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Summary 

When a new observation is to be classified into one of several multivariate 
normal populations with different means and the same covariance matrix, 
by Rao's method of scoring, the chance of misclassification is expressed as a 
multiple integral. This paper gives a practical method of obtaining reasonable 
approximations to this integral by using tables prepared by Gibbons, Olkin 
& Sobel (1977) for a different task. 
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1. Introduction 

Let If, (i =: 1,. . . ,g) be g d-variate normal populations with mean vectors 
pi and a common covariance matrix C. Rao (1973) gives a method of classifying 
a new observation to one of these populations. The method consists of assigning 
scores C, to II, for this new observation and assigning the observation to the 
population with the maximum score. In practice, we need training samples of 
sizes ni (i = 1, .  . . ,g) from these g populations to estimate pi and C for use in 
the scores. The chance of misclassification can then be expressed as a multiple 
integral. 

In this paper we give a useful practical approximation to this integral for 
estimating the chance of misclassification. Schervish (1981) uses the method 
of asymptotic expansion of this integral, but the result appears to be difficult 
for a practitioner to use. Our approximation is more user-friendly. We relate 
our method to the problem of selecting and ordering populations, considered by 
Gibbons, Olkin & Sobel (1977), and the tables they prepared for that purpose 
axe useful in estimating this chance of misclassification. There is a considerable 
literature on different types of error rates in classification; McLachlan (1992) has 
given an excellent up-to-date account of various aspects of this problem. 

Here, we first assume that the population parameters, such as the means and 
covariance matrix of the populations, are known. The chance of misclassification 
p is calculated in terms of these parameters. Then, for practitioners, we suggest 
the unknown parameters in the final expression be replaced by the corresponding 
sample estimates. Thus in both the approximations we are not estimating the 
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actual error rate but rather the optimal error rate. Consequently, our estimate 
is likely to underestimate the actual error rate, due to sampling fluctuations. 

2. Chance of Misclassification 

Denote by xi, the d-vector of observations for the r t h  member of II, in the 
training sample (i = 1,. . . ,g; T = 1,. . . , ni). Let 

ni 

Si = c ( x i r  - %;)(xi,. - Xi)', where %i = nT1 C:A1 xi,, (2.1) 
r= 1 

be the matrix of the corrected sum of squares and products (SS & SP) for the 
i th sample. We estimate C by the pooled matrix 

9 

s = x s i  
r=l 

whose degrees of freedom (df) are f = N - g where N = C:=l ni .  
For a new observation x, to be classified, Rao (1973) defines the true score 

pi (i = 1 , . . . , g ) ;  (2.3) 1 !C-l by ci = p:c-1x0 - Tp, 

its sample estimate is 
A ci = fj@--'x, - 4 fX;s-lzi* 

The observation x, is then assigned to llj if 

Ci = max(Cl, ..., C,). 

The chance of misclassification when x, really belongs to II, is 

Ei = 1 - chance of correct classification 
= 1 - Pr{Ci > Cj, a l l  j # i). 

Observe that 

and 

var(Ci) = &, cov( c;, Cj )  = # i j  , 
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The Cis have a multivariate normal distribution with the above parameters. The 
chance of misclassification is thus 

Ei = 1 - / ! l ! (C)dC,  (2.10) 

where C, the vector of the Cis, has a multivariate normal distribution with 
parameters given earlier, and the single integral sign represents a ( g  - 1)-fold 
integral over the region Ci > Cj ( j  = 1,. . . ,g;  j ’ #  i). 

3. A Crude Approximation to Ei 

To obtain a crude approximation first we ignore the correlations pij between 
the Cis . Then, using the distribution of Ci - Cj, 

Pr{Ci < Cj} = Pr{Ci - Cj < 0) = @ ( - + A i j ) ,  (3-1) 

where @ denotes the cumulative distribution function (cdf) of a N ( 0 , l )  variable 
and 

A:j = (pi - pj)’ZT1(pi - p j ) .  

Ei x 1 - n (1 - @ ( - + A i j ) ) .  (3.3) 

(3.2) 
Therefore, 

9 

j = l , j # i  

This approximation is based on Kimball’s (1951) inequality as stated in Hochberg 
& Tamhane (1987 p.63); according to them this is at least as good as the Bon- 
ferroni bound used for similar results in multiple comparisons in analysis of 
variance. The total chance of misclassification is then approximately 

l g  

9 i=l 
E = - C E i .  (3.4) 

If we now replace every Aij  in (3.3) by 

Amin = min(Aij), (3-5) 

so that Ei is replaced by the maximum of the Eis (to avoid underestimation), 
(3.4) reduces to 

1 - (1 - @(-iA,,,in))g-l, (3.6) 
which could further be approximated by 



78 PIL S. PARK AND ANANT M. KSHIRSAGAR 

In practice, we have to use 

where A:j is the unbiased estimate of A:j given by 

where 
Di”j = f ( Z i  - jij)’s-l(jii - Zj) ( i , j  = 1,. * .  ,g), (3.10) 

and ii is the average sample size. 

for g = 4 populations, with d = 4, C = I and for the following cases: 
To see how ‘bad’ this approximation is, we carried out a simulation study 

1. pi = [1,0,0,0], pi = [0,1,0,0], pi = [0,0,1,0], pi = [O,O,O,O] and ni = 50 

2. = [O,O, 1,1], pi = [0, O,O, 01 and ni = 50 

3- & = [1,2,0,0], & = [0,1,2,0], &j = [O,O, 1,2], pi = [O,O,O,O] and ni = 50 

4. = [1,2,3,0], = [0,1,2,3], dj = [3,0,1,2], pi = [ l ,  1,1,1] and nj = 50 

5 .  pi (i = 1 , . . . , 4 )  as in Case 1, n1 = 30, n2 = 40, n3 = 50, n4 = 60;. 
6 .  pi (i = 1,.  . . , 4) as in Case 2, with sample sizes as in Case 5; 
7. pi (i = 1, .  . . ,4) as in Case 3, with sample sizes as in Case 5; 
8. pi (i = 1,.  . . ,4) as in Case 4, with sample sizes as in Case 5. 

( i =  1, ..., 4); 

( i =  1, ..., 4); . 

(i = 1, .  . . , 4); 

( i  = 1, ..., 4); 

= [1,1,0,0], & = [o, 1, 1,019 

The choice of these ps and njs is similar to that of Schervish (1981) in his sim- 
ulation studies. 

For each case, the sample observations were classified by Rm’s scoring 
method and the true chance of misclassification was estimated by counting the 
number of misclassified observations. Then it was compared with E and I? given 
by (3.7) and (3.8) respectively. This whole process was then repeated 200 times, 
so we have 200 values of p ,  E and k computed from samples of sizes nj given 
above, for each of the eight cases. This study showed that E or fi overestimates 
p by at least a factor 2 and thus a crude approximation is +E or +I?. The mean 
square errors (MSE) of i E  or ik, when compared with p ,  from these 200 iter- 
ations ranged from 0.000727 to 0.002345. In the next section, the correlations 
between the Cis are not ignored. Instead the correlation matrix is approximated 
by another equicorrelation matrix. 
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4. The ‘GOS’ Method of Estimation 
This method is based on Gibbons, Olkin & Sobel’s (1977) method of se- 

lecting and ordering normal populations, so we call it the ‘GOS’ method. They 
considered g variables ui ti = 1, .  . . ,g) (their notation is different) with a com- 
mon variance u2 and a common correlation coefficient p. Denote the ordered 
means of ui by 

Their goal was to select the variable with the largest mean with a specified 
assurance p* of the probability of correct selection, when 

(6* > 0, 9-l < p* < 1). (4.2) 

Their procedure is to choose a random sample of an appropriate size rn from the 
distribution of the vector variable 

4 1 1  I ~ [ 2 1  5 - - - I ( 4 4  

= p[g] - p[g-l] > - a preassigned quantity 6*, 

u’ = (q,. . . ,u,). (4.3) 
The sample means a1,. . . , I, are then ordered. The ordered means are denoted 
by (i = 1, .  . . ,g) .  The variable uj corresponding to the largest sample mean 
.si is then selected. The sample size rn for this procedure is calculated from the 
[gl 

expression 

where u and p are either known or are estimated from some prior data and r 
is obtained by their tables A.l and A.2 (pp.400, 401 of Gibbons et al. 1977, 
partially reproduced here, with permission, as Table 1; the ranges of g and r are 
sufficient in most practical situations). Their tables give T for values of g from 
2 to 25 and p* from 0.75 to 0.999, and also give the p* for g = 2 to 50; r goes 
from 0 to 5 at intervals of 0.2. 

It is interesting to see the similarities and differences between their problem 
and ours. We have the scores Ci ( i  = 1,.  . . , g) given by (2.4) for a new obser- 
vation x,, and our sample size is only m = 1, and we assign the observation 
x, to the population with maximum score. The GOS method determines the 
sample size for a specified chance of correct selection. We have a predetermined 
sample size and wish to find the chance p = 1 - p’ of misclassification (or correct 
selection). They assume a2 and p to be the same. In our case, the variances of 
the Ci are and the correlations are pi j  as given by (2.10); they are not the 
same. Thus, as an approximation, we propose to replace the 4 i i s  and replace 
p i j s  (i # j )  by common values. This approximation gives good results only 
when the +iis and the pi js  are not ‘too different’. This type of approximation 
was first tried by Penrose (1947) in the construction of Fisher’s linear discrimi- 
nant function and was found to be very satisfactory. Putting rn = 1 in (4.4), we 
obtain 
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TABLE 1 
Values of p for fixed r 

r 
g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

2 0.500 0.444 0.389 0.336 0.286 0.240 0.198 0.161 0.129 0.102 0.079 0.060 0.045 
3 0.667 0.609 0.548 0.487 0.426 0.366 0.310 0.258 0.211 0.170 0.134 0.104 0.079 
4 0.750 0.696 0.637 0.575 0.512 0.448 0.386 0.326 0.271 0.221 0.177 0.139 0.107 
5 0.800 0.750 0.695 0.635 0.571 0.506 0.441 0.378 0.318 0.262 0.212 0.168 0.131 

6 0.833 0.788 0.736 0.678 0.616 0.551 0.484 0.419 0.355 0.296 0.242 0.193 
7 0.857 0.815 0.766 0.711 0.650 0.586 0.519 0.452 0.387 0.324 0.267 0.215 
8 0.875 0.836 0.790 0.737 0.678 0.615 0.548 0.480 0.413 0.349 0.289 0.234 
9 0.889 0.852 0.809 0.758 0.701 0.639 0.573 0.505 0.437 0.371 0.309 0,252 

10 0.900 0.866 0.824 0.776 0.720 0.659 0.594 0.526 0.457 0.390 0.326 0.268 
15 0.933 0.907 0.874 0.833 0.785 0.729 0.668 0.602 0.533 0.463 0.394 0.329 
20 0.950 0.928 0.900 0.865 0.822 0.772 0.714 0.651 0.583 0.512 0.442 0.374 
25 0.960 0.942 0.917 0.886 0.847 0.800 0.746 0.685 0.619 0.549 0.478 0.408 
50 0.980 0.958 0.936 0.914 0.892 0.870 0.828 0.777 0.718 0.653 0.584 0.512 

0.152 
0.170 
0.186 
0.201 

0.215 
0.269 
0.309 
0.341 
0.440 

r 
g 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 

2 0.033 0.024 0.017 0.012 0.008 0.005 0.004 0.002 0.001 0.001 0.001 0.001 0.001 
3 0.059 0.043 0.031 0.022 0.015 0.010 0.007 0.004 0.003 0.002 0.001 0.001 0.001 
4 0.081 0.060 0.044 0.031 0.022 0.015 0.010 0.007 0.004 0.003 0.002 0.001 0.001 
5 0.100 0.075 0.055 0.039 0.028 0.019 0.013 0.008 0.005 0.003 0.002 0.001 0.001 

6 0.117 
7 0.131 
8 0.145 
9 0.157 
10 0.169 
15 0.215 
20 0.250 
25 0.279 
50 0.370 

0.088 0.065 
0.100 0.074 
0.110 0.082 
0.120 0.090 
0.130 0.098 
0.168 0.129 
0.198 0.153 
0.223 0.174 
0.304 0.244 

0.047 
0.054 
0.060 
0.066 
0.072 
0.096 
0.116 
0.133 
0.191 

0.033 0.023 0.015 0.010 
0.038 0.026 0.018 0.012 
0.043 0.030 0.020 0.014 
0.047 0.033 0.023 0.015 
0.052 0.036 0.025 0.017 
0.070 0.050 0.035 0.024 
0.085 0.062 0.043 0.030 
0.099 0.072 0.051 0.035 
0.147 0.109 0.080 0.057 

0.007 0.004 0.003 0.002 0.001 
0.008 0.005 0.003 0.002 0.001 
0.009 0.006 0.004 0.002 0.001 
0.010 0.006 0.004 0.002 0.001 
0.011 0.007 0.004 0.003 0.002 
0.016 0.010 0.007 0.004 0.002 
0.020 0.013 0.008 0.005 0.003 
0.024 0.016 0.010 0.006 0.004 
0.039 0.026 0.017 0.011 0.007 

For our variables Ci, the differences in the means are 

E(Ci) - E(Cj) = $A:, ( i , j  = 1,. . . ,g ) ,  

the variances are 4;; and the correlations axe pi,. Using averages of these quan- 
tities, we take our r2 to be 

We also considered ‘suitable’ values such as min(A;,), max(bii) and min(pij) to 
get a conservative r2 ,  but our simulation studies show that the choice of (4.7) 
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gives better results. Using (4.7) for T ~ ,  we refer to the GOS table and get the 
chance of correct selection as p* and therefore the chance of misclassification 
is p = 1 - p * .  Using the same cases and sample sizes for our simulation as 
described in Section 3, we compare p with the true chance. The MSE of p from 
200 iterations ranges from 0.000894 to 0.00919 for the eight cases, showing that 
p gives a reasonable estimate of the chance of misclassification. In practice, A;j 
must be estimated and, therefore, one has to use 

D?. - "1' N - g - d - 1  
- 2  - [Average ( '3 n 
7 -  

4[A~erage(&~~)] [ l -  Average(/iij)] ' 

where 

5. Conclusion 

Estimation of the chance of misclassification in the case of more than two 
groups is a difficult problem. One obvious method is the extension of the Lachen- 
bruch (1965) hold-out method in the case of two populations, but it requires sub- 
stantial computer use to drop every observation turn by turn and recalculate the 
scores to assign the observation 'held out'. We have given a reasonable approxi- 
mation to the integral that gives the chance of misclassification by replacing the 
multivariate normal distribution of the Cis by an equicorrelated equivariance dis- 
tribution and using the GOS table. Often, in practice, the scoring method of Rao 
is modified by replacing the variable zl,. . . , zd by a smaller number of canonical 
correlations (Kshirsagar & Arsenven, 1975). This refinement is worthwhile in the 
case of a large number of variables as in social sciences or in economics. Further 
details are in Park (1994). 
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