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The Asset Approach to Pricing Urban
Land: Empirical Evidence

Dennis RE. Capozza® and Gregory M. Schwann™*

Many papers have attempted to explain intermetropolitan
variations in the price of housing using multi-equation mod-
els of the metropolitan housing market. This paper uses a
long-run equilibrium urban asset model to explain such
variations. The model builds upon previous models that
introduce uncertainty into the dynamic urban model of
land conversion. The empirical results strongly support the
asset approach to valuing land in urban areas.

INTRODUCTION

This paper presents an empirical test of the simple dynamic models
of land conversion under certainty and uncertainty in Capozza and
Helsley (CH) (3], [4]. CH present models of a growing urban area,
designed to highlight the implications of growth and uncertainty on
prices and rents in an urban area.
~ The models can be applied to explain the wide variation in land and
* housing prices among metropolitan areas in North America. For ex-
ample, the average price of a house in Calgary in 1981 was more than
twice that in Winnipeg.! Similarly, the average house price in San
Diego, $97,500, was twice Detroit’s $48,000 in 1981.2 The Detroit/San
Diego illustration is quite striking since Detroit is a much larger city
and one normally might expect larger cities to be more costly.

This inter-urban area price variation has attracted a number of
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empirical studies recently, including Nellis and Longbottom [11],
Buckley and Ermisch [2], Ozanne and Thibodeau [12], and Fortura and
Kushner [6]. The model underlying these papers is a supply and de-
mand model. In each study, a large number of variables enter the
reduced form equation. These variables include incomes, number of
households, demographic characteristics, prices of non-housing goods,
amenities, taxes, public utilities, interest rates, expected inflation, etc.

By contrast, this paper tests models of long-run equilibrium urban
asset values. In the models, small open urban areas are subject to
equilibrating migration between urban areas within the country. As a
result, a different and smaller list of variables enters the reduced form
for prices and rents. This list includes: city size, city growth, the user
cost of capital, the cost of conversion, and agricultural rent levels. In
the uncertainty case, the variance of growth is also included.

The remainder of the paper is divided into four sections. Section two
describes the models. In the third section, we specify the empirical
model used to test the hypotheses derived from the theoretical model.
We also discuss our data sources in this section. Our results are pre-
sented in section four. Section five concludes the paper and gives some
suggestions for future research.

THE THEORETICAL MODEL

Cities are assumed to be small, open, circular, and situated on a
homogeneous plain. Not all land can be developed, but that which can
be developed is located in an arc of 2¢ radians. All employment and
production is concentrated in the Central Business District (CBD),
hence all employees must commute daily to the CBD. Locations are
differentiated by their distance from the CED, where the unit of dis-
tance 1s defined so that it costs one dollar to commute one unit of
distance.

Household Equilibrium

We assume that at each time ¢ € %, households derive their utility
from the consumption of housing and a composite, numeraire good.® In
addition, all households are identical, and no other factors affect
household utility. It is further assumed that each household rents
exactly one unit of housing.

Households allocate their income to housing rent, the consumption

°The following notation is adopted: s € . means 0 = s < x and s € &__
means 0 < s < =,
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of the composite good, and transportation costs to and from the CBD.
The problem facing an individual household is to choose the location z
which maximizes its indirect utility. The first order condition govern-
ing this choice is —r.(z, t) = 1, where r, is the partial derivative of the
housing rent function with respect to z. Thus, a household locates at
the point where the decrease in housing rent from moving a marginal
unit further from the CBD is just offset by the increase in commuting
cost. Hence we can write

r(z,t) = r0, ) — z (D
The Developer’s Problem

To investigate pricing we assume that future rents follow the normal
diffusion process

driz, t) = pdt + odB(t) tER. X Ry (2)

where u and o > 0 are the mean and variance of the process, respec-
tively, and B(¢) is a standard Brownian motion. Since this is a normal
process, u gives the growth in rents. The assumption that B(#) is a
standard Brownian motion implies that rents follow a random walk
around the constant growth. In the limit as ¢ — 0, the uncertainty
model collapses to a certainty model with annual growth of rents u.

In a certain world, the price of a developed plot of land at time ¢ is
given by the present value of future rents

Pl t) = | 1z meods (3)

t € [t*, =]

where p is the constant rate of time preference and ¢* is the time at
which the land was developed. If the plot of land has not yet been
developed, and is in agricultural use, its present value is

.

t

Pzt t*) = J | ae PP 0dr + l r(z, e P 0dr +
At

Ce "9t € [0, t*] (4)

In this equation, a is the opportunity cost of land (agricultural land
rent) and C is the cost of transforming the land from agricultural to
urban use. Both are assumed to be constants.4 The first term in (4) is

4The assumption that a and C are constants can be relaxed. Similar results are
realized. See Capozza and Li [5]. Also it should be noted that two interpreta-
tions of C are possible. If we take C to be the cost of servicing land for urban
use, then P is the price of serviced land. If C is assumed to include the cost of a
structure, then P is the price of housing. In either case a fixed capital/land ratio
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the present value of agricultural land rents between ¢ and the date of
conversion. The second term is the present value of urban housing
rents from the date of conversion onwards. The last term is the present
value of the conversion cost.

In a certain world, the developer’s problem is to choose a date #* €
[t, >=] on which to convert land at the periphery of a city into developed
urban land. The optimal date of conversion is the date that maximizes
P Differentiating (4) with respect to £* yields the first order condition

rz*, t*) =a + pC (5)

where z* is the location of the boundary of the city. Development occurs
when the rent in urban use equals the opportunity cost of land plus the
opportunity cost of the capital funds needed to effect the conversion to
urban housing.?

Equation (5) only holds at the edge of the city, i.e., at z¥*. The location
of the boundary of the city at time #* is the point within which all
households consume their unit of housing. In a circular city with 2¢
radians of developable land and containing N(#*) households

(6)

[

ey [ N
25 () [ &

When the future is uncertain, a risk-neutral developer will
maximize the expected present value of future rents, EP“(z, ¢, £*). This
problem can be solved either as a first hitting time problem (CH [4]) or
as an optimal stopping problem (Capozza and Li [5]). To begin, let

tr =inf{s= 0;rit +s) > 7} (7

be the first time the stochastic process r(t) exceeds 7. The time ¢ is
known as the first hitting time with respect to the value 7. Because r(t)
is stochastic, t 1s stochastic and has a probability density function
induced by the probability that r() > 7 In the case of a Brownian
motion with drift, both the probability density function and the mo-
ment generating function for ¢ are well known (Karlin and Taylor [9]
362-63). The solution strategy is to first use the probability density for
t; to calculate the expected value of developable land conditional on 7.
The second step entails choosing 7 to maximize the expected value of
the developed land.

Since 7 determines the expected value of ¢, choosing 7 optimally
gives the optimal expected date of development.

is implicitly assumed. We have taken the latter inte rpretation for the empiri-
cal specification.

>The second order condition for this problem is: 7z, #*) > 0. This condition
implies that rents must be rising faster than the opportunity costs of develop-
ment which, in this case, are constant. See CH [3].
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Thus, the developer’s maximization problem may be written as

max EP(z, t, t*) = max E{P*(z, ¢, 7')|F} (8)

This problem has the solution (see CH {4]),

riz, t) =Ja+ pC + P ; % @ +2)2 €10, (9)
a P z € (), )
where

Vg + 20'2@—— g

0—2

Thus, rent at the edge of a city, (z = z*), is the sum of three components:
the opportunity cost of land in terms of its competing use (i.e., agricul-

ture), the opportunity cost for the funds used to convert the land to
p—a . .
g. Inside the city bound-

urban use, and an uncertainty premium, p

ary, (2* — z) € [0, z*) gives the location premium on housing closer to
the CBD. It can be shown that the uncertainty premium is non-
negative for all (i, o) € 2% and only equals zero in the limit as u — «
or 0 — 0. It can also be shown that the uncertainty premium is a
decreasing function of the growth rate in rents, and an increasing
function of the variance in the stochastic process governing rents (CH
[4).

The economic intuition behind these results is straightforward. In a
world where rents fluctuate, developers will wait for higher rents
before converting to urban use in order to ensure that an increase in
the rent is permanent and not merely a transitory spike in the stochas-
. tic process. Accordingly, the uncertainty premium decreases in the
growth rate because the revenue lost from developing too soon is
smaller when rents are growing quickly. Also, the uncertainty pre-
mium increases with the variance in rents because a larger variance
increases the cost of making an error and developing too soon.

Before turning to the empirical model, it should be noted that the
results above are not based on risk aversion. They are obtained even
though investors are risk neutral. All that is required is that the
investors know that rents are stochastic and, in a sense, are sceptical
about the permanence of any rent increase.

EMPIRICAL MODEL

Equation (9) gives the rent that will trigger development at the edge
of the city. Usually, one observes prices rather than rents. Hence, the
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analysis must be recast in terms of the price that will trigger develop-
ment 1f it is to yield any empirically testable hypotheses.

Carrying out the same analysis on prices as on rents gives the price
function

U]

+C +

1 Sk
5 T — +u z € [0, z*]

jo]

R

ho)
©

P t) = (10)

+ ~g_;e—a[z—z“(z)] + p— age—a[z—: W oz € (2%, x)

w
o)
a

—p_ - ap®

R

where z* is given by equation (6). Equation (10) is illustrated in Figure
1.

These prices are increasing in both u and o2, P.(z, t*) > 0 because the
growth in rents over the time interval [t*, <] more than compensates
for the reduction in the uncertainty premium at time #* brought about
by the increase in . P,.(z, £*) > 0 because ro:(z, *) > 0; that is, because
the uncertainty premium increases the rent at time . In addition,
simple differentiation shows that, for o > 1, P(z*,t*) is: (1) increasing in
a, the opportunity cost of the land in its next best use, (i1) increasing in
C, the cost of converting the land to urban use, (iii) increasing in N (%),
the number of households in the city at time t*, and (iv) decreasing in
p, the cost of capital.

All of these results are potentially testable. The primary limitation
is in finding a data set which contains the variables in the model. We
use a cross-section time-series data set. The cross-sections are formed
by the Census Metropolitan Areas (CMAs) in Canada. The time-series
span the years 1969 to 1984. The time-series are not all of the same
length, however. For several CMAs, the available time-series was as
short as 1975-1984. Rather than truncate sll the cross-sections to
conform to the shortest time-series or ignoring the CMAs with little
time depth, a full information estimation technique is employed which
uses all the available data points for all the CMAs.

For each CMA, the data set contains the number of housing starts,
housing completions, and housing units under construction for each
year. It also contains a price index for newly completed dwellings, as
well as subindexes for the land and construction cost components of a
newly completed dwelling.

The price index for the land component of the price of newly com-
pleted dwellings corresponds closely to the land price P(z*, #*) in equa-
tion (10) if we interpret C as the cost of servicing land.® Ideally, this

The land price index includes more than the price of undeveloped, raw land. It

includes various servicing costs associated with bringing the land on-stream
for construction.
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Figure 1
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would have been the dependent variable in the empirical analysis.
Unfortunately, the price subindexes are not available for the same
time period as the main index and there are missing values within
each series. Consequently, the composite price index for newly com-
pleted dwellings in real terms is used as the dependent variable. This
corresponds to interpreting C as both the cost of servicing land and the
cost of adding a structure. Since the land component is highly corre-
lated (.94) with the composite price index, we expect our results using
the composite index to be similar to results obtained using the land
component.

The independent variables are more problematic. To begin, there are
no data on the opportunity cost of land at the periphery of cities, nor is
there any information on the value of the agricultural land surround-
ing the CMAs. In addition, the data on the costs of converting raw land
to urban use are fragmentary at best. Thus, it is not possible to

a
construct the term ; + C from observable data. The best we can do is

to create a proxy for this term with a set of dummy variables for the
Census Metropolitan Areas, @,,i = 1, ..., 21, where a; = 1 for CMA ¢,
and is zero otherwise.

The number of households in each CMA is available directly from
the Census of Canada for the census years 1966, 1971, 1976, and 1981.
To fill in the number of households in each CMA for the remaining
years, the census values were interpolated. This procedure is both
reasonable and expedient since the number of households in a CMA
changes slowly over time. Moreover, since we are dealing with long-
run equilibrium prices, short-run fluctuations in the number of house-
holds brought about by transitory increases or decreases in net migra-
tion can be ignored safely.

Two variables are used to capture the discount rate or user cost of
capital, p. The first is a real rate of interest variable (denoted by p).
This variable was constructed by taking the difference between the
average prime business loan rate for a year and the annual rate of
inflation for that year. The second discount rate variable is the average
nominal rate of interest on prime business loans (denoted by p?).7

To complete the model, data are needed on the expected rate of
growth of housing rents and the variance in the expected rate of
growth. Since both of these are derived from developer expectations,
they are latent variables. To obtain estimates for these variables, we
model the expectations process.

A simple model of developer expectations is used. It is assumed that

"See Villani [15] for a discussion of the user cost of capital in a housing context.
The tax subsidy to homeownership tends to increase as the inflation rate and
nominal interest rate rise.
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developers base their expectations of future growth rates in the rental
price for urban housing on the expected values of a set of demand
indicators. We use one indicator, the expected growth rate in housing
stock in a CMA. The growth in the stock is measured by the ratio
housing completions to the existing stock. This choice is motivated in
part by the limits of the data. Nevertheless, the growth rate of housing
stock is a reasonable measure of demand since an increase in demand
will increase the flow rate of completions and, conversely, a decrease in
demand will decrease the flow rate of completions.

We assume that the growth rate in housing completions, denoted by
g(t), follows the ARIMA (0, 1, 1) process

gty=gt -1 +¢@) +65¢—1) 11

where ((¢) is white noise with mean zero and variance «*, and 6 is a
parameter. This process is nonstationary. Given (11), the expected
growth rate in housing completions for period ¢ + 1 can be written as

/=1
g+ =(10+6) — ‘ z (—0yg(t +7) + (—0)‘g(0)) (12)
\Jj=0
where g(0) is the (unknown) initial value of the dynamic process. Thus,
the expected growth rate in housing completions is an exponentially
weighted moving average of the previously observed growth rates in
housing completions.? The expression (12) can be rearranged to give
the well-known recursion formula

gy =rgt =D+ (1 -MNglt -1 (13)

where A = 1 + #. Written in this way, the forecast has a strong
intuitive appeal. Equation (13) shows that a developer’s expected
~ growth rate is an average of the observed growth rate in the preceding
- period and the developer’s accumulated experience, up until the previ-
ous period. The parameter A gives the weight accorded each compo-
nent. When A — 1, all evidence from previous observations is ignored
and the expected growth rate follows a random walk. At the other
extreme, when A — 0, almost no weight is given to current observa-
tions and the expected growth rate equals that of the previous period.
Beyond its intuitive appeal, such a forecast is easy to implement.

For each CMA, equation (11) is estimated by maximum likelihood.
There are three parameters in each equation: 9, «*, and g(0).

The first two are the standard parameters of an ARIMA (0, 1, D
process; the last is not. Normally, g(0) is replaced by the expected value
of ¢, which is zero. Rosenberg [13] argues against this procedure since

8Because of the exponentially declining weights in equation (12), the values of
the process are sometimes referred to as “exponentially smoothed” values.
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the errors in the initial conditions for nonstationary processes will not
be washed out as time progresses, as is the case with stationary pro-
cesses. Therefore, g(0) should either be included as a parameter or it
should be estimated from data. See Harvey (7], p. 113. We have
adopted the first solution.

The maximum likelihood procedure requires the computation of the
expected growth rates and the variances of the expected growth rates
for each time period in the estimation for all parameter settings. To
compute these values, the model is recast in state space form and the
Kalman filter is used to recursively generate the values. Once the
model is estimated, the Kalman filter is used to compute the estimates
of the expected growth rate and its variance used in the house pricing
equation. It should be noted that the Kalman filter gives minimum
mean square error estimates of these values (Harvey [7], pp. 104-10).

Using the data described above, we estimate the following model.

21

Py =dp~ > @ + B + Bop®(t) + BN @)
i=1,1#19
l + B8 + BVE) + Bt + € (14)

where the @, are the CMA dummy variables described above (the
dummy variable for Toronto is omitted to avoid singularity), p'’ is the
real interest rate variable, p® is the nominal interest rate variable, N
1s the number of households in a CMA, g is the expected growth rate, V
1s the variance in the expected growth rate, and ¢ is a time trend.
Because of the term N(#)", this equation is nonlinear in the parameters.
The number of households was included in this manner because it
enters the land price equation (10) nonlinearly. The time trend is an
afterthought. It is included to capture an increase in agricultural rents
or conversion costs.

Stochastic Assumptions

The disturbance term in the regression equation (14) is assumed to
be cross-sectionally heteroscedastic and timewise autoregressive. The
possibility of heteroscedastic disturbances can be seen clearly in plots
of house prices versus city size. As the number of households increases,
the spread in house prices about a trend line increases. This is the
pattern one would expect if the variance in house prices increases with
city size.

The growth and uncertainty effects on housing prices may be in-
tertwined with factors causing heteroscedasticity in regression distur-
bances. This in turn suggests that there may be a significant signal
extraction problem associated with disentangling the separate effects.
Because of this, and to assess the extent of the signal extraction
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problem, the model is also estimated under the assumption of a scalar
variance-covariance matrix. We assume that the disturbances are
timewise autoregressive to capture the net effects of omitted variables.

THE RESULTS

The regression equation (14) is estimated by nonlinear least squares,
in the case of a scalar variance-covariance matrix, and by iteratively
reweighted nonlinear least squares, in the case of cross-sectionally
heteroscedastic and timewise autoregressive errors. The latter proce-
dure is the nonlinear variant of the procedure presented in Kmenta
({101, pp. 618-22) for linear equations. Tables 1 and 2 present the
coefficients from the regressions.

In the scalar covariance matrix model, the coefficients support the
model. The real interest rate has a statistically significant negative
sign, as it should. The nominal interest rate has a statistically signifi-

TABLE 1

Scalar Covariance Matrix Model

Variable Coefficient T-Statistic
p'V  Real Rate -4.85 -8.77
o' Nom. Rate 1.32 3.67
N Households 10.91 3.35
n Curvature a7 n.a.
g Growth 6.13 3.38
v Variance 2.83 .35
t Time -2.38 -2.36
Constant —428.47 -2.98
CMA Dummy Variables

Calgary 68.01 2.00
Edmonton 64.57 2.62
Halifax 182.¢4 4.24
Hamilton 113.62 4.23
Kitchener 160.37 3.65
London 148.¢3 3.58
Montreal —63.98 —2.54
Ottawa-Hulil 89.00 4.57
Quebec City 101.73 3.85
Regina 194.17 3.59
St. Catharines 163.62 4.07
Saint John 231.83 3.67
St. John's 212,26 3.57
Saskatoon 178.04 3.06
Thunder Bay 226.98 3.82
Vancouver —57.-4 -2.31
Victoria 148.26 3.45
Windsor 172.99 3.90

Winnipeg 90.43 4.13
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cant positive sign, also as expected, since the interaction of inflation
with income taxes tends to reduce the user cost of capital and cause
individuals to adjust their portfolios, giving higher weights to real
assets like real estate.

The number of households in a CMA exerts a statistically significant
positive force on housing prices. This force is highly nonlinear in the
number of households though, as the estimated power transform coeffi-
cient, n, is .169.

The expected rate of growth in urban housing prices has the expected
positive sign and the coefficient is statistically significant. The vari-
ance in the expected growth rate is not significant but does have a
positive effect as predicted.

The results from the cross-sectionally heteroscedastic and timewise
autoregressive are the same with two exceptions. First, the estimated
power transform coefficient n on the number of households is much
larger—.575. This value is not significantly different, in the statistical
sense, from the .5 indicated by equation (6). Second, the coefficient on

TABLE 2

Cross-sectionally Heteroscedastic and Timewise Autoregressive Model

Variable Coefficient T-Statistic
p  Real Rate -1.63 -6.27
p*  Nom. Rate .38 2.69
N Households .048 .67
n Curvature .58 5.08
g Growth 6.08 6.78
1% Variance —.68 -.17
t Time -3.11 —-8.92
Constant —134.72 -2.91
. CMA Dummy Variables
Calgary 117.31 4.18
Edmonton 118.25 4.64
Halifax 191.52 5.57
Hamilton 173.32 6.63
Kitchener 183.53 5.53
London 202.05 6.38
Montreal 3.48 44
Ottawa-Hull 153.72 6.54
Quebec City 160.26 6.18
Regina 211.32 6.07
St. Catharines 200.41 6.49
Saint John 233.99 6.31
St. John's 217.63 6.02
Saskatoon 207.95 5.79
Thunder Bay 233.93 6.48
Vancouver 83.50 513
Victoria 187.10 5.94
Windsor 206.36 6.48

Winnipeg 152.86 6.03
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the variance in the expected growth rate in housing rents is negative
in this model, although still statistically insignificant. Thus, the re-
sults of this study are inconclusive as to the effect of rent variability on
urban housing prices.

Perhaps the lack of significance of the variance of expected growth
variable is not too surprising. In the model, variance of expected
growth enters the third term of (10). This term is the option value of
being able to hold land in agricultural use until a time when it is
profitable to convert it to urban use. We expect risk to have a positive
effect on option value. However, the model assumes that individuals
are risk neutral and discount cash flows at the risk-free rate. In a more
complete model, with risk-averse investors, the cash flows would be
discounted at a higher rate in a city with more systematic risk than in
a less risky city. This would tend to lower prices and offset the option
value effect in the model presented here. Development of a more
sophisticated model may resolve this issue.

CONCLUSION

In this paper we have tested a model of urban pricing in long-run
equilibrium. In the model, developer/builder decisions about land con-
version are based on their knowledge of the expected growth of future
rents and the variance the expected growth. Urban prices in the model
decompose into four parts: the value of agricultural land, the cost of
conversion, the value of accessibility, and an uncertainty premium
which depends on the growth and variance of the growth of rents.

Key variables in the model include interest rates, city size, city
growth, and the variance of growth. Two empirical versions of the
. model were estimated. In the first, the regression equation was esti-
mated by nonlinear least squares with a scalar variance-covariance
matrix assumption. In the second, the equation is estimated by itera-
tively reweighted nonlinear least squares with cross-sectionally
heteroscedastic and timewise autoregressive errors assumed. The re-
sults strongly support the asset approach to valuing land in urban
areas. However, given the insignificance of the uncertainty variable,
the results provide stronger support for the certainty version of the
model.

Additional theoretical and empirical work on the separate effects of

systematic and unsystematic risk in a model with risk aversion may
resolve the variance issue.

The financial support of the Social Sciences and Humanities Research Council
of Canada and the Real Estate Council of British Columbia is gratefully ac-
knowledged. We have benefited from the comments of Richard Arnott, Larry
Jones, and participants in the Urban Land Economics workshop at UBC. Able
research assistance was provided by Andrew Storm.



174

(1]
[2]
[3]

CAPOZZA AND SCHWANN

REFERENCES

R. Arnott. A Simple Urban Growth Model with Durable Housing. Re-
giwonal Science and Urban Economics 10 53-76, 1980.

R. Buckley and J. Ermisch. Theorv and Empiricism in the Econometric
Modelling of House Prices. Urban Studies 20: 83-90, 1983.

D. R. Capozza and R. Helsley. The Fundamentals of Urban Growth and
the Price of Land. Journal of Urban Economics (forthcoming), 1989.
The Stochastic City. Journal of Urban Economics (forth-

coming), 1989.

D. R. Capozza and Y. Li. A Generalized Model of Land Conversion under
Uncertainty. Working paper, Urban Land Economics Division, Univer-
sity of British Columbia, 1988.

P. Fortura and J. Kushner. Canadian Inter-City House Price Differen-
tials. AREUEA Journal 14: 525-36, 1986.

I A. C. Harvey. Time Series Models. John Wiley and Sons, 1981.

J. Heaney and R. Jones. The Timing of Investment. Faculty of Commerce,
The University of British Columbia, Working Paper No. 998, 1984.

S. Karlin and H. M. Taylor. A First Course in Stochastic Processes.
Academic Press, 1975.

J. Kmenta. Elements of Econometrics. Macmillan, second edition 1986.
J. Nellis and Longbottom. An Empirical Analysis of the Determination of
House Prices in the United Kingdom. Urban Studies 17: 9-21, 1981.
L. Ozanne and T. Thibodeau. Explaining Metropolitan House Price Dif-
ferences. Journal of Urban Economics 13: 51-66, 1983.

B. Rosenberg. Random Coefficient Models: The Analysis of a Cross-
Section of Time Series by Stochastically Convergent Parameter Regres-
sion. Annals of Economic and Social Measurement 2: 399-428, 1973.

S. Titman. Urban Land Prices Under Uncertainty. American Economic
Review 75: 505-14, 1985.

K. Villani. The Tax Subsidy to Housing in an Inflationary Environment;:
Implications for After Tax Housing Costs. Working paper, U.S. Depart-
ment of Housing and Urban Development, 1979.

W. Wheaton. Urban Residential Growth under Perfect Foresight. Journal

.of Urban Economics 12: 1-21, 1982,



