Takashi Takata
Hom-Lay Wang
Mutsumi Miyauchi

Migration of osteoblastic cells on various guided bone regeneration membranes

Authors’ affiliations:
Takashi Takata, Mutsumi Miyauchi,
Department of Oral Pathology, Hiroshima University Faculty of Dentistry, Hiroshima, Japan.
Hom-Lay Wang, Department of Periodontics/Prevention/Geriatrics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA

Correspondence to:
Takashi Takata DDS, Ph D
Dept. of Oral Pathology
Hiroshima University Faculty of Dentistry
1–2–3 Kasumi, Minami-ku, Hiroshima Japan 734–8553
Tel: +81 82 257 5632
Fax: +81 82 257 5619
e-mail: ttakata@hiroshima-u.ac.jp

Key words: guided bone regeneration, osteoblasts, cell migration, cell culture, barrier membranes, bioabsorbable, nonresorbable

Abstract: To evaluate the biological effects of guided bone regeneration (GBR) barrier materials on osteoblastic cell migration, migration of mouse osteoprogenitor cells (MC3T3-E1) was examined, in vitro, on various membranes. Eight commercially available GBR membranes – bovine type I collagen (BioMend®; BM), porcine type I collagen (BioGide®; BG), bovine type I atelocollagen (Tissue Guide®; TG), polylactic acid (Epi-Guide®; EG), co-polymer of polylactic acid and polyglycolic acid (Resolute®; RL, Resolut XT®; RL-XT), expanded polytetrafluoroethylene (e-PTFE; Gore Tex®; GT) and co-polymer of cellulose acetate and nitrocellulose (Millipore filter®; MP) – were tested. A 3×5 mm section of the membrane was fixed to the bottom of a culture dish with double-sided adhesive tape, and half of the membrane was closely covered by PARAFILM® (American National Can™) to leave an unexposed area for cell migration. The border between exposed and unexposed areas was marked as a baseline of cell migration. Membranes were then plated with 3 ml of cell suspension at an initial density of 1×10^5 cells/ml in α-MEM culture medium with 10% fetal bovine serum and ascorbic acid. After a 5-hour incubation, non-attached cells were completely washed out with phosphate buffered saline and the PARAFILM® cover was removed. After 3 days cultivation, specimens were fixed with 10% buffered formalin and stained briefly with hematoxylin. The area of cell migration on a membrane was analyzed using a LA 500 Image Analysis System and migration area per unit length of the baseline (mm²/mm) was compared among membranes. Results demonstrated that cell migration was greater in the order: RL>RL-XT, BM, TG, MP>EG, BG. Membranes except for BG, EG and GT showed the migration rate equal to or higher than a plastic culture cover slip (Celldesk®) (P<0.01) on which cells generally grow favorably. Only a small number of the cells attached to GT, and the net cell migration for the membrane could not be determined. These results indicate that GBR barrier materials per se may influence the process of bone regeneration in vivo through the effects of their presence on cell migration.

Guided bone regeneration (GBR) has slowly become an acceptable method in clinical dentistry to facilitate augmentation of alveolar ridge defects, to promote implant wound healing, and to repair/regenerate implant defects. A variety of synthetic and naturally derived GBR barriers have been developed and tested with promising results [Hammerle 1999]. The membranes are often used to create a space between the bone compartment and the overlying gingival flap. Even though the barriers may differ in composition and structure, they are all supposed to prevent epithelial and connective tissue cells, which migrate more quickly than bone cells, from invading the area where angiogenesis and osteo-
genesis must take place [Buser et al. 1990; Buser et al. 1996; Wang 1998]. In addition, some barriers also act as a substrate for tissue migration and/or generation on both sides which could facilitate both the process of osseous regeneration and migration of connective tissue cells to effectively close up overlying soft tissue defects [Payne et al. 1996]. Ideally, barriers should facilitate cell attachment and promote migration of the progenitor cells. In order for osteoblastic progenitor cells to proceed with the wound healing cascade, proliferation, differentiation and tissue maturation, cells need to adhere to a substratum first [Grinnell 1978]. In our previous study, the initial attachment of osteoblastic cells on various GBR barriers was examined [Wang et al. 1997]. Data from this study indicated that the membrane per se might influence cell attachment. In addition, the biological effects of guided tissue regeneration (GTR) membranes on periodontal tissue regeneration were analyzed [Takata et al., 2001]. It was concluded that GTR barriers influence cell proliferation and differentiation in the process of periodontal tissue regeneration. Salonen & Persson [1990] also showed that epithelial cell migration along the Biopore® teflon membrane was significantly greater than along the Gore Tex periodontal materials. They suggested that the low protein-binding capacity and the rough-textured surface of the Gore Tex inhibit epithelial cell migration. However, little is known about how the different composition and structures of membranes may influence osteoblastic migration, proliferation and differentiation. Therefore, the purpose of this study was to determine whether cellular migration of osteoblastic cells is affected by different composition and structures of the membranes used in today’s GBR procedures.

Material and methods

Membranes examined

Eight commercially available GBR membranes were tested: bovine type I collagen [BioMend®; BG, Osteohealth Co., NY, USA], bovine type I atelocollagen [Tissue Guide®, TG, Koken, Tokyo, Japan], polyactic acid [Epi-Guide®, EG, THM Biomedical Inc., MN, USA], co-polymer of polyactic acid and polyglycolic acid [Resolute®, RL, Resolut XT®, RL-XT; W.L. Gore & Associates, AZ, USA], expanded polytetrafluoroethylene [e-PTFE; Gore Tex®, GT, W.L. Gore & Associates] and co-polymer of cellulose acetate and nitrocellulose [Millipore filter®, MP, Millipore Co., MA, USA].

Cells

MC3T3-E1 cells, a mouse osteoprogenitor cell line, were maintained in αMEM supplemented with 10% fetal bovine serum (FBS) and antibiotics, and used for the migration assay between passage 10 to 15.

Migration assay

A 3×5 mm section of the membrane was fixed to the bottom of a culture dish with sterile double-sided adhesive tape (Fig. 1a), and half of the membrane was closely covered by PARAFILM® [American National Can™, Chicago, IL, USA] to leave an unexposed area for cell migration (Fig. 1b). The border between exposed and unexposed areas was marked as a baseline of cell migration (Fig. 1b). Membranes were then plated with 3 ml of cell suspension at an initial density of 1×10⁵ cells/ml in α-MEM culture medium with 10% FBS and ascorbic acid (Fig. 1b). After 5 hours incubation, non-attached cells were completely washed out with phosphate buffered saline (PBS) and the PARAFILM cover was removed (Fig. 1c). After 3 days cultivation, specimens were fixed with 10% buffered formalin and stained briefly with hematoxylin. Three specimens for each membrane were photographed under a magnification ×25. Using the prints, the area of cell migration was traced on a translucent paper and analyzed with an LA Image Analysis System (PIAS Inc., Osaka, Japan). Migration area per unit length of the baseline (mm²/mm) was compared among membranes. As a comparative scaffold of cell migration, a plastic cover slip (Celldesk®, CD, Sumitomo...
Fig. 2. Cell migration on the membranes examined. (a) bovine type I collagen (BioMend®), (b) porcine type I collagen (BioGide®), (c) bovine type I atelocollagen (Tissue Guide®), (d) polylactic acid (Epi-Guide®), (e) co-polymer of polylactic acid and polyglycolic acid (Resolute®), (f) co-polymer of polylactic acid and polyglycolic acid (Resolute XT®), (g) expanded polytetrafluoroethylene (Gore Tex®), (h) co-polymer of cellulose acetate nitrate cellulose (Millipore filter®), and (i) a plastic culture cover slip (Celldesk®).
Bakelite, Tokyo, Japan) for cell culture was prepared for the migration assay in the same procedures. All samples were tested at least in triplicate.

Statistical analysis

The results were statistically analyzed using Wilcoxon’s test for non-paired data. The P value at which statistical significance was inferred was chosen at $P<0.017$ (0.05/9).

Results

Five hours after the cell seeding, the majority of MC3T3-E1 cells attached on the bottom of the culture dish and the membranes. Preliminary observation of the specimens at the start of cell migration showed a clear boundary at baseline between the unexposed fresh area and the exposed cell attached area [data not shown]. Cells at this point were relatively rounded in shape and became more spindle-shaped with time. During the experimental period, there was no finding indicating a detrimental or otherwise influence of the glue from the double-sided adhesive tape.

At the end of the assay, cells migrated on the membranes to various extents [Fig. 2]. Generally, cells migrated continuously from the exposed area to the unexposed area beyond baseline. Cell density of the migration area gradually decreased toward the front of migration. On the collagenous membranes [BM, BG and TG], cells seemed to migrate mainly along with fibrous structures of the membranes. However, the migration area on each collagenous membrane was different among the membranes with different fiber thickness and texture. On EG, cells migrated with the wall of honeycomb structures. On RL and RL-XT, cells migrated preferably along the fibers of the co-polymer. Only a small number of the cells attached to GT, and the net cell migration for this membrane could not be determined. On the smooth surface of MP and CD, rather uniform migration was seen. Fig. 3 is a bar graph of the cell migration on the membranes and CD. The results demonstrated that cell migration was greater in the order: RL>RL-XT, BM, TG, MP>EG, BG.

Membranes except for BG, EG and GT showed the migration rate equal to or higher than CD on which cells generally grow favorably ($P<0.01$).

Discussion

The use of GBR has proved to be a suitable and fairly predictable technique for promoting bone regeneration [Hammerle 1999]. A variety of membrane materials have been developed and employed in experimental and clinical studies for this purpose. These include PTFE, ePTFE, collagen, polyglactin 910, polylactic acid, polyglycolic acid, titanium mesh, calcium sulfate, and others. How factors such as membrane constituents, morphology, surface textures, size of perforations and duration of barrier function may influence GBR outcomes has not yet been completely understood. The data from this study demonstrate osteoblast affinity and migration when exposed to different GBR barrier membranes. For a barrier membrane to be successful, cell migration, attachment and proliferation to the materials is essential and for this to take place the material must have no deleterious effects on osteoblasts [Grinnell 1978; Burridge 1986; Burridge et al. 1987]. Furthermore, it should also encourage cell spreading to a degree which promotes cell proliferation and migration. Cell culture systems serve as excellent models for examination of these events in relation to barrier materials.

Under the conditions of the present in vitro experiments, migration rates of osteoblastic cells on GBR membranes were different among the various membranes examined. Among the membranes tested, RL, RL-XT, BM, TG and MP showed migration rates equal to or higher than the culture dish, on which cells generally grow favorably. These findings are in agreement with our previous report that MP had the greatest amount of cells attached as compared to other membranes. BM, EG and RL showed a statistically significant higher osteoblast attachment when compared to Guidor and GT [Wang et al. 1997]. This further supports the concept proposed by Burridge and his coworkers [1986, 1987], who suggested that inherent to cellular migration over a substrate [barrier] is the ability of cells to first attach to the substrate surface. Cell replication begins only after these events have occurred [Salonen & Persson 1990]. Moreover, these results correspond well with the results of cellular proliferation on the membranes [Takata et al., 2001]. We found that RL had the largest growth of periodontal ligament cells followed by TG. In addition, for both RL and TG it was noted that cells proliferated with...
time, however with BM, EG and GT the cells remained at the same level after initial attachment. Cell clusters of alkaline phosphatase positive cells and foci of calcification were seen on all membranes except GT where a scant number of cells were seen.

From these observations, the GBR membranes examined here seem to provide a favorable scaffold for osteoblastic cells to proliferate and migrate. However, the differences noted in the migration rates of osteoblastic cells on these membranes may be attributed to the constituents, texture and other factors related to the membranes. RL and RL-XT are composed of a porous structure of glycolide polymer fiber and an occlusive membrane of glycolide and lactide co-polymer. It was a usual finding that cells attached on the fibers and migrated on them. MC3T3-E1 cells seemed to have a good affinity to the glycolide polymer. However, Simain-Sato et al. (1999) reported that fibroblasts cultured on RL showed rounded oval cells and cell fragments. A similar finding was also illustrated by Payne et al. (1996), who stated that fibroblasts cultured on the glycolide and lactide co-polymer showed abnormal flattened “fired egg” cell appearance and had a very limited number of cell attachments. The differences noted in these results can be explained in that two different cell types were used, Simain-Sato et al. (1999) and Payne et al. (1996) used gingival fibroblasts (from rat and human), whereas MC3T3-E1 osteoblasts were used in the present study. In addition, the acids released from these polymers may affect cell attachment, spreading, and migration and furthermore, influence the clinical outcomes as speculated by Hammerle (1999). However, we did not notice the effect of these acids in this experiment. Further study is definitely needed to clarify whether acid released from the degradation of lactide and glycolide co-polymers may influence cell culture environment as well as clinical healing/results.

EG is a polylactic membrane as is RL, although their modifiers are different; acetyl-tributylcitrate for EG and glycolide polymer for RL. These modifiers as well as the surface topography and spatial structure of the membranes may influence the different cellular responses. This is in agreement with Warrer et al. (1994), who suggested that cellular adhesion to solid surfaces is mediated by a protein film, and that the characteristics of this film depend on such properties as surface charge, chemistry and energy of the material.

Although BM, TG and BG are all collagenous membranes, BM and TG showed a high migration rate of cells but BG did not. Compared with the former two membranes, BG has a irregular structure and cells might be entrapped in the spaces among fine fibers of collagen. This may explain the different results observed in the present study. Nagahara et al. (1995) utilized a collagen membrane cultured with osteoblastic cells in vitro to promote calcification formation in vivo (Nagahara et al. 1995). The calcification was noted in the group treated with this complex at 28 days, while nothing was observed in the membrane alone group. In addition, Locci et al. (1997) also found that extracellular matrix, which consists primarily of collagen and chondroitin-4-sulfate, was the most suitable device to stimulate both cellular proliferation and extracellular macromolecule accumulation. These attempts imply that a collagen membrane in normal clinic use may promote formation of a thin osteoblastic cell layer to eventually enhance bone regeneration. However, further study is needed to confirm these hypotheses.

The migration rate of osteoblastic cells on GT could not be determined in the present study due to minimal cell attachment. This is in agreement with Salonen & Persson (1990), who also found significantly less migration of epithelial cells on ePTFE membranes as compared to MP. Similar findings were also reported by Simain-Sato et al. (1999), Locci et al. (1997) and Payne et al. (1996). The lack of adherence may be due to the decreased wettability, the surface roughness created by the overlapping fibrils, and/or the low protein-binding capacity (Brunette 1988; Salonen & Persson 1990). The advantages of minimal cell attachment of GT during GBR remain to be explored.

One must be cautious in interpreting results obtained from in vitro experimental models, since they can not recreate the complex interactions of cells in vivo. Therefore, the clinical significance of the data remains to be demonstrated. However, the data obtained from this study may promote development of an ideal barrier for guided bone regeneration.

Based on these preliminary in vitro results, it appears that RT-XT, MP, BM and TG promote osteoblastic cell migration better than other tested barriers. In addition, results from this study also suggest that GBR barrier materials per se may influence the process of bone regeneration in vivo through the effects of their presence on cell migration.

Acknowledgements: This study was supported in part by grants-in-aid No.10557159 from the Ministry of Education, Science and Culture of Japan and the University of Michigan, Periodontal Graduate Student Research Fund.

Résumé

Pour évaluer les effets biologiques de matériaux barrière de la régénération tissulaire guidée (GBR) sur la migration de cellules ostéoblastes, la migration de cellules de souris ostéoprogenitrices (MC3T3-E1) a été étudiée in vitro sur différentes membranes. Huit membranes GBR proposées dans le commerce: collagène bovin type I, (BioMend®), collagène porcin type I (BioGide®), BG, atellocollagène bovin type I (Tissue Guide®, TG), acide polylactique (Epi-Guide®, EG), co-polymer d’acide polylactique et acide polygycolique (Resolut®, RL, ResolutXT®, RL-XT) teflon, e-PTFE (Gore Tex®, GT) et co-polymère d’acétate de cellulose et nitrocellulose (Millipore filter®, MP) ont été testées. Une partie de 5 x 5 mm de la membrane a été fixée au fond d’une boîte de culture à l’aide d’un adhésif double face et la moitié de la membrane a été réouverte par du PARAFILM® (American National Can Co.) afin de laisser une aire inexplorée pour la migration cellulaire. La frontière entre les aires exposées et inexploées était indiquée comme départ de la migration cellulaire. Les membranes ont été mises en culture avec 3 ml de cellules en suspension à une densité initiale de 1 x 10⁵ cellules/ml dans un milieu de culture alpha-MEM avec 10% FBS et de l’acide ascorbique. Après cinq heures d’incubation, les cellules non-attachées ont été complètement détachées avec le PBS et le recouvrement PARAFILM® a été enlevé. Après trois jours de culture, les spécimens ont été fixés à l’aide d’un tampon de 10% de formaline et brièvement colorés par l’hematoxyline. L’aire de migration cellulaire sur une membrane a été analysée en utilisant le système d’analyse d’images LA 200 et l’aire de migration par unité de longueur du dépôt (mm²/mm) a été comparée aux autres membranes. Les résultats ont montré que la migration des cellules augmentait suivant l’ordre: RL>RL-XT, BM, TG, MP>EG, BG. Toutes les membranes sauf BG, EG et GT montraient...
Zusammenfassung

Resumen

Para evaluar los efectos biológicos de los materiales de barrera en GBR sobre la migración de células osteoblasticas, se examinó la migración de células osteoprogenitoras [MCT3T3-E1] del ratón, in vitro, sobre varias membranas. Se probaron ocho membranas GBR comercialmente disponibles: colágeno bovino tipo I [BioMend®; BM], colágeno porcino tipo I [BioGuide®; BG], atelocolágeno bovino tipo I [Tissue Guide®; TG], ácido poliolático [Epi-Guide®; EG], co-polímero del ácido poliolático y ácido poliglicólico [Resolute®; RL, Resolut XT®; RL-XT], expandido Polietetrafluoroetileno e-PTFE [Gore Tex®; GT], y co-polímero de acetato de celulosa y nitrocelulosa [Millipore filter®, ME; MP]. Se fijó al fondo de una placa de cultivo una sección de 3,5 mm de membrana por medio de una cinta adhesiva de doble cara, y la mitad de la membrana se cubrió con PARAFILM® [American National Can TM] para evitar el crecimiento celular. El borde en torno a las áreas expuestas no se expusieron se marcó como línea basal de migración celular. Las membranas se ubicaron con 3 ml de suspensión celular con una densidad inicial de 1 x 10^5 células/ml en un medio de cultivo oMEM con 10% FBS y ácido ascórbico. Después de una incubación de 5 horas, se lavaron completamente las células no adheridas con PBS y se retiró la cubierta de PARAFILM®. Tras 3 días de cultivo, los especímenes se fijaron con formalina taponada al 10% y teñida brevemente con hematoxilina. El área de migración celular se analizó usando un Sistema de Análisis LA 500 y se comparó el área de migración por unidad de longitud de la línea basal (mm^2/mm) entre las diferentes membranas. Los resultados demostraron que la migración celular fue mayor en el orden: RL>RL-XT, BM, TG, MP>EG, BG. Todas las membranas excepto BG, EG y GT mostraron un índice de migración igual o mayor que el de una cubierta de plástico (Celldesk®; CD) [P<0,01] en la cual las células tienen generalmente un crecimiento favorable. Solo un pequeño número de células unidas a GT y la migración de red de células de la membrana no pudo ser determinada. Estos resultados indican que los materiales de barrera para GBR, per se pueden influir en el proceso de regeneración ósea in vivo a través de los efectos de su presencia en la migración celular.

References

Salonen, J. & Persson, R.G. (1990) Migration of epi-
Takata et al. Migration of osteoblastic cells on various GBR membranes

