind.

Two other useful solutions of the differential equation in ¢ can be

formed as follows:

22 (o) () + ) e, (10)
()= 2% @) - 1 . (11)
mTi n»

These are noteworthy for having the following asymptotic behavior for

large c& @
(3 j o - N+ m +1"
Ron (f)ef ( 3 { (12)
+m+l '
(L) 1 ’3(? - r; m)
Rmn (f)zz—g— . (13)

The solutions of equation (L) which are used in the present paper

are
y\xfa:) = im (7) (g) cos m¢ (1b)

The superscript "h! may take the values 1, 2, 3, or L,

From these solutions of the scalar Helmholtz equation the following
solutions of the vector Helmholtz equation may be formed (_g being an ar-

bitrary constant vector):

(h)_ o7y (h)
'I':'m?'\ Van’ (15)
A 16)
m, m“ a vwmh (
N 21 gy M), (17)

“n k nn
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eries in terms o IJ'mn ’ gmn , and Er"n may be used to express any ordinary

solution of the vector wave equation. Only -I-qmﬂ and &nn are of use here
since the vropagation of electromagnetic waves in free space is under con-

sideration, This physical condition requires that

v+E=DO, (18)

V: H=0; (19)

and from the defining equations given above it is clear that

v- 1 #o, (20)
mn

v. ‘Pz(h) = v . E(h) = 0. (21)
mn mnr

The vectors E and H can be expressed in infinite series of the functions

M(h) and N(h)o

“nn “mn
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-~ IV, EXPRESSION FOR INCIDENT WAVE

Let it be assumed that the incident plane wave is moving along the
z-axis in the negative z-direction, that the electric vector has a magnitude
Eo and points in the ppsitive y-direction, and that the magnetic vector has
a magnitude Hj and points in the positive x-direction. This is the situation

for a plane electromagnetic wave striking the spheroid nose-on,

With the help of an expansion developed by Morse3 the incident electric

and magnetic field vectors may be expressed as follows:

I 00 -
E x (1)
I 32 z LK (22)
n=0 on
I, o°
H
ey 2)h T (23)
Kk on on
n:0
where N oo s
i . 53._ o, (2)
§ on ko1 K
' 2
= 2
Nn &t 2k+1 i (25)
The vector expressions XM (1) yM(l), zﬁil) are found as follows. By
definition,
"M(h) Ty & ey, (26)
yu(®) . (h)y 4, (27)
n §7'qﬁ mn Y
Mh) =9y® )y, (28)

3 P.M, Morse,, "Addition Formulae for Spheroidal Functions", Proc. Nat. Acad,
Sci,, Vol. 21, pp. 56~62, (1935).
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where ix’ iy’ and iz are the unit vectors in the x-, y=, and z=-directions,
respectively. For h = 1, 2, 3, or L, the function Vi};)is expressed in
prolate spheroidal coordinates and its gradient is found.  The unit vec-
tor i, }-y’ or _)_.z is also expressed in prolate spheroidal coordinates.

The results ares

(h)

X aiquimg(g 1) (g vz)l/zm(

0 R, 2g)cos?ssin ng
~(g21)M2(g2 2 y1/25( )(?)[dg R (g)} sing cos m;z!g
riE 2(1 2R [d? S ()| in (5 stngoos o
v mp(-y’) 22 ) Sm(?)a(h) €) cos;asmm;!j
'y 2 Z?( g% 1)(g2- 027 nnz‘Z)[dgq}S;(g‘Jcou,dcou iy
c£ - P g% Y2)'- {a_ I&)(? ] Rmn(g) cosd cos mgff (29)
SR O GO A TR
+_i_§F- {.mg(g BV -2 ‘“(7) (e mm¢}
+ .i.ygf‘- Z Y2 1 -y nk (g5~ y s (1)(7)[(1‘; fm)(g)]cos n¢

2 _\1/? 2 -
251770y )1/2(g2-~22> [d?s<1(\?)]”<g)cosm§§ (30)

(h)
The expression for yé%ln is not listed since it is not used in the

present work.

4 stratton, Reference 1, p. h9,'Eq % %?
CLA IFIED

————--———.—--——-—---‘-
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Vo EXPRESSION FOR SCATTERED WAVE

The expression for the electric vector of the scatiered wave is
found for the special case of incident wave discussed in Section IV,
namely nose-on incidence.

The M=vectors used in Section IV to express the incident waves
satisfy the vector Helmholtz equation and have zero divergence, as is
pointed out in Section III. Therefore, if the scattered wave is ex-
pre:sed as a linear combination of these vectors with constant coefli-
cients, the resulting expression will satisfy conditions 1 and 2 of
Section II. Actually an infinite series of M-vectors, with undeter-
mined coefficients, will be used for expressing the scattered wave.
For the representation of the M=vectors, the following solution of the

scalar Helmholtz equation (in prolate spheroidal coordinates) is useds

o s ) (2 e md (1)

As was pointed out in Section III, four differcnt forms of R (f
are available and their pertinent properties are given there. Since
the incident plane wave exists throughout finite space, in the expres=
sion for it given by equation (22) it is necessary to use the function
(J)(g:), which is regular for all finite values of { . The scattered
wave exists only outside the perfectly conducting prolate spheroids The
locus & =1 is a straight line extending from z = = F to z = F (I'ig, 1).
For all prolate spheroids whose minor axis is different from zero, the
values of f lie in the rance 1 <:§ < ® , Thus for representction of
the scattered wave in the case at hand, any one of the four forms of

(h (§) nay be used. Because of the asymptotic behavior of R (f) for

very large values of cg-, as given by formula (13), this function, and

USCLASSIFIELED
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(L)
therefore 'Vﬂ s 1s used to represent the scattered wave. The final
nr

exprecsion for the scattered wave will then satisfy condition 3 of
Section I1.

Condition L of Section II will be satisfied since it is used to
calculate the coefficients in the series for the scattered wave. The
prolate spheroid is assum:d to be perfectly conducting, so that this
boundary condition is expressed by

(i x(I_E_ + S_Ii)] = 0, (32)

[n xTE‘-_J =
8t ¢ £at

T, . . ~ o " Lo
vhere E is the electric vector of the total electromagnetic field and
n is the unit vector normal to the surface of the prolate spheroid. The
number & is the value of & on the surface of the spheroids The boun-
)

dory condition implies that

S ;
[, + E)] =0, (33)
(B AL
I S
{ E,+ E ] = 0, (3)4)
¢ ey
where IEV is the Vi ~corponent of I_@ and IE ¢ is the 4) -component, and

similarly for SE R

Since there are two boundary equations to be satisfied, it is to
be expected that it will be necessary to use for S_E_ the sum of two series
of vector functions, each with undetermined coefficients. At least eipght
sets of such vector functlons are available, the individual terms of each
set satisfylng the vector Helmholtz equation and having zero divergence.

Thece sets are

x(h) () g,() ry(h) xyb) ygh) z(h) r(h)
=Zn?’ =n? =mr’ A’ mna’ “ma’ mmp’ mmn

. (35)
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Two of these sets of vector functions have not been previously dis-

cussed, They are

h) 7y (h)
RSN T (36)
and
ry(h) 17y (b)) (37)
m X “m

where ir is the unit radius vector. Of course i r is not a constant vector
but Stratton (Ref. 1) shows that nevertheless M and TN satisfy the vector
Helmholtz equation. In choosing two of the eight listed sets of vector
functions to represent the scattered wave, one chooses functions whose
three components vary with § in the same way as do the corresponding com-
ponents of the incident wave., For the E-vector of the scattered wave the
vector functions which have the proper variat;lon with @ are
(h (h) 2 (h r (h

B, 3, ), 0 R0 (30)

0f these, ﬁz(a and z&("{i were chosen for reasons of simplicity. The

resulting expression for the scattered wave is
5. .S (L)
- (L)
E Z[”‘n on t 15 MY (39)
nso
where cxﬁ and (?1 are undetermined coefficients, Expressions for xl_“l_(l(‘h)1

z.(L)
and M 1q 2 given by equations (29) and (30), respectively.
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Tt can be shown that, for large c ¢ ,

c -Mﬂ
[dé fﬁﬂ(;)]g (o2 - 2mm), (40)

From equations (13) and (LO) results the asymptotic expression

xﬂ(();) [-7 on (7) sinqa +1 7'%(1 (7)cosﬂ ::F:é-.e“j<c§ B 2(&1)

for large ¢ & .

Now
of = ZLrg (k2
and ‘
lin (FE ) =7, (43)
cE>o0

so that formula (41) becomes

-3 27 -
"gg(‘)“i [ (1)(7)sincb+i¢?s (7>cos¢>]x§e (ﬂ g %ﬁ). (Lt)

In a similar way it may be shown that

e (L5)

Equations (LY) and (45) show that each term of equation (39) for

S_E_‘ has the correct behavior at large distances from the prolate spheroic,
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The expression for S_)E‘,_, equation (39), therefore satisfies the first
three of the four necessary conditions. The fourth requirement, that of
satisfying the boundary conditions over the surface of the spheroid, is
met when these conditions are used, in the next section, to determine

the coefficients O(D and ’ﬂn of equation (39).
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VI. SATISFYING BOUNDARY CONDITIONS

The boundary conditions are expressed by eouations (33) and (3L).
If one substitutes the expressions for I§ and S@_ given by equations
(22) and (39), respectively, into equation (33) there results

o

(¢ “1) S(D( ) Cé‘ Rf;i(ﬁ} -
g=¢

(L6)

7%@‘1 S“’() ERZZ@)J
’ﬂ;O L §‘§0

ipn 6 SO mRP e

Similarly, by using equation (34), one obtains

J-——LZA {7@ S ”(y)[—i%R‘j;@ﬂ el Sl m}
&S,

fd“i 95 )EERL )(s‘)] +§(1y’“)[ S‘”(wyﬂ’R( )cqv%

n:0 g%o
i R {86; () S (7)[ Q“’(éJ
= 3%,

2, 2, )
gl g % siz(yﬂ'l? fn(;)} .

- The equations must hold for all allowed values of77 and may be

(L)

used to detcrmine o(n and p N Equations (46) and (47) are multiplied

by S‘()Jh'l)()y) (where N is any non-negative integer) and then integrated
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from 7=-1to 7= +1, The following results are obtained (a is the

semi-major axis of the scattering spheroid):

) +1
1 P\ 7 (z: i, (1) SCI)( ) (1)( Y =
(soaxé%.)/ AL ) [}R o] [ Sy
3 H ROV
Zq“ @ 1)/L (g)] f MY, £y

) )
- Z /3,\?'(1: (&) f 1 \/.]_)7.5. if,’a,) Soulq)dy ,
n:0 i

(L8)

Na20 -

$ @) f (1 7%)[15%@]5‘”(7)@(

J
ic( i(é‘ 1)[§ ;0;)}{:{ J 47715 (775 (p)cly

n=0

+eRYie) f (1 7‘)[ 50,-‘77 S“)( )dyl

|

/'/bn g%'(f 1) \:ag (14;@] f\/l—y—'sol,(q)Ségéy)@

L e N IS
(‘eoa,)(c“?o)ZAnﬁ(éo-D‘\ j f 75( (7)5 (7)d7
§7%0

_@ 1) ?ca)(g )f 7 \/f-?% Sﬁ)( V;I Q‘-;;('y)d;]} .

17

(L9)
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Stratton, liorse, Chu, and Hutner (Ref,2) show that the functions
S‘S‘?(y ) are orthogonal functions, namely that
i . 0 , n# N
Nn ), | all) ,
17 J S Son My = (50)
-1 o { %A/ 22.
2k+1 , n=N
ko1

The other integrals are much nore difficult to handle, The method that is
erployed to evaluate the remaining integrals is to use equation (5) to ex-

(1) T m . N
press Sy (;7) and its derivatives in terms of Pm+k( 77) and its derivatives.
This method involves the manipulation of double series and the evaluation
of integrals involving Pm “C(,?) and its derivatives, but the work is straight-

forward. Only the results are included, and these are listed below,

I _11._ SRSt (s
51)
d“T\ 7 7'
( even even)
Forni odd Sa.nd N ; odd this intesral is zero. For Modd and N even one

obtains, since dfk“” = 0 for k +M odd,

oN ,.1n in in
(d1 + d3 + d5 + eees)

+.15£dgN (di“ + d3 + d%n *eese)

N o 1N in 1N
+-§-d2 (d3 +d5 +d7 .-..)

dﬁN (c1]3‘n +d§" d.]inn...)

, 10 oN,.1ln in in

5 dh (d5 d7 + d9 teees) (52)
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A AR ART AR
+-§-d(1)N (" + diﬂ* &g )
+,§_d§N (d%r: . dtn)( d{15n+ )
+-'}-d3 (dih i d§n+ ene)

.10 oN an 1r\ in
Tk (G *d td + ..

J2 oN lf in  1n

116'5 tlg tdy *eens)

©3)

+1
oo (@) (@ |
AN GERGEVE ()
The integral I:nis zero for® { eggn}and N {?.Zgn} Forn{iggni and N {:3:%

we find

== 4.1 7] on CN on ON '|
Iggz ‘_i( d)“_dbzzl © dku dK% | (55)

(56)
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The integral IA' also is zero for h 5 even} and N }even} For N { eveng

odd odd odd
and N ieven} one obtains

onoal

wn & oN
Zzﬁi— kel g eDdig 4z | )

1
Nn (1) (1
1, j 1 vi-p® 51:» () SON (7)dy

(c8)

-

This integral is zero il Mis { evenz and N is %Zggn% . For ﬁ{even%

odd odd
and i {evenl one finds

Voo @[ ke [ d", W ens’ at
IS :Z :ack:n(ka kd%“ a7 e h . (59)
20

Nn
L f’?“ [ 5 "/’js (pdy (60)
If nis [ SVER [and N is g odd i the integral INn is zero. Forn g evenl
odd even 6 odd
and N Eezgn the integral has the value

—~—

ad , 9 i

N S | )™ || ,id g d g +k d dm -) . (e1)

Ie ‘L I:,zm)(kdﬂk £ “' 3 : Zz
k0 L
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For both 7} and N even, Z is given by

5 -2°N(%d(l)n 1n dll;n*"
+%£N(%dév\+d;n+dtn+
.+§4¥ %4%n+(%n+(%h+
+§_di"’ (gi_d;".,diﬁfdé(ﬁ
,,[190 oN (fl 1n+d2n+d%nf
+%§€N(f%%n+<%n+<%n+

and for both n and N odd, Z is given bty
3

- In, 1in,
L," dl(dl*dB*dS

% ON (‘f' in §n+ d§ﬁ+
6 .oN 2 ln In, An,
frdy gd v drd
g ,oN L, 1n
+:{.d3 (L&d d.s & '+
10 ,oN )4 lf\ lf\ 1n
NT o gt
-]‘-ﬁ-dN I;d;r\'d . ll'?+
L, oN , 6 1n ln 1A
*Ed7 Gy v dy rdg

Tt is now possible to use equations (L8) and (L9) to evaluate the

21

(€2;

(63)
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coefficients d‘n and @n . For ecasier manipulation of the equations,

the following substitutions are erployed:

(1) i) an
ENn( )An(g >[d§ §)] fS (p) N(y)dy,
2 M Ci
€76 ) jﬂp‘ & >J f > O»SCNCMp (€5)
4 1 7 (1) S
2 =-’|21p(<:)f ViqgH 31 (O)dV) (€6)
N A g -
Pl n+
Uun’(c‘% )An {(s‘:-l)ﬁg?m(ﬂ J 5t )chp)dy (€7
° &g,

+L T
2R f a-wL 5o, cr;)]s( @%

-1
Vol [ ststi 2
Nn §o'1)l§!? an J f177 onj? N ) d? |
&,
(4 H
+§:RM(§D)J (1 /z)ng (rJ (?)JV ,

+1
- 6
\/J 2 & 1)”““? (;)J f IJ 19* 5;:)(9)50(:/)(?)&7 ©9)

+(&) Ly (f)f? 19 Eﬁ'b in \SCN(VwV
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Using these symbols in equations (1L8) and (L9) one obtains

= 20 (70)
. /) - _I i ‘—‘/ -
Z(O(n Gin* 1 o7 B2 /. BNn )
n[) n;o
SV R
= E
Z(O(ﬂ Nn+@ﬂwNn E 2 ZUN»« , -
n:0 nzo

These are 2N equations in 2N unknowns, and both N and N go from zero to
infinity.

)
Zach term ( oo x’g{_(h” +

.7 )
oh ﬁﬂ ﬁg_hn\ in the expression for S‘?_, given

by equation (39), represents the reradiation from the spheroid for the

forced oscillation of the nth mode., From physical reasoning it is known
that the amplitudes of the modes, above a certain order depending upon

the ratio F/A, become less the higher the order of the mode. Hence the
coefficients o(n and ﬂl’l must approach zero as n increases, and the

same fact can be deduced mathematically from the convergence of the series.
In obtaining o(n and @m from equation (70) and (71), one may expect
reasonably accurate values if it is assumed that oéh and ﬂn are zero for
values of n above a given number ﬂ’. Then 2 n' of these equations are
emoloyed to find dh and ﬁf". for values of Nup to ﬁ'. When these values
of o(h and @n arc used in equation (39), a solution for S_“_ is obtained
which satisfies the four conditions listed at the beginning of Section II.

It is evident that a large amount of calculating is required in order

to obtain mumerical results from equation (39). Some consideration has been

given to the vossibility of obtaining a simpler solution which would be

more amenable to numerical caleulation. To represent SE it would be
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desirable to have available two sets of vector functions, one with no

7 ~component and the other with no ¢ -component, Then only one set of
undetermined coefficients would appear in equation (33) and only the other
set would be present in equation (34). The process of calculating the
coefficients would then be considerably sirplified., Simplification would
alse result if sg were expressed by an equation which contained only one
ternm for each value of n and if this term involved, aside from algebraic
functions of 7 , only Siij()?) and not its derivatives. In addition it
would be helpful if the vector functions used for expressing ?g would in-
volve only S(()ln)(y ) with algebraic functions of )7 identical to those oc-
curring in the.expression for SE. Then, because of the orthogonality pro-
verty (50), each coefficient Gln and (@h would be given by a single
equation involving no other coefficient., It would be very desirable that
the divergence of each of these functions be zero for all values of the
eigenvalues n and mj; then each term of the scries for the scattered wave
would be divergenceless with the result that the divergence of the com-
plete expression would be zero, as is necessary, As yet, no solutions of
the vector Helmholtz equation have been found which have these desired

properties,
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VII. PHYSICAL PROPERTIES OF SCATTERED WAVE

Eouation (39), with the appropriate values OCn and fjn 18 cal-
culated from equations (70) and (71), is an expression for the electric
field vector S:E_ of the scattered wave which is valid for all values of
7 (-1&)? £ +1), of §( <> fo), and of4>. This means that equation (39)
can Le used for calculating S§ in the immediate vicinity of the scattering
spheroid as well as at great distances from the spheroid.

Usually one is more interested in the behavior of the scattered field
at relatively great distances from the spheroid. To deduce this behavior
nost easily it is well to take the asymptotic form of 'SE as § <> o, under
the assumption that ¢ = 247 F/A does not equal zero., To obtain the

asymptotic form of equation (39) one uses equations (LkL) and (L5):

) .= 2 (1) a

E- \ ! .

E 57 %n‘:’oj oA SOncy)smﬂ

, o ) ()] h+d Yo (1) I
r iy {Z oo 7 9, () 008 & 4] IEN (19%) Sln(y)cof«@j (72)
i

© 290
UET

1 t I
ere o = o 5 a and (3 ,/3 / Ea . Observe the absence
n n o} N n o

of the 1 : component, which is the longitudinal component for large values

of;‘ . This, of course, is a necessary and sui'ticient condition that the
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vwave be a purely transverse wave at a large distance from the spheroid,
as it must be,

In order to obtain more information c:ncérning Sz it is best to ex-
press the electric field vector in terms of components along the rectangular
coordinate axes, The resulting expression for Sg is

- -
i s g}.x Z J'mlﬁr: JT_Y/T' 5;:)(7752'“}@5 (#;J
120
h+3

P“J o(' v/S 67)* /3 5 LyDCos 4

f. :0

_— e gar. @
ZJ ,/17‘6 7)52»4, (= e .
n20

It will be‘recalled that the incident wave was taken as moving along
the z-axis, in the negative z-direction, with the E-vector pointing along
the nositive y-axis and the H-vector pointing along the positive x-axis.
From equation (73) it can be seen that the back-scattered wave (7>= 1)
which is the wave moving along the z-axis in the positive z-direction, has
a component of the Eevector along the y~-direction only. Thus the back-
scattered wave has the same polarization as the incident wave, a well-known
property of back-scattered waves from smooth surfaces.

Prom equation (73) it may be seen also that the E-vector of scattered
radiation being propzgated in the xz-plane (? = 0 or), has only a y-
corponent, while the E-vector of scattered radiatior moving in the yz-plane
(tyn : 1 /2), has both a y-component and a z-component, except along the
y-axis (77= 0) where the y-component disappears, as it must for a transverse

wave,
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In order to compute the magnitule of the Poynting vector of the wave
scattered by the prolate spheroid one may use equation (73) in the fol-

lowing form:

s le SRR
E_ M . ~— . :9,._..,
= 11 T1(7>4>)*-l‘;l ,3('714’)*"13 'z(?‘(p) *— € ) (7h)
S S S
where "T ,’T , and T are complex., Now let
'y 2
S it .8 S, .9
T e ;_1_1"1"1+z_5 'j"!efr\‘; , (75)
and
S -
T=1 T, (76)
- T
N S
where T and T are real,
Then 1257
5 .5 e a S5 .
E=t_T v ¢ ‘ (17)

Fron the scattered field determined above, the scattering cross-section
of the prolate spheroid is readily found. This scattering crosc-section is
defined as the interception cross-section 0~ of an isotropic scatterer
which scatters in the direction under consideration the same power density
as the prolate spheroid scatterers in this direction, The value of 0 is
ren oz anlor) 5

(78!

The numerical determination of the back-scattering cross-section

is described in the following paper,



