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ABSTRACT

Ageostrophic influences on the hydrodynamic stability of two geophysical
phenomena are investigated.

The first part of the study treats the baroclinic stability properties of
an atmospheric model. Linear theory is used to study an adiabatic frictionless
atmosphere regarding the Coriolis parameter as constant with the additional sim-
plifications of the hydrostatic and Boussinesq approximations. The resulting
eigenvalue problem formulated in terms of the vertical velocity is studied both
analytically and numerically.

The object of the study is to examine the influence of the transversal
coordinate. The motivation for this examination is found in the fact that the
north-south variation and the first order Rossby terms are very strongly coupled
in the w equation. 1In quasigeostrophic theory a zero Rossby number removes the
influence of lateral variations leaving only a quantitative distortion in growth
rates through a modified wave number. It is found in this study that when the
ageostrophic terms are not neglected the lateral wave number has a selective
influence. For long lateral waves the short zonal waves are stabilized whereas
the long ones are more unstable than their quasigeostrophic counterpart. For
short lateral waves all zonal modes are found to be destabilized.

The method of solution consists of an analytic study removing large por-
tions of the ¢ plane from the domain of possible eigenvalues, while the real
¢ axis is studied as a neutral stability boundary. It is found that if the
product cf the Rossby and zonal wave numbers is less than unity the neutral
stability boundary is confined to the range of variation in the basic zonal
Speed.

The numerical solution employs a shooting method for searching the c plane
for eigenvalues. The search is carried out for various combinations of wave
numbers, static stability, and Rossby number. For long transversal waves the
ageostrophic effects are found to be greatest for a preferred static stability.
It is also found that an increase in the Rossby number is such as to always
increase its effect. Vertical distributions of vertical velocities, pressure,
and temperature perturbations are computed and plotted.

The second part of the study treats the barotropic stability problem of
the Gulf Stream. A two-layer model is considered with no motion in the lower
deep layer and a basic state zonal jet in the upper one. The purpose of the
study is to examine the validity of hydrodynamic stability investigations of
the Gulf Stream in view of the overestimated growth rates resulting from quasi-
geostrophic theory. It is found that the ageostrophic influence depends on the
basic state velocity profile and on the radius of deformation y. In the case

vii



of basic velocity profile without a countercurrent an increase in the Rossby
number results in a more stable flow. When a countercurrent is included the
results depend on the value of the radius of deformation and the wave length.
It is found that for a realistic value of y the short zonal waves are de-
stabilized while the long ones are stabilized. It is also found that an in-
crease in y stabilizes the flow for both profiles studied, in agreement with
analytical results obtained by Jacobs.

viii



CHAPTER I

INTRODUCTION

Two geophysical phenomena to which stability theory can be applied are the
large-scale atmospheric traveling waves associated with the westerly current in
midlatitudes and the Gulf Stream meanders near the North American continent.
The present study will concern itself with an investigation of nongeostrophic
effects on the stability properties of the two flows.

Chapter II deals with an atmospheric baroclinic model which except for its
derivation is identical to Eady's 1949 formulation. Chapter III studies a two-
level barotropic model of the Gulf Stream.

Since the studies of the two types of flow have developed rather independ-

ently we shall proceed to describe the problems separately.

1.1 BACKGROUND AND PURPOSE OF THE BAROCLINIC STUDY
The first attempt to establish a relationship between the equations of
hydrodynamics and the observed upper air waves in extra-tropical and midlatitude
regions was made by Rossby (1939). The importance of the local variation of
the vertical component of the earth's rotation was thus first recognized as
the main mechanism determining the speed of such perturbations coupled to
the basic zonal westerly flow. The two main shortcomings of that model were
the retrogression of the very long waves and their neutral character. Since
the synoptic map indicates a continuous process of birth and death of individual

disturbances, models that can support energetically active perturbations had to



be constructed. The energy conversion properties of atmospheric models came
into even sharper focus in the light of observational evidence as demonstrated
by studies of momentum transport in relation to the maintenance of the general
circulation Starr (1954). It is now generally accepted that large-scale dis-
turbances are an energy conversion agent participating in transporting momentum
and heat. Regarding these disturbances as mature stages of instability, built
in energy sources become essential.

The source of energy responsible for the motion of the atmosphere is the
external solar radiation. Since we shall be dealing with the initial stages
of developing perturbations and shall limit our discussion to time intervals
that are short compared to "time constants" of differential radiative processes
it is reasonable to treat the flow as adiabatic. Once the hydrodynamic system
under consideration is assumed isolated, energy sources from within must be in-
cluded. The forms of energy on which an atmospheric disturbance can grow are
either the kinetic energy of an existing flow or the available potential energy
residing in a given temperature density distribution. In a hydrostatic atmos-
phere the thermal energy is proportional to the potential energy and the two can
be combined. In large-scale motion of the type envisaged the hydrostatic approx-
imation can and will be adopted. It is pointed out that the existence of these
forms of kinetic or available potential energy and the state of the atmosphere
required to bring about their existence is assumed; they are specified accord-
ing to the type of effects one wishes to study.

In specifying the basic state of the flow a zonal steady current is pre-

scribed. If the current is assumed constant with height and latitude neutral



Rossby waves are obtained. The variation of the zonal current with height,
which must be associated with a horizontal temperature gradient (through the
thermal wind relation) incorporates a source of available potential energy de-
rived from the latitudinal differential heating. On the other hand, a horizon-
tal shear in the basic state wind can convert the kinetic energy of the zonal
flow through horizontal Reynolds stresses. The large scale vertical stresses
are an order of magnitude smaller since they involve the vertical velocity fluc-
tuations and are therefore too weak to account for observed instabilities.

In forimulating a detailed stability study it has been customary to specify
elither a horizontally sheared zonal current, the barotropic case, or a vertically
varying flow in a baroclinic basic state. When both variations are included the
results within a quasigeostrophic formulation appear to be more generaly they
are conditions under which instability may develop, and bounds (semicircle
theorem) on the phase speeds, e.g., Pedlosky (196k).

The first study of a baroclinic model was performed by Charney (1947).

His model includes a beta effect but the perturbation guantities are assumed
independent of latitude. Stability criteria are derived, and it is shown that
instability increases with vertical wind shear, lapse rate and latitude, and
decreases with wavelength. A comparison with average seasonal values of the
relevent parameters suggests that the Westerlies of midlatitudes are a source

of constant instability. The unstable solutions of Charney's model possess
similarities to observed atmospheric disturbances; e.g., the motion is generally

to the east, the speed is approximately equal to the surface zonal current, and



the vertical structure has a westward tilt with height.

An attempt to include latitudinal variation in the perturbation variables
was made by Eady (1949) at the expense of dropping the variation of the Coriolis
parameter with latitude. In addition, the terms involving the Rossby number
(and its square) were neglected. Thus Eady's model does not include any ageo-
strophic effects and should be considered as the zeroth order approximation in
a framework of series expansions in the Rossby number. Once again broad agree-
ment with the observed atmospheric flow was found.

The interval 1949-196L saw the emergence of a large number of studies of
various versions of the baroclinic stability problem. Common to all investiga-
tions was the simplification of the eigenvalue problem governing the vertical
velocity. These simplifications are usually traced to the argument of small
Rossby number (and of course its square).

In a short critical paper by Phillips (1964), titled "An Overlooked Aspect
of the Baroclinic Stability Problem,” the question of approximating the exact
characteristic equations arising from model atmospheres is treated. The choice
of example fell on FEady's model, probably because it was the first to include
north-south variation in the perturbation quantities. It is there shown that
the effect of neglecting the first order Rossby terms (but only the first order)
are interchangeable with dropping the north-south dependence in the linearized
w equation, insofar as the simplified resulting equations are identical. The
remaining term in Ri may still manifest itself in some nongeostrophic modifica-
tion. Thus the inclusion of latitudinal variation in the linearized quantities

together with the quasigeostrophic assumption has the effect of modifying the



computed growth rates but quantitatively only (through the modified wave num-
ber (k2 + 12)1/2), and in the direction of stabilizing the flow when the north-
south wave number [ is increased. On the other hand if only the second order
Rossby terms are neglected the y variation becomes much more significant and

may affect the nature of the influence.

The paper reaches the uncomfortable conclusion that since the first order
Rossby terms are so strongly coupled to the y variation of the perturbation
vertical velocity, greater care must be taken in solvingnongeostrophic stability
problems.

The difficulties arising in such a treatment are related to the fact that
under these more general conditions the characteristic equation is no longer
separable in y and z in such a way as to satisfy vanishing transversal veloc-
ities at one or two straight vertical walls. The equations are, however, sep-
arable if such boundary conditions on v are not imposed.

A variant on "nonvertical walls" was given by McIntyre (1965). In his
treatment vanishing boundary conditions can be satisfied by the north-south
velocity on two slanting walls, the slope being a function of the geometry of
the channel and the Rossby number. The equation then becomes separable in y
and z to the second order in RO. The eigenvalue problem is formulated but not
solved and the agestrophic effects on speeds and growth rates of unstable dis-
turbances are not apparent.

At this stage of the discussion two possible methods of approach are:

(1) Treating the partial differential equation describing the vertical

motion by the method of expansions in terms of a small parameter



(Ro) and including boundary conditions on the transversal velocity.

(2) 1Ignoring the vanishing requirement of v on walls of a channel and

separating the equation, thus reducing it to an ordinary differential
equation. The ageostrophic influences will be retained and the solu-
tions will indicate whether the y coordinate can introduce more than
quantitative distortions. The first method was adopted by Dolph* and
Derome at The University of Michigan, whereas the separation technique
was applied in this study.

Before proceeding to the formal presentation it should be mentioned that
the further approximations incorporated are the neglect of friction, which is
Justified away from the boundary layer and for short-time intervals, and the
Boussinesq approximation which is adequate under low Mach number conditions as
are found in the free atmosphere away from weather phenomena and when the verti-

cal extent of the fluid is not too large, Phillips (1967).

1.2. BACKGROUND AND PURPOSE OF THE BAROTROPIC STUDY

The stability study of atmospheric flow in a barotropic environment where
the basic zonal wind varies with latitude was first undertaken by Kuo (1949).
As in Charney's model the introduction of perturbations whose amplitude is a
function of one coordinate only (in this case the north-south coordinate) allowed
the retention of the beta term. Implicit in the derivation are simplifications
due to the assumption of small Rossby number through the two-dimensional non-

divergent character of the basic flow. The main result of the study is a der-

*Three-Dimensional Disturbances in the Non-Geostrophic Eady Model of the Atmos-
phere. Currently submitted for publication in J. Atmos. Science.



ivation of a necessary condition for instability to occur. It is shown that

the condition for the presence of neutral and amplifying waves, with a phase
velocity whose value is between the maximum and minimum wind velocity in the
belt of a strong westerly jet, is the existence of critical points where the
absolute vorticity has an extremum. The wave moving with the velocity of the
current at a critical point is neutral, while waves with speeds intermediate to
the minimum speed and critical point speed are unstable. The study is concluded
by a successful comparison with a synoptic example.

The problem arising in allowing a two-dimensional variation in the ampli-
tudes of the perturbation quantities has been bypassed in barotropic stability
problems through the introduction of multilayer models. An exception is found in
the work of Jacobs and Wiin-Nielsen (1966) where divergence effects in a quasi-
geostrophic atmospheric model are found to give rise to several internal unsta-
ble modes.

Wiin-Nielsen (1961) applied a vorticity equation to the midtroposphere.

The only nondivergent term was the term involving the advection of vorticity.

It was found that the inclusion of divergence effects reduces the rate of growth
of unstable disturbances and confines the instability to a narrower band of
wavelength.

Lipps (1962) considered a two-layer fluid in which the basic velocity pro-
file was given by a (hyperbolic) westerly jet. The model was applied to both
atmospheric and oceanic stability. The main features of the model were a beta
plane approximation on an infinitely wide plane as opposed to a finite channel

in the treatment by Wiin-Nielsen, and no motion was allowed in one layer, the



lower layer in the oceanic problem. The results of the study when applied to
Gulf Stream instability give rise to growth rates that are too large when com-
pared with observations, Bee Stommel 1965, p. 196; also, Gulf Stream Summaries).
The object of the present study is to determine the nongeostrophic influ-
ences on the growth rates and speeds of small perturbations superimposed on a
zonal jet resembling the Gulf Stream. A comparison of stability is also made
between the cases of a simple jet and one including a courter-current. The
study is conducted with the radius of deformation y and the Rossby number RO as

parameters.

1.3 THE STABILITY OF THE GULF STREAM

The Gulf Stream meanders can be explained by the effects of topography
when the zonal current is lowered in leaving the coast while conserving the po-
tential vorticity of its columns. Their time variation is attributed to hydro-
dynamic instability.

When instability techniques are applied to Gulf Stream theory it is con-
venient to consider a two-layer model thus circumventing from the outset the
problem of separating variables in the resulting partial differential equation
determining the transversal velocity v. The resulting problem can be character-
ized as an ordinary two point boundary value problem for the complex amplitude
function of the transversal velocity perturbations in the upper layer, subject
to vanishing boundary conditions at two latitudes. The motion in the lower deep
layer is neglected and as a result no potential energy converting processes can

take place.



The two-layer formulation is equivalent to single layer flow under the in-
fluence of a modified (reduced) gravity if the motion is assumed hydrostatic
and the lower layer is much thicker than the upper one. The hydrostatic approx-
imation is valid since the vertical scales are small compared to the horizontal
scale of the model. In addition the assumption Ro < land F <1 must be valid
for the one layér equivalence to hold. Ro is the Rossby number and F is the
Froude number. The situation F>1 does not affect however the applicability
of the two-layer model for comparison with observations, Stern (1961).

As in atmospheric stability problems, the ordinary differential equation
governing the unknown on which boundary conditions can be imposed from physical
considerations, has solutions which cannot be easily found. Once again the
starting point is the quasigeostrophic approximation with the sharp contrast
that the only analytical solutions that have been found in the barotropic case,
corresponding to the basic state profiles that have been studied, give rise to
neutral modes only. In order to determine possible unstable modes the "pertur-
bation off the neutral boundary" technique can be employed. This method is ap-
plicable since it can be shown that certain neutral modes that were found by
analytical methods are indeed on a stability boundary, in the sense that they
are limiting cases of unstable modes. The main limitation of the perturbation
method is the necessity to stay close to the neutral boundary without the abil-
ity to cover longer ranges of variation in the physical parameters, wave number,
Rossby number, and Froude number. The problem of varying two parameters simul-
taneously is clearly much more cumbersome.

The jet studied by Stern (1961) gives rise to an analytical solution for a
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zero wave number thus corresponding to very long waves only. In the present
study the two profiles treated are trigonometric jets with and without a coun-
ter-current; in both cases the analytical quasigeostrophic neutral modes corre-
spond to nonzero wave numbers.

The first phase of the study is to determine the dependence of the complex
wave speed on wave numbers considerably far from neutral stability.

It was mentioned before that the decisive problem arising in Gulf theory
is that of the ageostrophic effects on the stability of the flow. Since
quasigeostrophic theory overestimates the rate of growth of unstable perturba-
tions, compared with observational values based on Stommel (1965), the direction
of nongeostrophic influences is decisive in judging the validity of quasigeo-
strophic formulations as a first approximation.

The recent work by Jacobs (personal communication, and to which this sec-
tion of the study is a natural continuation) shows that complex phase speeds
which are obtained as the Rossby number approaches zero are located inside a
semicircle of radius %(ug—b) and center at C = %(u2+b). b = u if ul< o and

1

b = O otherwise; ul and u_ are the minimum and maximum of the zonal speeds in
the basic state profile. Since guasigeostrophic phase speeds can be shown to
lie in this semicircle too, it may be concluded that quasigeostrophic theory
is avalid first approximation. On the other hand a calculation by Jacobs

using a variational method perturbing off the neutral boundary to investigate
the sense of nongeostrophic effects near neutral stability indicates that for

a trigonometric jet resembling the Gulf Stream and including a countercurrent,

the Rossby number effect is destabilizing in the sense that a marginally stable
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configuration for zero Rossby number is unstable for a finite nonzero value.
This is a surprising and uncomfortable result inasmuch as it is necessary for
nongeostrophic effects to stabilize the flow in order to conform with observed
rates of growth. Further calculations based on different profiles of the basic
flow have shown that the Rossby terms in some cases stabilize the motion, in
others destabilize it. A general conclusion can therefore not be drawn. To
investigate the problem of nongeostrophic effects away from the neutral bound-
ary a numerical approach is suitable and can provide the answer to the question
of the validity of the quasigeostrophic theory as a zero order approximation.

It is interesting to note that while analytical methods are effective near
the neutral boundary, and hence close to singularities of the differential equa-
tion, numerical methods fail there. On the other hand further from the sin-
gularities, analytical methods fall short whereas numerical schemes are reliable
and successful. The second part of the study will concern the unstable non-
geostrophic modes for finite Rossby number. The investigation will be carried
out for a large spectrum of wave numbers and for various values of Froude num-
ber. The question of behavior very near the neutral boundary must be answered

by the analytical treatment.



2.1 FORMULATION

CHAPTER II

THE BAROCLINIC

MODEL

We consider a hydrostatic incompressible energetically isolated atmosphere

in the usual meteorological cartesian frame of reference.

Let (x,y,z) be the position of a point relative to some origin on the sur-

face of the earth and let t be time.

east, north, and vertically up, respectively.

The coordinates x,y,z increase to the

Denote the velocity components

by (u,v,w) and let g, p, p, represent the acceleration of gravity, the density,

and pressure. Finally denote by fO the Coriolis parameter (considered constant

in this study).

The system of equations describing the

vation of momentum,mass and energy modified

tions of the model. These are:

ow, ou _ou, o ou

ot " T VY T,

N - -

3t P T VY T
19
_£+g=
ou oV ow
x Jdy Oz

12

flow are the equations of conser-

to incorporate the physical assump-

_ 1

T
@]

.1
pO

0

= 0

9
Y %

(2.1)

(2.2)

(2.3)

(2.h4)

(2.5)
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where the further assumption of constant density po in the horizontal pressure
force terms is introduced. The Boussinesq approximation is Justified if the
flow is of slow meteorological character and the depth of the atmosphere is not
too large.

It is convenient for both analytical and numerical purposes to scale the
variables to nondimensional quantities. The scaling adopted here is designed
to confine the variation of most variables to the interval zero to one, while
forcing a vanishing vertical velocity for zero Rossby number. The pressure
and density are represented by some realistic standard distributions depend-
ing on height only and hydrostatically related, plus deviations from the stand-
ard. The deviations are so scaled as to bring about maximum simplification in
the scaled equations.

Let L be a characteristic horizontal dimension and V a typical horizontal
speed. We shall consider an atmosphere of finite vertical extent and denote
its depth by H, the upper boundary being a rigid plane. Let primed quantities

represent the nondimensional scaled variables. The scaling is defined by:

(x,y) = Lix}y")
z = Hez'
I,
\
(u,v) = v(u)v")
VH 1
w o= Ro T W



1h

[ —— V
wrere RO = ?_i
o)

is the Rossby number,

= ! +
o DS(Z);

= z') + Vf Ip p'
p=rp(z') Lo p

where the subscript s refers to the standard atmospheric distribution under con-

sideration. The system (2.1)...(2.5) transforms into:
d ) 3 op
R + u=— + + = = - == +
o(at Y3 _— Row Bz>u x
) o o o) Ip
—_ 4y — — + R — 7 -
Ro(Bt _— v oy o '’ oy 4
op
= 4+ 5 =0
oz P
du  ov ow
= + — + = =9
> "y T
(‘j + R ) B
— + P mam— -
ot v T VR o 3P v
whiere
2 ap
H
p- - £ - =2 = o(1)
2.2 az
f Lp
o "o

is a measure of the static stability and the primes have been dropped.

.o dimensional system (2.1a)...(2.5a) is now linearized about a basic geostrophic

state with linear vertical shear given by

(2.1a)

(2.2a)

(2.3a)

(2.La)

(2.5a)

The
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and the perturbations are assumed of the form

¢ = g*(y,z)eik(X-Ct)

where k is the nondimensional zonal wave number and c = ¢ + ic, is the complex
r i

phase speed. For k>0 and ci>>O the motion will be unstable through the growth
. . . . kcit
factor multiplying all the dependent variables. The growth factor is e ,
kci being the growthrate referred to later in this study. If c. # 0, the solu-
i
tions of the linearized system are complex and either the real or imaginary
part of any variable represent physical solutions.

Substituting the prescribed perturbation forms into (2.1a)...(2.5a) the

linearized system becomes:

Ro[ik(z—c)u+Rowj = - ikpt+v (2.1b)
R ik(z-c)v = - p -u (2.2b)
o oy
Lo (2.30)
. ov oW _
iku + > + R S, - 0 (2.LDb)

ik(z-c)o + v - Bw= 0 (2.50)
where the asterisks have been dropped.
The natural procedure at this point is to eliminate as many variables from
the system (2.1b)...(2.5b) as possible thus reducing the number of equations at
the expense of raising their order. When this course is followed o, p and u

can be eliminated resulting in the system:
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2 2 2
- -c - R -c - R - = Bw + R - .
v - (z )VZ O(z >Vy (z-c)v W O(z c) LA (2.6)
(z-c)(v_-Kv) =w_ + Rw - R (z-c)w (2.7)
vy z oy o vz
where subscripts denote partial differentiation. Equations (2.6) and (2.7)

together with boundary conditions

1]
O

w(y,z=1)

I

w(y,z=0)

1
@]

v(y=0,z) = v(y=1,z) =

constitute an eigenvalue problem from which eigenvalues c¢ characterizing the
speed and stability of the flow are to be determined. The problem can be further
simplified by eliminating v from (2.6) and (2.7) thus leading to a formulation
in terms of a single dependent variable. 1In terms of w the eigenvalue problem

becomes:

_ 2 o 22 3
(z—c)LwZZ - kK Bw + Bwyy] - ew, + 2RO[(z—c)wyZ wy] k RO(Z c)w =0 (2.8)

27
and the boundary conditions are as before.

A possible method for solving equation (2.8) is suggested by the fact that
the coefficients of the equation are independent of the lateral coordinate. A
Fourier Synthesis method would reduce the equation to an ordinary one, signif-
icantly simplifying the problem. The obstacle in persuing this path is the
difficulty in obtaining expressions for w and its derivatives at y=o. Consider-
ing the method of separation of variables it is observed that the equation is

not separable as pointed out by Phillips (196k4), if the vanishing boundary con-
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ditions on v are to be imposed.

It was suggested in the introduction that the ageostrophic effects result-
ing from the terms involving the Rossby number and its powers can be studied
independently of the lateral boundary conditions® effect on the possible modes
of flow, That this is plausible can be inferred from the fact that if the basic
state is replaced by a uniform current the only effect of the lateral boundary
conditions 1s to introduce the additional class of neutral Kelvin waves to the
possible modes of flow. It is not claimed that this is necessarily the case
in baroclinic flow; however, it is felt that this approach can lead to profit-
able results shedding some light on the possible quantitative effects of the

ageostrophic terms. To this end the separation of w according to:

i f
W o= @(z)el v

will result in an ordinary differential equation when introduced into eguation

(2.8). The result is:

2 2[izRO(z-c)-1}@Z - [2iR_ + B(k%H %) (z-c) ] = 0 (2.9)

(z—c)[l—kgRE(z—c
o 27

with the boundary conditions:
w(z=0) = W(z=1) = 0.

It is noted that for consistency all the other variables must be separated in
a similar manner. It is also observed that while the transversal velocity v

does not vanish on straight vertical walls, it does vanish periodically in y

Ly

through the factor el for

)
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v = '\A/(z)euy = [G(zX[cos(arg@+£y) +1isin(argv+iy) ]

and both the real and imaginary parts oscillate in the lateral direction. The
possibility of unrealistic growing transversal velocities as y increases there-
fore does not exist.

In the present formulation [ is a parameter and must be specified. Since
I plays the role of a lateral wave number it is reasonable to assign values to
it of the order of the zonal wave number k in the meteorological range of in-
terest. It will be shown in the subsequent development that the value of [ has
more than a gquantitative effect on the growthrates. In fact the matter of sta-
bilization or destabilization of the motion with respect to its quasigeostrophic
counterpart as a function of the Rossby number will prove to be highly dependent
on the particular value of [ at hand. The observation by Phillips (196L4) that
the dropping of the ageostrophic terms from the w equation removes with it the
effect of the y variation is amply verified.

Equation (2.9) subject to its boundary conditions will be investigated
along two lines.

1. A study of the complex ¢ plane to determine the possible location of
eigenvalues. It will be shown that under realistic atmospheric conditions fast

moving unstable perturbations, essentially for fcr|>>l, are not present in the

r

model, This does not preclude the existence of fast moving neutral disturbances.
It indicates, however, that most of the real c axis is not a stability boundary
in the sense of being marginal to unstable modes. In addition a necessary con-

dition on the eigenvalues will be derived. This condition affects a partition-
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ing of the c plane according to possible versus prohibited regions for eigen-
values to occur. In this respect the condition plays the role of the so called
semicircle theorem developed in quasigeostrophic theory. The integral condition
will prove most useful in the subsequent numerical study.

2. A numerical investigation leading to actual eigenvalues and growth-
rates, as well as vertical distributions of the physical variables, as a function
of various combinations of static stability, Rossby number and zonal and lateral
wave numbers. The results of this part of the study will be graphically dis-
played thus permitting a visual comparison of the effect of each of the four

parameters B,k,/, and R .
o

2.2 ANALYTICAL CONSIDERATIONS

In the first part of this section the real c¢c axis will be investigated as
a possible neutral stability limit of slightly unstable modes. The latter part
will consist of a derivation of a necessary integral conditionon the eigenvalues
by which the complex c¢ plane will be separated into allowed and forbidden re-
gions for c.

The first aspect of the study is related to the filtering properties of
the model. It will be shown that if Rok < 1, which covers the meteorologically
interesting range of wave numbers even for a moderately large Rossby number,
fast moving slightly unstable modes, essentially for Cr outside the interval
0 < c. < 1, are not present in the model. Fast moving neutral modes, however,

are not ruled out and may be present. The entire cr axis with the exception

0 < Cr < 1 is thus not a neutral stability boundary. A line or surface is
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said to be a neutral stability boundary if it contains eigenvalues which are

the limiting case, as c, approaches zero from above, of eigenvalues with ci:>O.
The existance of fast moving highly unstable modes can not be dealt with directly
and is partially treated by the integral necessary condition.

The integral condition may be considered a relative to what has come to be
known as a semicircle theorem. It will be shown that the numerical value of a
certain definite integral, as a function of the parameters k,l,RO,B and the as-
sumed value of the eigenvalue c, determines whether the tested c may be an
eigenvalue. It is not sufficient for the condition to be satisfied to render
c an eigenvalue. A sufficient condition can be formulated only in terms of at
least one analytical solution of the characteristic equation.

The results obtained in this chapter will prove most valuable in the numer-
ical phase of this study. The search procedure employed to determine eigevalues
numerically will be considerably simplified in view of the large excluded re-
gions of the c plane.

Before proceeding to the analysis it is advantageous for both analytical

and numerical purposes to recast the eigenvalue problem in canonical form.

Let w(z) in equation (2.9) be written as:

Substituting in (2.9) and requiring the coefficient of ;z to vanish leads to

(see appendix)

w +8(z)w=0 w0)=mw(1)=0 (2.11)



2l

where
[1-kR (z-c)]pl
glz) = (z-c) —— D= -ZHIp =
= (g- , - - , . =
2
[l+kRO(z—c)]p2 1 2 2k’ T2 2 ok
and
B(k2+£2)+2k2R2 R2(k2+ﬁ5)
2 0 e}

S(z) = - -

, N 55
(z-c)2 1-k Ro(z-c) 292

2 [l-kgRg(z-c) ]
0
Equation (2.11) is observed to have three regular singularities. For c, = O

i
these are at:

L
T T r Rk
0

+ L z c
Z = C —"-’ = -
R k
o}
The existance of regular singularities on the real c axis suggests a possibility
of utilizing power series expansions for formal representation of solutions.
In the subsequent discussion the real c¢ axis will be separated into its
singular and regular domains. In the singular intervals the power series are

applicable while the regular domains will be studied through a variational

technique.

2.5 THE SINGULAR REGIONS IN THE ¢ PIANE AS NEUTRAL BOUNDARIES
The singularities of equation (2.11) are on the real c axis. They are

defined by the three cuts

I. - ¢ <1-—= ITT. ——<c <1+—0

1

—_—< II. 0< ¢ <1

Rk— r R k’ - -’ R k T R k
o (@] O @]

For Rok < 1 the three cuts are mutually exclusive as is shown by the heavy seg-

ments of the ¢ axis in Figure 1;considering the indicial equation (c.f. Ince
T
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INTEGRAL CONDITION TEST

Ci
k=1
51 Q=1
B=1.5
Rz0.5
4t
.3
27T
Singularities for Ro k<1 -Domain of Possible
Eigenvalues
| //\\\\\:\\\\\\}‘_J

! [ A

| |
Rk Rok Ro

=
0

(o]
=

Figure 1. Separation of the c-plane by the integral condition.
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p. 160) corresponding to equation (2.11) the exponents relative to the three

singular points are found to be (see appendix): relative to I:

relative to II:

n = -1, n_ =2
1 2

relative to IIT as in I. In regions I and III power series expansions are
sufficient for formal representation of solutions. In region IT, where the ex-
ponents differ by an integer, a logarithmic term must be incorporated. If the
three singular intervals of c. are mutually exclusive and c. = 0, equation
(2.11) has one singular point as z transverses its interval of definition
0 <z < 1. The power series expansion will then be valid for the entire range
of z thus enabling us to apply the boundary conditions at the end points of z.
(If there is more than one singular point a power series expansion around one
singular point is valid only as far as the next singularity).

Consider the case Rok < 1 and c.. in region III. For [ # o the general

solution of equation (2.11) can be expressed as:

wo=a ( L \]ﬂ+ f o+ Az - ( L )Wn' £ (2.12)
= A 7 = L C - TR - - [
" 1 'y TRk’ + 2 cr Rk’ -
O o}
L L . o . . ] 1 _
where f+ and fu are regular power series in 7 = 2z - (cr —~§—E), n, and n_are
0

the exponents relative to region III, and Al and AQ are constants to be deter-
mined from the boundary conditions. In order to use the boundary conditions

branches of the multivalued functions nust be specified. Select
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T = IT! for v+ > O

-in
T = IT’e for <O

The boundary conditions can now be applied leading to

set:

the homogeneous algebraic

Ny n_
A_- M)+ T = =
170 f+(L) A2 0 £(0)=0 atz=0
n n
A e (1) + A f = = 1.
1M +( ) 571 _(l) 0O at z
The condition for nontrivial Al’ A2 is
l’l+ n_ n_ Ny _
9Ty f+(0)f_(l) -1y T f_(O)f+(l) =0

rearranging:

Simplifying the IH side by using the explicit form of

der consideration we find:

n n 1-(c - FEE) 1
TS + ™ - Ty BemhE r Fo k
L.H = n Ny (;f) i (c —i‘> i
- + -
T R
TO 1 0 r Ok

n and the branch un-

o,

1 k

c - —

1
T R k
o)

If we assume that ¢ 1is in the interior of interval III we can further write
r

g -1/Ind
K

where
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= ——— -1 >0
Pt
r R k
O

Consider now the RH side. The conjugacy of n, n carries with it the

result that f+ and f are also conjugates of each other. i.e., f = f

Miles (1961). Therefore:

f_(O)f+(l) £ (0)f, (1) f_(O)f+(l) {0
R.H. = f+(O)f_(l) = ?_(O)T+(l) = ?TT67?:Ti7 = e , for some © real.

The LH side can have this form with modulus unity if and only if £ = O. But
for the form of the solution (2.12) to be valid [ cannot vanish (the exponents
differ then by an integer).

The contradiction thus shown can be traced to the assumption that c. is
in interval III. We therefore, conclude that since no solution in Cut IIT
exists as c, > O, this interval of the c. axis is not a. limit of an unstable
regime. A similar development can be applied in interval I. excluding that
cut from a neutral boundary as well.

The end points of intervals I and III cannot be analyzed by the present
method and require special consideration. It will be shown in the next section
that the intervals of the cr axis devoid of singularities are not marginal to
unstable regions. Consider an end point of interval I or III. Approaching the
end point from above and from below on the c. axis, that is from regions that
are not neutral stability limits the end point cannot be a neutral stability
point. For if it were it would be possible to approach an arbitrarily close

interior point from an unstable region contrary to what was proved. The above
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argument leaves the interval O < cr < 1 as the only possible neutral stability

limit.

2.4 THE NONSINGULAR REGIONS OF THE c. AXIS AS NEUTRAL BOUNDARIES

In this section the nonsingular regions will be studied., They are:

1 1 1

< - — 1< < — > + —
r R k’ ¢t rx’ %7 LT RR
(e} C O

In these regions c is a continuous function of the parameters k,l,Ro,B, hence-
forth denoted by p,. Consider the variation of ¢ with respect to any of the
1

c L
parameters. If é— is real as ¢, » Ot and some Cr’ that point (Cr’ O+) is not
i

api
adjacent to modes with c, % O and therefore does not belong to the neutral
i
stability boundary. If %g— has a complex part at (¢ , O+) that point is a limit
i
of unstable modes and belongs to the neutral surface. We are thus led to com-

r)

pute %2— in the regions where ¢ is continuous. To this end a variational method
Py
can be profitably used.

FEquation (2.11) can be written compactly in the form

~ 2 D E . ™~
W+ [- =+ + — Jw=0 (2.13)
77 n  n-m (n_m>£
where
: ‘ 1 N 2 2 2 2. 2.2, 2 2
n o= (z—c)a m= —— D = mLB(k2+Z ) + 2R2k j, E=mR (k+1).
J 22’ o b o
Rok

Multiplying equation (2.13) by %, integrating over the range of z while invoking

the boundary conditions we obtain:
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1 5 1 ~2 1

Jwaz -2 [T+ [ + )wgdz =0 (2.1k)
0O =z O n O n-m 2
(n-m)
which can be rewritten as
I
p=—==7F
I
D
where F is a functional and
L p E .~ 1 152
I = + - d I = [ =— .
. é<n-m 2)w az g wdz, T g ; dz

(n-m)
If ; is a solution of (2.11) satisfying the boundary conditions the functional

F is stationary with respect to small variations in w. Therefore

O...§E—+E§.c-_
~ dp.  oc op,
1 1

and the differentiations are performed only when c and p, appear explicitly.
1

We are now in a position to isolate the desired derivatives

o

e

dp,  OF
8 de

Let the limiting point (ci+O+,cr) be a regular point. If c. =0, a real solu-
tion of (2.11) can be found. Since W is continuous in ¢ any solution for ci

approaching zero must approach the real solution in the limit. Consider now

E
%1§O+(api’ Bc> (2.15)

The parameters p, are real. In the limit ci+O+ w is also real, up to a mul-

tiplicative complex constant, since a real solution for w exists. Since ¢ is
r
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a nonsingular point there is no source for complex contributions in any of the

dc .

derivatives of (2.15). — is therefore real and the conclusion that the non-

%Py
singular regions on the cr axis are not stability boundaries is proved.

2.5 A NECESSARY CONDITION ON THE BIGENVALUES

Consider equation (2.11) rewritten in the form:

w +8 (z2)w=-8 (2)w (2.16)

where

S(z) = so(z) + Sl(z) (2.17)

and the splitting of S(z) is such that Sl(z) is not identically zero. Equation
(2.16) can be transformed into an integral equation through the use of a Green's

function. The integral equation is:

~ B ~
w(z) = -[ 6 (z,6)8 (&)w(e)ae (2.18)

where G (z,¢) is the Green's function corresponding to
o)

Go. +8S (z)G_ = 5(z-g),Go(o) =G (1) =o

Taking absolute value of (2.18), squaring, and applying the Cauchy Schwarz in-
equality:

1

N 2t~ 2
w(z)|™ = [[ ¢ (z,8)s (&)w(e)ae] <g 6, (2,6)1 %] (&) %ae [ [ae)| e

1

Integrating over the range of z we have:

1 1
[ [w(2)] %z < [ |w(e)]%a ff l6_(2,6)1 %18, (¢) Pagaz.
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Transposing and factoring the constant i]w(r)[gdr

i s (6)[Zasae L w(x) | ar < 0
- dr <
(v - [ [l6,(z,e)[7[s, (e)["agaz][[[w(r)]"dr <
T e 2 : e
For nontrivial w f’w(r)l dr >0, leading to the condition:
@
If
Ll 2 2 :
[ e (z,6)]"s (&)|7ag dz<1 (2.19a)
o O 1 -
the value of ¢ in GO and Sl is not a possible eigenvalue.
At this point So(z) and Sl(z) mist be specified. A variety of combinations

has been tried, all leading to rather prohibitive expressions. The simplest

workable pair is clearly

The Green's function corresponding to this choice is readily found to be:

(z-1)¢ £<z
G(z,¢) ={(§-l)z £ > z}

carrying out the integration of (2.19a) with respect to z:

1 £ 1 o 1. 5
[l6(z,8)1 %z = [(ea ez + [(2-1)%"az = £ €7(1-0)7,
O 0 3
and we have the workable condition on c:
L o 2 2.
[ e7(1-e)"[s(e)["ae > 3 (2.19b)

for the existance of a solution satisfying the boundary conditions.
The analytical evaluation of the integral is cumbersome. The alternatives
are either an approximation or a numerical integration. With an eye to needs

imposed by the differential analyzer a numerical integration is appropriate



30

since its accuracy will certainly exceed the best of approximations.

At this stage of the study the c plane can be divided into possible re-
gions for eigenvalues and regions where eigenvalues cannot be found. A typical
result for given k,/,B, and RO is shown in Figure 1. The integration of (2.19b)

was performed by using Simpson's formula.

2.6 THE NUMERICAL STUDY OF THE EIGENVAIUE PROBLEM

Two point boundary value problems are of sufficient interest and complexity
to warrant a detailed exposition in this phase of the study. In solving the
problem numerically there are essentially two methods of attack.

(1) A search process based on an iterative algorithm whereby a crude
eigenvalue is continuously changed until the boundary conditions are satisfied.
This approach is delicate to program and requires considerable preliminary
knowledge about the eigenvalues' confinement and dispersion, The iterative
process can be started by a first guess which is continuously improved upon,
or by a scanning procedure through the domains known to contain eigenvalues.

(2) The other possibility, which is more commonly found in the meteoro-
logical literature, consists of a finite difference scheme applied to the dif-
ferential equation at points in the interval of definition. The finite dif-
ference scheme of a homogeneous differential equation leads to an algebraic
system of homogeneous linear equations whose coefficients depend upon the re-
quired eigenvalues. The condition for the parameter ¢ to be an eigenvalue is
the condition for the existance of nontrivial solutions, namely the vanishing

of the coefficients' determinant.
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Results obtained by the first method, while often difficult to achieve are
trustworthy and can be tested in a straightforward manner Results based on the
determinantal condition may raise problems of interpretation. To illustrate the
problem consider the finite difference version of equation (2.11) applied at

the (N-1) internal points z = I-D

~

w(1+1) + w(I-1) - 2u(I) .

D2

S(I,e)w(I)=0 I=1...N-1 (2.20)

where N + 1 is the number of grid points including the boundaries and D = = is

=2

the grid size. (recall 0<z <1)

The N-1 equations (2.20) give rise to an (N-1)x(N-1) determinant which when
expanded results in a polynomial in c. The degree of the polynomial and, there-
fore, the number of its roots depend on N and the form in which ¢ enters into
S(z,c). Since N is arbitrary, there arises a problem of the relationshp be-
tween the true eigenvalues and those computed. To illustrate the possible dif-
ficulty just mentioned, we refer to a case study made by Arnason (1967). It
is shown in the study that near singular points of the differential equation
the finite difference approximation method results in true eivenvalues when
the singularity is approached from one side but not from the other.

In view of the shortcomings of the second method coupled with the rather
cumbersome expression for S(z,c), the first method was adopted. The results
of sections 2.3 and 2.4 can now be applied and the general area of the eigen-
values confinement can be considered as known. There remains however the pos-
sibility of the existance of more than one eigenvalue for a given set of para-

meters k, £, R , B. If more than one mode does exist, and this aspect is dif-

’ 7o
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ficult to investigate, there is a possibility that during the process of mod-
ifying an eigenvalue an oscillation may occur between two neighboring modes
and the numerical process will not converge. To overcome such a possibility
the changes in c can be programmed to be very small (inefficient) but the
question will remain unanswered.

At this point it becomes clear that if analytical methods are not avail-
able to study the existence of more than one mode and the computing time is to
be kept to a reasonable amount, resort should be made to technical methods which
fortunately are available and most suitable for this type of an investigation.
The tool in mind is the differential analyzer (analog computer). Its merits
in the study of eigenvalue problems are striking, the greatest advantage being
the immediate contact and control the programmer has with the problem, program
and tool. The advantage of using the analog computer is two fold. Not only
can the possibility of the existence of a spectrum be settled by inspection,
actual eigenvalues can be read and determined directliy and where accuracy is
not too demanding this constitutes the final soluticn. Unfortunately the prob-
lem under consideration is, for some combinations of k, 1, B

E

5 RO, guite sen-

sitive to changes in c which the analog computer cannot resolve. The results
of the analog solution can, however, be trusted to within a few percent of the

true solution and thus constitute excellent initial guesses.

2.7 ANALOG COMPUTER SOLUTION OF THE EIGENVALUE PROBLEM
The most suitable technique for investigating the solution of eguation

(2.11) as a function of the parameter c is to employ the computer in the rep-
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etitive operation @ode. In this mode the differential equation is integrated
many times per second and the solution is displayed on a cathode ray tube in
graphical form. Changes in c are instantly observed and can be affected until
the boundary conditions are satisfied.

Before proceeding to the analog program it is valuable to reconsider
equations (2.9) and (2.11) from the point of view of nonlinear equipment and
ease of coefficient generation. The advantage of equation (2.11) from the
standpoint of minimizing the number of multipliers is quite clear. A closer
examination however, indicates that the first order pole at z = ¢ involved
in equation (2.9), as compared with the second order pole of S(z,c), outweighs
the economy consideration, particularly in regions close to neutral stability.
This conclusion was also verified in practice, the first order pole resulting
in a much smoother, and therefore more accurate, curve than the second order
one. It was therefore decided to return to equation (2.9) for the analog com-

puter search program.

2.7.1 Method of Solution

1. Equation (2.9) will be separated into its real and imaginary components
thereby resulting in two second order coupled equations with real variable co-
efficients.

2. The coefficients of the system, which are functions of c. Gy will be
generated in such a way as to enable Cr and Ci to be varied independently by a

single potentiometer each.

5. A computer program for solving the system of equations will be utilized
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in the repetitive operation mode, c. and c, will be varied by their respective
A
potentiometers until the boundary conditions @r(l) =w. (1) = O are satisfied.
A

A A
The initial conditions are chosen as wr(O) =w, (0) =0. w'(0)=2A, w(0) =38
i r i

2 2 ,
with A~ + B” # 0, A and B arbitrary convenient constants. The arbitrariness of

A Bis a consequence of the homogeneous boundary conditions. When the boundary
conditions are met . and ci are true eigenvalues, within the accuracy of the

program, and can be read off their respective potentiometers. It can be antic-
ipated that the program schematic for integrating the system of equations will
be of considerable size. It is also observed that the sequence of steps in the
parameter study is rather lengthy. In view of the large number of coefficient
potentiometers required in the program and the number of combinations of the

B

data parameters k, [ R , a hand computation of scale factors, potentiometer

? 0

>

settings and static voltages checks 1s prohibitive. The observations mentioned
above lead to the following convenient seguence of steps:

1. The variables that are prescaled are z, C.r Cio only, the latter two
through the application of the integral condition thus determining their maxima
for each set of parameters.

2. An unscaled schematic is written leaving all other scale factors un-
specified.

%. A digital program is utilized to compute the following: (a) maxima of
unscaled output variables of all amplifiers as functicns of Ci’ Cr and z. (b)
scale factors based on computed maxima (c) potenticmeter settings based on com-
puted scale factors (d) static voltages at key pcints of the schematic based on

all previous computations.
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The method just described proved very efficient and very reliable. With
the schematic shown in Figure 2 eigenvalues can be obtained quite readily. 1In
addition the existance of more than one mode for given k, f, B, RO has been
ruled out for a number of data sets.

The Analog Computer Program.

Equation (2.9) can be written (dropping hats)

W + Pw + Qw =20
77 Z

where

21R_ 5
P=T>> >~ 2 2 s =P TR
1-k Ro(z-c)‘ (z-c)(1-k Ro(z-c)

O aade®) 211R_ |
=T o~ > 0 5= Qv 1e
1-k Ro(z—c) (z-c)(1-k Ro(z-c)

Let primes represent differentiation with respect to z, then

w' 4+ dw! + (P + iP, )(w' + iw!) + (@ + iQ )(w_+ iw,) = O.
r 1 r 1 r 1 r 1 r 1

Upon separating real and imaginary parts:

=
i

- Pw +Pwl -Qw + Qw,
r r 1 1 rr 1 1

(2.21)

=
i

-Pw -Pw! -Qw - Qw,
ir ri ir r i

The initial conditions for integrators are:
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Since the boundary conditions are homogeneous, initial conditions on the inte-

grators of w' and w! are arbitrary, i.e.,
r i

Using the following notation

M1

il

1 - kR (z-
Jlz=c )

N1

li

1+ kR (z-c )
o r

D = (z-c )2 + ¢

T i
D =1- 2kR (z-c )+ kng‘D
- (@] r @)
D =1+ 2kR (z-c ) + K“RD
+ ) r 0

2 B(k2 + 12)

Y = 5
P, P ,Q, Q are found to be:
r i T i
2(z-c ) c c
T - Ml i N1 i
P = - + - =+ IR ==+ — - JR —
T D KRoL D ! cD D oD ]
- - + +
2¢ c c
i M1 2 i N1 2 i
P =-—+R[I—+k — + -— + R —
i D o[ D Ro D ! D k oD J
- - + +
c c c
i 2 M1 N1 2.2, 1 i
= —_— —_ e == . —_ 4 —=
o =eR -y () - R
- + - +
(z-c ) c c
2 i 2, M1 N1
= -D[R + kR - — - =) - kR (— -
Q = 2dR, o 5 ) o5 ")

The schematic in Figure 2 shows the generation of the equations' coeffi-

cients and the analog circuit for integrating the system (2.21).
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The analog computer investigation has led to initial good guesses of
eigenvalues and the following findings:

1. To a given set of data, k, I, Ro’ B there corresponds one and only
one mode for c's satisfying the integral condition.

2. 1If ° is an eigenvalue corresponding to k, {, B and Ro = 0, and c
corresponds to k, £, B and Ro # O the imaginary part of the difference cl - CO
may vary by as much as two orders of magnitude for different combinations k,

L, B, while the real part of the difference is always very small, within the

order of the error introduced by the circuit's limitations.

2.7.2 The Digital Solution

The information and first approximations of eigenvalues obtained in the
analog study provide us with the necessary guide lines in programming the dig-
ital part. The absence of more than one mode per data set and the change
(cl-co) as a function of k, £, Ro’ B led to the following sequence of compu-

tations.

1. Select k, £, B.

1 1 1 1 2
2. Compute ¢, from: ¢ = (Z + =3 cothd) /2, 5 = B(k2+£2). See (2.22)
@
1
5. Define a grid around the point E + ico. Let the grid siz- in the Ci

coordinate be of the order Im(c,—co) where ¢, is the approximate eigenvalue
i i

for Rop # 0, and Re (cl-c ) be the grid size in the c. direction.

0
L. With Ro = 0 integrate equation (2.11) forward in z up to z = 1. The

theoretical value of wr(l), wi(l) should be zero. Truncationerror, however,

will cause a residue at z = 1, the truncationerror for a centered difference
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scheme being O(Q% w"). This residue, which for 4 = 10™° was of the order 107
ol

is next used to determine fulfillment of the boundary condition with RO % 0.

5. Bet RO = Rol corresponding to cl. Integrate equation (2.11) at each
of the nine points (% + ico) and the eight surrounding neighbors. Out of the
nine sets of Wr(l)’ wi(l) choose the set with the smallest absolute values. Re-
peat (5) with the c corresponding to best end values.

€. When no reduction in the values at z = 1 can be obtained halve the grid
sizes and continue.

7. When the end values are less then or equal to the residue for RO = 0,
the corresponding c is an eigenvalue.

8. Use last eigenvalue with initial grid sizes and repeat step (3) to
(7). With R = RO2 repeat (3) to (7), etc.

The above sequence proved very efficient and the computing time for about

15 eigenvalues was only 2 minutes on an IBM 7090. The results are displayed

and discussed in the next section.
2.8 RESULTS OF THE BAROCLINIC STUDY

2.8.1 Growthrates and Propagation Speeds

The major unknowns of the stability problem are the growthrates of sin-
usoidal disturbances, assumed to be initiated by an unspecified mechanism, and
their speed of propagation relative to the embedding current. The reality of
the model; in relation to the physical assumptions introduced in its formula-
tion can be studied and tested against the observaltional gross features of the

atmosphere. To this end typical vertical velocities, pressure and temperature
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perturbation fields can be computed and plotted and their mutual geometrical
relation compared with representative observational conditions.

We begin with a discussion of the growthrates and propagation speeds re-
sulting from the numerical study.

The first and most striking result is the finding that all waves, regard-
less of their lateral extent and for all static stabilities and Rossby numbers
investigated, travel with the same speed, cr = 0.5, from west to east. It is
observed that this is also the propagation speed in a quasigeostrophic formula-
tion and is equal to the mean speed of the basic current. Since true atmos-
pheric wave motions are certainly dispersive and since the linear theory applied.
here is certainly not indicative of quasisteady state conditions observed, it is
impossible to conclude whether the missing mechanism which would bring about
dispersion is the beta effect or the nonlinear nature of the primitive equations.
In this respect the ageostrophic effects do not improve on quasigeostrophic
theory.

The ageostrophic effects on the growthrates kci were studied as a function
of the Rossby number (considered to be the main parameter). Beginning with a
pair of wave numbers k, [ and a given static stability parameter B, the quasi-

geostrophic complex part of the phase speed is computed from

1/2 2.2

c ., =[-(1/k + 4% - % cothd)]™ 7, 52 = B(k™+17). (2.22)

o1l &

For each fixed set of k, I, B, the Rossby number Ro was varied in increments of
0.1 and the new ageostrophic growthrates determined numerically. The results

are given in Tables I through IIT.
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TABLE I
TABLE OF EIGENVALUES AND GROWTH RATES FOR £ = O.
RO
B K 0 0.1 0.2 0.7
Eigenvalues
0.5 0.279118 0.279157 0.2791k7 279167
0.5 1.0 0.264886 0.26L761 0.263980 262691
1.5 0.241857 0.241233% 0.2393%39 .236136
0.5 0.269678 0.269717 0.269716 269755
1.0 1.0 0.261858 0.241643 0.2L09ko .239788
1.5 0.195869 0.195%13 0.19361kL .19013%%
0.5 0.260%35 0.26037h 0.2603%8k ,260L23
1.5 1.0 0.218939 0.218743 0.218099 .217026
1.5 0.147192 0.1k6621 0.144503% .141980
Growth Rates
0.5 0.139559 0.139578 0.139573 139583
0.5 1.0 0.264995 0.26L761 0.263980 .262691
1.5 0.3%62787 0.3618L9 0.359008 .35L20kL
0.5 0.134839 0.134858 0.134858 . 134877
1.0 1.0 0.241858 0.2Lk16L3 0.2L0o9ko .239788
1.5 0.29380% 0.292969 0.290Lk21 .286099
0.5 0.130167 0.13%0187 0.1%0192 .130211
1.5 1.0 0.218939 0.2187L% 0.218099 .217026
1.5 0.220788 0.219931 0.217354 .212970
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TABLE II

RO
B k 0 0.1 0.2 0.3 0.4 0.5
Eigenvalues
0.50 0.264995 0.265295 0.266145 0.267589 0.269545 0.272095
0.75 0.259173 0.259360 0.259891 0.260766 0.261954 0.263423
1.00 0.251068 0.251118 0.251218 0.2513%68 0.251518 0.251568
0.5 1.25 0.240710 0.240585 0.240179 0.293429 0.2383%04 0.236679
1.50 0.228102 0.227790 0.226759 0.225009 0.222L415 0.218821
1.75 0.213201 212654 0.210967 0.208061 0.203795 0.197936
2.00 0.195869 0.195082 0.192632 0.188419 0.182198 0.173316
0.50 0.241858 0.242158 0.243008 0.244458 0.246433% 0.248958
0.75 0.230393 0.230595 0.231158 0.232096 0.233377 0.234955
1.00 0.214350 0.214425 0.214625 0.214912 0.215912 0.215637
1.0 1.25 0.193538 0.193495 0.193209 0.192725 0.191975 0.190850
1.50 0.167317 0.167005 0.166243 0.164829 0.162712 0.1597kT
1.75 0.133868 0.133356 0.131791 0.129064 0.124986 0.119261
2.00 0.086883 0.085858 0.082708 0.77023 0.067992 0.053570
0.50 0.218939 0.219239 0.220114 0.221564 0.223564 0.226126
0.75 0.20167h 0.201893 0.202502 0.20%502 0.204877 0.206580
1.5 1.00 0.176998 0.177098 0.177367 0.177798 0.178348 0.178973
1.25 0.143268 0.142218 0.143067 0.142750 0.142238 0.141433
1.50 0.094140 0.093843 0.092937 0.081351 0.088929 0.085445
Growth Rates
0.50 0.13%2497 0.132647 0.133072 0.133794 0.134772 0.136047
0.75 0.194380 0.194520 0.194918 0.19558k 0.196L465 0.197567
1.00 0.251068 0.251118 0.251218 0.2513%68 0.251518 0.251568
0.5 1.25 0.300887 0.300731 0.30022k 0.299286 0.297880 0.295849
1.50 0.342153 0.341685 0.340138 0.337513 0.333622 0.3%28231
1.75 0.373102 0.372144 0.369192 0.364107 0.3%566k1 0.346388
2.00 0.391738 0.390164 0.385264 0.376838 0.364396 0.347238
0.50 0.120929 0.121079 0.12150k 0.122229 0.12%216 0.124479
0.75 0.172795 0.172946 0.173368 0.174072 0.175033 0.176216
1.00 0.214350 0.214k425 0.214625 0.214912 0.215262 0.215637
1.0 1.25 0.241922 0.241869 0.241511 0.240906 0.239969 0.23%8562
1.50 0.250975 0.250507 0.24936L4 0.24k7243 0.244068 0.239620
1.75 0.234269 0.233373 0.230634 0.225862 0.218725 0.208707
2.00 0.173766 0.171716 0.165416 0.154046 0.13598k4 0.1071k0
0.50 0.109469 0.106619 0.110057 0.110782 0.111782 0.113063%
0.75 0.151255 0.151420 0.151876 0.152626 0.15%658 0.154935
1.5 1.00 0.176998 0.177098 0.177367 0.177798 0.178348 0.178973
1.25 0.179085 0.179022 0.178821 0.178437 0.X77797 0.176791
1.50 0.141210 0.1k0T76k 0.139405 0.137026 0.13%%93 0.128167
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TABLE IIT
TABLE OF EIGENVALUES AND GROWTH RATES ! = =«
B k 0 0.1 0.2 0.3
Eigenvalues
0.50 0.083229 0.08%90089 0.105065 0.128268
0 0.75 0.072968 0.079%25 0.096239 0.120107
2 1.00 0.0559L7 0.063603% 0.082720 0.108032
1.15 0.039%51 0.049351 0.071382 0.098570
Growth Rates
0.50 0.04161k 0.04454L 0.052532 0.064134
0.75 0.054726 0.059494 0.072179 0.090080
0.5 1.00 0.055947 0.063603% 0.082720 0.1080%2
1.15 0.045254 0.056754 0.082089 0.113355
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The ageostrophic deviations from the quasigeostrophic values of growth-
rates are displayed in graphical form in Figures 3 through 6. The ordinates
represent percentage deviations obtained from

c, - c |,
i oi
c
oi

Ageostrophic percentage deviation = 100 x

where Coi is computed from (2.22) and Ci corresponds to the numerical value
computed for a nonzero Rossby number.

Figures 3, L, 5 indicate that for large lateral wave configurations, namely
I~1, the ageostrophic effects are selective, stabilizing the shorter zonal
waves, k > 1, and destabilizing the longer ones, the separating value of k
being slightly greater than unity. The above observation hclds for the three
values of the static stability investigated, B = 0.5, 1, 1.5, with the maximum
effects occuring for B = 1. This is not to say that the actual maximum is at
B = 1, but somewhere between 0.5 and 1.5. It is further noticed that the per-
centage deviations are, for these values of [ and B, of the order of a few per-
cent even for large values of the Rossby number.

The behavior of the shorter lateral disturbances, f = n, is shown in Fig-
ure 6. The meximum zonal wave number k that could be used with a static sta-
bility B = 0.5 was k = 1.2, the limitation resulting from equation (2.22).

It is noted that the zonal short wave cutoff for a model incorporating lateral
variations in the perturbation quantities, occurs at a longer zonal wave length
than is found in the absence of y dependence. The ageostrophic deviations in
the present case are found to be much more sensitive to the Rossby number,

reaching more than 100% variation for moderate R and short zonal waves. The
o
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Percent deviation of ageostrophic growthrates for f = x, B = 0.5.
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effect is not selective and all zonal disturbances are destabilized. It is
generally accepted that a characteristic Rossby number for mid and high lat-
itudes is of order O0.1l. 1In lower tropical regions where the circulation is

less geostrophic a larger Rossby number is more representative. Recognizing
the limitations of this model, in particular the missing beta effect which is
largest at equatorial regions, it is of interest to note the general behavior
of the ageostrophic influences. Since middle and high latitude flow corresponds
to small Rossbynumber and low tropical flow to a higher value, a partial expla-
nation for the birth of violent instabilities in low latitudes as opposed to

their absence in mid and high latitudes is borne out by the model.

2.82 Cross Sections of the Perturbation Fields

Once the eigenvalues of equation (2.9) are known the determination of the
various perturbation fields becomes an algebraic problem. The boundary condi-
tions on the vertical velocity component are sufficient to determine u, v, p,
T (or p) up to the arbitrary multiplicative constant incorporated in w. Since

w 1s considered known the system of equations can be written (from (2.1b)...

(2.5b))

r NN r =

ikR (z-c) -1 ik o | ru R

O @]

1 ikRO(z—c) if 0 v 0

ik il 0 0 D -R w
o Z
_ 0 1 0 1k(z—c{J e L BW_

the solution of the system is readily found to be
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p = i{[l-szi(z-c)sz + [iZRO + kQRi(z—c)]W} /. k(k2+£2)(z-c) (2.24)

2, 2 2

o = -i{[l-izRO(z—c)]wZ + [izRO + B(k™+17)(z-c)w} /. k(k2+22)(z-c) (2.25)

and 1t can be verified that the hydrostatic equation is satisfied.
We are also interested in the temperature field. To this end, recalling
the constancy of density in the horizontal momentum equations, the Boussinesqg

approximation

p = po(l—a(T-TO)) (2.26)

will be used.
In order to obtain vertical cross sections of w, p, and T perturbations,
the real or imaginary parts of
w(z)| il2y +k(x—cto)]
0
p(z)]e
T(z)
are plotted, where Y, and t are fixed.
0
As for horizontal distributions of the mentioned variables the plotted

fields are given by the real or imaginary parts of:

w(z i[£y+k(x-cto)]

Since the coefficient of the exponential is a constant for a given height all
fields will be similar except for a phase displacement. It is thus sufficient
to compute the phase relations. In geostrophic theory the lateral heat and

momentum transports can be obtained from the pressure and temperature fields
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alone, since the meridional velocity is related to horizontal pressure field in
a simple way. In this model the heat fluxes cannot be inferred directly, none-
theless some phase relations will be computed and will serve, in addition to
giving some more insight into the details of the model, to check the numerical
computations.

In Figure 7 some representative numerical results are shown. As a check

the case RO = 0 was computed both from the analytical solutions:

w = (1-ye)((z-c) - §>e7z s (1eye)((zmc) + 2)e77?

Y
17 Yz - =Yz
p =" [(l—‘}’C>e - (l"‘)’C>e ,| o)
k(k2+£2) 2.27)
.2
v e 2 (1) - (1e)e
k(k™+17)

and from the numerical scheme. The results obtained by the two methods were
found to be in complete agreement.

The phase difference between the temperatureand pressure fields was defined
by
1 (T)

Re(T> e

- tan

phase lag = tan_l

and was plotted in Figure 7 as a function of height.

In the present formulation of the model the separation technique results
in an arbitrary multiplicative factor in all the variables. Consequently a
quantitative comparison of actual magnitudes as a function of the parameters,

in particular the Rossby number, is not meaningful. To circumvent this arbi-



55

*spTe1g o2anssaad pus aangexadwsq usamysq 8el osvyg ) 2andtg

OvV1 dSVHJ
4
AL T O
VL N N | ! '
\ ) //// “
\ \ N |
N\ AN |
// N |
N N
AR |
//////// |
T — =~
V/ll//l — G0
N —
X T T~
// ~ >
0= 1=7-7 % <
._ 0 _ \A// NN\ ’
¢ =°4 =7 A
0=°4 L4=7 N\ O\
Oy L=y VN Y




trariness one must resort to a comparison of normalized fields. In plotting
vertical cross sections of w, p, and T each of the variables was therefore
normalized by its maximum absolute value.

Figures 8 through 10 show some typical vertical cross sections of vertical
velocity pressure and temperature perturbations. Each figure corresponds to
two values of the Rossby number for comparison purposes. The isolines of the
plotted variables correspond to a normalized intensity scale designed to portray
the zero lines and the areas of maximum intensity. The vertical velocity wave
is seen to consist of two cells one of rising the other of sinking motion. The
temperature field agrees with this vertical motion inasmuch as the warm air
cell ascends and the cold cell descends. The pressure field has associated with
each cell two sub-cells, or a high and low, located in the upper and lower lev-
els of the basic current. A typical result is a low level cold high lagging a
sinking cell while a cold low aloft leads the sinking air. This mode of opera-
tion is in broad agreement with typical synoptic conditions in midlatitudes.
The slope of the vertical systems is a strong function of the lateral wave num-
ber and the Rossby number. While for long lateral waves, £ = 1, the slope is
always from east to west the occurrence of the opposite tilt is found for short
lateral waves, £ = n. The effect of the Rossby number on the slope is somewhat
unexpected; an increase of Ro tending to make the systems more vertical. A
collection of some typical results is shown in Figure 11. The slope referred
to is the axis of symmetry of the vertical velocity cells, or the zero line of
vertical velocity. In quadrant (a) B and £ are fixed and k, Ro are varied it

is observed that the short zonal waves, k = 1.5, are associated with a more
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vertical structure than the long waves. It is also noted that for increasing
Rossby number the tilt of the vertical velocity and pressure systems becomes
less westerly, reaching an easterly tilt for large Rossby numer. The effect
of the static stability and zonal wave number k is similar as is evidenced by
quadrants c¢ and 4.

As for the phase relation between the temperature and pressure field Fig-
ure 7 indicates an antisymmetry about the mid stream. The phase difference is
g at z = 1/2 and increases towards the ground while diminishing upward. This
behavior is found in the lower stratosphere and near the ground and is in good
agreement with observations. The effect of increasing the Rossby number for a

particular set k, [, B, is to increase the range of variation of the phase

J
difference. Since our model is too crude to recognize a tropopause and does

not have a jet stream incorporated, the matter of heat and momentum fluxes is

not further pursued.



CHAPTER III

THE BAROTROPIC GULF STREAM MODEL

3.1 FORMULATION*

We consider a two-layer fluid on the P-plane, the density p of each layer
being constant. Let x, y, and z measure distance to the east, the north, and
the vertical, and let subscripts 1 and 2 refer to the upper and lower layers,
respectively. The layers are of finite depth, with depths Da(a = 1, 2) in the
absence of motion. We take the upper boundary of the fluid to be the free sur-
face z = Dl + D + (Ap/pg)nl, where Ap = o, = Py the interface between the lay-

2 1

ers to be z = D2 + ng - (pl/QE)n and the lower boundary to be the rigid plane

1

-
z = 0. Also, we assume shallow water theory to be valid and denote by qa the

horizontal velocity and by D/Dt the material derivative,

Since the motion is assumed hydrostatic we have

Py P
— +gz-= Cl(X,y),'—- +gz=C_(x,y)
1 P 2

The conditions pl = 0 at the free surface and pl = p2 at the interface imply

_ JAYe) -
= D +D +——
C (x,y) = elDy + D, 5 n, ]
2
¢
1 JA%s) -
C - D _|__.__D 4 —
E(X,Y> gDy o "2 "o, N,

The pressure force can therefore be written as

*Except for minor changes the formulation is a verbatim copy of an unpublished
paper by Jacobs.

62
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1
= P_=g'Vn_ .
P 04 (04
04

where g' = gAp/p2 is the reduced gravity.
The assumption of constant density in each layer and no mixing between the

layers leads to the continuity equation in terms of the ucpths. The equations

describing the flow are then

D qa > ->
— + fk + g'Vnp =0 .1
Dt x q,+ g'vn, (3.1)

(no sum convention)

+

[» 2
<

Q
Q¢‘
]

@]
&
no

where the depths hl and h2 are given by

P
1
h, =D + 1 - h =D_+n_ -— .
;=D v -y, by =D+ 0 ny s (3.3)

and where £ = £ + By is the Coriolis parameter.
0

Our aim is to study the stability of small perturbations to the flow

51 = (VU(y/L)0), 52 = 0,

V being a characteristic velocity and L a characteristic length. Two approx-
imations will be made at the outset. First, we will neglect entirely motions
in the lower layer and thus eliminate potential energy conversion as a source
of instability. This is Jjustiried in the quasigeostrophic case, provided that
a source of kinetic energy is present and that Dl < D2 (Pedlosky, 1965, Sec.

). We assume that it is true also for the ageostrophic case. Secondly, we
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restrict our attention to horizontal length scales so small that L2 << V/B. It
is then permissible to neglect By next to fo provided we simulate the trapping
effect due to the earth's curvature (Jacobs, 1967). This will be achieved here
by supposing the fluid to be confined between walls at y = LA, y = LB, B>A,

It is convenient at this point to scale the variables. Omitting subscripts,
which are now superfluous since 32 = 7, = O by assumption, we define nondimen-

2

sional variables by
(x,y) = Llx*,y*), t = (L/V)tx,

=V a* n=(£VL/g')n*, h=Dhx. (5.4)

The nondimensional equations obtained through use of this scaling are, with

asterisks omitted,

-

Dqg > A >

—_— + + =

Ro St kxat+ v 0, (3.5)

and

Dh -

— . = 0 N

ot hv.q s (2.6)
where

2
h=1+R7ym. (3.7)

The nondimensional parameters are the Rossby number,

R = V/£ L), (3.82)

0

and a nondimensional radius of deformation y, given by

y = £.1/(g)2, (5.80)
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If we now take

>
a=(U(y) +u, v), n=2+0q, (3.9)
where ®' = -U, and neglect products of the perturbation quantities, we obtain
the linear eqguations
0 O : o0 AP .
R (== + U= + (=fv,u) + (==, =) =0 .10
o Gt USRIy v+ (5, 5D = o, (3.10)
and
2,9 J O(Hu) . o(Hv)
R — + U —)op + + == = 0 »
07 (at 5X/Cp aX ay 9 <3 ll)

where H, the unperturbed depth of the layer, and t, the unperturbed total vor-

ticity, are given by

H=1+ R07£®, ¢=1-RU". (3.12)

As is usual in stability problems (see, however, Case, 1960), we bypass

the initial value problem and instead separate variables according to

~ ik(x-ct)
e

F(x,y,t) = F(y) c=c_+ic, (%.13)

P) 2V

where F is any of u, v, or . Equations (%3.10) and (%.11) then become a homo-
geneous system of ordinary differential equations with the homogeneous boundary

conditions ;(A) = v(B) = 0, and c plays the role of an eigenvalue. The values

of ¢ for which

B~ 2 ~2 2~ 2
[y (817 + [vI5 550Dy £ 0

will be called the spectrum for this system, and if ¢, > O the motion is un-
1
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stable.
Invoking (3.13) and eliminating G, we obtain two equations for the two

remaining unknowns. With the definitions

2.-1 -1
q = H(¢t - Rikgw ) 7, Q= (H- Riygwg) , (3.1h)

and with the tildes omitted, we have

q(Rowcp‘ - Q)+ V=0, (3.15)

QR W'+ LV) - 9 =0, (3.16)
where primes denote differentiation with respect to y. These equations are to

be solved subject to Y(A) = ¥(B) = 0. Alternate formulations in terms of a

single unknown are

2 2
oy, 29 (R0
(Qu)' - (7 + ¢ R W =0, (3.17)
or
(@) - (Fq+ 5"+ a' /R =0, (5.18)

the latter equation being subject to @ = Rgmp'at y = A and y = B.
We note that if |c| = 0(1) as R > O, then, in the limit, © = ¥ and (3.17)

becomes the quasigeostrophic equation

g g
wi'' - (Kw+ U -y Te)v =0, (3.19)



67

5.2 THE NUMERICAL TREATMENT OF THE GULF MODEL

The obvious difficulty in applying quasigeostrophic theory to the Gulf
Stream problem is that the Rossby number, based on a relative vorticity of 0.k

. -1 . . . . :
2alU 0 sec (Stommel, loc. cit.) is not particularly small. Not so obvious
put equally important is the fact that the slope of the interface must also be
small if the fluid is to be nondivergent in the lowest approximation. 1In the
) . . 2 e .
present paper this slope is the quantity R y , and the conditions for quasi-
o
‘ i _ 2 .

geostrophic theory to be valid are Ro < 1, Roy << 1. The first condition is
satisfied marginally, the second not at all, for based on the data in Stommel's

L2 .
Lock Roy ~ 1 if the 10°C isotherm is taken to be the interface. This can be
seen either by taking as the characteristic depth D the depth of the 10°C iso-
therm at the midpoint of the stream or else by directly computing the slope of
the isotherm. Substituting representative values in the definitionof RO and v

we use

= -2
Aofpo= 22107, g = 2:10 " m/sec

and taking

V = 2 m/sec
L = lO5 m
L
f =~ 0! )
0
D = 800 m
we find
R = 0.2
o
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Quasigeostrophic Solution
without Countercurrent

Basic State
Velocity Profile

/—~—Quasigeostrophic Solution
-? / with Countercurrent

Figure 12. Basic state velocity profiles of the barotropic model.
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Tri the numerical study the value of RO will be varied in small increments and
the values of y will be chosen as y = 2, 2.5, 3, and the extreme case y = 0.5.

The choice as to which of the alternate formulations in terms of a single
equation 1s settled by the boundary conditions. Since equation (%.17) is sub-
jected to vanishing boundary conditions y(A) 0 while equation (%.18)

vequires @ = ROW$‘at Yy=A and y B the selection of (3.17) is obvious.

We now specify the bhasic state zonal current.

Two cases will be studied.
Case g.

u(y) = coswy + 7? , A=-17/6,B=5/6

This velocity distribution is plotted in Figure 12. A countercurrent is in-

cluded. The marginally stable mode corresponding to this profile with RO = 0
has the sojuticn
y = cos [g (v + %)J (7.20)
with
- Jz N -
k=" m, C =7 /(77 + 7)) + 1 0+,
as can be verified by direct substitution into equation (%.19).
In this case the "south wall" has been moved northward from A = -7/o te
y =

5/6 thereby eliminating the countercurrent and reducing the width of

channel. It 1s readily verified that the quasigeostrophic solution correspond-

ing to this basic state is given by:
vl o
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with

, C =‘% 1{2/(312 + 72) + 10+ ,

In programming a second order differential equation for a "shooting method"
the most convenient form is the one in which the first derivative term is absent.
Since the boundary conditions on equation (2.17) are zero values at the end

points this form can be readily obtained by the substitution:

A
¥(y) = ely) ¥(y)
Substituting in (3.17) and equating the coefficient of the first derivative to

zero we obtain:

o
gly) = [H - R 7

and the canonical form is:

i syl =0, ¥(A) =9(B) =0 (5.01)
where ,
dp
1 2 171
S() =2, TP "5 Yy (2.22)
Q ' b, K
Py = 75 » Py T 75 R v ¥ Rw ) 3€§- aﬁ (3.23)

The appearance of R in the two denominators in the definition of P, is not
o ¥
as alarming as may seem, as the expression for S(y) can be written as:

o 42 2. p 2 :
S(y) = -k + {%¥ [RO k" (u-c¢)” - 1](u-c) - u" + ya Q U(1 - Rou‘)}/(u-c)



71

2 Lo 2 2. .35 2 "
- % Ry Q[u+ 2Ro(u-c)u 17+ R07 Q[é u' - BROu - Ro(u-c)u ]

and in the limit RO + 0 equation (%3.19) is recovered.

The numerical scheme consisted of a centered difference approximation for
the second derivative in equation (3.21) and a forward integration treating
the problem as an initial value one while continuously modifying the eigenvalue
c until the boundary condition at y = B is satisfied, subject to the error in-
herent in integration. This error was determined by the residue at y = B when
the known analytical case was integrated numerically. In addition the step size
for the integration was determined by minimizing the error in the numerical sol-
ution as compared with the known analytical solution (3.20). It was found that
the minimum error occurs for 80 points. In order to allow for changes due to
the ageostrophic terms, which are not present in the testing procedure, one
hundred points were actually used.

The problem of finding eigenvalues efficiently from the standpoint of com-
uting time was discussed in the baroclinic model. The writer was fortunate in
this part of the study to participate in the experimental phase of the "time
sharing system" conducted by The University of Michigan Computing Center and
the IBM staff, whereby computing time was abundantly available. The extra effort
in finding first guesses was thereby diminished and the eight point method de-
scribed in the digital part of the baroclinic study could be utilized from the
outset.

The digital program was constructed as follows:

(1) Selecting a value of 7, the corresponding Lo was evaluated from
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Vs 2, 2 2
= — n +
co =3 "/ 7)
V3 .
(2) The value of k was taken as ko = 5 T or ko = 0.8 n according to

whether Case 1 or Case 2 were investigated (with or without counter-
current ).
(3) A decrement Ak was set to 0.2 and an initial guess for the unstable
i hi de c = (C + + i .
quasigeostrophic mode c¢ = ( ot A@r) inA c, was chosen Acr and

Ani were varied until fast convergence of the shooting method was
obtained. These values were retained in subsequent changes in k,
k = ko - n*/k, reducing k as far as the method permitted.

(L) When the residue of @ was within the error described above the corres-
ponding c was considered an eigenvalue, still a quasigeostrophic one.

(5) At this point the Rossby number was set to a nonzero small value and
the search in a square around the quasigeostrophic value of c just
found was repeated until a nongeostrophic mode was found.

(6) Using the nongeostrophic value last found, the Rossby number was fur-
ther increased and the search repeated.

(7) The sequence of steps was now reiterated by starting with the last
quasigeostrophic eigenvalue and changing the wave number to search
for the next quasigeostrophic unstable mode. The nongeostrophic modes
were then found by calling on the ageostrophic subroutine that varied
the Rossby number.

The results of the search are shown in Figures 13-16 where the complex

phase speed in the nongeostrophic cases were plotted splitting the real and
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imaginary parts for clarity. Some representative numerical results are shown

in Tables IV through VI for reference.
%.4 RESULTS OF THE BAROTROPIC STUDY

3.4.1 Quasigeostrophic Unstable Modes

The numerical technique using the shooting method, described in the pre-
vious section, was first applied to equation (3.19) to obtain unstable quasi-
geostrophic modes. The process consisted of selecting a value of the radius of
deformation y and varying the value of the wave number k in decrement of 0.2
from its initial critical value at neutral stability to as small a value as
the numerical integration permitted. The process was repeated for the values
of y = 3, 2.5, 2 and the extreme case y = 0.5. In order to study the effects
of the countercurrent the cases y = 2, 2.5 were repeated with the southern wall

i >

at A = - I3 displaced northward to the position A = - g. To facilitate a com-

parison the results of both computations are plotted in Figure 13. The solid

graphs correspond to the case with countercurrent basic state, the dashed ones
to the simple basic state jet.

Figure 13 reveals that the existance of a countercurrent destabilizes the
flow considerably. The difference in the widths of the channel in the two cases
is not believed to be of major consequence. Since the Gulf Stream possesses a
countercurrent this case will be considered in more detail. It is observed
that for each value of y there is a wave number which is most unstable. Con-

sidering the realistic case of y = 2.5, the most unstable wave number is found

near k = 1.8, which corresponds to a wave length of approximately 350 km. and
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TABLE V

UNSTABLE MODES FOR THE GULF STREAM MODEL WITH NO CCUNTERCURRENT

(a) 7y =2.5
RO =0 R = 0.1
k

C C, C C,

r 1 r 1
2.51 0.5302k4kL 0 mmmmemen emaeeoas
2.2€ 0.468916 0.020516 ——————— R
2.0L 0.410%22 0.03%30547 0.418759 0,013555
1.76 0.3L6259 0.034359 0.340009 0.018L22
1.51 0.282197 0.03%3922 0.279697 0.02k547
1.26 0.216572 0.026547 0.21344e 0.021859

(b) 7 =2
R =0 R 0.1
k O

c C. c c,

r 1 r 1
2.31 0.561512 0.022L99 0.56982k 0.013375
2.11 0.512012 0.035600 0.51€387 0.024125
1.91 0.458012 0.045750 0.4e082k 0.03512k
1.71 0.401761 0.050999 0.40%32% 0.042875
1.51 0.343261 0.051374 C.344511 0.046375
1.31 0.28476C 0.CLeBT5 5.285072 0.043750
1.11 0.225509 0.0382L9 G.225510 0.03€375
0.91 0.165883 0.027562 0.16588L 0.026793
0.71 0.11188L 0.013319 0.111571 0.013312




76

TABLE VI

UNSTABLE MODES FOR THE GULF STREAM MODEL WITH COUNTERCURRENT

(a) y = 2.0
R =0 R 0.1
k (0] O

¢ c, C c,

r 1 r 1
2.52 0.570013 0.041875 0.605013 0.056875
2.32 0.52876% 0.07437kL 0.564763 0.086375
2.12 0.486262 0.099375 0.522262 0.111375
1.92 0.443761 0.116875 0.482762 0.126875
1.72 0.398762 0.12437h 0.434762 0 132375
1.52 0.353762 0.12437h 0.387512 0.1293%75
1.32 0.303762 0.114375 0.333762 0.118375
1.12 0.251262 0.096875 0.275262 0.100875
0.92 0.198762 0.07312k4 0.213762 0.07712k
0.12 0.1k41262 0.045624 0.153%26 0.049624

(b) 7 =0.5
) R =0 R =05

c c, c c,

r 1 I 1
2.52 0.794623 0.058750 0.814630 0.053750
2.32 0.74713%0 0.112500 0.767130 0.107500
2.12 0.699630 0.158750 0.7196%0 0.153750
1.92 0.652130 0.197450 0.6721%0 0.197500
1.72 0.597189 0.227500 0.617129 0.229500
1.52 0.537129 0.247499 0.557129 0.252500
1.32 0.469627 0.257499 0.489626 0.267500
1.12 0.394629 0.252500 0.414629 0.262500
0.92 0.314629 0.233500 0.324629 0.248499
0.72 0.23L4629 0.197499 0.239626 0.212499
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an e folding time of just over three days. The quasigeotrophic results obtained
by Lipps correspond to a wavelength of 180 km with e folding time of four days.
In his case, however, the horizontal scale was taken as L = 31 km compared with

L = 100 km in the present study. The speed of the most unstable mode is slightly
less than 0.2 m/sec. The speed of all unstable modes decreases with increasing
wavelength, The effect of increases in the radius of deformation is to stabi-
lize the motion for both profiles treated. This result is in complete agree-
ment with analytical results obtained by Jacobs (personal communication) where

quasigeostrophic divergent flow is investigated.

3.4.2 Ageostrophic Unstable Modes

The quasigeostrophic unstable modes discussed in the previous section
served as initial guesses in the search for ageostrophic eigenvalues. Select-
ing a triplet y, k, and the eigenvalue Co corresponding to Ro = O, the Rossby
number was set to some small value and a search was conducted. When the boundary
conditions were satisfied the Rossby number was incremented and the sequence
repeated. When the process no longer converged the triplet y, k, Co was changed.

The results of the present computation are shown in Figures 1k, 15, 16
and Tables IV through VI.

Figure 14 displays the two extreme cases y = 0.5 and y = 3, It is noted
that when the radius of deformation is very small, y = 0.5, the ageostrovhic
effects are negligible even for Rossby vales as large as RO = 0.5. The other

case, ¥y = 3, is very sensitive to the Rossby number as can be seen by the lower

curves for RO = 0O and R = 0.05. The propagation speeds and growth rates for
o)

small y are much greater than those for large 7.
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0.8\—

y=3. Rg=0.05 —> «— y=3. Ry=0

0.2
k
A
A=-7/6
0.2
Ci
Y=0.5 Ry=0.5—>\¢—ry=05 R,=0
O.1
B Y =3. Ry=0.05
" Y=3. Rg20
iU | I | | I 1 | I i 1 | I
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k

Figure 1L. Unstable nongeostrophic modes of the barotropic Gulf Stream model
y = 0.5, v =73.
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€< Ro=o A=‘7/6
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Figure 15. Unstable nongeostrophic modes of the barotropic Gulf Stream model
y = 2.
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0.5

<«— Ry=0.15
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Ro = 0.05 A=-5/6
Ro s 0.'

Figure 16.
y = 2.5.

Unstable nongeostrophic modes of the barotropic Gulf Stream model
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Figures 15 and 16 show the results for the cases y = 2 and y = 2.5. Fig-
ure 15 shows that for y = 2 and RO = 0.1 the ageostrophic influence is to de-
stabilize the flow and speed up the motion of unstable perturbations if the
basic state velocity profile has a countercurrent. Figure 16, corresponding
to the realistic case y = 2.5 shows a selective ageostrophic effect; the short
zonal waves are destabilized while the intermediate and long waves are stabi-
lized, the effect becoming more pronounced as the wave number decreases below
the point of cross over. This ‘behavior is found for a basic state with counter-
current as opposed to the stabilization of all wavelengths in the simple jet
basic state case. It is pointed out that the no countercurrent case, with
appropriate rescaling and inverting of layers, can be made to correspond to an
atmospheric problem. The results pertaining to this problem will be quantita-
tively different but the ageostrophic stabilizing influence will be retained.

The effect of the radius of deformation is found to destabilize the flow for
decreasing y. With the exception of the extreme case y = 0.5 the ageostrophic
modes near the neutral boundary are more unstable than their corresponding quasi-
geostrophic ones.

Considering the propagation speeds of unstable perturbations it is observed
that the ageostrophic modes are faster than their quasigeostrophic parents in
the case with countercurrent, The propagation speeds in the simple jet case are
rather insensitive to the Rossby number.

The main purpose of the study, as outlined in Chapter I, was to examine
the direction and extent of the ageostrophic effects on the rates of growth of

unstable modes. The finding that the short waves are destabilized is perhaps



8%

an indication that viscosity effects are missing. The rather strong stabiliza-
tion of the long waves is in accord with the observation by Stommel that some
eddies associated with the current can be identified for long periods of time.
In this respect the results of this study justify the stability approach to

the Gulf Stream problem.



CHAPTER IV

CONCLUSION

1.1 SUMMARY OF RESULTS

4.1.1 The Baroclinic Problem

A linearization technique was applied to the equations of hydrodynamics
subject to the physical assumptions of a frictionless adiabatic atmosphere in
which the flow is incompressible and hydrostatic. The resulting system of
scaled equations was linearized about a baroclinic basic state while utilizing
the Boussinesqg approximation and prescribing a zonal wave character to the per-
furbation quantities. The elimination of pressure, density, and the horizontal
components of the velocity from the linearized system led to an eigenvalue prob-
lem formulated in terms of a partial differential equation in the vertical
velocity w, subject to vanishing boundary condition at the top and bottom of a
finitely deep atmosphere. The stability of the flow is determined by the im-
aginary part of the complex eigenvalue, which represents the phase speed of
the perturbation quantities.

In order to study the ageostrophic effects resulting from terms involving
the Rossby number of the flow, the partial differential equation governing w
was treated by a separation of variables technique resulting in an ordinary w
equation. The consequences of this separation are a simplified mathematical
problem at the expense of the ability to satisfy vanishing boundary condition

on the transversal velocity v.

8l
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The deductions from the ordinary boundary value problem have shown that, if
the product of the zonal wave number and the Rossby number are less than unity,
the stability boundary consists of the segment O < ¢, < 1 on the real c axis.
This result was obtained by treating the singularities of the w equation by
the method of Frobenius, while the regular part of the cr axis was investigated
by a variational method.

A general condition on eigenvalues dependent on the parameters of the prob-
lem was also derived. The condition, formulated in terms of an integral in-
equality, separates the complex c¢ plane into possible domains of eigenvalues
versus areas in which eigenvalues cannot be located.

Using the information provided by the analytical considerations a differen-
tial analyzer was employed to give crude solutions and eigenvalues. These first
guesses were introduced into a digital computer program for refinement. The
numerical results of the eigenvalue problem show that ageostrophic effects, un-
like quasigeostrophic theory with latitudinal variation in the perturbation
quantities, are selective. The short meridional waves are associated with de-
stabilized zcnal waves for all zonal wavelengths, while the long meridional
disturbances are associated with destabilized long zonal waves and stabilized
short ones. The references for stabilization (destabilization) are the quasi-
geostrophic growth rates.

A detailed numerical study of the physical variables has led to zonal ver-
tical cross sections for the vertical velocity, pressure, and temperature fields.

The gross features of these fields are in good agreement with general meteoro-

logical conditions including the westward tilt of pressure systems and the tem-
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perature pressure phase relations. The unexpected result that all perturba-
tions, regardless of size, are traveling from west to east with the mean speed
of the basic current cannot be considered an improvement on guasigeostrophic
theory and is probably traced to the infinitely wide plane or the missing beta

effect, or both.

L.1.2 The Barotropic Problem

A two-layer model with constant density in each layer and no motion in the
deep lower one was chosen to represent Gulf Stream conditions. Twoc basic state
zonal currents were studied, one with, the other without a countercurrent. A
linearization technique resulted in a characteristic value problem in terms of
a single dependent variable. The parameters influencing the flow modes are the
radius of deformation y, the zonal wave number k, the Rossby number and the
basic state current distribution.

The numerical treatment consisted of determining the modes for various com-
binations of parameters and currents. The findings indicate that an increase in
y results in a more stable flow under all conditions. This result was found for
both velocity profiles, in both the quasigecstrophic and nongeostrophic cases,
and for all wavelengths considered. In the quasigeostrophic case the stability
dependence on the zonal wavelength is such as to increase the growth rates when
the wavelength is increased above its value on the neutral stability boundary.
At a certain wavelength, depending on the value of y and RO and on the partic-
ular basic current chosen, a further increase in wavelength is associated with

decreasing growth rates. This result was found for all values of y, for both
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basic currents.

The presence of a countercurrent was found to destabilize the flow con-
siderably, in both the quasigeostrophic and nongeostrophic cases. As for the
propagation speeds they decrease with increasing wavelength in all the cases
studied.

The ageostrophic effects were found to stabilize the simple jet case.
This observation should therefore hold for the corresponding atmospheric prob-
lem. For a basic flow resembling that of the Gulf Stream the short waves are
found to be more unstable for nonzero Rossby numbers. For a representative
value of y this effect is reversed below an intermediate value of the wave-
length and considerable stabilization takes over. This last remark validates

the application of stability techniques to the Gulf Stream problem.

L.2 CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

L.2.1 The Baroclinic Problem

The present study has successfully shown that the incorporation of lat-
itudinal variation in the perturbation quantities of a linearized baroclinic
model atmosphere is strongly coupled with the ageostrophic character of the
problem. The observation by Phillips (1964) that quasigeostrophic theory loses
its selective qualities with respect to the meridional wave number through the
loss of the meridional derivative is confirmed for a flow in an infinitely wide
plane. The opposite effects on different transversal wavelengths indicate that
the north-south variation in the flow has more than the distortive influence on

the stability of the motion as predicted by quasigeostrophic theory.



88

The unresolved problem in the present treatment is the possible influence
of lateral walls at two finite latitudes. The natural next step would then be
te study the partial differential equation governing w. To this end a numer-
ical search in a rectangle would be appropriate. The eigenvalues obtained in
this study could be tried as first guesses for the rectangular region scheme.
It is felt that this suggested study would bring about the desired variation
in the perturbation speeds as a functicn of the physical parameters.

Once the effects of the vanishing north-south velocity at two walls are
established, the effects of the variation of the Coriolis parameter with lati-
tude should be examined. This problem will result in a partial differential
equation with coefficients which are functions of both y and z. The separa-
tion technique employed in this study is not expected to apply but a numerical
study on a rectangular domain should provide insight into the mechanism of the
beta effect. Once again the eigenvalues corresponding to the previous finite

channel case could provide good initial guesses for the present suggested prob-

L.2.2 The Barotropic Problem

The major result of the study is the evidence that ageostrophic effects
operate in such a way as to bring some computed unstable growth rates into
closer agreement with observation. The conclusion that stability methods are
indeed valid for Gulf Stream theory should initiate a more general formula-
tion of the problem, in particular a stratified fluid model. In addition the

results obtained so far can be related, under the appropriate interpretation,
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to atmospheric conditions. To this end the relative positions of the layers
has to be reversed, the upper motionless layer representing an approximation to
the stratosphere. The qualitative results are expected to be of the same nature
as in the Gulf model, namely, a stabilizing ageostrophic modification. The
actual values of the pertinent quantities would obviously be altered through
the different scaling involved.

The problem arising from the destabilization of the short waves should be
investigated by incorporating viscosity in the two layer model. Since numerical
methods are likely to be applied the complexity of this new problem should be

comparable to the present problem.



APPENDIX

A.1 TRANSFORMATION OF EQUATION (2.9) INTO CANONICAL FORM
Equation (2.9) can be written as:
. . 2 2
2ifR (z-c)-2 -2iIR - B(k +4 )(z-c)
O A @]

FAN AN
W+ — 5 Wt Y — W =0 (A.1)
2z (z-c)[1-k RO( -¢)7] (z-c)Ll—k"RO(z-c) ]

with boundary conditions @(o) = Q(l) = 0,

Let

A ~
w(z) = g(z) w(z) (A.2)

Substituting (A.2) in (A.1l) and equating the coefficient of %z to zero we have:
Egz + Pg = o0 (A.3)

where

PifR (z-c)-2
(@]

P =
. 2.2 NS
(z-c)ll-k Ro(z—c) ]
The equation for ; is:
~ g, . g ~ ~ ~
w +(—+P—+Qw=o0,wlo)=w(l)=o0 (AL)
7z g g
where
QiZRO + B(k2+£2)(z—c)
Q= -
- 2_2, 2.
(z-c)[1-k Ro(z-c) ]
From (A.3) we have
- e dez
y 2
g(z) = e
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and a straightforward integration leads to
F1
[1 - kRO(Z—c)]
g(z) = (z-c) =, (a.5)
[1+ kRO(z-c)]'2

where

1

(S

e

ok 7 T2

P= - T+
2 2

L P = L,
2

The coefficient of ; in equation (A.4) can be calculated using the explicit
form of g(z). A faster and simpler process is to use equation (A.3) in order
to obtain g and g . Using equation (A.3) it is found that
z z7

iz & S .
S(z) = —é— + P 1; +Q=Q - ?; - (A.6)

substituting for P and Q their appropriate expressions we finally have:

’ y y , 2
B(k2+12) + 2k2R2 Rg(k2+£ )
S(z) = - 2 _ 0 0
2 2_2 2 - 2.2, 2.2 "
(z-c) 1 - kR (z-c) [1 - kKR (z-c)7]
o o
A.2 DETERMINATION OF THE EXPONENTS FROM THE INDICIAL EQUATION
S(z) can be written as:
A
, : 1 1 1
S(2) = - ——+ - AT
(Z-C>2 Rok z-{c- —l—) z-(c+ —l—)
R k R k
o o
A
2 1 1
¥ 1 2 1 o
L e Ly
Rk [z-(c - k>J [z-(c = k)J
o o

where



g2

2
A o= A . szz _B(k+1) )
1 2 o]

The poles of S(z) are clearly at:

At z = ¢! a =0 b = -9
-1 -2
A
1 2
At z =c¢c + —: a = 0 b = —
Rk -1 ’ -
0 2 ng2
o)
A
1 2
At z=¢c-——: 2 =0, b =-——
Rk - ’ -
0 1 2 Rik2

Substituting in the indicial equation

n(n-1) + a_jn+ b_2 =0 , (A.8)
the exponents relative to the singular points are found to be:
At z=c: n=2, -1
1 2 A2 1 if
At = + = -n + = == (1 + —
zmcrgy ot =0 =5 (1L
o Rk
o
A.3% QUASIGEOSTROPHIC SOLUTION OF THE BAROCLINIC PROBLEM
Equation (2.11) with R = o reads
NH 2 2 ~ ~ ~
w' - (7 o+ Jw=o0 wlo)=w(l)=o (2.9)
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2 2
where vy~ = B(k +£2) and g(z) reduces to

e?z, 1

~ -z 1
—_— = e 1+
1 ﬂ.z—C))? " (

—_— A.10
2 7(z—c)> ( )
as can be verified by direct substitution and a Wronskian test. The general

solution, in terms of two constants to be determined from the boundary condi-

tions, is

We=AW +AW
WE AN TR,

Application of the boundary conditions leads to

1 1
At z =o0: A (1 - + A {1+ = 0
5Ty T AT
(A.11)
) 1 ¥ . 1 ~
At z=1: A(l-———)e +A(l+——=—T)e = o.
e R T
The condition for nontrivial Al’ A2 is the vanishing of the coefficients'
determinant. This condition leads to the guasigecstrophic eigenvalue:
1 1 1 1 1/2
c ==+ [+ +— - = cothy] /dc (A.12)
2 — b 2 v

4

Solving for A2 (in terms of Al of course) we have

The solution for w, up to a multiplicative constant, can now be written,

recalling the factor g(z):



A
W

where c is given by (A.

(1-y¢)(z-c - §>e

12).

ol

Yz

A.4 CALCULATION OF NONGEOSTROPHIC PRESSURE AND TEMPERATURE

The system (2, 1b)...(2, 5b) can be written:

-
ikR (z-c)
(e}
1
ik
0
-

-1
ikR (z-c)
[@]

14

ik

il

0

0

0
0

ik(z-c

+ (1 + ye)(z-c + %)e'7Z (A.13)
- rq r— P
u -Rw
o)
v o)
= (A.1L)
P -RowZ

where the hydrostatic relation has been omittted and should be verified when

(A.1k) is solved. Let

I

2, 2

-R k (k +£2)(z-c)

ikR (z-c¢)
(@]
1

ik

ikR - il
i o(z c)

ikR (z- -1
i O(z c)
1 ikR (z-c)
O
ik if
0 1

2

-1

il

iR k(z-c){fkgRg(z—c)
O O

ik 0
il 0
= (A.15)
0 0
0 ik(z-c)
ik -ng
o
0
(A.16)
0 -Rw
oz
0 Bw

2. 1]w - [i4R +k2R2(z—c)]w}
z 0 o
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ikR (z-¢) -1 ik -Rw
(@] O
1 ikRo(z—c) 12 0
A= = (A.17)
o ik i1 O -Rw
O Z
0 1 0 Bw

iR k{[i4R + B(k2+12)(z-c)]w + [1 - iR (z-c)]w_}
O @] @] Z

then

= ‘ L (1 - k°R (z-c)QJQ' +1 4R+ kQRE(z-c)]Q} (A.18)
2 2 o) Z o) o)
k(k +27)(z-c)

>

0=—L=. > L > ([LR_+ B(k7+ 1) (z-c) 18 +[1 - i1R (z-c)]p
P k(k +47)(z-¢c) © © 2

(A.19)

and the relation pz+p = 0 can be verified to hold. The temperature, in the

Boussinesq approximation, is given by:

o=p (L-aT-T). (A.20)
o o

Since we are interested in normalized fields and since the density and temper-
ature are linearly related in this model, the density can be used to represent

the temperature distribution.

A.5 QUASIGEOSTROPHIC PRESSURE AND TEMPERATURE
Let Ro = 0 in equations (A.18) and (A.19). Applying the remark at the end

of the last section we have

(A.21)



T = - 1 o+ B(k2+£2)(z—c)aj (A.22)
k(k2+12)(z-c)2 g

Substituting for ¥ and Qz their values as determined by equation (A.13) of the

appendix, the system (2.27) is obtained.
)
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