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ABSTRACT

The uniqueness of the similar solution of the problem
of spherically symmetric thermally controlled bubble growth
is demonstrated using a generalized group-theoretic analysis.
The inability of similar solution methods to account for

viscous dissipation is also shown.



THERMALLY CONTROLLED SPHERICALLY SYMMETRIC BUBBLE GROWTH;

UNIQUENESS OF THE SIMILARITY SOLUTION

INTRODUCT ION

The problem of thermally controlled spherically symmetric
bubble growth in an infinite liquid has been extensively treated
by Scriven [2]*and further examined by many others. By neglecting
viscous dissipation, the solution to the above described

problem follows from the introduction of the transformation
k T
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by which the energy equation 1is transformed to an ordinary
differential equation. Under this transformation, the bubble
radius is required to vary as

R= 8Vt (2)

§ being a suitable constant

In problems such as this, the selection of the proper
transformation is often arbitrary. That is; the one that works

becomes the correct one.

Any given transformation such as equation 1 must satisfy

both the governing equation and the boundary conditions.

*Numbers in brackets [] refer to references at the end of this
paper



From physical reasoning, there should be only one way in which

the thermally controlled bubble can grow.

It is possible to derive the transformation of equation 1
from purely mathematical reasoning and to show its uniqueness.
The particular method employed follows from Lie group theory
and has been developed by Na [1] and applied to problems such
as the boundary layer equations which also yield to similarity

transformations.

For thermally controlled bubble growth, the governing
equations are continuity and energy. Following Scriven, they

may be written as
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For completeness, viscous dissipation has been retained in the

energy equation.

A general solution to the above equations is now desired.
In particular, the question of solution by similarity methods
and the number of transformation groups possible is to be

investigated.

SOLUT ION

By substituting equation 3 into equation 4 and introducing

the dimensionless parameters
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the governing equation becomes:
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The search for all possible similarity transformations now proceeds

following the methods outlined by Na [1].

By making the following definitions
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equation 5 may be written as: .
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The requirement that equation 6 be invariant under a given

transformation is
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and W(t,%,0,P,q) is the characteristic function sought. With W
known, the similarity transformations follow from the absolute
invariants which are given by the solution of
4t dF_ 0 ®
I S ¢
Taking the indicated derivatives of equation 6 and

substituting them into equation 7 results in:
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] Jw
L= [ rer ST [ F e e s ot
2 oW
W _r2 . £]5W A PL R b Y I
+Pde “LF F‘};; 'i[f F‘]-‘ >ET yFI€

Y Nw yw 2 W AW /o)
et "2k *1;9>1] h (

2w AW 2w
LA [)i.\ Yl th, IPie (1)

and
T (13)

Since W is independent of P o the coefficients of

1
equation 9 are set equal to zero. Equation 12 then indicates

that W is linear in P so that

Ww(€ repse) =W (§F 641) +Pw, (£,F,62) (y)



Substituting this relation into equation 11 set equal to zero

along with ’,_
2
gz=-[f—-§;]s_+F-F1—? (15)
from equation 6 results in:
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Since W, is independent of P, setting goefficients of like
powers of P equal to zero indicates that W2 is a function of
t alone. Thus:

w o= W (£F6,2) +PW, (<) (12)
Substituting this relation into equation 10 along with equation

15 and setting the result equal to zero yields:
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Since Wi and W2 are independent of P, each of these coefficients

may be set equal to zero.

Equation 21 indicates that W1 is linear in g
W (£,F,62) = w, (€,7,6) +2W. (€ F8) (z2)
Substituting equation 22 into equation 20 and equating it with

zero gives

dw, oW oWy
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from which it follows that WiZ is independent of © and linear
in T.
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At this point, the characteristic function is given by
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Substituting equation 24 into equation 22 and putting the

result into equation 19 set equal to zero gives

D +9 2+ b3 =0 (26)
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And, since W,, W.., W are not functions of q,
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these coefficients may be set equal to zero.

1’ and W

Equation 29 then gives
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which, when substituted into equation 28 set equal to zero,

results in JW Jw
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Since all functions on the right side of equation 31 are
functions of T alone, W,,, is a quadratic in T.
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Substituting this relation back into equation 31 gives:
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Turning to the remaining coefficient of g (equation 27),
and setting it equal to zero results in
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All of the functions in equations 35 and 36 are independent
of O so that they may be set equal to zero. Also, since all
of the functions in equation 36 are independent of T, setting

coefficients of like powers of T equal to zero yields:

fWyy = 8'Wy ~2 Wy =0 (3)
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The same situation applies to equation 33 resulting in:
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The characteristic function may now be found by solving
equations 37 - 45 and equation 35 set equal to zero. Thus,

from equations 39, 40, 43, 44, and 45
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And, equations 37, 38, 41, and 42 also require
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while substitution of these relations into equation 35 equated

to zero gives:
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From equations 51 and 52, C, =C. =0 (i.e. W

2= S5 121 = 9

Thus, equation 52 gives
’
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so that W2 must be linear in t.
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which integrates to
<y

g = B[Qf_*‘r]c‘ (s7)

where b is the integration constant. Furthermore, since
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equation 57 yields the restriction on R.
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Or,
Cy‘f &

R*=a [qfte] & + C

(s2)

From the restrictions on g and W2, equation 55 becomes
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The characteristic function is thus given by
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From which the absolute invariants are given by
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Substituting equation 60 into the relations given for; , P,

and f yields:
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PARTICULAR SOLUTIONS

Consider the case when the bubble growth rate is finite,

(4 # 0 ). Then, equation 54 requires that C, = 0 and equation

58 requires that C6 be finite. In this case, equation 62

becomes J - d F_ _ de
. — 7 P (¢3)
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The first absolute invariant follows from the solution of
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Or,
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There are now three choices for Wlll7 either Will is a
constant or zero or it is a function of T and/br T By

examining equation 59, one sees that the first two choices are
impossible if this equation is to be satisfied. However, if

viscous dissipation is ignored ( F = 0 ), the general case of

Will = —C8 is valid. 1In this case, the second invariant is
found from —
ot °° (¢5)
<ttt e, €&t
where C8 = —Will

Solution of equation 65 gives:
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With no viscous dissipation, the governing equation becomes
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Substitution of the two similarity variables defined above along

with # from equation 57 results in:
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from which Y = 1/2 is an obvious requirement so that

f =o (€

s'rs' [ rrSE k] _cprts o (60

2
(" 5)

12



Equation 69 is the most general form of the transformed
equation. The only transformation possible being the linear
group. Therefore, without examining the particular boundary
conditions, a similar solution requires that the bubble
radius vary according to 3&

?3 =a [C“-F"'C?} +c (70)
A consideration of the boundary conditions of the problem

itself, namely
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shows that the dependent variable can be none other than

f3) = ©

This requires that Wlll = Cl = 0 and thus f = 0. Also, since
Will = 0 is incompatable with equation 59 unless F = 0, similar

solutions are not possible unless viscous dissipation is
neglected. Equation 71 also requires C7 = 0 in order that it
may transform to
7: 0 )’ -F = |
Finally, the heat balance at the bubble wall
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may be transformed omly if ¢ = 0 in equation 70. The final form

(73)

thus coincides with the results of Scriven.
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a,b,c,C

NOMENCLATURE

= constants

specific heat

latent heat

radial co-ordinate
bubble radius

reference bubble radius
time

temperature

temperature far from the bubble

saturation temperature

radial velocity

dependent similarity variable
termal diffusivity

[2-7A)/2

independent similarity variable
thermal conductivity

viscosity

density of liquid and vapor






