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ABSTRACT

This thesis is concerned with an empirical Bayes procedure and its
application to communication theory. The communication problem is one
in which a sequence of information bearing signals is either assumed
to be a stationary random process or distorted by a stationary random
process. In either case, the underlying probebility structure is un-
known. The message sequence is then added to correlated gaussian noise.
The statistical inference problem is to extract information from each
member of the observation sequence, i.e., make a decision as to the
presence of a particular signal. The empirical Bayes procedure utilizes
all past observations to obtain consistent estimates of the unknown
distributions or related quantities. These estimates are then used to
- form a sequence of test functions which is evaluated using only the
present observation. It is shown that the sequence of test functions
converges to the test function one would use if all distributions were
known and if the observations were independent. For a minimum probability
of error criterion, the resulting difference in error probabilities
is dominated by a quantity proportional to the mean-square error in the
estimate of the test function.

In particular, we consider the class of problems where the marginal
density function of an observation is the convolution of a gaussian den-
sity function and an unknown distribution, f(x) = [g(x-z;0)d(z). By
suitably interpreting'a(z), a variety of communication problems are in-
cluded. Much of this study is concerned with obtaining consistent
estimates of f(x) given the sequence of dependent, identically distributed
random variables Xj=N{+Zi, i=1l,...n. Three techniques are presented:

a kernel method which is similar to the procedure used for estimating

a8 spectral density, an orthogonal expansion for f(x) in Hermite functions,
and an eigenfunction representation obtained by solving an eigenfunc-
tion problem associated with the integral equation for f(x). For all
three methods, we calculate the bounds on the mean-square error in the
estimate ofvf(x)fl A typical result is: if the autocorrelation func-
tion of the géussiah noise is absolutely integrable and eventually
monotonically decreasing, and if the sequence Zj is M-dependent, the
rate of convergence of the estimates is the ,same as in the case of in-
dependent observations. The rate is O(l/nu/5) for the kernel method.
For the orthogonal expansion, with the r-th absolute moment of Z finite,
the rate is O(l/n(r—2§/r). With the eigenfunction representation, we
estimate a quantity related to f(x) and obtain the rate O(1n®n/n). The
techniques are then extended to the case of estimating a k-variate den-
sity function f(xy...xx).

xi



These results allow us to bound the rate of convergence of the risk
incurred using the empirical procedure in a number of communication prob-
lems. The problems considered are: communication through an unknown,
stationary, random channel when learning samples (channel sounding signals)
are available, communication through an unknown random multiplicative
channel, and the transmission of known signals with unknown a priori prob-
abilities.

xii



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This thesis is concerned withi a class of hypothesis testing prob-
lems in which not all pertinent statistics are known, but where the ob-
server is repeatedly faced with the same decision problem. The type of
problem we want to discuss is one in which a sequence of information
bearing signals is assumed to be, or distorted by, a stationary random
process whose underlying probability structure is unknown. The message
sequence is then added to correlated gauséian noise. The statistical
inference problem is to extract information from each member of the ob-
servation sequence, i.e., make a decision as to the presence of a par-
ticular signal. The empirical Bayes technique which we shall discuss
involves the use of accumulated past observations to obtain consistent
estimates of the unknown distributions or related quantities. These
estimates are then used to form a sequence of test functions which con-
verges to the test function one would use if all pertinent distributions
were known and if the sequence of observations were independent. These
remarks are perhaps best clarified by a simple example.

Suppose we have an observation X=N+Z, where N is a gaussian ran-
dom variable with mean zero and standard deviation equal to one. Z is
assumed to a random variable which takes on the values O and 1 with prob-

ability po and pi=1-pgy, respectively. We take Z independent of N.

1



Designate the distribution of Z by o(z) and let the gaussian density
with a standard deviation equal to 1 be denoted by g(x;1) The den-

sity function of the observation X is then written.

il

£(x) = [e(x-z;1)de(z)

(1.1.1)

H

pog(x;1) + pyg(x-1;1)

We want to test whether 7Z=0 or 1 with a minimum probability of
error criterion. The optimum test procedure is known to be a likeli-
hood ratio test with a threshold of one. Using the logarithm of the

likelihood ratio, an equivalent procedure is to evaluate the function.

l-P1
x-1/2 + 21
5,

= X-C,

]

T(x)

(1.1.2)

and compare it to a zero threshold. The test procedure which minimizes
the probability of error is to choose Hy (Z=1) if T(x)20 and Ho if T
(x)< 0. ILet G(x) denote the cumulative gaussian distribution function.

Then, the probebility of an incorrect decision is given by

Pe = pp G(e-1) + (l-py )(1-c(c)). (1.1.3)

P. as a function of p; is called the Bayes envelope function and is the
minimum probability of error attainable. A plot of this function is

given in Figure 1.



Suppose p; is unknown and that we have a "good" estimate which we

denote by %l. Then, we might use the test function

l,/\
x-1/2 + 21:( 'pl) (1.1.4)
3

i

ka)

and compare this quantity to a zero threshold. The reason for this is
N
that if py is close to py, T(x) ought to be close to the Bayes test
function T(x). This is in fact the case as can be seen by calculating
A
the probability of error as a result of using T(x). Defining this prob-

ability of error as P(%l,pl), a straightforward calculation yields

b ,p) = p6(f1) + (1p)(1-6(®).  (1.1.5)

A
A plot of P(ﬁl,pl) versus p; for different values of pj is also given

in Figure 1.
1.0 £1=o
B, or By,
B8
A
p1=.3
.6
A
A
P1=.5
2 -
Bayes envelope A
function pi=.T
A
Pl"‘l'
1 1 1 1
.2 4 .6 .8 1.0 ™

Figure 1. Probability of error vs. p, -



Now assume we are repeatedly faced with the same decision prob-
lem; we observe the sequence of stationary random varisbles Xz,£=l,2,,..
n, and for each observation X, we are to decide whether H, or H, is the
true state of nature. Prior to making a decision based on the observa-

tion X, we would use X, to update the estimate of p,. For this example,

a convenient estimate of pl is

ol e
M

P =

n X (1.1.6)

=1

33

Since ﬁln is a function of the observations, P(ﬁln,pl) is a ran-
dom varisble. We define the average value of P(Pyn,p,) by

Pen = E{P(glnipl) }- (l-l°7)

For the above procedure to be useful, we should have

(1.1.8)

lim P, = Pg.

n-»o
That is, on the average, as the number of observations (and decisions)
increases, the probability of error Py, should approach Pe. An estimate
of how close Pey, 1is to Pe as a function of n would also be of value.
In the next section we will show that for (8) to hold we need ﬁln
converging in probability to pl.l We also show that if ﬁln converges
in mean-square to pi, a knowledge of the mean-square error provides a

bound on the difference Pgp-Pe.

lWe will refer to equations within the section by the last index. 1In
referring to an equation in another section we will use all three
indices.



A
Let us calculate the mean-square error for the estimate pln,

Using (1), we see that the estimate is unbiased

BT (1.1.9)

Assume the sequence of observations {Xﬂ] is independent. Then,

the mean-square error is

1+pl(l—p1)

n

A A
E (pyy-p,)% = V(b p) (1.1.10)

A .
The estimate P ~converges in mean-square at the rate O(l/n),l

If, on the otherhand, we assume that the gaussian noise samples

are correlated, E(NZNm) = Pp.yo We have

n n
A
V(p ) = 1+p (l-P i 2 Z (1.1.11)
n —_—
" n n2
= m:
From the stationarity assumption, we can write
n
+ -
V(ﬁ;m) = M + _Q_Z(l- Tor (1.1.12)
] = : -
T=1

Assuming the correlation coefficients p; are absolutely summable,
e ]
Z lor | = B < =, (1.1.13)

T=1

we have

Le use the standard big O notation to write V(pl )—O(l/n)g which is
taken to mean that there is a constant a for Whlch.Jkp ) = a/n



n
A : - 2
V(P ,n) §_l_flf_lip_1) + 'ﬁz o
T=1 (1.1.14)

A

(1+p,(1-p,)+2B,).
n

Hence, if (13) holds,;gln converges in mean-square also at the rate
o(1/n).

Now, for the case of independent samples, T(x) as given by (2) is
the optimum test function; the test procedure using (2) results in the

A
minimum probebility of error, Pe. Then, using py, in (4) we have

A A
Tn(x) =X.-1/2 + 21n(l‘Plr>. (1.1.15)
Pi,

If, as a result of using fn(x), Pepn converges to Py, we say the se-
quence of test functions is asymptotically optimal. This definition
was introduced by Robbins [30].l

When the sequence of observations is dependent we will still use
the test function given by (15). With V(ﬁln)=0(l/n), we would expect
that gﬂl converges to I; at the same rate as for the case of independent
observations. Now Pe is no longer the minimum probability of error at-
tainable since we do not base the present decision on all past observa-
tions. We do, however, use all past observations to form én estimate
of T(x). For this case, we shall call T(x), as given by (2), the "op-
timum one-stage" test function. We will be concerned with the conver-

AL
gence of Tn(x) to this one-stage test function. Clearly, the one-stage

lNum.bers in square brackets refer to references listed at the end of
the report.



test can be modified by basing a decision on a specified number of ob-
servations. Then, at the expense of increasing the number of hypoth-
eses to be tested, the probability of error would tend to decrease. In

general, this procedure is still suboptimum. We do not discuss it further,

We have called the learning and test procedure an empirical Bayes
procedure because the decision problem is one of making an inference
concerning the presence of a random variable (or process) Z which is
distributed according to some a priori distribution a(z) and which we
will take as unknown. With dependent observations, which is the case
we will study, the procedure is neither an optimum (Bayes) nor asymp-
totically optimum procedure.

We now generalize the above problem and establish bounds on the

convergence of P, to P..

1.2 THE EMPIRICAL BAYES PROCEDURE

We let the parameter A represent the hypothesis in effect when
the random variable X is observed.l A takes on the values "O" and "1"
with probability po and p,=l1-po, respectively. The observed random vari-
able X is governed by the density function fi(x) when A=i, i=0,1. The
density function fi(x) will, in general, be the convolution of a gaus-
sian density and some distribution function. The marginal, or overall

density function of the observation is

f(x) = pofo(x) + plfl(x) (1.2.1)

1lIn this formulation, and in the proof of asymptotic optimality for in-
dependent observations, we follow Robbins[30].



The choice of deciding between the two hypotheses is made by a
decision function t(x); t(x) is defined on the space of observations
and takes the values O or 1, according to-which hypothesis we believe
is active. A loss function L(t(x),\) is also defined as the loss in-
curred when we make the decision t(x) and A is the true parameter. We
take the loss of a correct decision to be zero, L(0,0)=L{(1,1)=0, and de-

fine
L(l,O) = ay> 0,1{0,1) = a; > O,l (1.2.2)

Letting b(7) = L(0,A\) -L{1,\), we can write the loss incurred by using

t(x) as
L(t(x),A) = L(O,A) - t(x)b(}N). (1.2.3)

For any decision t(x), the expected loss as a function of the parameter
A is
R(t,N\) = f L(t(x) ,N) £ (%) dx. (1,2.4)
b's

The expected or overall risk is defined as

R(t:ﬂf)

‘\[R('tﬂ\) an(N)

A
J[;/\ L{t(x) ,\) f%(x)dﬁ(A)
A X

Iwe will carry a, and &, along in the develcpment even though we are
interested in a minimum probability of error criterion for which ag

= a, =1,



where n({A) is the distribution forA. We can write the expected risk in

the form

R(t,n) = p,a, - ft( x) [p,a f,(x) - poaofo(x) lax. (1.2.5)

X

If we denote the test function T(x) by

(x) = p,8,f,(%) - poaofo(X), (1.2.6)

then (5) becomes

R(t,n) = p,8, - \/\ t(x)T(x) dx, (1.2.7)

X

and the procedure to minimize the overall risk Is to choose

tp(x) 1 if T(x)

(1.2.8)
0 if T(x) < O.

The decision function defined in this manner is the Bayes decision func-

tion (with respect to the distribution x), and the Bayes (minimun) risk

is R(typ®) = Dpa - fT(x) Toax, (1.2.9)
where T(x) Yo T(x) if T(x) >0 and 0 if T(x) <O

Now suppose that the test function T(x) is unknown and that we are
repeatedly faced with the same decision problem. (Both p; and fi(x)
mey be taken as unknown.) At the n-th decision, we have observed the

sequence of stationary random variables Xg,%4=1,2,...n, and we want to
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decide whether A =0 or A1l. The values of%z(the states of nature),
4=1,2,...n-1, may or may not be known, i.e., we may not know whether
our previous decisions were correct. We agree to use only the present
observations X, to meke a decision as to the value of Ay, but we use all
past observations to determine a decision function t, which takes on the
values O or 1. The decision function is now defined on the space of all
past observations. We designate this decision function by'tn(xl,xg,a,o
xy) or, for notational convenience, by tn(xy).

Let Ep)p denote the mathematical expectation with respect to all
the random variables Xl,.LXh%n, and En[%n denote the conditional expec-
tation given An. With the loss given by (3), the expected loss at the

n-th stage 1is

R(tpohy) = Bylpn(Wtn(X) sM) (1.2.10)

and the overall loss is given by

R(tp,n) = f R(tp,A) dn( )
(1.2.11)
= En}\n(L(tn(Xn)J?\n))o
This can also be written as
R(tn,n) = Py8)-Bn(tn(%)b(M)) (1.2.12)

Let Ex% denote the expectation with respect to the pair of random vari-

ables (x,\). If iim B {(tn(X)o(Ag)) I=Ex ((tp(X)B(A)) ] then, in view
N-x0

of (4)-(6), we have



11
lim R(tn,n) = R(th). (1.2.13)
n-+o
A sequence of decision functions {tn<x1"'xn)] such that (13) is
satisfied is said to be asymptotically optimal. This is the definition
Rﬁbbins adopted for the case of independent observations. We shall now
obtain a bound on the convergence of (13) end also investigate the case
where the observations are dependent.

1.2a Independent Observations

Consider the second expression in (12):

Enan(ta(Xa) p(Aa)) = PoEn|)\(tn(Xn)b(0)) + plEnk(th(lg)b(l)).
=0 =1
In view of the independence and stationarity assumption, and the

definition of b(A), from (1) we have

. PRl _ (5,(X,)0(0)) = - 22 [ £5(xy)
n- n-

jr... ) t_(xl...xn)f(§l)...f(xn_l)dxl...dxn_l dx,
plEnl}\(tT(XrI)b(l)) = plalffl(x.n)
. n=

Using the definition for T(x), we can write

and

tn(x . ooxg) f(xy 1) dx .. .dxy ) >dxy

Bt (k)80 = [ 10g)

<{::jr... jpth(xl...xn)f(xl)...f(xn_l)dxl...dxn_l dx,
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Define a sequence of test functions

Tn(Xn) = Tn(Xl,XE,...,Xn_l,Xn;Xn).l

Tn(xn) 1s a function of x,, whose functional form depends on the vari-
ables (observations) Xy+.+Xp. Suppose that for almost every fixed x

and .arbitrary e,

lim Pr {|To(X,,...Xp-1,%3%) - T(x)| <€} = 1, (1.2.1k)
=0

i.e., Tn(xn) converges in probability to T(x) for almost every fixed x.

Further, define the sequence of decision functions by

Loaf Tp(x ...xp5xp) 2 0

(1.2.15)

0 otherwise

We then have

En}\.n(tn(xn)b(%‘ﬂ)) = .fT(X) [PI‘[Tn(Xl.. -Xn_.l:X;X) 2 0}] dx,

and sinceb/\lT(x)]dx—< ®©, it follows from the dominated convergence

theorem and (14) that

it

P
lim Enkﬁ(th(xh)b()\h)) j T(x) lim Pr{Tn(Xl...Xn_l,x;x) 2 0} dx

00 N0

fT(x)+dx.

1In this section we drop the A notation on ﬁn(Xh),
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Theorem 1.2.1 (Robbins [30], p. 201): With T (x,) such that (14) is

n)

true and with tn(xn) defined by (15), the sequence of test functions
ig asymptotically optimal in the sense that
lim R(tn,ﬂ) = R(tB,n)
N0
Perhaps the most convenient way to obtain a rate of convergence
is to assume that the sequence of test functions converges in mean-
square to T(x), uniformly in x. Suppose that for almost every x, the

inequality

En_l{lTn(Xl...Xn_l,x;x)-T(x)l}2 < 5n2 (1.2.16)

is satisfied and that lim B, —O Then, from the Chebyshev inequality,
n-o

we have convergence in probability with the bound
Pr{lTn(X n-1,%3%)-T(x )| > € } < B /e

for a.e.Xx.
Notice that by definition R(tp,n) > R(tg,n). From (9) and (12),

the difference in risks is given by

0< R(tn,ﬂ) tB,ﬂ) = [ T(x) ax - [ T(X)[Pr{Tn(Xl,Xg.,.Xn_l,x;x) > 0} ]ax

Define T(x)™ = T(x) if T(x) < O and T(x) = 0 if T(x) > O. We then have

g E, .1 denotes the expectation with respect to the first (n-1) random vari-
ables, X;...X, 7.
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0 £ R(t,,n)-R(tg,n) = fT(x)+dx - fT(x)+[Pr[Tn(x) z 0}]ax
- [ ™(x) [Pr(T, =z 0}]dx (1.2.17)
= J2(x)"Ter(T (%) < 0}lax - JB(x) [Pr(T (x) = 0} lax.

Let A = {x:0 > T(x) > €} for arbitrary positive € and consider the first

expression on the right side of (17).

fo(x) TPr(T(x) < 0}lax = [,T(x)"[Pr(T,(x) < 0}]ax + IACT(x)+[Pr(Tn<x)<O}]dx

For x contained in A, it follows from the bound below (16) that

2
Pr{T,< 0} = Pr{Ty-T < -T} < Pr{T,-T < - €} < ﬁn/ea. Hence, the first
2
integral in the above expression is bounded by —2 fAT(x)+dx. For the
€

second integral, assuming a; > 8y, we have

J T(x)+[Pr{Tn(x) < 0}]ax < fA T(x)+dx
A c

< & IA [p1f1(x) + pofol(x)]dx = &a;Pr{0 < T(x) < €}
c

= a;9;(¢) .

Collecting results, we have

B2
fr(x)*[Pr(Ty(x) < O)lax < B [ 2(x)"ax + a1Bi(e)

In a similar manner, the second integral on the right side of (17)

is bounded by

- Jo(x) [Pr{Ty(x) > 0)Jax < - = [ (x) ax + a18z(¢)
2

™
N
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where 52(6) = Pr{ -e¢ < T(x) < 0}. We now have,

Corollary 1.2.1: Assume that the sequence of test functions T, con-

verges in mean-square as given by (16). Then, the risk at the n-th

decision is bounded by

™
NIS!v

0 < R(tg,m)-R(tp,n) < [lT(x)[ax + 3(e) ,

&2
where 8(e) = Pr{|T(x)| < €} .
We shall now derive the same bound for the case of dependent

observations and also give conditions on fo(x) and fl(x) so that

5(e) can be made arbitrerily small.

1.2b Dependent Observations

Let: f(x.,...,Xp) denote the(n-variate) density function of the

l’
random variables Xj,4=1,...n; f(xl,...,xn_l|xn,%n) be the conditional
density function of the first n-1 random variables given An and Xp;

and f(xl,...,xn|xn) designate the density furction of the variables

XqeoesXpy) given An. In analogy to the previous development, we have
R,(tn,m) = Enp (L(tn(¥n),X)) = py8 - Enxiﬁtn(xn)b(kn))’ (1.2.18)
and

E( t-n( Xn) b( >‘-n) ) = plalE_n‘ }\,( t'n( Xn) ) - PoaoEn l )\( tn( Xn) ) .
n=1 n=o0
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We write the first expectation on the right side as

E“"‘x(l;cil(xn)) = 'f...jtn(xl...xn)f(xl...xnlxh=1) dx,...dx

n-1
=ffl(xn)g ... ftn.(xl' cx ) F(x, . .xn_llxn,hn;l) x, ...

The conditional density f(xp M=1) is written as fi( x,). The second

expectation, E,|) -0,is written with fo(x,) in place of fl(x-n_) and
n

£(x,5. .. 5%p-1[%xpsAy=0) in place of £(x,,.. X1 % A=1)
Using these expressions in (18), the empirical risk becomes

R (tn,m = p; 1-{:__/131 1 Fa(xg) [f f tulx,.

f(x n-llxn’)‘n— Lodx l:, dx,

'.fpoa £(xp) l:f ft (%, ooxp) £(x oo g 3, A =0) dx

dxn_] dxy, },

and upon using the definition of T(x), the risk is expressed as

n-1
R(t,,n) = p & l-gT(x)l:f...ftn(‘xl...%_l,%)

f(x xn_l[xn-x,kﬂf ) dx....dxp ] |dx

poa (x I:f ftn(x ceeXp_1X) g F(x 1 *a- 1|xn-x, Ag=0) -
f(xl...x_,n_l[xn=x,>\n=l) dx ... dxn-l] (i;c-—} (1.2.19)
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To demonstrate convergence, in contrast to (14), we now need to
require convergence in probability conditioned on the n-th pair of

random variables xp, and Ap,

lim Pr |Tm(xl...xm_l,x;x) - (%) | < €|¥p=x,rn=1 =
oo n . _

Oy 1= O)l. (1.2.20>

Clearly, this is satisfied if we have (conditional) mean-square conver-

gence for a.e.x,

0, i = 0,1. (1.2.21)

This condition, however, is difficult to verify. Under the assumption
that the marginal density functions p,f,(x), 1=0,1, do not equal zero

for almost all x, (21) is implied by the inequality

2 2
E(T,-T)" = J[‘...b/\(Im(xl...xn_l,xn; m) - T(xn)) f(xl.uaxn) dx ...

2
ax, =7, (1.2.22)

where lim y,=0. This average is considerably easier to obtain.
-

Then, it is easy to see that the empirical risk converges to the

risk incurred by using the one-state test:
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lim R(ty,n) = piay - _/NT(x)lim PrqTu(X,... X, 1,%;%) 20|

M=0,%X, = x pdx = p,a - &/\T(x)+dx=R(tB,n).

To get a rate of convergence, we proceed differently than in the
independent case; the reason being that the bound in (22) does not
imply a wuseful bound for (21) and (20).

From (5), we have

R(tg,n) = pia, - Exn(tp(X)p(N),

and since R (tB,n) depends only on the present pair of random vari-

ables (xp,\,), we can write the difference of (18) and R(tB,n:) as

Eoan(B(0) (B(X) - £ (X;.. X)) (1.2.24)
Since b(M\) is a bounded function and assuming a;> ag, (24) is dominated by
0 = R(t,,m) - R(tg,n) = alEnltB(Xn) - tn(xl...xn) I (1.2.25)

The functions tg and t, take on the values O or 1. Hence, the contri-
butions to the expectation are the two cases where tB%tn. We have,

from (8) and (15),
O = R(ty,n) - R(tg,n) = a  Pr Tn(X l,x..a,...xn;xn) 0, (X, <O

+ 8 P Tn(Xl,XZ...Xn;Xn) <0,M(X,) 20
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Let €> 0 be an arbitrary constant and consider the first expres-

sion on the right side:

Pr{zrn 0, T< O} = Pr{T‘n 20, T: 3

v

iiA
L
o

Assuming (22) holds, we have

2 .
Pr{rn 20, T = -g}é Pr<ETn—T| %e} = 7p /62.

Letting &3 (e):Pr{e < T(xy) <§‘L, it follows that

Pr{Tiné 0, —e<T<O }= 8.(€) Pr%nié O| - e < T < O:}

=8, (e).

Hence, we have

Pr <:Thn2 0,T< o=> S ynjes + ea(e).

In a similar manner, we can show that

} 2, 2 y

where 62(€)=Pr{€ >T(Xn) 2 o}, Then, setting 8(e) = & (e) + 82(6) =

Pr %IT(X) | <e }’ , the difference in risks is dominated by

2
2Yn

2
€

0 = R(t,,m)-R(tg,n) = a + 8(e) J. (1.2.26)
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To show that &(e) can be made arbitrarily small, it is sufficient
to assume that the density functions fy(x) and fl(x) are linearly inde-
pendent, and in addition, they are analytic functions of x.l

The linear independence assumption is not unreasonable since, if
the density functions were linearly dependent, one could not distin-
guish between the two hypotheses. The analytic assumption is more
then we need, but in the cases we are interested in this assumption will
always be met; fj(x) will be the convolution of a gaussian density
(which is analytic) with some distribution function.

These two assumptions imply that the roots of T(x)=0 are isolated.
For if T(x)=0 in some interval then, since T(x) is analytic, T(x) is
identically equal to zero. This violates the linear independence as-
sumption. Now, since T(x) is continous, it follows that for any spe-
cified &, we can choose an € such that the probability of the set A=A

<{:x:1T(x)|<:E}>satisfies Pr(A) = 3. This gives the desired result
Pn{:]T(x)l < {}>§ 8(e).
We collect our results (and assumptions) in

Theorem 1.2.2: We observe the seguence of stationary dependent random

variables X ,4=1,2,...,with the marginal density function

2(x) = pfy(x) + p.f(x).

Assume that a sequence of test functions, Tn(xl,xg,...xn;xn) exists

which satisfies (22),

lBy linear independence we mean that there does not exist two non-zero

constant ¢y, ci1, such that cofu(x) + eyfi(x) = 0, a.e.x. (Since the
f; are densities, linear dependence is equivalent to equality.)
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2

B 1Ta( X, XXy - T ) = %,

and lim 7n2=0. Define the segquence of decision functions by
00

tn(xl,...xn) 1 if Tn(xl,x2,...,xn;xn) 20

O otherwise.

It pifi(x)#o, for a.e.x, 1=0,1, the empirical risk converges to the risk
incurred using the one-stage procedure. In addition, if the density
functions fi(x), i=0,1, are linearly independent and analytic functions

of x, the difference in risks at the n-th decision is bounded by

2

2 v
=< - = .
0= R(tn,n) R(tB,n) al("n + 8(e) }.

e2

€ is an arbitrary positive constant and 8(e) can be made arbitrarily
small by a suitable choice of €.

We will have the occasion to consider a test function defined as

%(x) = s(x)T(x) = s(x){:%lalfl(x) - aopofo(xz:}n (1.2.27).

Since s(x) will be a positive function, the decision function

EB(x) = 1 if E(X) 20 (1.2.28)

0 otherwise

is identical to %B(x). Hence, the risk using this equivalent test,
R(tg,n), is equal to R(tp,).

For the empirical procedure, we will then take
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~

Tplxy) = s(xp) Tn(xp) (1.2.29)
as the estimate of E(x) and define the decision function by

tn(x

Il

o) 1 if s (Xn)Tn(xn) 20

0 otherwise. (1.2.30)

~

Letting R(tn,n) denote the risk of this procedure, we have

~

R(tm) = &P - Buo(t(X)0(3)). (1.2.21)

The difference in risks is
< =z - 7 - { 7 L }

e En<{I%B(Xn) - %ﬁ(xh)[:}'. (1.2.32)

Then, by a proof which is identical to the previous theorem, we have

Corollary 1.2.2: Assume that the sequence of test functions satisfies

B, <{E%(Xn)(Tn(Xl...xn;xn) - T(Xﬁ))f:}> s (79" (1.2.33)

and that lim y'=0. Assume further that the density functions fi(x),
nFe N

i=0,1, are linearly independent and that the functions s(x)fi(x), i=

0,1, are analytic functions of x. Then, the difference in risks at the

n-th stage is bounded by

0 = R(¥;,n) - R(tpn) =a + 5'(e) (1.2.34)
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where 8§'(e) = Pr<{1§(x)T(x)|%%}> can be made arbitrarily small by suit-
able choice of €.

Similar results can be obtained for any equivalent test procedure.
By an equivalent procedure we mean a test function Te(x) such that for
every x, Te(x)2 O when T(x)2 0, and a decision function t(x) which
equals one when To(x)2 O and zero otherwise. In view of (32), a bound
on the difference in risks, analogous to (34), can easily be obtained.

These remarks can be extended to the results of the next two sub-
sections. ©Since the extension to equivalent tests is straightforward,

we will not discuss them further in this chapter.

1.2c Extension Of The Dependent Case To Multiple Hypotheses

Let the parameter A take on the "values" k=<{::,hl,...%£}. Again,
A designates which hypothesis is active. We take p; as the a priori
probability of the i-th hypothesis, 2. pi=l, and fi(x) as the density
function of the observation given that A=Ai.

A test procedure is equivalent to specifying (K+l) decision func-
tions t4(x), i= 0,1,...K+l, defined on the space of observations such
that if, for a given x, ti(x)=1 we announce Aj and if ti(x)=0, we do
not announce Aj. Clearly, we have 2, ti(x) =1, for all x.

If we take the loss as O for a correct classification and equal

to 1 if we are in error then, assuming that A=Aj, the loss is (l—(tj
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(x)).l The expected loss, given that k=kj, is

+00
R(tj,h) = J/‘ (l-tj(x))fj(x)dx

and the overall loss, or expected risk, is

40
R(t,n) = JFIJF (l-tj(x))fj(x)dx dn( )

K_OO
400
= ;z Jﬁpj(l-tj(x))fj(x)dx
j=o T
, x -
= 1 - Z pJf tj(x)fj(x)dx.
j=o

We prefer to write this as

. K 400
R(t,n) = 1 - p, - }: .jr tj(x)Tj(x)dx,
j=o =

where the test functions Tj(x) are defined by

T.(x) = p.f.(x) - pofo(x), j=0,1,...X.

d J d

The test procedure given by

ti1p(%) 1if Ty(x) 2 Ti(x), all J

J

O otherwise,

(1.2.33)

(1.2.36)

(1.2.37]

(1.2.38)

(1.2.39)

We can think of t;(x) as the probability of announcing A=A\j when we
observe x. (l-tjex)) is then the probability of an error given that

>\.=>\.J- .
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minimizes the probability of error. The minimum probability of error

is then

R(tB,n

|
}_l
1
e}
(o]
Bt
9“‘7
ct
Ce
—~
X
Fa
/\
ka3
(o]}
[
-

K
1-p, - }:

where Aj=Aj{ X: Tj(x) 2 I.(x), i=0,1,...

When the test functions are unknown, we suppose that we can find

.
1l
(e}

LfJf:\

a sequence of functions Tjn(xn) which satisfy
; IR TR 2.140)
Eﬂ( ITjn(XJ_'--Xn-]_)Xn:Xn) - TJ(Xh)I ) = 7’jn »J=0,1,... K (l- . O)

We then define the sequence of decision functions:

tjﬂ(xl--°xn) 1if Tjn(xl...xn;xn) 2 Typ(x,...Xn5%y), all i,

0 otherwise. (1.2.41)

With fj(lexg""’xn) denoting the joint density function of the

n observations given that the n-th A, 1is xn=an, the expected risk is

K n
R(tn,ﬁ) = 1- }: Py jf.., /ptjn(xl...xn)fj(xl...xn)dxi..dxn.
J=0

The difference in risks is expressed as

0 ® R(tn,n) - R(tp,w) = }; P; Jf... jF(tBj(xn) - tin(x,...x)) .
j=0

f3(xy. %) dx .. d%, (1.2.42)
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1A

Clearly, pjfj(xl,,..ﬁx

K
) ZEJ pifi(xl,...xn) = f(xl,...xn), and hence,
i=0

(L2) is dominated by

K
0 = R(tp,m - R(tp,n) = z Bpltpi(Xn) - tpi(X.. %) | (1.2.43)
Jj=0

Let the subscript i in the following expressions read "for all i,"

and the subscript k mean "for some k." The joint event ((Tjn(xl,..xn;

x,) 2 Tin(xl"'xn5xn) for all i),Tj(xn) < T (x,) for some k) 1is writ-

ten as (Tjnz T TJ, < Tk).

The expectation inside the summation of (43) becomes

Enz[tBj(x_jl) - tj:n(Xl---}QnH = Pr %Tj_ﬂ 2 TinsTy < Tk}
+ Pr Tjn < Tkn,Tj Ty

Consider the first probability expression on the right side. Since

the event (Tjné TinsTy < Ty) is included in the event (Tjn Z Ty T,

< Ty), the first probability expression is dominated by

- 2 - s -
Pr{ Tjn. Tk.n_ = O,TJ. Tk = ejk }
- 2 - - F
+ Pr{Tjn Ty 20, - €5 < T Tk<o%,

where ¢4 is an arbitrary constant. If’(Tjn - T, 20) and ((Tj— T,)

v

]

s - ejk)then the expression (iTjn‘ Tgn- Ty + Ty | Eejk) holds. There-

fore, it follows that



\.
H
]
=]

fiA

{Jn ik '%‘k}
{ITJn-Tkn-T * Tl —GJK}
Defining 51. = - €k < T - T <0 } » we have Pr{ﬂbnA— Tyy 2

0, - eJk< Ty - Ty < O} dominated by 5ljk in analogy to the previous

development. We then have the bound

=
Pr% Tip 2 Ty Ty < T ,L
s
5 Pr<{ Ty = Ty = Ty + Tl Zeyy Fﬂh‘jk

which, in view of (40) and the Minkowski inequality, can be dominated

by

2

} i F -
2

Similarly, we can show that

Pr {Ejn < TypoTy 2Ty }

Combining these bounds, we obtain

fiA

(7in ¥ Vi) 2 .
Jn kn) + 6ljk°

2
ij

2
EnltBj(Xﬁ) - tjn(Xl,...Xn)l s 2(7jn * 7kn)
2

ij

Bjk = Pr % |Tj(xm) - Tk(xn)l < e%£}> .

+ 5Jk(€jk)ﬁ

where
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In analogy to Theorem 1.2.2, we have

Corollary 1.2.3: We observe the sequence of stationary dependent ran-

dom variables Xjp,£= 1,2,...,with the marginal density function f(x) =
k
% p;Tj(x). Assume that the sequences of test functions<{Tjn(xl,x2,...

J=0
xn;xn) }, j=0,1,...K, satisfy

2 2
-17.)° s Vin 2 3=0,15.. K. (1.2.45)

En(Tjn j

and that lim 7jn=o’ J=0,1,...K.

n-»o

At the n-th decision, define the (K+1) decision functions by

cesX

tj(x ») 1 if Tjn(x1°"xn5xn) 2 Tin(xl...xn;xn), all i

1

1]

O otherwise, j=0,1,2,...K.

Then, if pifi(x)%a.e.x, i=0,1...K, the empirical risk converges to the
risk of the one-stage procedure. If the density functions fj(x), J=0,
1l,...K, are linearly independent and analytic functions of x, the dif-

ference in risks at the n-th decision is bounded by

S o+ i )?
0 = R(tn_,TE) - R(tB,n) = 2‘ 7.jrl 7kn + Sjk(ejk)
€..2
j=o JE

where again Sjk

1.2d Convergence of The Empirical Procedure For Unbounded Loss Functions

can be made arbitrarily small.

The fact that the loss function ((2)) is bounded has been used to
considerable advantage in obtaining the above bounds. Situations where
L(t(x) ,A) may notbe abounded function of A occur when we let A(the

state of nature) take on a continuum of values. We assume that A is a
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random variable drewn from some general pepameter space A. With A dis-
tributed according to the distribution a(A), the density function of

the observation is written
£(x) = Ifi}\(x)da(%). (1.2.47)

The hypothesis test we consider is one in which we infer from the
observation X whether AeA (hypothesis H,) or AeA-A (hypothesis Hj).
To obtain the (one-stage) test procedure, we again let t(x) = O,

1, depending on whether we believe Hy or I is in effect. Defining

b(A) = L(0,A) - L(1,N) (1.2.48)
‘and
T(x) = ‘/\b(k)f%(x)da(%), (1.2.49)
A

the risk incurred is a minimum if we choose

tg(x) = 1if T(x) 20
= 0 otherwise.l
The risk is then given by
R(tg,0) = f-L(O,A)da(?\) -‘f'I'(x)+dx (1.2.50)
A

lsee Robbins [30], section 3, for the details.
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which we can also write as

R(tg,) = fL (0,A)d(A) - XA{EB(x)b(i}. (1.2.51)

A
When the test function T(x) is not known, we define a (two-valued)

decision function tn(xl...xn) as before. The overall (empirical) risk

is

R(tn,a) = fL(o,k)da(x) - Enkn@(xl"'xn)b(%n)} (1.2.52)
A

and the difference in risks can be written as

= En‘)\ng()\n) (tB<Xn) - tn(xng . (l-2°55)
If we assume
fba(?\)da(x) Sc< o (1.2.54)

then by the Schwarz inequality it follows that

s G%{}B(xn) - tn(xl],..xn)E}’>l./2 (1.2.55)

The value of the expectation in (55) is identical to the value of
expectation appearing in (25). Hence, we obtain

Corollary 1.2.4: Assume there exists a sequence of test functions which

satisfies
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En@(xl---xn;xn) -T<xn>>2:}é 7o -

Then, if the decision function t,(x,) is defined as

t(xp) 1 if Ty(xy) 20

0 otherwise;

and if (54) holds, the difference in risks at the n-th stage is domi-

nated by

0 = R(tp,») - R(tB,x)

2
< JM2f 2y, (1.2.56)

€2
Observe that the bound is of order ypn while the previous bounds on
the risk were of order 7mf- This is a direct result of the boundedness
of b(A\) for the minimum probaebility of error criterion and the fact that
the sequencé{:':}7may be dependent.
We have assumed throughout that each decision is based on a single

observation. The extension of the above results to more than one sample

per decision is straightforward.

1.3 LITERATURE SURVEY AND SCOPE OF THE PRESENT STUDY

We have investigated the convergence of a particular empirical pro-
cedure to what we have called the optimum one-stage procedure. By

dominating the mean-square error,
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By (Baliy KgsXy) - T05))2 S 8

we are able to bound the rate of convergence of the empirical risk.
Hence, the central problem is to find a sequence of estimates @n(xl,.
xn;xn) which is consistent, i.e., lim y4=0. This is our major concern.
1300
Consider the two hypotheses problem with a minimum probability
of error criterion. For this case, T(x):plfl(x)-pofo(x). Assume that
18 is known and that the densities fo(x) and fl(x) are unknown. To

estimate T(x), a natural procedure would be to first estimate the den-

sities and then take

T (x) - P].%l (x) - pogon(X) (1.3.1)

as the estimate of the test function for the n-th decision. If %ln
and %on are consistent estimates then the sequence @n(x) will also be
consistent. The manner in which the estimates are obtained depends on
whether "learning" samples are available.

If one can classify an observation with probability one, it is
called a learﬁing sample. Then, if the observation is known to come
from, say, hypothesis H,, we would use it to update our estimate of

fo(x). This type of operation has sometimes been called supervised

learning or learning with a teacher.

lIn the context of communication problems, learning samples are pro-

vided by periodically injecting & known fixed sequence into the sequence
of information bearing signals, i.e., channel sounding signals, See
(35,361, Ieafning samples of a different nature occur in problems such
as statistical weather prediction. Based on some observational data,
an inference is made about the future weather. At some later time we
find out if the inference was correct. This knowledge would then be
used to form better inference procedures.
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When learning samples are not available; the problem is more dif-
ficult. Since we never know from which population the obserwvation is
drawn, we can not directly estimate the desired gquantities. One pos-
sible procedure is to estimate the overall density function: f(x) =
Pofo(x) + pafi(x), and then attempt to extract from this estimate the
parts that are unknown and that are needed to form the estimate of the
test function. This mode of operation has been called nonsupervised
learning or learning without a teacher. We remark that learning in
the nonsupervised mode is not always possible.

When the seguence of observations is independent and if, with
either of the above procedures, we obtain congistent estimates of the
test function, then, these procedures are asymptotically optimal.P
This 1s not to say that the probability of error is minimized at each
stage. This, of course, depends on what part of fi(x)is unknown, how
it is estimated and subsequently used to form the estimate of the test

function.

1l.3%a Literature Survey

The learning procedures most frequently investigated are those

in which a set of parameter wvectors, Qig i=l,...k, is to be estimated

2When the observations are dependent, the procedures are in no way op-
timum. Presumably, they are reasonable procedures to follow, especially
when the exact nature of the dependency on the observaticns in not
specified.
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=

from the statistically related observation vectors z%y£=lpg..n,* Each
parameter (or pattern class) 1 1s associated with a particular hypoth-
esis F; and could represent samples of a signal which is buried in noise.
The density function of the observation given that H; is active is writ-
ten as fei (gi)ﬁ and the overall density function of the observation
becomes

K
fx) = ) 7o, o (0. (1.5.2)

To (X
i=1

Furthermore, it is assumed that the set of patterns is initially chosen
from a known a prior distribution, pg-i( ), and then held fixed for the
experiment. The statistical inference problem is to decide which hy-
pothesis {pattern class) is in effect for a prartvlcular observation X.
The criterion used is the minimization of the total probability of er-
ror.

Within this framework, a number of authors {e.g.,[1,5,20,211) have
investigated optimum test procedures when learning samples are avail-
able. Let Xk represent the sequence of learning samples. Then, given

the observation X, the optimum decision rule is to compute the a pos-

teriori conditional densities

lVectors are denoted by the notation.
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P{QJB;XI} »J=1,...K (1.3.3)

and announce the 93 for which (3) is a maximum.

Braverman[5], assumes that the sequence of learning samples xj=
§k1’§k2’°" is independent and that the learning samples of one class
impart no information concerning the patterns of another class. Let-
ting ij denote the set of learning samples of the j-th class, (3) be-

comes

P <Ej|2<_,xkj } »3=1,...K.

He takes the density function fe_(z) as gaussian (fe.(§)=g(§—gj)) and
the a priori densities pgj( ), J=1,...K. also as gaussian with unknown
means and known covariance. The optimum procedure is then to use the
learning samples to estimate the means of each class and use these
estimates in the computation of the a posteriori probabilities. For
the case of two hypotheses, he shows that the difference between the
error probability of the above procedure and the error probability in
the case the patterns @wen.value; are known is approximately inversely
proportional to the number of learning samples.

Keehn[Zl], extends the work of Braverman by taking both the mean
vector and covariance matrix of ng( ) as unknown.

Scudder[39,40], also takes the noise and a priori distributions

as independent gaussian and investigates the problems encountered when

learning samples are not available. The optimum test procedure now
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requires an exponentially growing memory. He then looks at a fixed
memory technigue similar to the procedure used when learning samples
are available, but now, learning takes place on the basis of previous
decisions which are never known with certainty to be correct.

The problem of when the optimum test procedure, with or without
learning samples, requires a growing memory is discussed in a paper
by Spragins[42]. The optimum test procedure (an application of Bayes'
rule conditioned on an increasing number of observations) will be of
fixed memory if and only if the sequence of (independent) observations
admitsa sufficient statistic of fixed dimension. The existence of the
sufficient statistic is seen to imply the existence of an a priori
distribution ng( ) which has a "reproducing" property. Thus, by choos-
ing an a priori distribution which has the reproducing property, a num-
ber of authors (e.g.[5,21]) are able to obtain optimum fixed memory
procedures.

Hancock and Patrick[17] provide for a general formulation of the
learning problem by focusing attention on the overall distribution as
given by (2). An important contribution of this study is the deter-
mination of when sufficient amounts of a priori information exists for
a learning procedure to converge. When little a priori information is
known, they apply histogram techniques to a class of nonsupervisory
problems. When the functional form of the overall density is known,

they investigate estimates of the parameters 93 which characterize the
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overall distribution or, as they call it, the mixture. The estimates
are shown to be consistent thus leading to an asymptotically optimal
test procedure.

Somewhat related, but less general in formulation, is the work
of Cooper and Cooper[9]. They consider the two-category problem with
particular emphasis on the case where the overall density is the sum
of two gaussian densities. Taking each hypothesis equiprobable, they
discuss different estimates of the unknown means which are then used
to form an estimate of the test function. They extend the (nonsuper-
visory) results to multivariate gaussian densities by estimating the
parameters which characterize the optimum partition (i.e., a hyper-
plane) of the sample space. Also discussed is the case where the
arbitrary densities of the two equiprobable hypotheses differ 6nly in
a location parameter.

A departure in the above formulation is made by Robbins[29-31] and
his associates [19,37], They consider only one a priori distribution,
pe( )=p(Q), and take the distribution as unknown. Here, the inference
problem is to decide whether © is contained is some set A or its com-
plement. Since the density function of an observation under either
hypothesis is the séme, f(x);‘fg(x)dp(e), every observation can be con-
sidered a learning sample even though these observations are never clas-
sified correctly with probability one. Their main effort is directed

toward showing that the empirical procedures are asymptotically optimal
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for a variety of hypotheis testing (and estimation) problems.

A1l of the above authors take sequences of independent observations.
Tainiter[44] extends one aspect of the work of Robbins to M-dependent
observations and Raviv[28] takes the "patterns" to be a Markov sequence
with the transition probability matrix initially unknown.

Special formulations and learning procedures appropriate to certain
communication problems are given by Glaser[15], Price and Green[27] and
Sebestyen[4l]. A bibliography emphasising the supervised mode of learn-
ing is given in [2]. A discussion of most of the approaches to non-

supervised learning is given in the recent paper by Spragins[43].

1.3b Scope of the Present Study

The present study is closest, in spirit, to the work of Robbins.
The problems we will consider are those in which the "patterns™ are
random variables. Thus, if the same pattern class or hypothesis is
active in succeeding intervals, this only means that the distributions
from which they are drawn are the same. It is these a priori distri-
butions which we will take as unknown.

In particular, we shall consider a class of problems where the

marginal density function of a single observation can be written as

f(x) = u/\g(x-z;d)da(z), (1.3.4)

with a corresponding vector equation for multidimensional observations.

g(x;0) denotes the gaussian density function with standard deviation o.
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By suitably interpreting «2), we can include all the problems we are
interested in. We give the following as examples.

Let u(t) be the unit step function and define

K
a(z) = Zpiu(z—yi)- (1.3.5)
i=1
Then, f(x) becomes
K
f(x) = ZPig(x-yi;_o). (1.3.6)
i=1

This represents the density function of the observation where one of K
signals is transmitted with gaussian noise added to the message. The
signals represent the values the random variable can assume.

A generalization of (5) is to take

X
ofz) = Epifu(z-y)dﬁi(y) (1.3.7)
i=1
where Bi(y) represents one of K different distributions. f(x) is then
given by
£
£f(x) = Zpif g(x-y;0)dp;(y) . (1.3.8)
i=1

Here the problem would be one of testing between K composite hypotheses
with nolse-like signals.

Letting u(z-y) = u(z-s;(t,y)) in (7) gives
K

£(x) = Z pifg(x-si(t;;z)sc)dﬁi(y) (1.3.9)

i=1
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This has the interpretation as the overall density function of K com-
posite hypotheses with the i-th hypothesis representing the 84 signal
being transmitted. The a priori probability of this transmission is
Pi. The notation si(t,z) is taken to mean that the signal si which,
for example, is time sampled at t, is distorted by the random vector
Y-

The difficulties we shall encounter are not in attempting to pro-
cess the observations is some optimal fashion. We have already agreed
to consider a learning procedure which, at best, converges to the opti-
mum one-stage procedure; this empirical procedure being asymptotically
optimum if the observations are independent. Our difficulties will
stem from the fact that the a priori distribution B(y) is taken as
completely unknown as opposed to assuming some known functional form
with a finite set of unknown parameters.l

The empirical procedure we have outlined is one of estimating the
densities fi(x) when learning samples are available, and, initially,
the overall density f(x)=§bifi(x) when operating in the nonsupervisory
mode. Much of this study deals with estimating f(x) as given by (4),

and establishing bounds on the mean-square error in the estimate.

There is one exception. We also consider (6) with the a priori pro-
babilities unknown.
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In Chapter 2 we consider different methods of estimating (%),

Of particular interest is an eigenfunction representation (sectidn 2.5)
for f(x) which we obtain by solving an eigenfunction problem associated
with equation (4). Chapter 3 extends the results to estimating the
k-variate density function f(xy...x).

In Chapter 4, we apply our results to some problems in communication
theory. Section 4.1 considers transmission through a general, stationary,
random channel when learning samples are available. This problem serves
to relate the results of section 1.2 on the convergence of the empirical
procedure with our results on density estimation. It also illustrates
when we can expect to obtain solutions to the nonsupervisory problem.

The remaining applications emphasize learning in the nonsupervisory mode.
In section 4.2 we consider the problem of transmission of known signals
with unknown a priori probsbilities and in section 4.3 we discuss the
problem of transmission through a random multiplicative channel. In sec-
tion 4.4 we consider a problem with an unbounded loss function.

A summary of this study is given in Chapter 5.



CHAFTER 2

ESTIMATING THE DENSITY FUNCTION OF OBSERVATIONS-—~UNIVARIATE CASE

2.1 INTRODUCTION

As discussed in the previous chapter, one approach to finding a con-
vergent sequence of test functions is to first obtaln a convergent sequence
of estimates for the unknown density functions. These estimates are then
used to form a test function, the structure of which is ildentical to the
test function one would use if all distributions were known. Our main
concern in this chapter is obtaining consistent estimates of the uni-
variate density function of the observations. By consistent estimates

we will mean estimates which converge in mean-square in the sense of

A

1i . 3
R ((£(x) - fn(Xl,Xg,OOGXn;x))E} = 0 for every x (2.1.1)

)
or

A

Hoog ((p(x) - fn(xl,xg,mxn;xn))g} = 0. (2.1.2)

n-> oo n

Equation (l), obviously, is concerned with convergence to the constant
£(x), while in (2) we have convergence to a random variable., It is (2)
which we need to demonstrate convergence of the empirical procedure for

the case of dependent samples.l Since, for two of the methods which we

LIhe convergence in (1) is essentially that required for the case of in-
dependent samples. See (1.2.16).

L2
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use to estimate f(x), there is little difference between consistency in
the sense of (1) and (2), we will evaluate bounds for both types of con-
vergence.

To compare our results with previous work in the area of density
estimation, we will also consider a global measure of the error, the mean

integrated square error,

+ 00
o

A 2
Ef (£f(x) - fn(xl,xg,o..xn;x)) dx (2.1.3)
- 00
The basic problem which we want to discuss is as follows. We are
given the stationary sequence of identically distributed random variables

(observations), Xy = Ni + Z i=1,2,..., where N; is a sample from a

i
stationary gaussian process and Z; is a sample from an unknown random

process. The samples may be time samples or any other linear processing
of the received waveform which preserves the gaussian nature of the noise.

With N4 independent of Zj, the univariate density function of the obser-

vation X; is

+ o0

f(x) 27\]” g(x-z; o)dalz) , (2.1.4)

- 0
where by g(x-y;0) we mean the gaussian density function with mean value
y and standard deviation 0. We want to take the gaussian noise samples
as correlated and also consider a dependency on the Z; sequence which
will be specified later.

In the next section we consider the empirical distribution function

as an estimate of the cumulative distribution of the observations. We
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investigate the mean-square error and obtain a bound on the rate of con-
vergence. The results of this section are then applied to the problem
of estimating the density function, for which we give three techniques.

The first method of estimating f(x), section 2.3, is analogous to
the technique used in estimating a spectral density. For this method,
we restrict our study of convergence to those as specified by equations
(1) and (3). This method of estimation requires a minimum of assumptions
to guarantee convergence,

In section 2.4 we consider an orthogonal representation for f(x)
and investigate all three of the above modes of convergence.

The method in section 2.5 is analogous to the technique generally
used to solve a deterministic Integral equation. To the best of our
knowledge, this approach has not appeared in the literature.

The results which we will need for the applications of the empirical
Bayes procedure are contained in Corollaries 2.4.1, 2.5.1, and section
2.6. Section 2.6 considers a special form of az); the case where ofz)
contains a finite set of unknown parameters which enter linearly into
f(x).

A summary of the chapter and generalizations are given in section

no
N

no

.2 THE EMPIRICAL DISTRIBUTION FUNCTION

We want to consider the empirical distribution function as an estimate

of the true distribution. For the case of independent observations, it
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is easy to see that this estimate is consistent with the mean-square error
going to zero at a rate l/n° For the case of dependent samples, our main
interest will be a characterization of the nature of the dependency on
the samples, or the underlying random process, for which we can still
guarantee consistency with a specified rate of convergence.

The sequence of observations, Xi,Xz,...X, are identically distributed
(not necessarily independent) random variables. X; 1s a sample from a
stationary process which is composed of the sum of a gaussian process
with an autocorrelation function R(t), and another stationary processes
z(t); Xy = Ny + Zi. With N; and Z; independent, the density function

of the observation is given by

+ o0

f(x) = f g(x-z;0)dalz) , (2.2.1)

- 00

with the corresponding distribution function

X

F(x) = ff(y)dyo (2.2.2)

-~ 0

The empirical distribution function of the observations is defined

Fn(x) = % (number of Xy <%, i=1,2,...1n).

Let U,(X,) = 1 if X, < x, and equal zero otherwise. F(x) is then written

as
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With E denoting the mathematical expectation, we have
E(F (x)) = F(x) . (2.2.4)

Fn(x) is an unbiased estimate of the distribution whether or not the obser-
vations are independent.

The mean~square error can be written in terms of a bias and variance

contribution:

B(F(x) - Fp(x)] = (B(F(x) - F(x)))"

2

E(Fp(x) - E(Fy(x))) . (2.2.5)

+

Since the first term is zero to investigate consistency we need only con-
sider the variance of the estimate.

The second moment is given by

E(F (x))

I
Bmhd
; b
1l
I_l
a
Eas )
Py
>
R

E n n
1 2
e WY (X>+2z 2 Up(X )V (Xp) (2.2.6)
&fl I=1 m=4+1
n n
o
e S N R A R
n n- Im
I=1 m=1+]1

We have defined Fzm(x,x) as the joint probability that the samples from

the £ and m intervals are less than or equal to x,:L

The subscripts £ and m will always mean the £ and m observations (decis-
ions, intervals, etc...) when used in a double sum.
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Flm(x,x) = Pr (X, <x, X; <x} = Fm_z(x,x) . (2.2.7)

We want to display the effect of the dependency of the observations on

the variance of F,(x). Add (1-1/n)F?(x) to (6) and subtract its equiva-

lent

=1 m=[+1
The variance is
WE(x) = B2 (1o E(x)
n n
4 ) ) e en) - F ) (2.2.8)
=1 m={+1

With independent observations the second expression on the right side of
(8) is zero—the variance reduces to the standard result.
Assume, for the moment, that the sequence of random variables Zi

are independent. Then, the second-order distribution is

X X
Fm_l(X,X) = /\ Jf JF JF g2(y1-21,y2-22;0, pm_z)da(Zl)da(za)dY1,dyar

- 00 - 00 Zl Z2

(2.2.9)
where gg(nl,nggd,pm_z) is the bivariate gaussian density function with
the random variables N, and Nj having the same standard deviation ¢ and

a correlation coefficient py_, = R(m-lz)/R(O).:L The univariate distribution

11f we hed time samples, pp-g=R(m-£)T)/R(0), where T is the time between
succeeding samples. We shall take T = 1. The gaussian random variables

have the same standard deviation since the waveform in each interval is
identically processed.
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a(zi) is independent of the subscripts £ or m because of the assumed sta-

tionarity.

It will be convenient to denote the expression in the double summation

of (8) by Dy ,

~ 2
D _, = Fm_l(x,x) - F (%)
X X
= \/p JF Jf u/‘[EQ(Yl‘Zl)Y2‘Z25Gypm_l)‘g(Yl'Zl30)g(Y2‘ZZSO)]da(Zl)
-0 =237 Z2

dof z2)dy1 dye (2.2.10)

We interchange the y and z integrations((10) is absolutely integrable)

and consider the resulting inner double integrals

X X

JF JF [e2(y1-21,¥2-22;9,0,_,)-g(y1-21;0)g(y2-2250)Jdyy dy2 . (2.2.11)

-0 =00

The bivariate gaussian density is expressed in terms of Mehler's

formula. From Appendix A, (A.20), with the requirement that lpm_zl <1,

l # m, we have:

o0

J
0
. _ (Y1-Z1y\ _(Yo-Z2 m-£ Yy1-21 Ya-22
g2(y1-21,¥2-2250,0, _,) = g(=——+)g(#2-2) % v Hej(5557) He (5575) .

J= (2.2.12)

The Hej(y/c) are the Hermite polynomials orthogonal with respect to the

1
gaussian weight g(y/0).” Observe that this is not an orthogonal expeansion

'We use the notation g(y/o) for the gaussian density (with standard devia-
tion 0) when dealing with the corresponding polynomials. g(y/o) is iden-

tical to g(y;0) which is the notation we generally use for the gaussian
density.
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in the usual sense. The polynomials are defined in such a way that the
1

orthogonal functions are given by~ g(y) Hej(y).

Substitute (12) for the bivariate density in (11). The first term

of the series cancels leaving

g

pm_ Z1 z z
Z [f e (LB (128 g (V222 o(Yo22)y, ay, . (2.2.13)

-00 =00

With !pm-ll < 1, it is easy to justify the above inversion of summation
. . 2 . . . .
and integrations. The integrals are then dominated using Schwarz's in-

equality and the orthogonality relation for the Hermite polynomials (A.10):

X
Y2y g (LZE
[ &82) ey (E2yay
mu mu 2 vz, L2
< fg(g)dyfg(c)ﬂej(q)dy

it (2.2.1k4)

IA

Hence, (13) is bounded by

)

m-4! - .
5=1 L- lpm—ll
Dm—l is also bounded by the same quantity,
T ou
iy Om- Om-
Dp-y < f f Bt ao(zy)dofze) = —mntl (2.2.15)
R lpm-k 1 - |og-gl

Lsee Appendix A, section A.l.
25ee Appendix A, Lemma A.1.
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Notice that (15) would stillbea valid bound on Dy.y if the integrand

in (10) were replaced by its absolute value. We shall use this later.

Combining (8) and (15), the variance of the empirical distribution

function is dominated by

Wrx) = K (1n(x) %}: }:

n
I=1 m={+1

< B2 (1)) + & Z (o) 2T (2.2.16)
n n ~ _ lpTﬁ

with the second expression following from the stationarity and with T=m-1

Convergence in quadratic mean requires that V(Fn( )) >0 as n +w

For this, it is sufficient to assume that the autocorrelation function

of the gaussian noise process satisfies

(2.2.17)

R(t) 0 as T+ .

Condition (17) excludes the possibility of jumps in the spectrum of

the noise process. It then follows (Lodve [24], p. 202) that

p, = max !pTl <1, (2.2.18)
T>1
Using this fact, the second part of (16) is majorized by
n [ | n
O ’
'2'5’2(1’1~T) T < —% iyw! (2.2.19)
o 1 - lo| 1p, B &= T
T=] T * T=1
n

Since ¢ > 0,
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tends to zero as n + « (Hobson [18], p. 7).

Notice also that (18) is sufficient for the validity of the Mehler
formula.

With the first part of (16) dominated by l/n, we have

Theorem 2.2.1: Given the sequence of identically distributed random vari-

gbles of the form Xy = Nj + Z4, with the univariate density function given

by
+ 0

tx) = [ elxeas0) an(z)

S

== 00

Assume that
1) +the sequence of random variables {Zi} is independent
ii) the autocorrelation function of the gaussian noise satisfies

R(t) >0 as 7T + o

Then, the empirical distribution function is a consistent estimate of
¥(x). Upon applying the Chebyshev inequality, and since V(F,(x)) » O
uniformly in x, we-also have uniform convergence in probability: as
n + o and for arbitrary e,Pr[ﬁFn(x)mF(x)!>>e} + 0, uniformly in x.1

In order tc obtain a bound for the rate of convergence we need to
specify the manner in which R(r) ~ 0.° Tor example, assume that R(T)

is bounded by

lWe note that the hypothesis of the theorem is sufficient to ensure con-
vergence with probability one. This will be discussed at the end of the
section.

2The bounds given belcw are for time samples, with the time between suc-
ceeding samples taken as T = 1.
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IR(1)| < B/ (2.2.20)

for || > B, where O0<9® < 1. Then, it is not difficult to obtain

an integral upper bound for the arithmetic mean:

n

iz lo.| =%Z J%ll PR N (2.2.21)
T=1

n (1-8)n®

T=1

In the sequel, we will designate (20) as condition A.

Alternatively, we could make the assumption that

[e<]

f |R(t)|dt < o . (2.2.22)

o)

This implies that the spectrum is absolutely continuous. Then, by the
Riemann-ILebesgue lemma we have R(t) - O and t+ + ». Assuming further that

R(t) is monotonically decreasing for ltl > By, an integral upper bound is

given by
n S
= lo_| < 7 (2.2.23)
n pT n ?’ *e
'T'=
where we have set
By = Bl+i2 f |R(+)|at . (2.2.24)
O‘.
Bi

The assumption of monotonicity can be dropped if the autocorrelation pos-

sesses a derivative which is integrable. Then, we replace Bz in (23) by

g<

By = — f(lR(t)l + R (%)])at . (2.2.25)



53

This follows from the Euler-Maclaurin summation formula.
In the sequel, equation (25) will be designated as condition B,

with the constant Bs given either by (24) or (25).

Corollary 2.2.1: Under the hypotheses of Theorem 2.2.1 and with R(t)

satisfying condition A, from (16) and (19), the variance of the empirical
distribution function is dominated by
2 B
V(F (%)) < kg = <—i + ———l--§> . (2.2.26)
D l-py \B (1-3)n
Alternatively, if R(t) satisfies condition B, the variance is dominated

by

co L (., 2 .
V(Fy(x)) <z (1 T, ) (2.2.27)

Note that the bound in (27) gives the same rate of convergence as
in the case of independent samples.

As easy extension of Theorem 2.2.1, and one of practical importance,
can be obtained by replacing the independence assumption on the Z random
variables by one of M-dependence.

Definition: The random variables Z, and Zp are sald to be M-dependent
if the variables Z, and Z, are independent for lm-£|>M. 1In terms of

the distributions, we have
oy (z2,22) = alz1) oAz2) for |m-2] >N,

where
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me_z(zl:zZ) = Pr £ZJZ < z1, st zo} .

The extension 1s carried out by noting that the independence of Zz

and Z was first used in (9). 1In general, this equation ncw becomes

x X
P g(x,x) =¥/1U/\Jf JFgE(YI“Zl)yZ'Z25G)pmnl)dam_z(zlyz2>le dyz .

e R B2 (2.2.28)

2 -
We use (28) in the expression Fm_ﬁ(x,x)-F (x), add and subtract (9), and
group the terms so as to display the Z dependence. Designating the result-
ing expression by Dm~z’ we obtain

X X
Dy = ff J/‘f{gZ(S’:L”Zl;yZ"ZE}Gypm_z)"g(QYl'Zli0)8(3’2"2250)}

-0 =00 Z3 Z2

dofz1)doz2)dy: dyz

X x
+ffff ga(y1-21,y2-22;0,0 ) {doy,_,(21,22)-d0(z;)da z2)]

=0 ~0 Z Z
T e dy, dyz (2.2.29)

The first term on the right is the same as before and is bounded by (15).

The second expression is easily dominated by:

A
=

<2 for [ﬂ-mlv

and D =0 for lﬁ—ml > M

Using these bounds and the previous results we have

Corollary 2.2.2: Given the hypotheses of Theorem 2.2.1 but with con-

dition i) replaced by one of M-dependence, Then, the variance satisfies
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lim E(Fp(x) -F(x))2 = lim V(F(x)) = O,

n-+oo n-+>oo
uniformly in x. In addition, if R(t) satisfies condition A, we have the

bound

TR (x) < 1(M-1) 11* (BTl . (—l_—é)55> : (2.2.30)

n
With R(t) satisfying condition B, the variance is dominated by

2 Bo
1-px

). (2.2.31)

V(Fp(x)) <3 (1 + b(u-1) +

We now replace the M-dependence assumption with an ergodic
requirement.

Suppose that the stationary sequence {Z;] is ergodic. Now, the weak-
est condition we have imposed on the correlation function of the gaussian
process (R(t) + O as t + ») implies that the spectrum of the process is
continuous. This, in turn, is a known necessary and sufficient condition
for the gaussian process to be ergodic.l Since N; and Zi are independent
it follows that Xy = Nj * Zi is an ergodic sequence.

We have previously defined the random variable Uy as: UE(Xz) = 1
if X, < x, and = O otherwise. Since Fj(x) = %1- él U,(X,) and E(Uz(xz))a =

E(Uy(X,)) = F(x) <1, we can use the Mean Ergodic Theorem([16], p. 16) to get:

Lin E(|F(X1,Xe, .. X 5%) - Mx)|?) =0 (2.2.32)

for every x. Hence, we always have mean-square convergence to some F(x).

In addition, with the (X;} sequence ergodic, we have from Birkhoff's ergodic

lGrenander, U., "Stochastic Processes and Statistical Inference," Arkiv
fur Matematik, vol. 17, 1950, pp. 195-277.
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theorem ([16], p. 18):

lim Fn(xl,XQ,...,Xn;X) = B(F (X1...X
n-o

n;x) = F(x) (2.2.33)

with probability one. Since Fn(x) converges with probsbility one to
F(x) and in mean-square to F(x), it follows that F(x) = F(x) with proba-
bility one for every x. Thus, convergence of Fn(x) to the true distribu-
tion function is ensured under an ergodic condition on the {Zz} sequence
and the above condition on the autocorrelstion function of the gaussian
process. What we do not have is & measure of how fast the convergence
takes place. We now want to find what conditions are required to charac-
terize a rate of convergence. In doing this, we will also directly
verify that E(x) = F(x) when the Z process is ergodic.

Consider the expression for V(Fu(x)) in the case the Z; are depen-

dent variables: F(x)

V(Fp(x)) (1 - F(x))

n n

)
_— D
ne z ) m-{

{=1 m=L+1

+

o,

() (1 - 5(x))

n

™

+2 ) (mm) b, (2.2.16)
=1

From equation (29), D_ is the sum of two terms. The first part of D.

T

has already been bounded by (15):

W(F(x)) < B (18(x))

+ & ji (n-1) ool

1 - [pq]
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) D (2.2.34)

Tl

+
|

D_  designates the second term of DT,
.=

X X
DT)P m\]p JF JF b[\ gZ(Yl‘Zl;YE‘ZQSG)pT)[daT<Zl:ZZ)'da(zl)da(ZZ)]ledYE o
=00 =00 Z31 Z2
(2.2.35)

Perform the y integrations first and let Gg denote the second-order

gaussian distribution function.

D, _ = f f [Ga(%-21,%-2257,p.) -6(x-2130)6(%-2250) ]

Zy Z2

[do; (21,22)-d0(z1)d0( z2) ]

v [ [ atreaasnitnezaso) Lo (or,2e)-taza)inlza) ). (2.2.36)

Z1 Zg2

We have added and subtracted the quantity

X X
3 x-21;0)6(x-22;0) -*f-fg(yt-’zlsﬁ)dyfg(y—ze;@)dy
= 0 = OO

in the integrand.
Using our previocus results (see (13)-(15)), we easily dominate the
first expression on the right side of (36) by (QSpT!/(l—!pfl))a The bound

for the variance becomes:

v(m,(x)) <EE (1 - r(x))
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n

+& ) ) [ [ el oataezaso) Laa (o2

n2
=1 21 2Zp
T tE dof 2, )da(zz2) ] . (2.2.57)

Aside from the constant 6, the second expression is the same as (16).
Hence, if R(t) - O as t + », this term tends to zero. We now show that
the ergodic condition on the {Zz) sequence is:sufficient to have the third

expression of (37) go to zero.

For the stationary sequence (Zn], n = O,f 1, t 2,..., a condition

equivalent to ergodicity (Rosenmblatt [34], p. 110) is:

n

Z P(BﬂT-jA) = P(A)P(B) , (2.2.38)
j=1

lim

n-*>o

S

where A and B are any two events defined on the underlying probability
space. P(A) denotes the probability of the set A and T is the unit shift
transformation.

We take the elementary points of the probability space as
w = (...,m_l,wo,wl,...), where the w; are real numbers and define the
random variable Zn(w) = w . Equation (38) holds for any measurable set
defined on the probability space. In particular, with A = {mlznl(w) < 21} ,

T™IA is the set
T7IA

{wlan(TJw) <z}

{wlznl+j(w) Szl] .

Iet B = [wlZne(w) < z2). The stationarity assumption gives:

P(A) aan(Zl) alz1)

P(B) o z2)

aan(Za)



59
P(BﬂTﬂJA> = PI‘(ZnE_((U) < Zg, an+j<05‘) <zy) = an1+j~ng( 21,22)

Define a second-order distribution function as

n
(z1,22) _ L (z1,22) ¢
Bn;nling ~n Onp-not+y (2.2.39)
J=1
Then, equation (%8) implies
lim 71, (
g (mnz2) o o) ofze) (2.2.10)

for every z; and zz and every n; and ng.
Returning to the variance expression, designate the double integra-

tion in (37) by D_ :
u)2

?Di,, > = ffG(X'Zlic> G(X”22;Q> [dot‘r(21,22)-da(zl)da(z£)] 0 (202¢L¥l>

Z1 22

Define the partial sum s, by

J=1

The third expression of (57) can then be written as

1
2 z (n--) D = 20-1) g (2.2.42)



60

Consider the arithmetic mean of the partial sums,

n
s

n ) .1 \ .
—= = \jpk/n M x-2130)H x-22;7) 3 j{: lda (21,22) - dalz:)da(z2)]

zy, 22 Tzl .
(2.2.43)

From the ergodic hypothesis and equations (38)-(40), as n + «, we have

n
i z g_r(zl,zg)-—éa(zl) CX(ZE)

for every z1 and zZg. Applying the Helly-Bray Theorem (Loéve, [2k], p.
183), we get that sn/n + 0 as n +w., It then follows (see the discussion
belcew (19)) that the arithmetic mean of the partial Cesaro sums Sn-l/n - 0,
Hence, (42) and V(Fn(x}) tend toward zerc as n > w.
We have just shown that an ergodic assumption on the sequence Z and
a somewhat stronger assumpbion on the gaussian noise implies that V(F,(x)) » 0,1
Alsc, we are now in a position to investigate the rate of convergence.
If we were dealing with independent samples, the rate of convergence
would be O(l/n)o For definiteness, we will consider this particular rate.
Clearly, if R(t) satisfies condition B, the second expressicn on
the right side of (37} will be 0(1/n). For the third expression of (37)
to be of the same order, the sequence of Cesarc sums, Sny must either

cscillate between finite bounds cr converge. There are necessary and

C e o e 2
sufficient conditions for Zesarc gummability. For example, we have:

1 . . s . . ,
We will discuss this assumption on the gausslan noclse later.

QKh@pp9 K., Theory and Applicaticn of Infinite Series, Hafner Fub. Co.,
1950, p. 486. Translated from the seccnd German Edition.
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a necessary and sufficient condition for a series % 8y with partial sums

Sys, to be Cesaro summeble to the sum S is that the series

i) ii

v=0

should be convergent

Cy
the relation
.\ .
ii) S
With D = a_,

Ty2 ¢

B on R(t), yield the

8y

vl

and that for its remainder

an+1 aﬂﬁg
= + + ... (n=20,1,
n+2 n+3

(n + 1) ey ——> S holds.

the above conditions, in conjunction with condition

rate l/nu These conditions, however, are difficult

to interpret in terms of the ?Zf} process. We sghall content ourselves

with a simple sufficient ccndition which admits some interpretation and

which at the same time is not an overly restrictive assumption for the

type of problems we will want to deal with.

The Cesaro methcd is regular; that is, if 2 DT

then Sn alsc converges to s,

the rate l/n is:

~

2

As our final result, we have

converges to s,

Hence, a sufficient condition to achieve
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Theorem 2.2.2: Given the sequence of identically distributed random vari-

ables, X3 = Ny *+ Z,, 1=1,2,.... Agsume:

i 75
i) R(t) satisfies condition B

ii) D as given by (L41) satisfies (LL).

Ty2

Then, the empirical distribution function is a consistent estimate of
F(x) with the variance dominated by

o
=

E(F (x) - F(x)) = V(Fn(x)) < % (1 + 6 Bz

L-p*

+ Ba) -

In additiom, if
iii) the sequence {Z;} is ergodic, Fn(x) converges to F(x) with proba-
bility one for every Xx.

The term 2Bs is contributed by the first part of Dm-z which is due

to the correlated noise, while 4Bz results from the bound on the first

part of DT

2

Amcng other things, (LU4) implies that 57 -0 as T +w. We have
)

~

n
1
seen that ergodicity implies only — L D + 0 ag n +w. To charac-
0or=]l 7,2
terize the type of process which satisfies the assumptions of the theorem,
we can replace the ergodic assumption on the {Z,}(equation (38))by the
stronger condition
1im P(BAT7YA) = P(A)R(B) . (2.2.45)
n-+eo
This is called a mixing condition (Rosenblatt [34], p. 110). The mixing

condition implies that . (2z1,22) > a(z1) a(zz) for every 2z and zz, and

from the Helly-Bray Thecrem we have lim 5T = 0, Thus, one class of
D

T
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processes which satisfies ii) of the above theorem is the mixing processes

whose dependency is weak enough so that

\ !da‘(zl;ZZ) - dofz1)da(z2)| < o (2.2.46)
LSS e,

is satisfied. From the definition of D this condition then implies

T,2’
ii) of the above theorem.

We observe that if the sequence {Zl} is M-dependent, 1t satisfies
the mixing condition.” In this case, ii) of the theorem and (L6) are
obvicusly satisfied. If the {Zz} sequence were gaussian, condition ii)
would be satisfied if its autocorrelation function satisfied condition B.

A further characterization of processes which satisfy condition ii)
is given in section 2.7,

The condition R(t) + C as t + », as we have already remarked, implies
ergodicity. The implication does not go the other way. In fact, this
condition on the correlation function is both a necessary and sufficient
conditicn for the gaussian prccess to be mixingog

What we have done in this section is to employ the Mehler formula

tc dominate the integral

lRosenblatt, [34], p. 110, shows that a stationary process of independent,
identically distributed random varisbles satisfies the mixing condition.
The extension to a M-dependent process is easy.

[»]
“Rosenblatt, M., "Independence and Dependence," FProc. 4th Berkeley Symposium
Math. Statistics and Probability (1961) v. 2, pp. 431-ki3,




6k

/i/" lgz(xl—21,X2-22;0,pT) - g(xl-leﬁ)g(X2-223U)I dx; dxz .

The bound we have obtained is independent of z; and zp and is given in
terms of the correlation coefficient (P By specifying the manner in
which the correlation function R(T) goes to zero, we then obtained a
bound on V(F,(x)).

When the Z, are dependent, we have to require a condition like (Lk)
so as to specify a rate of convergence.

In estimating the density function f(x), we will make use of these
results. In all three methods which we present the variance of the
estimate is dominated in the same manner; the part of the variance
expression which is due to the dependency of the observations is written
as the difference of two expectations involving the appropriate bivariate

and univariate density functions.

2.% ESTIMATE OF THE DENSITY FUNCTION—KERNEL METHOD

In this section we consider a method of estimating the density func-
tion which is analogous to that used in estimating the spectral density
of a stationary time series. This approach has already been applied to
the case of a sequence of independent random variables [25,26,33,46].

We will generally follow Parzen [26].
The density function we want to estimate is given in (2.1.4) and

repeated here,

f(x) = b/\ g(x-z;0)dalz) . (2.3.1)

4
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From the observations Xi’ i=1,2,...n, we take an estimate of the form:

n

A A
£ (X1,%X2,...%,3x) = £ (x) = K (
n n n

nh(n) o

X-Xz
h(n)

) (2.3.2)

where h is a sequence of positive numbers depending on n, and chosen so
that

lim  h(n) = 0. (2.3.3)

n+ o
K(x) is a non-negative function satisfying
sup K(x) <
=00 < X <
| K(x)dx < w (2.3.4)
lim |xK(x)| = 0

X0

2.%a Bilas Calculation

The expectation of (2) is

A 1 =X 1 N
Ef(x) = HE%%)} = £ K(%—}) £(y)dy (2.3.5)

The following theorem,(SPecialized to our situation) is given in Parzen.

Theorem 2.%.1 (Parzen, p. 1067): With h and K(y) satisfying (3), (4),

respectively, we have
oo

lim B f(x) = f(x) &/“ K(y)dy (2.3.6)

n->o0 -00

at every point x of continuity of £( ).
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A
With [K(y)dy = 1, end since f(x) is cverywhcre continuous, f,(x)

is asymptotically unbiased estimate of f(x) for every x. In fact, since
the gaussian density is uniformly continuous, f(x) is also uniformly con-
tinuous. It then follows from Parzen's proof that the convergence is uni-

form in x.
Our particular density f(x) is more specialized than that needed

for the proof of the theorem. We can use some of its properties to

obtain & uniform bound on the bias. Rewrite (5) as

“+oo
E gn(x) =\/\ K(u)f(x-hu)du . (2.3.7)

-0

Since [K(u)du = 1, we can write
“+oo

E %n(x) - f(x) = \/ﬁ K(u)[f(x-hu) - £(x)]ldu (2.3.8)

-00
To find the limiting behavior of the integral, we expand f(x-hu) in a
Taylor series about the point x. Since f(x) is the convolution of a

distribution with a gaussian density, all derivatives of f(x) exist.

f(x-hu) = f(x) - hu £'(x) + hZu” '(x) + 0(h3) (2.3.9)

Choose K(u) as an even function and require that
“+o
2
u/\ u K(u)du = Bg < o . (2.3.10)

=00

Two examples of even, non-negative kernels which satisfy this condition

(as well as (4)) are:



K(u)=é‘:‘ul§l

]

0 , otherwise

_uF

1 =
— e 5
N 21

K(u)

They also integrate to cne.
Substitute the Taylor series into (8), and perform the integrations.

As n » =, we get

E 2 (x) - £(x) > f”éx) B, b . (2.3.11)

To obtain a uniform bound (and for future reference) we note that
the derivatives of f(x) are uniformly bounded in x. Specifically, from

(A.9) it follows that

J J J
i) [ S gz = S [ ke (52 e(Eaole)
Z

dXJ 7 dXJ J

and
Fre(x)| . 1 edi cy N o s a.
ELH) ) < - B | oag(n) = = (2.3.12)
dax? ad Jon a Vor ol

The last line follows from Cramer's bound, (A.30). With j = 2, we have
£ (x)] < ¢y /\[; o

and as n + o (11) is dominated by

Cay B4 l’l2

oN 7 o3

E £ (x) - £(x)] < +o(n*) . (2.3.13)



68

It is advantageous, in terms of bias to have h(n) go to zero rapidly.
Consideration of the variance of the error, however, will show that it

should not approach zero too rapidly.

2.%b Variance Calculation

The square of £,(x) is written as

n

n n
. - x-X X
?;(x) = naiz Z K‘g(xff) + Z z ﬂ) K(Xh ) (2.3.14)

1 m=[+1

We proceed in a manner analogous to the development in section 2.2. Take

the expectation of (1L), subtract

RN Lo B =

I=1 m={+1

and add its equivalent

L0-D mEeE))

Subtracting the square of the bias, we obtain the variance:

<
—
>
]
—~~
™
~
~
Il
=
SHB >
N
—
>
~
i
=
)
]
—
w
~
~

i
%]
= e
N
Jal
9
slx
L
1
=
M
lx
i
>
L;glJ
N

Again, the second term is a result of the dependency of the observations.

We proceed to majorize each of the terms in the variance expression.
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The first term written out is

+oo
2

-+ (e =S —— x-y
e E{Kg(xh% = 2 K(th> f(y)ay . (2.3.16)

From the first two conditions of (4) we have fK?(y)dy = Bg < . Since

£(y) < LN270, the substitution of u = (x-y)/n in (16) leads to

1 x-X Bs
—> E<K(Z—)b< —2— (2.3.17)
nh { h }_ nhN2x o

The second term of (15) is

> + o0
%{E{m—gﬂ - [ f(ymy}g. (25.8)

Use the boundedness of f(y), the same substitution as above, and the fact

that K(z) is non-negative and intergrates to one to obtain

1 x-X = 1 1 ,
“r-l;lg IEE{K(—h—>:l < H<2n02) . (2.3.19)

For the third term of the variance equation, let Qm—ﬁ be the expres-

sion inside the double sum. Writing this term out gives

Qg :ff K(X'il)K(El%) £ (y1,52)-£(y1)2(y2) | dyadyz= , (2.5.20)

where f_y(y1,y2) is the second-order density function of the observations
in the m and / intervals. The kernel K(y) is bounded (4), say by B-.

Hence,

2
Ay <B7 ff!fm_ﬁ(yl,ya)-f(ynf(ya)ldyldya ; (2.3.21)
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and we are in a position to use the results of the previous section (see
equations (2.2.10)-(2.2.15)). For example, with the sequence (Z,} inde-
pendent,

< Bo __lfm:ll__ (2.3.22)
1 - lpm_gl

Combining this with (17) and (19), (15) is majorized by

n
VB ) <5 5L 25 B 2 Z _lengl

2no” nh h Py £+l Ipm !I

With the autocorrelation function satisfying condition B, (2.2.23) gives

2
v(# (%)) < 11 +1 Bs 4 _2BgB | (2.3.23)
n noore®  nh N2 2
T 0 nh“(1-py)

Under these conditions it follows that we need to require nh® + « as
n -~ «» for consistency of the estimate. Notice that if the observations
were independent, the third term would be absent. In this case (as in
Parzen's development) we need only require nh + o.

In Appendix C, section C.1l, we show that by choosing K(u) as the

gaussian kernel,

u /2
l -
K(u) = —e s
N 2n
(22) is replaced by
2
Q < B Po-tl o (2.3.24)
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The reascn this is possible is that with the specific gaussian kernel
we can perform the y integrations in (20) before taking bounds. In this

case, the variance is then dominated by

A by | b2
———— + — o
vif(x)) <=+ o5 s (2.3.25)
where we have set
bl - 1 + 2B2 R C1

opa®  (l-py) 270

BS‘/V 21 o

b2

The rest of the discussion will assume a gaussian kernel, and for
definiteness, we assume that the autocorrelation function satisfies con-
dition B. It was this condition on the noise that gave, for the empirical
distribution function, a rate of convergence equal to the case of inde-
pendent observations. We expect analogous results for estimating the

density functiocn.

2.3¢c Mean-Square Error

The mean-square error is written in terms of the bias and variance

contributions.

B (£4(x) - £(x)) = B(E,(x) - B(F (x))?

[3V]

+ (B2 (%) - £(x))]

As n » w, from (13) and (25), and settingvNbs = (clBé)/GfEIEOS), we have



2
E{f (x) - f(x)} < by 4 b2y ba . (2.3.26)
n ~ n nh

Clearly, to minimize this bound, we choose h (as a function of n) so as
tc have the last two terms of (26) tend to zero at the same rate., Dif-

ferentiating, we find that the best h is given by

1/5
n o= | P2 (2.3.27)
Ll-bg,n

Therefore, as n + o, the mean-square error satisfies

/5
= 0(1/n ). (2.3.28)

B(E (%) - £(x))”

This is the order of consistency one obtains for the case of independent
samples [26,33].

Theorem 2,%.2: The estimate of the form

n
1

f(Xl,Xg,,“Xné,X)x = z g(x—Xz;h(n))

I=1
u/5 if:

converges in mean-square, uniformly in x, at a rate l/n
i) {Zz} are independent
i1) R(7) satisfies condition B
ii1) n(n) is chosen as in (2.3.27)

Clearly, we can extend the results for other dependencies on Z.
For the M-dependent case, we have:

Corollary 2.3.1: Under the preceeding hypctheses and with condition i)

replaced by

i) Z£ is independent of Zm if mmI{ > M, the order of consistency remains =

O(l/nu/5)
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This corollary follows from the comments in appendix C, (C.10),

choosing h as in (27), and taking b, as

by = L 1+L‘(—1\4'—1—l . (2.3.29)

on o= 1-py

A
We have obtained the result that the estimate fn(Xl,...Xn;x) converges

bfs

in mean-square to the univariate density at a rate not slower than 1/n

As will be seen in the next chapter, in attempting to estimate the k-variate

density function f(xl,...xk), the bound on convergence which we are able

to specify indicates slower convergence.

Another disadvantage of this method is the problem of "growing memory."

The estimate we have been using is of the form

n

P (X,,Xo,...X 3x) = —= K<X—'-}-(J- )
A nh(n) Z h(n))

=1

from which it can be seen that all past observations must be stored—at
each stage a particular observation's contribution to the estimate is
weighted differently.

This problem can be elimingted if one is willing to accept a final
estimate which is biased. For this situation, we need only store the
past N observations, where N is determined by tne bias one will accept.

A recursive relationship is then used to update the estimate.

One advantage of the kernel method is that the estimate is a density

A
function; fn(x) in non-negative and integrates to one. Another advantage

is that no knowledge of the gaussian or z process is required to form
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the estimate, and only a minimal amount of information is required to

specify the rate of convergence.

2,3d Mean Integrated Square Error (MISE)

Another criterion which has been used to measure the error is the
mean integrated square error (MISE). Using this criterion, one can specify
an optimum choice of the kernel K(y) and investigate maximum rates of con-
vergence. 1t is primarily the rate of convergence which we now want to

discuss.

The MISE is defined as
A o )
J = E J(E(Re, .o Xpsx) - £(x))7 ax (2.3.30) -

We remark that the condition nh(n) + » is sufficient to show that,

with prcbability one,
n

FplXay .0 X 5%) :‘i‘ z g(x-X,5h(n)) (2.3.31)
I=1
is square integrable in x. In fact, in appendix C we obtain a bound on
the MISE. Our result (see section C.2) is that the MISE = O(l/nu/5),
which 1s the same rate obtained for the mean-square error. The question
naturally arises as to whether one can specify a maximum rate of conver-

gence using estimators of the above type.

1‘l‘his is for the case cof independent Z and correlated noise with conditicn
B holding.
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Watson and Leadbetter [45] consider the problem of optimizing the

estimator of the form

n

B(x) = X ) K (xx,) (2.3.32)
=1

given a sequence of independent observations. They show that the MISE
is a minimum if the Fourier transform of the kernel K,(x), which we denote

by MKn(v), is equal 1o

Mg (v) = L : (2.3.33)

Me(v) is the characteristic function of f(x). Notice that Mg (v) + 1

as n > o, indicating that K,(x) approaches a delta function as is the

case with the previous estimator. Here, however, the kernel's functional

form is dependent on the index n, which gives a more complicated estimator.
They show that the minimum MISE cannot decrease faster than l/n,

Specifically, with the optimum kernel given by the inverse transform of

(%3), the minimum MISE is

J o= - 0(1/n)

Watson and Leadbetter further characterize the optimum estimator

by studying the asymptotie behavior of the (unknown) characteristic

function Mf(v).l

IThe estimator in (55) is of no practical value since it is expregsed in
terms of the function being estimated. By specifying the asymptotic be-
havior of Mf(v), they show that there is a class of kernels, with the
same asymptotic behavior, which achieves the maximum rate of convergence.
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Of particular interest to us is the class of characteristic functions
which decrease exponentially with degree r and coefficient y. A character-

istic function is of this eclags if it satisfies:

I
7| vl

i) [Mf(v)l <Ae , for some constants A >0, y >0 and O <r < 2.

1
at

ii) +0as v +>o .

0 1 +exp(2yv) M (tv)|°

Under these conditions they state the following theorem.

Theorem 2.%.3: (Watson and Leadbetter, p. 490): Let Mf(v) decrease ex-
ponentially with coefficient y and degree r. Then Jn*’ the minimum MISE,

satisfies

1im [n/(log n)l/r] J = [l/ﬂ(EV)l/r]

n¥
n-—oo

For our case r=2 and with independent observations, the minimum MISE
converges to zero at a rate N log(n)/n. This assumes an estimate with the
kernel given by (33) and represents an improvement in the convergence
rate at the expense of a more complicated estimator.

With the noise correlated and the sequence (Z;} independent, we can
obtain a corresponding expression for the optimum kernal expressed in
terms of Mf(v) and the sequence of correlation coefficients [QT}a Cal-
culating the rate of decrease for the MISE is difficult. However, it

1
is easy to show that the minimum MISE cannot decrease faster than 1/n.

1
These comments are substantiated by paralleling the development in [45].
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It 1s this rate and the one for the independent case which we will want
to use as a point of reference while discussing the series methods of
estimating f(x).

2.4 ESTIMATING THE DENSITY FUNCTION BY SERIES METHODS—AN ORTHOGONAL
REPRESENTATION

In this section f(x) is represented in an orthogonal expansion and
it is this form which we will estimate.l Our concern will be with con-
vergence, not only in the sense of MISE, but in mean-square as given by
(2.1.1) and (2.1.2).

The density function

f(x) = L/;(x-z;o)da(z)

is a bounded integrable function. Hence, it is Lo and can be expanded

in a series of orthonormal functions:

f(x) = ;; aj @j(x/cl) (2.4.1)
3=0

oo

a, = \/ﬂ f(x) @j(x/al)dx . (2.k4.2)

=00

Naturally, equality in (1) is in the sense of limit-in-mean. The func-
tions in the expansion are the normalized Hermite functions which form

a complete orthonormal set on the whole line (see Appendix A, section A.2):

1This technique has been discussed in [6], but not in any depth.
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x/0,) Hi(x/01
o (nfor) = Slo) B/ (2.4.3)

«/ij:./m c;:

0, is an arbitrary positive constant.

As discussed in appendix A, we reserve the H notation for the poly-
nomials orthogonal with respéct to the square of the gaussian weight. They
are generated by differentiating g2(x)° The He polynomials are generated
by differentiating g(x) and are orthogonal with respect to the gaussian
weight. These polynomials were introduced earlier.

Given the sequence of observations [XII, £=1,2,...,n, the problem
of estimating f(x) (in the Lo sense) is reduced to one of estimating the
coefficients a.. We designate the estimate of the aj coefficient at the

J

A
n-th state by aj,°
n

&y = = zqaj(xﬁ/cl)o (2.4.k)

=1

It follows that these estimates are unbiased:

n
Eay = % Z E CPJ(Xg/Gl)
I=1
“+o0
m\/ﬂ @S(X/Ol) f(x)dx = 8y . (2.4.5)

A
The mean-square error in .the estimate is then given by the variance of hI

To calculate this variance we proceed as before:

A A2 A \F 2
)T = E(ajn) - 8
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E{rll; Z @?(Xg/oi) * %2— Z Z (X/52)0;(%y/01) } 2,
=1

= %{E(@?(X/Gl)) - EE(cpj(X/ql))]g}

*5 Z Z ‘{E(@j(Xz/%) 9(%y/01)) - B(o,(%, /0

E (cpj(xm/%))} . (2.4.6)

The first expression on the right is easily dominated using Cramer's bound.

]

n]

Eas)

i
-
B

il
Ea)
+
]

From (A.29), we have

X
e 2 —— <o, (A.29)

where the constant c¢; is independent of x and j. Hence,

S 1/2
l@a(x/gl)! < cl/(ﬂl/ Oy / ) = C2 , (2@)4-@7)

2
and the first expression in (6) is dominated by 2c2/na
For the second expression in (6), we again write out the expectations

and use the above bound on m.(x) to dominate it by

z z f f f (Xl;XE) - £(x1)f(x2)ax dxs . (2.4.8)

=1 m=g+1 O 7

We have already majorized this term. As it will again appear in the
sequel, we use our previous results to record the following lemmas.
Lemma 2.4.1: Assume

i) +the autocorrelation function satisfies condition B
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ii) the sequence £Z£} is M-dependent.
Then, (8) is majorized by

2

<

2 (22 + i(n-1))
n 1-p*

Alternatively, if |R(t)] < 02/1"6 for |t| > B1 and 0 < ® < 1 (condition A),
we have
Lemma 2.4.2: Assume
i) R(T) satisfies condition A
ii) the seguence £Z£} is ‘M-dependent

Then, (8) is majorized by

2eg” <B_1 +___1____> o oheB(M1) (2.4.9)
l1-px \ I (l—&)na n

The proofs and appropriate definitions are given in the discussion
leading to Corollary 2.2.1. Clearly, the M-dependence assumption can be
replaced by a weaker condition as reflected in Theorem 2,2.2. Again,
the point here is that the estimate of aj is taken as an average of
bounded functions and the problem then reduces to one of dominating a
sumn involving the absolute difference of the bivariate and univariate
density functions.

In the following discussion we shall refer only to Lemma 2.4%.1.

Theorem 2.4.1: The estimate as given by

n

o1 R
m o= Z cpj(Xg/ol) (2.4.4)

D>
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is unbiased, and under the hypotheses of Lemma 2.4.1, the variance is

bounded by
V(8. )< %2 (2 + 282 4 1)) = S& (2.4.10)
n

Now define the estimate of the density function at the n-th stage

by
An)

£ (x) = Z & o Psx/on) (2.4.11)
3=0

where q(n) is an integer which depends on n. Consider the MISE:

0o

ra o= [ BE) - 60w

-0Q

1
1]
[\

. N
R
>
=
Py
o>
C
s
]
L'(D
~—r
N

j =q+l J =]
2
< jz e, + ca o(n) . (2.%.12)
n
J=a(n)+1

0

Since '21 a? = [f®(x)dx < =, it follows that the first term of (12) goes
j= :

to zero if q(n) + w. With g(n) properly chosen so that the ratio q(n)/n+o,
vwe have Jn* 0.

The problem of specifying the sequence [q(n)}, n=1,2,..., 1ls analogous
to choosing the constants h(n) in the previous section so as to balance the
bias and variance errors. Here, a partial answer is provided if we assume

that the random variable Z has, for example, a finite second moment,
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+00

h/\zgdC(z) < w. Below, we will show that this assumption implies that

=00

the coefficients a3 satisfy

a 536/32 , (2.4.13)

. 10

where Bg is a constant independent of j. With this being the case, from

the Euler-Maclaurin summation formula, we obtain:

© ©
2 1 f 1.1 1 1
< = = B = + =5)dt = Bg(T + 73).
E: 2y Be jz 2 6 (te ts)dt e(q *+ qz)
a(n)+1 e+l : (2.4.14)
The MISE is then dominated by
1, 1
Ty < Be (X4 3) +cadln)
q d n
1/2 1
and with a(n) =n ",
1/2
J = 0o(1/n ). (2.4.15)

n

L/5
This does not compare faverably with the l/n / rate cbtained by

7

the kernel method. Here, however, the rate l/nl is not a direct re-
sult of the method of estimation. but rather, results from the second
moment assumption. After proving (15), it will be clear as to what ad-
ditional moment assumption is needed to achieve any rate up to l/na

o0
Lemma 2.4.%: With [ nga(z) < w, the coefficients a; satisfy
s =00

TMore precisely, since q is an integer, we choose g = B[h}, where [ |
denotes the largest integer< J&lo
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&2 < Bgli .
j

To prove this lemma we first obtain the conditions on f(x) needed
to give the above bound and then show that the second moment assumption
implies these conditions.,l

Proof: From (3),
o0 +vo

ay = \/pf(x)Qj(x/Gl)dx = b/\ f(x) g{f/cl)Hj(x/ol)dx
_oo ~ NER /«/1?0?

(2.4.16)

We note the relationship for the derivative of the Hermite polynomial

which is obtained from (A.28),

Lon,, (o) = B gya/a)

Substitute for Hj(x/cl) and integrate by parts.

¥ o1 SH. . (x/01)
g = ff( g(x/01) 1 ax J7e ax
3 J «/23 3/ NLntey 25+ 1)
1 ( /01>
JT 21d
0" | 3% f(x)e(x/oy) | ax =
Jo(G+1) f«[gﬁl( j41)1 /N g o [d : ]

;/_;(;%—ﬁ f cpj+l(x/cl) I} f(x) - £'(x) of:l ax . (3.4%,17)

Repeat the argument with the function (xf(x) - 0,%f'(x)) playing the role

Trhe essential idea of the lemma can be found in Sansone [38], pp. 368-369.
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) ™ By p(x/01) 0 g;{g(X/ol)(xf(X)-olzf'(X)?r
a, = - dx

L) (2] % J2it2 (g42)1/ V2 oy

oo
1
= 9. o(x/01) w(x) dx, (2.4.18)
2\/(3+1)(j+2)':[ =

where w(x) = ((x®-0.%)f(x) - 20, %xf' (x) + 0,*£"(x)) . If w(x)elz we obtain

+o
a” < —1 Jpwg(x)dx < Be (2.4.19)
’ W(341)(542) S 5

where Bg is the Lp norm of w(x)/2.
Using characteristic functions, it is easy to see that w(x) is an

Lo function by showing that the individual terms are Lp. Define:

+oo

JF eTIVE f(x)dx

=-00

+oo

JF e'jvzda(z) .

=00

Me(v)

]

M (V)

Recall that X = N + Z, and that N and Z are independent. Then,

) o2y
Mf(v) = e Md(v) . (2.4.20)

Ml

Clearly, vaMf(v) is Lo. Then from Plancherel's theorem its transform

2

£(x) is Ip. Similarly, if a%é Me(v) is Lz, x2£(x) will be Lp. With

the second moment of Z finite, the first and second derivatives of

Ma(v) exist, are continuous and bounded. From this it follows that
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2
—;; Mf(v)eLg° In this manner, all terms of w(x) are seen to be Lo
d .

functions. q.e.d.
It should be clear as to the conditions needed to guarantee faster
convergence of the MISE. Agsume that the r-th absolute moment of 2z
+oo
exists, [ Izlrda(z) < w. By repeated application of the method of the

-00 .

lemma we obtain:

a. < Bg/j
J
[o]
2 1 o1
}: aj < Bg ((;j{;;;fi + a;) . (2.4.21)
j::;q’!“l

Bg 1s now the Lo norm of the function

925" 14

o(x/o,) oF/2 ;(?(g(x/Ol)f(X))g

We summarize this discussion in

Theorem 2.4.2: Under the hypotheses of Lemma 2.4.1, the sequence of

estimates

a(n)
B0 e, Xpx) = ) B0 (x/ou) (2.4.11)
§=0

with g(n)* » and g(n)/n > O converge in the sense of MISE to f(x). If
| F
f 1Z) d@(z) < o, T > 2,

the MISE at the n-th stage satisfies the inequality
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J, = E J (£,(x) - f(x))zdx < B6< 1 -+ 1 ) + caq(n)
(r-1)g(n)™" )T

where cg is defined in (10). Choosing g(n) as the largest integer

1
< (Bgn/cs) /x gives

n(r—l)/r) )

J, = 0(1/ (2.4.23)

We now want to consider the mean-square error for fixed x. With the

A
estimate fn(x) as in (14), define the function

q(n)
fq(x) = Z 8 y(x/01) . (2.4.24)
3=0

The mean-square error, as a function of x, is given by

E{(f(x) ; %n(xl,xg,m.xn;x)f} - E{(f(x) ; %n(xn?} -

(£(x) - £4(x))

q
+2stn) -£4(x)) ) Blay,) 0 (xfo)
3=0
q
A A
+ Z E ((aj-a.jn)(ak—akn)) cpj(x/cl)q}k(x/dl) . (2.4,25)
3=0
k=0

. “i\ s 3 . 3
Since ajp 1s an unbiased estimate, the cross-product term is zero. The

other expectation of (25) is bounded by Schwarz's inequality and Theorem

\ ) 1/2
E{(ajmajn) (ak-é\kn)}< \:V(an) V(’é‘kn):l <2,

2.4,1:
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Using (7), the third expression in (25) is dominated by 2®(n)ecg/n.

Hence, we obtain the bound:
E{(f(x)—fn(x))z} < (f(x)—fq(x))2 + CZ ca anri)_ . (2.4.26)

To continue the discussion we need to investigate the pointwise con-
vergence of fq(x) to f(x).

Theorem 2.4.3 (Sansone [38], p. 381): If f£(x) is contained in I, and

Lo then, at a finite point Xq» the series

00

E: 83 ¢j(x/01)

J=0

behaves like the Fourier trigonometric series of a function which coin-
cides with f(x) in an arbitrarily small neighborhood (x0-h,xy+h) of X5

In particular if f(x) is of bounded variation in a neighborhood of

Xo We have

[+

) ey oy(xofor) = 3 |:f(xo+) ; f(xo‘)] :

§=0

and again if f£(x) is continuous and of bounded variation in (-»,~), then
the series converges uniformly in any interval interior to (-o0,00).

Sansone's proof, which is attributed to J. V. Uspensky, involves
showing that in a neighborhood of Xq the partial sum of the series can
be made arbitrarily close to the partial sum of the Fourier expansion

of the function in the same interval. This adaptation of Fejer's method
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of Fourier series is also used by Wiener to obtain the same result.
The sbove theorem is a special case of the more general result that for
orthogonal functions of the Sturm-Liouville type, the Lo series of these
functions behaves in the same manner at a point as Fourier's series do
(Hobson [18], p. 7T1).

The density function f(x) is L, Lo, and continuous for every X.
It is also of bounded variation in any interval since f'(x) exists and

is bounded (see (2.3.12)). Hence, in any finite interval, as n*o we obtain
a(n)
fq(x) = }Z a3 @j(X/Ol) —> f(x), uniformly in x.
3=0

Specifying a rate again involves a moment assumption. Assuming the

r-th absolute moment of Z exists, where now r > 3 (cf. Theorem 2.L.2),

yilelds:
#0201 ) e, 0 (x/00)]
J=qtl
<
see ) s
j=q+l
< caVB —
ca 6 jr/e
j:q'*‘l
< cz @( LI L+ i) X (2.4.27)
(g'l) q2 a2

lN. Wiener, The Fourier Integral and Certain of Its Applications, Dover
Publications, Inc., N.Y., 1933, pp. 55-67.
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We have used (7), the first part of (21), and the usual integral upper
bound. We are now in a position to prove

Theorem 2.4.4: Assuming the hypotheses of Lemma 2.4.1 hold, then, since

f(x) satisfies the conditions of the previous theorem, the sequence of

estimates

a(n)

A

f.(x) = Z 8,,5(x/02) (2.4.11)

j::l

2
converge 1n mean-square to f(x) if g » o and ¢ /n + 0. This convergence
is uniform in x for any finite interval. If the r-th absolute moment of

z exists, r > 3, the mean-gquare error is dominated by

2 2 2
E (f(x)-fn(x)) < Bacz |- i ac2 g (n)
(g-l)@ q32 n
(2.4,28)

l/rT

Upon choosing q(n) = [n"/ "], as n + «» we obtain

r-2

: {afu) : fn<x>f} - o T )

For the application of the empirical Bayes technique, we shall need
A .
the convergence of fn(Xn) to the random variable f(Xn)o The mean-square

error in this case is written (see (25)):

E_ {(f(xn) St (Xl,mxn;xn))?‘} -
En{cfmn) : .’f\nmn))e}

1 ’ ,
We use the Ep notation of Chapter 1.
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E, {Zf(xn) - £o(X) )2}

a(n)
+ 2 En{(f(Xn) -fq(Xn))z (aj-gjn) @j(xn/dl)}
n) J=0
+ En Oi (aj-/a\jn)(ak-gkn)cpj(xn/ol)cpk(xn/cl) . (2.4.29)
3=0
k=0

Now, the first and third terms have already been bounded independent of
the argument. With a r-th ebsolute moment assumption on the random vari-

able Z, from (27) we have

B, < (£(Xn) - £(X)) c2~/—"< ' lr),a ,
5 -1)q q %

2 2
and as before, the third term of (29) is dominated by %n- cz2 q . Using

these bounds and the Minkowski inequality, (29) is dominated by

: A 2 ~ 1 1l
En{(f(xn)-fn(xn))} = {Cz b <(§ - 1)q rfe-1" qrﬁ} '
2
s q /%a . (2.4.30)

The fastest rate of convergence is obtained if q(n) is set equal to the

l/r
largest integer less than or equal to (Bgn/cs) ' . This gives:

En{(f(xn) ; %n<xn))2} < caVBy (
1) [

1 N () "[C_s (Bs/cs >
l/r r r- r
[(.Bﬁ) _l:lg n( 2)/2

Ca

l_ll
noj =
'
._J

+ (2.4.31)
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Asymptotically, (31) is dominated by

1oz
En_<{kf(xn);%n(xn))i}> < ( 12)/ C2 Ca r Beg er
n T (5 )

r-2
+ cp B6 Ca er . (204032)

Corollary 2.k.1: Under the hypotheses of Lemma 2.4.1 and with the r-th

A
absolute moment of Z finite, r > 3, fn(Xn) converges in mean-square to
f(Xn). The mean-square error is dominated by (31), and for large n we

have
By {<fn<xn>-?n<xn>>2} - o T, (2.4.33)

It is not surprising of course, that we achieve the same rate as
in Theorem 2.4k,
In practice, we may want to hold q fixed, i.e., estimate an approxima-

tion of f(x). We then take the estimate
q
¥ 2 b3k
£ (x) = g, @s(x/o1) . (2.4.34)
Jn
Jj=0
q is now a fixed integer chosen according to some error criterion.

The estimates of the q + 1 coefficients, (4), can be put in the

recursive form

1 .
,a"jn Y l:(n-l) an_l + CPJ(XH/Ol):] » 3 =0,1,...q. (2.4.25)

~

fn(x) converges in MISE to a function which differs from f(x) in
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00

2
the Lo sense by }: a; , i.e., (12) gives
g+l
x
~J 2 B 2 . C Vq
E [ (£(x)-f(x)) ax < ay + —i— . (2.4.36)

In practice, it can reasonably be assumed that the second moment of Z

exists. Hence, the asymptotic error in the estimate is then known to

be inversely proportional to the number of terms used in the series ((21).
Similarly, we can take ;n(xn) as an approximate estimate of f(Xn)o

With r greater than two, the mean-square error ((30)) is bounded by

2
o~ 2 . thg 1 1 >* cagdNCa )
Fof o) }{ G
)

(2.4.37,

The asymptotic error is

1im En{ff(xn).—gn(}(n))g} = O(l/qr_2> )

10

which is inversely proportional to some power of the number of terms used.

2.5 RESTIMATING THE DENSITY BY SERIES 'METHODS-—AN EIGENFUNCTION REFRESENTATION

The method we now discuss makes use of the fact that f(x) is the
convolution of a known gaussian density function with an unknown distribu-
tion. This is in contradistinction to the previous methods which do not
utilize this knowledge.

Ih the equation for f(x),

£(x) :f g(xez30)dalz) ,

=00
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o(z) is the unknown quantity. To make use of this we want to express
f(x) is a form which, in some sense, isolates a&(z). This is accomplished
by solving an eigenfunction problem associated with the above equation.

We first observe that the "kernel" g(x-z;c) is not Hilbert-Schmidt;
it is not square integrable in the x-z product space. We will display

a function s(x) such that
2 2
s (x) g (x-2z;0)dx dz < .
X gz

A considerably more difficult task is to choose a s(x) so that we can
solve for the eigenfunctions and eigenvalues of the operator s(x)g(x-z;0),

i.e., find the @'s and A's which satisfy

oo

[ stxgtxns0) 0 (afon)as = ny 0 0x/)

=00

We shall find these quantities by obtaining the diagonal Lo expan-

sion

[2¢]

5(x)e(x-250) = Z vy @, (x/7) o(z/or) |
j=0

Note that by a change of variables y = 291 , Tthe right side of the expan-
4

sion is symmetrical in y and z. Hence, the operator s(yy/ol)g(%% - 2;0)
is alsoc symmetrical and the above formulae reduce to more familiar forms.
For our purposes, it is more convenient to deal with the unsymmetrical
cperator, s(x)g(x-z;0).

Having found the @'s, we define the coefficients associated with

the distributicn ofz):



oL
oo

a, - | oytz/on) aot)

-0

Under suitable conditions, the quantity s(x)f(x) can be written:
oo
s(0:(x) = | s(x) glx-zi0)e0fa)

=00

(o]

= Z N d CPj(X/V)

j=0

It is this form which displays the unknown quantities-—the dj's.
Consequently, we will estimate not f(x), but rather, the product
s(x)f(x). Since s(x) turns out to be a positive function, it is then
Jjust a matter of diyiding by s(x) to discuss the mean-square error.
However, as discussed in section 1.2, when an equivalent test which
incorporates s(x) can be found, the quantity we are interested in estimat-
ing is just the product s(x)f(x). We proceed to obtain the above
expansion.
Consider the gaussian density appearing in the convolution.
g(x-z;0) 1s an Lo function in z for every x. Expand this function in

the orthonormal series

g(x-z;0) =2 CJ(X:G)GI)CPJ(Z/Ul) (2.5.1)
§=0

where the ¢J are again the Hermite functions as in (2.4.3), and o; is
an arbitrary positive constant. Here the expansion is in terms of the

indepenaent varisble z. As indicated, the coefficients are functions
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of x, 0; and o, and are calculated by

oo

ey(x00,0) = [ alxezia) 9y(for)az . (2.5.2)

=00
The evaluation of this integral is the main result of Appendix B. Make

the definitions:

2 2
2 g, -0
e = 2
01" to
(2.5.3)
2 = (022-0%)(0,%40%)
012

Then, from (B.10),

s VOB (s
c,(rios,0) = & Blx You o) HJ(y/f> (2.5.4)

\/Z‘jjl/mol

and hence,

ad j * X . Z l
g(x-z30) = g(x; 4012+02)Z g HJ,( [r)oy(e/e 3 (2.5.5)
3=0 ~/éle/ by o,

Now consider the function
s(x) = o & glx;57)
91 g(x; V0,5+0%)

oo Bl ) 2 o (£

(2.5.6)

1/4

2. 2
0y, *a
0,2-0%

Let o, be greater than ¢ but otherwise arbitrary. Then, s(x) is a bounded

function. It is also non-negative, L, and Lp. Multiply (5) by s(x)
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00

s(D)alx-zi0) = ) & 0y(x/r)o(2/on) - (2.5.7)

=0

s(x) is just the right function to mske the set of coefficients cj(x,d)
an orthogonal set (with réspect to dx); or what is the same thing, (7)
is an Lo expansion in the x-z product space with the coeffilcient aij =0
if i%j, ajj=§j,l In fact, we even have more. Since g(x-z;0) as a func-
tion of z satisfies the conditions of the theorem quoted earlier (Theorem
2.4.3), (5) converges uniformly in z for every x. Hence, we have point-
wise convergence in x and z. Multiplying by s(x) does not change this

convergence and (7) converges pointwise to s(x)g(x-2z;0). Since & < 1,

it i1s easy to see that the error in the remainder term of (7) is dominated

oy
- SRS
J Ca £
% o (x/7)e.(2/01) < (2.5.8)
;z; ’ ’ Nayoy 1-8

Since the remainder is independent of x and z, (7) converges uniformly
in x and z.

Now write
+0

s(x)f(x) = JF s(x)g(x-z;0)da(z)

=00

and substitute (7).

1) = [ | ) £ 0 (x/n) oyafen)]| anta) (2.5.9)
0 | 3=0

It is not difficult to calculate the Lo norms for both sides of (7).
It is equal to L (E9)7 = (0,3+02)/20% .
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Define dj as the j-th coefficient associated with the distribution

alz).
Foo

ay = u/\ wj(z/ol)da(z) (2.5.10)

=00

We justify interchanging the operations in (9) by the Lebesgue dominated

convergence theorem. The result is:

s(x)f(x) = Z ¢! a; cpj(x/v/) (2.5.11)
§=0

Equation (11) is an orthogonal representation for s(x)f(x). It also
follows, in a number of ways, that the series converges pointwise. In

view of the inequalities
la;l < fle(z/'ol)ldoc(x) <

1k - 172 [ a(z) = l/il 1/2) (2.5.12)

(ﬂ 01 ) (ﬂ 01

and |E] < 1, it also follows that

q
ls(x)f(x) - }: = dj @j(x/y) l

(2.5.13)

and the series in (11) converges uniformly in x.
To estimate the quantity s(x)f(x), we proceed in a manner analogous

to section 2.4, Take, as estimates of the product of the coefficients
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EJ dj’ the quantity
n
J A 1
3 djn = 5 Z 95(X,/7) s(X,), 3 = 1,2,... . (2.5.14)
2=1

The estimates are unbiased:

A

J
E(¢ djn)

B(o,(/7)s(X))

[ oyxmstaeixian

g‘j dJ . (2.5.15)

H

Since the function @j(x/y)s(x) is bounded (uniformly in j and x) by

1/4
c) 915402 - =< B S
94(x/7)s(x) < ﬁl/u 71/2 {512_02} ;ﬁﬂ (,8)1/2

C1

01
1/k4 ' = Ca,
(0,207 0,240 !

(2.5.16)

in analogy to Theorem 2.4.1 (see (2.4.10)) we have

A
Theorem 2.5.1: Under the hypotheses of Lemma 2.4.1, the estimates Ej djn

converge in mean-square at the rate l/n:

. 2 . 2
E{Ea‘] (d.-é‘. ) } = v(ng, ) < 9*(2 P2y h(M-lD =<5
J Jn Jnn. T n 1-p* ' n

(2.5.17)
As the estimate of s(x)f(x) at the n-th observation we take
q(n)
A A
s(x)f (x) = }Z 3 djn mj(x/y) . (2.5.18)

§=0



99

Designating Jp as the MISE, we have:

g A 2
Iy = B[ (s(x)(£(x)-£(x)))" ax
® q
2J 2J A 2
= + s = 0D
Z £™" a z E{f (a3, dJ)} (2.5.19)
J=q+l J=
In view of (12) and the previous theorem, Jh is dominated by
2 2
' n
It _ C1 3 §2Q( ) + C§Q(n) . (205020)
n = n
\/;?O‘l 1-€
For fixed n, this bound is minimized if q(n) is chosen as
1 o VGr 1
Q(n) = 5> Int n €s% SN . cg - in n . (2°5w21)
n 0, 2n €2 2ink 2Ink

The logarithm is taken to the base e, Since 0 < & <1, g(n) > «. Letting
a(n) equal the largest integer less than or equal to (21), Jj is dominated

by

oo \ 2% 1 o In n
J < 1 2 > '_E}'Eé cg T —— . (2.5.22)
" w2, ) 182 0 2| ant|

Theorem 2.5.2: Under the hypotheses of Lemma 2.4.1, the sequence of

estimates
a(n)
A 1 J A
(0f () = L) A e )
I=1
with ccefficients
n
j A l
DA = E ) asxy/nslxy)

f=1
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converge in MISE to s(x)f(x) if qa(n) is chosen as @bove., In this case,

the MISE satisfies

gioo= o (421 (2.5.25)
n

Cbserve that no assumptions on the moments of the random variable
Z are required.

The mean-square error for fixed x is given by (cf.(2.4.26)):
5 A
B(s”(x)(£(x)-2,(x))%) = °( x)(£(x)-1 (x))®

q
+ 2a(x)(E(x)-£(x)) ) B(83(a5-d5))0,(x/7

a
3=0
q
J .k .
) BT (a0 a8 )0 G/ olx/) (2.5.24)
3=0
k=0

fq(x) is defined implicitly by the equation
q(n)
g = )t o) (2.5.25)
J=0

From Theorem 2.5.1 and (2.4.7), the third term of (24) is dominated

by

The first term of (24) is majorized using (13), and the middle term is

zero, Combining bounds yields:
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4 §2

2
E(s (x) (f(x)-Qn(x))a) < c1 24q(n) , <

= (no1y) (1-8)2 : Jr y

es (n)

(2.5.26)

The fastest rate of convergence is obtained if q(n) is set equal

to the largest integer less than or equal to

Inn
2 In &
Usi . v dn(n) In(n). .
sing the inequality -1 < q(n) < , we have:
2 In & 2 In ¢

= | o

{ ( ) ( ( )' n( )) } < 2
Eqgs (x f(x)-f (x
(T[U] }')(l-g)

c12c5 1 In n\2
¥ Yy g)'
4w y n

(2.5.27)

Theorem 2.5.3: Under the hypotheses of Lemma 2.4.1, the mean-square error

(for fixed x) satisfies
2
9 s%(x)(5(x)-8,0)" | = o)

Consequently, the sequence of estimates

a(n)

g A
Z 3 a0 CPJ.(X/V)
3=0

= L

(2.5.28)

(2.5.29)

converge in mean-square to f(x) at the same rate. This convergence is

uniform in any finite interval.
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A
To investigate the mean-square convergence of s(Xn)fn(Xn) to the ran-

dom variable s(Xn)f(Xn) we write:
En{(sz(xnxf(xn%gn(xn))2} =

En{sz(xnxf(xn)_fq(xrl))2}

aln)
¥ ey S(Xn)(f(xn)_fq(xn)> }2 EJ (dj'djn)mj(xn/V{}
3=0
q(n) .
By Ej e (dj'Sjn)(dj'ajn)@j(xn/7)¢k(xn/7 ) - (2.5.30)
=0
=0

The first and third terms of this equation have just been bounded

independent of the argument. From the Minkowskl inequality, (13), and

the expression below (25), we have (cf.(26)):

En{s*’(xnxf(xn)_?n(xn) >2} <
2

2
1 cq € a(n) cg  a{n)
{ ¢ + ¢ p— . (2.5.31)
Nroy Y (1-¢) ’ Nuy Nn

This expression is minimized for fixed n if a{n) is chosen as

)4 2 .
a(n) + oz (2.5.32)
2| tnt |
where
1/k 1/2
o = 1 (oyes) ' (1-8) (2.5.33)

c. €
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Setting q equal to the largest integer less than or equal to (32), we have:

E{ (x,)(£(x,) -8 (%)) }

2,C7

cy & (c In §n2 =
Nroyy (1-8) “rﬂ "2 e ¢QI

(2.5.54)

Corollary 2.5.1: Under the hypotheses of Lemma 2.h.1, the sequence of

estimates

o) = &) 8 e,

with q(n) given by (52), converge in mean-square to the random variable
s(X,)f(X,). The mean-squere error is dominated by (34). Hence, we achieve

the rate:

2
{ (X )(£(x,)-% (X)) } oc2ln)y (2.5.55)

There are a number of differences between this method of estimation
and the previous Lo series representation. To apply the method of this
section the standard deviation of the noise must be known while in the
previous method a moment assumption on the random variable Z is needed

to specify a rate. Using the present method, we have obtained a rate of

1We nave used q > c7 -1% —12&21 in the first expression on the right side
of (34). 2| g |
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=4 .
1n n/n for the mean-square error (Thm.2.5.3) and 1n(n)/n for the MISE (Thm.

2.5.2). For the first series method, with the r-th absolute moment of Z

-2)/r

o (r
finite, we had the rate 1/n for the mean-square error (Thm. 2.4.L)

(r-1)/

T 1
and 1/n for the MISE.

In practice, we may want to hold q fixed, settling for an approximate
estimate of s(x)f(x). In this case, we designate the estimate by

(07,0 = ) 8 gy 0x/)

J=0
Considering the MISE we have (see (20)):

lim E [ (sg(x)(f(x)-gn(x))z dx =

1
phad . 2 2 2 2 2 19+t7%
2] =2 < ) £ 24  c1 9, <[;1 -0 2

(2.5.36)

Similarly, s(X,)f,(X,) converges in mean-square to s(Xn)fq(Xn),

The mean-square error is given by (31) and the asymptotic error is:

lin En{sg(xn)(f(xn)-¥n(xn))2}

LThe comparison of rates for MISE is not really valid as different
quantities are being estimated.
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2 2 2q+l
C1 1 (Gl -0

4 +
7 Lo (012+02)2q 3

(2.5.37)

The asymptotic error in both cases decreases geometrically with q.
In the previous method, the asymptotic error is inversely proportional
to some power of q.

Another significant difference between the two methods is when we
want to estimate the density function &'(z). This will be discussed in
section L.k,

Recall that ¢, is an arbitrary constant chosen to be greater than
0. (o is the standard deviation of the noise samples.) For applications
in hypothesis testing with a minimum probability of error criterion, we

will use a test function of the form

pos(x)f (%) ~p1s(x)f1(x)

Since s(x) is proportional to

2 2
exp < - > ° )
2 L(012-02)(0,2+0®)

the free parameter o; can be considered as a scaling factor for the test

functional. We shall discuss the problem of choosing o in section 4.1.
We remark that in the series method of section 2.4, o1 is also

arbitrary and would naturally be chosen to minimize the bound on conver-

gence. For example, it enters into the MISE bound through two terms: Bg

ar
is proportional to o3 and cg 1s proportional to l/cl .
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2,6 SPECIAL FORMS OF ofz)

We consider the case where a(z) contains a finite set of unknown
parameters which enter linearly into f(x). Examples are equations (1.3.5)

and (1.3.7) with the set of a priori probabilities unknown. We take (1.3.5)

k
az) = ) by u(ay) (1.3.5)
i=1
where u(z) is the unit step function. Then,
oo k
w0 = [eezomlz) = ) b eleyo) (1.5.6)
00 i=1
A
and the problem is to find a sequence of estimates, Pi n’ which converge
)
to the Py for i=1,2,...K. For the case of independent samples, this pro-
blem has been solvedol The procedure used is still applicable in our
situation.
A necessary and sufficient condition for the existence of the
A
sequence P; is that the signals (the mean values of the gaussian density
)
functions) ¥y i=1,2,...K, be distinct. The condition is clearly neces-
sary for if yi = vy we can not distinguish between the hypotheses 1i,j,

or the a priori probabilities Pis pjn Sufficilency is demonstrated by

constructing the sequence.

1

Robbins [31]. For a discussion of this general type of problem see H.
Teicher, "Identifiability of Finite Mixtures," Ann. Math. Stat., v. 34,
1963, pp. 1265-1269.
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We will show the condition that the signals be distinet is equivalent
to having the K functions g(x—yi;c), i=1,...K, linearly independent. FPost-
poning this proof till later, we now give a procedure for estimating the

p;- Assuming that the g(x—yi;o) are linearly independent, define:

oo

85 = b/\g(x—yi;c)g(X-yj;c)dx = &ly;-y5 V2 o) (2.6.1)
=00
G = +the Gramian matrix whose elements are 813 i, j=1,...K
hs - -1
ijJ = the elements of the inverse G
g(x) = the K-dimensional column vector whose i-th entry is
g(x-yy50)
Consider the vector
1 . -1
g(x) = 6 glx), (2.6.2)
whose i-th entry is given by
k
gr(x) = h, ., &(x-y,;0) (2.6.3)
i iJ 3’
J=1

Postmultiply 5%(x) by the transpose of the vector g(x) and integrate each

element of the resulting matrix over x:
1 -1
[ &(x) g(x) ax = G [ glx)g'(x)dx = I. (2.6.4)

I is the identity matrix. Hence, g%(x) is orthogonal to the space spanned
i

by the g(x-yj;o), J=1,...1-1,1i+1,...K;
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K
/ éﬁ(X) g(x-ygso)dx = j{: hyy J g(X-yj;O)g(x—yk;o)dx
=1
= lifk=1 (2.6.5)

O otherwise.

As an estimate of 1N at the n-th stage take

n
A 1 1
Pinn= 7 z g (X,)
=1
K n
- ' 6.6
= hij g(Xl-yJ)c)‘ (2' . )
J=1 =1
The estimate is unbiased
A L
E Pi,n = E gi(X)
1
= [ gi(x)f(x)ax
K
i
= p, | & (x)g(x-y;30)dx (2.6.7)
J 1 J
J=1
= pi .
|
Observe that g;(x) is a bounded function
1 _cali) (2.6.8)
lg%(X)l < }:lh, | = .
= Jogo & 1 New o
J

Consequently, our previous theory is immediately applicable. By a proof

Lobserve that the "active" part of the estimate is the inner sum. The

hij are constants computed before the estimating procedure begins.
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which is essentially identical to Theorem 2.4.1, we obtain
Lemma 2.6.1: Under the hypotheses of Lemma 2.4.1, the sequences of
A
estimates %i " i=1,...K, converge in mean-square to P, with the variance

J

of the estimate dominated by

A 2 A 2 ¢ 2(1 B
< (p,-8, )b =vp )< 2 =l Be o)
1 ~"1,n i,n ong l_p*

(2.6.9)

We have identified the random variable Z as Z(wj)Zy.o That is, the
‘ J

underlying probasbility space consists of the points w ={w ,wl,,ownu.o},
with P(wj) = Dy Zg(wj) is then interpreted as saying that in the #£-th
interval, Y3 was transmitted. The M-dependence assumption represents
transmission with a finite memory; the probability of transmitting yj
in the [-th interval and y; in the m-th interval is pﬁgz, which need
not equal pipj if Im-l} < M.

The extension to transmission with "infinite" memory comes essentially

from Theorem 2.2.2. For example, we can require that

m-4 T
Pij = Py —> p; by 85 T o
and
n
T o)
Z [(p -p.p.)}] < Bgn, 0<d<1 . (2.6.10)
iy 1y - =
T=1

Then, the variance of the estimate is bounded by
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A2 . 5
E{(pi-gin)“} = V(_gi’n) < é%&lg_ [:(1 + B2 ) 4 k®Bgn :l
nan o L-px
(2.6.11)

1-5 1
Convergence takes place at the rate l/n .

There remains to show that the g(x-yi;d) are linearly independent.
Assume they are dependent. Then, with ag % O for all i, the dependence

assumption gives

K
}: aig(x-yi;o) = 0, (2.6.12)
i=
- 1 02V2
Take the Fouriler transform of (12) and divide out the common e 2
term:
K
—
}: a. AL
i
i=1
. SOAN .
Multiply through by e . Using the mean-value property
lim 1 K.
= JVX .
T \er du = 1 if x =0

0

0 otherwise

and the fact that the y; are distinct, we get that a; = 0, i=1,2...K.
This is a contradiction. Hence, the g(x-yigc) are linearly independent.

The above procedure is clearly applicable to the case

~

1
The K* factor comes from bounding the term Dr,zs i.e., summing (10) over
all i and j. See (2.2.41).
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K
ofz) = z p, J u(z-y)dgi(y) (1.4.3)

i=1

where the Bi(y) are known distributions and the set p; 1s taken as unknown.

The density function of the random variable X is

K
£(x) = }: 1 fi(X)
i=1
where fi(X) = [ g(X-yiﬁ)dﬁi(Y)

Since the fi(x) are bounded functions, so will the corresponding fi(x)
be bounded. Then, we need only require that the characteristic functions

of the distributions Bi(y) be linearly independent.

2.7 SUMMARY AND GENERALIZATIONS

In this chapter we have primarily been concerned with the problem

of estimating a special, but not unimportant, univariate density function

f(x) = [ glx-z;0)da(z) .

Given the sequence of dependent random variables X=N+Z, we have displayed
consistent estimates of f(x) and have obtained bounds on the rate of con-
vergence. We have gilven two methods of estimating f(x) and another method
of estimating the product s(x)f(x).

To apply the kernel method, one must recompute the contribution of
all past observations at each stage in order to obtain an asymptotically

unbiased estimate. Using a gaussian kernel, we have shown that this method
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u/5).1

gives a rate of convergence equal to O(l/n The estimate is a density
function in that it is non-negative and integrates to one. No knowledge

of the underlying process is needed to form the estimate or to specify

the rate of convergence.

To use the first series method, we require a moment condition to
be able to specify a rate of convergence. No knowledge of the gaussian
process is needed to form the estimate. The eigenfunction representation
for s(x)f(x), on the otherhand, does require knowing the standard devia-
tion ¢ . Both series methods may lead to estimates which, at some point
of the sequence, are negative over & finite range of x.

In practice, either series can be truncated with the remaining finite
number of coefficients estimated recursively. We have already pointed
out the dependence of the asymptotic error on the number of terms used.

We have also shown (Corollaries 2.4.1 and 2.5.1) that both series
methods converge in the manner required to guarantee the convergence of
the empirical Bayes procedure discussed in section 1.2.

Somewhat secondary to our purpdse, but worthy of mention, is the
fact that the Lo representation can be applied to the more general problem
of density estimation given a sequence independent observations. Suppose
the density function p(x) and its first three derivatives exist. Further,
assume that xap(x),xap'(x),xp"(x) and p(x)''' are Lo functions. Then,

using the technique in section 2.4, we can estimate p(x) with a mean-square

This assumes appropriate conditions on the dependencies of the observation.
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error = O(l/nl/z). This does not compare favorasbly to the rate O(l/nu/s)
obtained by the kernel method which requires & minimal amount of assump-
tions on p(x). However, in estimating a k-variate density function, we
will see that the series method, with the same type of assumptions as in
1/3

the univariate case, keeps the l/n rate, while the kernel method leads
to a rate which is considerably slower.

With the exception of section 2.5, the results we have obtained are
not unique to the gaussian noise assumption, but to a class of processes,
of which the gaussian in the most prominent member. Specifically, the

technique we have used is applicable to any stationary bivariate density

1
function which can be expanded in the form

(a) . (p)
pe(x,y) = pal)ml®) ) sy 0 (0 8 () (2.7.1)
1,d
witn ey = eelay) 0y (x) 6 (vax oy (2.7.2)

and where p, and P, are the marginal density functions of pg(x,y). The
6&8)(x) are polynomials orthogonal with respect to the weight pa(x). The
Mehler formula is a special case of this expansion (with convergence al-

ready established) wherein,

13

= —,1=] (2.7.3)

lEquation (1) is called the Barrett-Lampard expansion [3], and has found
other uses in noise theory [7,22,23].



Gj(x) = Hej(x) (2.7.3)

That is, for the bivariate gaussian density, the expansion is diagonal
and pa(x) = pb(x)o

It is this expansion which gave the desired cancellation of the pro-
duct of the univariate gaussian densities and the first term of the series
(2.2.11). Any bivariate density function which can be expressed as in
(1) will give the desired cancellation, for it is easy to see that, in gen-
eral, GO(X)= 1 and aoo=l. Hence, the first term of the expansion is just
the product of the univariate densities. Then, in analogy to the develop-

ment in section 2.2, one can cobtain the bound

I Ioytx,y) - py(xm()laxay < ) Ly (), (2.7.4)
1,3
where i and j are not both equal to zero. To dominate the variance expres-

sion corresponding to (2.2.8), the summability of
n
1
= a,.(T 2.7
L)) eyl (2.7.5)

would be investigated. The interpretation of summability in terms of
the underlying noise process would now have to be made with reference
to all the moments of the bivariate density and not just the correlation
function as in the gaussian case.

In the Barrett-Lampard paper, the authors give another example of

a bivariate density which admits a diagonal expansion and for which the
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coefficients form a geometric progression. This is the case of narrow-
band gaussian noise subjected to an instantaneous square law envelope

detector. The expansion takes the form([3], Eq. 80):

p (e = plr)plxe) ) (7))L (s /207y (e f2%), (2.7.6)
3=0

where x; is the square of the envelope, xi=R§, and the density function of
R is given by the Rayleigh density. The polynomials in this expansion

are the Laguerre polynomials which are orthogonal on O < x <« with respect
to the weight

ox) - =5 exp (52) (2.7.7)

The quantity u is defined as([3], Eq. 72)

- 00

1

i) = pra d[‘JFSn(fl) sn(fg) cos 2n(fi-f2)Tdf; dfs
o o

where sn(f) is the power spectrum of the narrow-band gaussian noise and

0

o = f s (£)af .

o}

Assuming that p(t) < 1 for 7 # 0, (L4) reduces to

n

1 2

F) (2.7.8)
T=1 1-p=(7)

in direct analogy to the development in section 2.2.

For the class of stationary Markov processes, Barrett and Lampard

show that if the bivariate density admits a diagonal expansion then the
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correlation function i1s an exponential function of time and the expansion

takes the form

o]

A T .
B, )l )plz) ) e Temle (k) - (2.79)
J=0
T is the distance (in time) between the random variables x; and xo. Wong
and Thomas [L47] have further characterized the Markov processes which admit
the above expansion. This class is composed of three distinct types, all
of whose univariate density functions belong to the Pearson system of dis-
. . 1 . .
tributions. This class consists of:

a) the gaussian density with the associated Hermite polynomials.

1 -
b) the density p(x) = — x% ¢® and the associated Laguerre
I'(o+1)
polynomials. For o=n- %, néo,l,E,... we have the chi-square distribution,

and for a=0 we have the case just discussed ((7)).

(04
1 I'lop+2) (1-x) (1+x)B
2% PTL (1) (p+1)

which represents the Pearson type I system. This includes the uniform

c) the density function p(x) =

density and the density function of a sine wave with unit amplitude and
random phase. The associated polynomials are the Jacobl polynomials which
include, among others, the Legendre and Chebyshev polynomials.

With the marginal density function of the Markov sequence given by

one of the above, the corr%sponding bivariate density function is given

lTheir technique is to reduce the Fokker-Plank equation to a Sturm-Liouville
eigenvalue problem. Necessary and sufficient conditions are then found

under which the eigenfunctions form a complete set of orthogonal polynomials.
These conditions include a differential equation which the univariate density
must satisfy and which characterizes the Pearson system.
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by (9).

In the context of our problem, these results can be applied not only
to the noise, but to the {Zﬁ} sequence as well. For suppose that the den-
sity function of QT(Zl,Zg) is given by (9). Then, the quantity 5T’2

(Eq. (2.2.41)) can be written as:

o
i

I7 6(x-230)xz2s0) (22, 22) 0 (22)0r (22) | ana a2z

< J/ la;(zl,22)-a'(zl)a’(22)ldzl dzz
< z e—)x.J."r
3=1

Consequently, a theorem analogous to Theorem 2.2.2 can be obtained with
a rate of convergence determined by the growth or summability of the

quantity

T=1 J=1

To extend the technique of section 2.5 to other noise processes,
one must solve an eigenfunction problem where the kernel is the corres-
ponding univariate density-function of the noise. We suspect, but have
not proved, that progress in this direction can be made for those processes
whose univariate densities are the weights associated with the classical
polynomials. These polynomials ([12], page 164) are just those polynomials
mentioned earlier whose corresponding weights belong to the Pearson system.

Most of the specific properties of the Hermite polynomials which we used
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are common to the classical polynomials. In addition, those polynomials
which are solutions to a Sturm-Liouville problem form a complete set and

behave (in an interval) as does the usual Fourier series (Hobson [18],

page T71).



CHAPTER 3

ESTIMATING THE DENSITY FUNCTION OF THE OBSERVATIONS—k-VARIATE CASE

3.1 INTRODUCTION

In this chapter our previous results are extended to an arbitrary
k-variate density function. For the univariate case, convergence state-

ments generally followed from the inequality

[T lea(x1,%250,0.) - &(x1;0)g(x2;0)|ax dxe

< _lEIl_ . (3.1.1)

l-lp-rl

This was derived in section 2.2, equation (2.2.15). 1In this chapter we

will be concerned with dominating the integral

e (x1,x23M ) -, (x1;8) g (x238) [ax, dxe , (3.1.2)

where g and gzk denote the k-variate and 2k-variate gaussian density
functions. x3 and xo ére k dimensional vectors. Xxi represents the k
samples from the f-th interval and xz the k samples from the m-th interval.
Both vectors have & covariance matrix A which, from the stationarity as-
sumption, is independent of the interval. The covariance matrix M_ of

dimension 2k, is given by

{Xl [x} | x5]
M= EY %z
(3.1.3)

119
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S I R (3.1.3)

with 7 = m-£, and ' denoting the transpose.

In the next section we majorize the 2k-fqld integral by displaying
a transformation which converts (2) into k douﬁle integrals of the form
(1). This change of variables allows us to g0 di;ectly to the Mehler
formula without any further generalization of the Hermite polynomials
introduced earlier. The majorant will now be a func%ion of the eigen-
values of a cert&in matrix and not simply expressed in terms of the cor-
relation coefficients. A rate of convergence can still be determined by
investigating the propertits of the autocorrelation function.

Having majorized (2), the extension of our previous results will
be obvious. For this reason we simply state the results in sectilon 3.3,
commenting when there is a significant difference in the technique or

final result.

3,2 DOMINATING THE 2k-FOLD INTEGRAL

Define the 2k-dimensional vector u as

u = {_}%_} , (3.2.1)

and the matrix N (of dimension 2k) by

N = |-----—- . (3.2.2)
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Equation (%.1.2) is written as
[gg(wid ) -g,, (wsN)|du , (3.2.3)

with du representing the 2k differentials duj...dugk.
As already mentioned, we want to show that a change of variables
uw=T~1v reduces (3) to k double integrals of the form (3.1.1). What is

the same thing is to show that g : non-singular transformation T takes

MT into
¢ | o=
T'MT = |===7-"- (3.2.4)
RL | €
L 1
and N into
™ |
¢c 1 o
TMT = [|T7"TC (3.2.5)
T o 1 ¢
L I

Here, C and R are kxk diagonal matrices.

This simulatneous transformation is accomplished in two stages.
The first step is to reduce N and M to diagonal matrices. Let Ty be

the transformation such that

81
Ao 0
TLOM Ty = A = . (3.2.6)
0 T
' Aek
and
|
I | 0
|
TN T, = [Tyl (3.2.7)
0 ; I

This is the usual "double-diagonalization" procedure.
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The second step is the reverse of this process. That is, we then

show that there is an orthogonal transformation Tz such that

| i
C : RT I : RT
Td A Tz = [=—=—==| = |--=p-—-1]. (3.2.8)
{ ' |
RT : C RT : I

Since Tz is orthogonal (7) remains invariant under this transformation.
The required transformation is then T=T,Ts.

From (6), it is not immediately evident that A (with 2k diagonal
elements) is similar to (8) which has k free parameters (the diagonal ele-
ments of R). In addition,\tO\apply Mehler's formula we will need the ele-
ments of RT strictly less than one.

We will establish that A, and (8) are indeed similar, and that the
elements of R are less than one. The only assumption which we will make

is that My be a positive definite covariance matrix. By this we shall

-always mean strictly positive definite.

What we are concerned with here is a generalized characteristic-
value problem, or what Gantmacher calls the pencil of quadratic forms.
We will use some results from Gantmacher [1L], Chapter 10, section 6.

To avoild a proliferation of subscripts we drop the T subscript
for the present and since we are consistently dealing with vectors we
will not use any special notation for them.

Two real symmetric quadratic forms M(x,x)=x'Mx and N(x,x)=x'Nx

determine the pencil of forms M(x,x)-AN(x,x). A is a parameter.
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Definition: If the form N(x,x) is positive definite, the pencil M(x,x)-
AN(x,x) is called regular.
Definition: The equation IM-LNI = 0 1s called the characteristic equa-
tion of the pencil of forms M(x,x)-AN(x,x).

From (3), with M p.d. (positive definite), A is also p.d. since it
is a principal minor of M. Hence, N is p.d., and the pencil of forms is
regular.

Theorem %.2.1 (Gantmacher, page 310): The characteristic equation of

a regular pencil of forms, IM-KNI = 0, always has 2k real roots kj with
the corresponding principal vectors ZJ:(le)Zéj;°°-;Z2k,j)) J=1,...2k,

which satisfy

J
Mz© = xsz , J=1,2,...2k . (3.2.9)

These principal vectors can be chosen such that the relations

» ‘I O' .
Nz ,2Y) = 2" N2? = 5,4 1,31, 2k (3.2.10)

J

are satisfied. From (10),”it follows that the z“, j=1,...2k are linearly

independent.
The existence of the required transformation T, is assured by

2k
Theorem 3.2.2 (Gantmacher, p. 314): If 2 = {zij}l is a principal matrix

of a regular pencil of forms M(x,x)-AN(x,x), then the transformation

x = Zy (3.2.11)
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reduces the forms M(x,x) and N(x,x) simultaneously to sums of squares

ok 2k

}: N, 7 }2 2 (%.2.12
j yJ J yj J 5' 'l )

j=1 5=1

where Ai,A2s...,N\ok are the characteristic values of the pencil M(x,x)
~AN(x,x) corresponding to the columns zl,zg,...,z2k of Z.

Conversely, if some transformation (x=Zy) simultaneously reduces
M(x,x) and N(x,x) to the above form, then Z is a principal matrix of
the regular pencil of forms M(x,x)-AN(x,x).

The first theorem is proved by writing (9) as N Mz = AJZJ and
then showing that N M is similar to some symmetric matrix for which the
characteristic values are known to be real, etc... The second theorem
is the usual statement of the double-diagonalization process.

As a consequence of Theorem 3%.2.1, we know that the elements of A

in (6) are real. A further characterization is obtained by noting that

for any characteristic value and vector, we have

G s o s
zd Mzd = KJZJﬁZJ ,  §=1,2,...2k. (3.2.13)

Since M and N are both p.d., it follows that

AN >0 3 3 =1,2,...2k . (3.2.1k4)

We now want to show that k of the kj are determined by the remaining
k characteristic values.

. . . Z
Let z; and zz represent k-dimensional vectors and write z = {'Ei']’

where z is a principal vector of (9). Expressing M and N in terms of A
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and B, we obtain from (9) the following two equations:

(1-A)Az; + Bzg = O
B'zy + (1-A)Azp = O
From (15) we have
(1-\)z; = -A"'Bzg .

Multiply (16) by (1-A) and use (17) to substitute for (1-A)B'z;.

(16) becomes
{((1-2)2A-B'A™'B}zo = O .

In an analogous manner we obtain an equation for the z, vector,
((1-\)2A-BA™'B'}z, = O.

The 2k characteristic values \j must satisfy LM-xJN] = 0.

(3.2.15)

(3.2.16)

(3.2.17)

Equation

(3.2.18)

(3.2.19)

They must

also satisfy the characteristic equations associated with (18) and (19).

It is not difficult to show that the characteristic equations of the above

1
two equations( (18) and (19)) are equal. Therefore, we need only consider

one of them. Let

r = (1-A)

Equation (19) is written as

(3.2.20)

lBellm&n, R., Introduction to Matrix Analysis, McGraw-Hill Book Co., 1960,

p- ol
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(r°A-BAB'}z; = O. (3.2.21)

Observe that BA™'B' is symmetric. Since A is p.d., (21) is a regular pencil
with the parameter r2. From Theorem 3.2.1, we have that there are k real
roots r?, j=1,2,...k, with the corresponding linearly independent principal
vectors zi, J=1,...k.

The characteristic equation corresponding to (21) is & polynomial
of degree k in r2. Viewed as a polynomial of degree 2k in r, the 2k roots

are equal to i*f-rﬁ s, J=1,...k. From the definition or r, we have

xj=1+~/r§ = 1l+r,

dJ
(3.2.22)
= N = - i =
xj+k = 1 5 1 rj , 4 =12,...k.
Since Aj is greater than zero ((14)), we have the bound
lrjl <1, j=1,...k. (3.2.23)
Using these results, (6) can now be written as
l+r1 o
1+r2 0
L4r, (3.2.24)
Terl = A =
l-rl
0
]1-
| "k
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2
with the k values of r given by the roots of the polynomial

|A7'BAT'B" - £PI|

1]
O

(3.2.25)

As an aside, we remark that the 2k principal vectors of (9) are

J J
. A s Z
ZJ - :_L_ _ET’ s ZJ+k = .l_ _}-.._. J=1,2, ...k,
Jo | z2d Ve -ZzJ

where Z;J and z29 are the\principal vectors (of dimension k) of (19) and

given by

(18)5 It is a simple matter to see that the 2k vectors thus defined are
linearly independent. It is only slightly more difficult to show that
they perform the double-diagonalization, i.e., (12) is satisfied.
We now show that A, as given by (24), and the matrix defined in
(8) are similar. For this-it suffices to show that their characteristic
equations are the same.
From (24) we have,
k
A=zl = 1 (1f -2y + o) . (3.2.26)
i=1
To evaluate the characteristic equation of (8), we need to specify the
diagonal matrix R. Choose the k positive values ry = +~f}§, J=1, ...k,
and take R as

ra

Tz

R = . . (3.2.27)
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The characteristic polynomial of (8) is given by

I (3.2.28)

To determine this characteristic polynomial, we use the same argument as

in going from (15) to (19). We write

I ! R
w w

—edeee- LA O . T

R + I w2 ve

and obtain the characteristic equation for the vector w; (or W2),
(1-7)PL - R} w; = 0. (3.2.29)

The characteristic equation in given by |(1-7)®I-R°|, which is identical
to (26). Hence, the existence of the orthogonal transformation Ts is
assured.

In the context of our problem, and to summarize the results to date,
we have

Theorem 5.2.5: We are given the 2k-order integral

f lezk(u;d) - gpy(us)|du (3.2.3)
u
with M = [ --cdemme- ,8and N = ---hooo
B. | A 0O 1 A

If M is a positive definite covariance matrix, there exists a change of

variables



u = T v = (T,T2) v (3.2.30)

with |T| # O which takes (3) into
2k . .

[----] l_Hl g2( vy, Vi Loty - g(vy31)e(vys1) ldvy. . dvag
i= i=

(3.2.31)

The vy are scaler variables and the k values of r? are given by the roots

of
0 = [AT'BAT'B' - £°I| . (%.2.25)

Since |rk| <1, i=l,...k, we can use Mehler's formula to majorize
(31). Let the symbol j # O mean "excluding the term jy=jo=...J;=0." Then,

using the expansion for the bivariate gaussian density, we have:

2k Kk

k
[....0ln go(vy,visk;l,ry) - I g(vi;l)g(vi;l)|dvl...dv2k
i=1 i=1
, N
2k x S org
= [eooof ]'H g(vi;l)g(vi+k;l)zgz T He, (vi) He (Vi+k)l
i=1 . Jdi- Ji Ji
Ji=o
dvy...dveg, J # O . (3.2.33)

Bring the integrations inside the summation and bound the integrals as in
(2.2.14). We then obtain

Corollary 3.2.1: Let M% be a positive definite covariance matrix. It

then follows that

u/\ |gor(usM;) ~gay(w;N) [du <
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) (3.2.34)

2
vwhere r , satisfies
i

-1 -1 > .
|A7"B_A B,’r—r?L,TII = 0, i=1,2,...k.

2
For k=1 we have A=1, B =P T —p , and (33) reduces to (2.2.15).

The majorant in (34) will enter into the variance calculations summed
over T. We want to again interpret this sum in terms of the autocorrela-

tion function R(T). In analogy to section 2.2, designate

n
T _llr
T=1 T= »T
n - 1 -
) . i=(“i,~r) _—_—
- . I 3.2.35
T=1 .H (l'ri,T)

l_.l

i=1
Let r¥=min (l-r; _). Since |, TI <1, r, >0. Then, (35) is dominated
T>1 ? -
by
n X n K
z D, < 7 z 1-1I (l-r; ) p . (3.2.36)
- T'% —l T
T=1 T=1
Writing out this expression gives
n
E: D! < }: }: }: r, r + ... +(-l)kr T  ...T
T = o, - LT g, T, T 2,T k5T
T=1 T= i=1 J
15 (3.2.37

ifJ
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The j-th inner summation gives k'/(j.(k-3j).) terms, where j=1,2,...k.

There are then 2k—l terms which are summed over T. Since lri TI <1,
)

for all i and T, any term which contains a L. as a factor is dominated
)

by the single term r appearing in the first inner sum. Consequently,

i,T
(37) can be bounded by
n k

z DL < (2 1) }: (3.2.38)

T=1 ]_:l

From the Schwarz inequality we have

2
ri,T
i=1
and it follows that
o
z ’DI < ( l) Z I“?'
T kl/er i, T
T=1 * o=l

. 2 . . -1, =1_,
The quantity X x5 is just the trace of the matrix (A "BA™"B').

i, T

Hence
o k n 1/2
Z Dy < %éﬁ Z trace (4 B AT'B!) , (3.2.59)
T=1 k' ryg —_—y :

The trace is the sum of k¥ terms. Each of these terms involves the
product of the correlation function evaluated at different arguments. The
matrix A_l, which also involves the autocorrelation function, does not de-

pend on T but only on the manner in which samples are taken in a particular



132

interval. Define:

-1 -1
835 = elements of A
Rij(*) = elements of B, 1,§=1,2,...k
(3.2.40)
Re(7) = mex [R .(7)]
1,J
-1
A = .
=) ) le]
i d
The trace is given Dby
k
S N | -1 -1
tra A BA B =:}: a, . a., . R coe U
race ( ) 5135 Fiada 5332(7) RJlJ4(r)
jl)j2;j3;jé
Using the above definitions, we obtain the bound
-1 -1 2 2
trace (A "B A "B') < Ry(T)A (k)
and (39) becomes
n n
k
(2°-1) z
DI < = A
- 2 1/2 (k) IR*(T)I
=1 Kooy =1
n
- Bg(k)z IR, (T)| . (3.2.41)
T=1

We are now in a position to use the results of sectionm 2.2 to obtain

Corollary 3.2.2: If R(t) satisfies condition A, from.(g,g,gl» we .obtain

1 1-3
z D;. < Be(k) 02%1 + ?—SQ (3.2.42)

T=



133

If condition B is satisfied, then, from (2.2.23), we have

n

}: D! < Be(k) o° Bo . (3.2.43)
T=1
With the exception of when Bz 1s given by the Euler-Maclaurin summa-
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