WADC TECHNICAL REPORT 54-255 April, 1954

HEAT TRANSFER TO LAMINAR FLOW IN A ROUND TUBE OR FLAT CONDUIT

THE GRAETZ PROBLEM EXTENDED

JOHN SELLARS
MYRON TRIBUS
JOHN KLEIN

WRIGHT AIR DEVELOPMENT CENTER, U. S. AIR FORCE
CONTRACT NO, AF 18(600)-51, E. 0. NO. 462 Br-1






SUMMARY

The complete set of eigenvalues and ei-
genfunctions for the classical Graetz problem is
presented and the solution is extended to cover
arbitrary wall temperature or heat-flux variations.
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SYMBOLS AND NOMENCLATURE

A = Coefficient occurring in Equation (10).

B = Coefficient occurring in Equation (10).

b = Half width of flat duct, ft.

C, = Coefficient in Equation (3).

Cp = Unit heat capacity at constant pressure, Btu/lb-°F.
D = Coefficient occurring in Equation (18).

E = Coefficient occurring in Equation (18).

F = F(s, r*), Laplace transform of Graetz solution.

g = g(x*t, r*) Integrating kernel for heat-flux problems, see
Equation (4k4).

G = G(s, r") laplace transform of g.

h = h(x+) Integrating kernel for heat-flux problems, see
Equation (34).

H = H(s) Laplace transform of h.
i = -1,
J = Bessel function of first kind, zero order.
Ji/3 = Bessel function of first kind, 1/3 order.
J_.1/3 = Bessel function of first kind, -1/3 order.
kX = Thermal conductivity of fluid, Btu/sec-ft2 (°F/ft).
K, = Coefficient occurring in Equation (A-3).
Pr = Prandtl modulus, dimensionless, (uCp/k)(3600 g.).

d(x) heat flux per unit wall area, Btu/hr-ft2,

Q
1}
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]

Laplace transform of (kq/rg).
r = Radius, ft.

r, = Tube radius, ft.

(r/ro)'

R = R(r%).

H
+
L1}

R = Reynolds modulus, dimensionless, (2Up rop/kee) or (LUy bp/pgc).
S = Transform variable.

t = t(xt, r*) temperature, °F.

T = T(s, r*), Laplace transform of t.

u = Velocity of fluid, ft/sec.

up = Average fluid velocity in tube, ft/sec.
x = Distance along tube, ft.

xt = (x/ry)(RePr)-1 or (x/b)(RePr)-1.

y = Distance from duct wall, ft.

Y= (/).

z = Distance from tube wall, ft.

2t = (z/ry).

y = Zero of H(s).

N = Eigenvalue.

L = Viscosity of fluid, lb-sec/ft2.

p = Fluid density, 1b/ft3.

€ = Dummy variable.

N = Dummy Variable.

f1 = Gamma function.
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HEAT TRANSFER TO LAMINAR FLOW IN A ROUND TUBE OR FLAT CONDUIT

THE GRAETZ PROBLEM EXTENDED

INTRODUCTION

The problem considered here is posed by a system in which a fluid of
constant properties flows in steady laminar motion in a round tube or flat duct.
The velocity profile is fully established and parabolic. Up to a point (x = O)
the fluid is isothermal. After this point a prescribed heat flux or temperature
is given at the wall of the conduit and the problem is to find the temperature
distribution, as well as the connection between heat flux and wall temperature.
The application of this solution to practical problems of heat exchange has al-
ready been so well established that further comment is unnecessary.

The problem has been considered in detail by a number of workers and
an excellent review is contained in the book "Heat Transfer" by M. Jakob.l The
problem readily reduces to the finding of eigenvalues and prior to this paper
only the first three eigenfunctions and the first four eigenvalues have been
known. A recent paper2 has brought out the importance of obtaining more eigen-
values, and by using the complete set of eigenvalues and the methods of refer-

ence 2 the classical "Graetz Problem"3 is extended to more complicated boundary
conditions.

The problem can be stated in mathematical terms as follows:

Given
T =t(xn)
3tk 2 ot
upC, — = & < —_—
P % = YRR (1)
k3
w =2ty [i-(%)]
and for
T=t x <o
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with either

t(x, n,) = Ty (%)

x>0

or %{ fl\' (1'1 A‘o) = Z(‘)L)

find t(x,r) and the relation between q(x) and ty(x).
The nondimensional form of the equations is

. IR BN A2
P |-t At nt (/l 9":*) (2)

The boundary conditions are

t =T, 2T <o

and either
txt ) = ¢, (P

T (2t 1) = n, 1(1%

xt>o0
or

In view of the linearity of Equation (2), it is necessary to have only
the fundamental solution, known as the Graetz solution, to construct all other
needed solutions. Therefore, the initial step is the completion of the Graetz
solution.

THE GRAETZ SOLUTION

The problem considered by Graetz and most other workers is Equation
(2) with boundary conditions.

t = x*<o

+
1, =0 L’ >0

Led (9 be a solution of Equation (2), then

kS

oo +
6:=3 e he? (5)

mzszo

where the A, are the eigenvalues required to make the solution to the following
differential equation
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AR H R AN At (1-2T) R 2o "

satisfying the boundary conditions R,(1) = 0, Ry(0) = 1. The coefficients Cp
are determined from the relation

5, o (1=a) R dnt

o -3

C. = ' L = R (5)
j n+(,_hf‘)RMJn,* )\’“(a?f>f=’
0 =%A~

The eigenfunctions and eigenvalues have been given only for n = 1, 2,
3., The higher modes of Equation (4) are very difficult to calculate for large
values of A . Therefore, to obtain Ay and Cp for n > 3, a solution is sought
which will be valid as A, * ». It will be found that the resulting formulae
will provide good answers even when Ap is small. First, look for a solution in
the form

+
R = eyn-)

and find that g(rt) satisfies
] (s I ] < "l’t)
+q + = + ) (1-r"J/=0 (6)
eyt end
Now an asymptotic solution is sought in the form

3:*3,-&3,4-)\_'3,‘4---- (7)

Substitution in Equation (6) and equating powers of N gives
/

g° =+ Vi-p (8)

3 -In W (9)

Since A is large, the remaining terms in Equation (7) are neglected.
Substitution of Equations (8) and (9) in EquatioP (7) gives for R

At A
Y I, Jl-g‘-gls _ix S" Vi-g* dg
At +Be

R = — — 10
J_/F(I—/t+)/q ( )

Equation (10) is the so-called WKB approximation and is valid for o<rt <1 for
sufficiently large A. Now the coefficients A and B must be determined so that
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Equation (10) will correspond to the regular solution of Equation (L), where r*
is small. For small rt Equation (10) is
A LA —oat
R = € +Be (11)
A (1 -att)h

Inspection of Equation (4) shows that when r* is small enough so that
A2 (1 - rt?) + A2, the classical solution behaves as Jo (Art), since Equation
(4) then becomes a Bessel equation. For large ArT, even if r* is small, the as-
ymptotic expression for Jo(Art) is

Tow) = 5, e (%) 2

and thus, it is seen that to make Equations (11) and (12) equal for r* small, it
is required that

- % A
A =I$‘i_ e B= % e (13)
and for 0 <rt <1
/»+
RO =2 o (M) TS - ) (14)
TN (l -A_'t.) %’

Equation (14) is not a good approximation to the solution as rt =+ 1,
since it has a singularity there. Because a boundary condition is to be imposed
at rt = 1, the development of an alternate solution, valid near r* = 1, is con-
sidered. By patching it on to Equation (14) the solution over the range O £ r™

< 1 is obtained.
The following change of variable is made

3* = l-JL+
and Equation (4) becomes

a1 AR ey R=o

Iy~ -3 4 2
Now consider O < zt << 1 and define a new variable
Y3
L ER N (16)

Substitution of Equation (16) into Equation (1k4) yields for large A
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L2 4 2mR=e

o
which has the solution

R=D I3 T, (“r; )+ ETT T(%‘rj;ﬁ) (18)

The constants D and E are to be so chosen that for small z* Equations (18) and
(14) are equivalent.

Change the variable from r* to zt in Equation (14) and perform the in-
tegration

5(7-"4; 5‘“-: “VMI- tds =T - SV?;T«’S (19)

For small zt Equation (19) yields

nt & + %A
S ey =% - % 3 (20)
so that Equation (14) for small z* is
+ 'z cm,(/xy" (>0 7%)
R = opeD (21)

For large Azt, even if z* is small, Equation (18) becomes

MWE %
( ’3/ 3* -17}Il> (22)

Y
(L@— +‘.-‘} + E Con
R(Q*) 2% 'Dc.ac- 3 3 u.)

2% 3t

Expanding the cosines of differences of angle occurring in Equations (21) and
(22) yields the simultaneous equation

Dm'{,}z tE CN‘W,-,_ 5‘/—% (.o-a(/\")%

Doim &+ eain T =V aim (3-0%

from which D and E are evaluated. Therefore, Equation (18) is
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% 3
T 3 ‘ it
( )"Aww (X1T - 5%) Q} (x 35

R = 3 g [W(-*% %) T, 2 ) @)

I K3

As z+ + O the product vzt Jy 3 [A JB/B z+3/2] » 0, but the product in-

volving J_l becomes constant. Therefore, the coefficient of J_l 5 must be

zero if R =0 at zt = O. The values of A must therefore be given by
AM = 4”\ + &s ma=0 [} 2 e (25)
The equations for R, are therefore

for small r* (center of pipe)

R (1) =, (X207 (26)
for medium rt
R = [ e "% 2t VT 4 My ancaind? - 2
w)mhf (‘,A'f‘) '/4' ( 7)

and for small z* = 1 - r* (near the wall)
%
R (3%) = \/33_{ =" 3—,,3 (—)‘%ﬁ 3 ) (28)

Equations (24) to (28) contain all the information essential to the
problem solution. The coefficients C, in Equation (3) are found from Equation
(24) in accordance with Equation (5). Thus it is found that

31 m+l 7\ -l
LY _ (-0 - _ (29)
()>‘>>“\~. = ‘z& F(‘@ m=012 ..
S.o
and therefore
R
m 2.4B (%) 74
€ = () T A =0 h (30)
The derivative of R at the wall (z'= 0) which is
R'(l) = —(?_R‘_l (_0’" -73)\'»/3 s .. (A1)
" 3% 3% = r() 3% SR

will be required later.
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Table I shows the first ten eigenvalues and the important constants
for the case of flow in a round tube. Table II gives the same data for a flat
duct with opposite walls at the same temperature. The development of the flat-
duct system is similar to the round duct and the equations are given in the ap-
pendix, numbered to correspond with the text.

The previously known eigenvalues given by Jakob are shown in Table
ITT for comparison. Since the solution presented here is valid for large My
and in view of the agreement even at moderate values of Ay, it has been con-
cluded that all the eigenvalues and functions are now sufficiently accurately

known.

The heat flux at the wall is computed from the equation

+ -D—t ‘401. Com ! -)\,,.'xf
1(1« ) = 'pc( 31\7>4*=‘ = - 2 —E—RM(:) e ('t‘w -t,) (32)

Equation (32) is presented in the above form to bring it into agreement with
Jakob.1

ARBITRARY WALL-TEMPERATURE VARTIATTONS

If the wall-temperature variation is given by ty(x), then, as shown
by Tribus and Klein,2 the principle of superposition may be applied and the
solution may be written in a Fourler-type Stieltjes integral

tot, =]

X-*

[l - 9("‘*'%1\-*)] ‘ltw (S) (33)

where © is the solution to Equation (2) defined by Equation (3). The tempera-
ture of the wall and fluid for x¥ < 0 is to. The Stieljes integral in Equation
(33) is evaluated by substituting (dtw/dg) d¢ for dty wherever ty is continuous
and substituting [1 - 6 (x™ - €4, r™)][t (&,7) - t (£,7)] as the contribution
of the integral wherever t, (x') has a discontinuity. (See Tribus and Klein2
for a more detailed discussion.) The heat flux is computed from

+

x
%('ﬁ) = h (%’>A*=J = —7{& 5 & (£=3,1) dt, (9)

e ©

(24)
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TABLE T

FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS
FOR THE CASE OF FLOW IN A ROUND TUBE

n Ay A2 C, -1/2 ¢, R (1)
0 2 2/3 7.1129 +1.47989 0.7303
1 6 2/3 L4, 489  -0.80345 0.53810
2 10 2/3 113.785  +0.58732 0.46007k
3 1k 2/3  215.121  -0.474993 0.413743
b 18 2/3  348.457  +0.Loh4L8 0.381785
5 222/3  513.793 -0.355345 0.357853
6 262/3 T11.129 +0.318858 0.3%8988
7 30 2/3 9k0.465  -0.290488 0.323555
8 3zh2/3 1201.8 +0.267691 0.310596
9 382/3 1k95.1 -0.248895 0.29950
Cn = ()™ M% = (-0 2.84¢0l X,,,—%

T

2, )
i-:- le(l) = ¢ ” r‘(%) 22/3 )Mé

. ™ (%) 3%

-
= [ olath M 3

)\m=4-+7/3 M=o, | 2 ...

ozt
e = 2 ¢C, Rm(f)'f) €

S

/ A X
1(%-9 - -‘i;i 5 .C_;_ R (D) e (tw-1,)
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TABLE IT

FIRST TEN EIGENVALUES AND THE IMPORTANT CONSTANTS FOR THE CASE
OF FLOW IN A FLAT DUCT WITH OPPOSITE WALLS AT THE SAME TEMPERATURE

n M I~ K Ky Tt (1)
0 1.667 2.779  +0.503 .683
1 5.667 32.11  -0.121 sk
2 9.667 93.45  +0.0648 .380
3 13,67 186.9 -0.04%1 .338
L 17.67 312.2 +0.0319 311
5 21.67 469.6 -0.0253 291
6 25.67 658.9 +0.0207 2Tk
7 29.67 880.3 -0.017k4 262
8  33.67 113k +0.0150 .251
9  37.67 1419 -0.0131 22

%

k'\'\ -{ ) 3 >\m ¢ =(’,)'w 0.9/3 x«\'
A
K L0 = #.2% (%)) " 7o M
~ '™ - r‘("/_.,) 3‘1‘ = 0. ~m
xfv\= 4""+{/3 m=0, 12 -
%
6= Z K.Y, (4 e
S PN
Z(%*) = Z "'%- K Ym (1) e 3 (ty-t,)
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HEAT FLUX AT THE WALL GIVEN

The inverse problem; namely, "Given the heat flux at the wall, what
is the temperature?", may be solved with the aid of the Laplace transform theory

Define the following transforms

o +
T (s, ") :L e 3% (t-t,) d?

Ty (s) = T(s,1)

o0 +
F(s,at) = So [ 1- 6(xtah)] e dyt

_gxt

00
H(S) = Ta (s, 0 = -fo Ou(xt ) e d?

+
5%
IL)@S e qhdzt

o

Qs

Applying the Faltung theorem to Equations (33) and (34) yields;

T(s,a*) = F(s,AD s T, (s

Q(s) = H(s)s T, (s)

(40)

(41)

If the heat flux is finite, tyw(x*) will be continuous. Eliminating ty(s) from

the above equations,

F(s, A1)

T(SI A") =
H(s)

Q(s)
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Now define
F(s,»)

+

and let g(x*, r*) be the inverse transform of G(s, r*). Then, for arbitrary
heat flux at the wall, the temperature is given by

+

x
t-t = %: S,, 3( "+'S,/b+>2($)4§ (1)

Thus, the problem is reduced to finding g(x*, r*), which is given by
ctLoo
X (s, AP
9(1-"', AY) = L e Fls, A7 ds (45)
am ¢ H(S)

Returning to Equations (37), (38), and (3) it is found that

)
Fis,A) = 1 _ o O R O
s MZ“ S+t (46)

2 e R
(s) = - m _\m
H mzz KIS Wy (¥7)

[

Because F and H have poles at s = -A2,, the quotient F/H has no poles
except at S = 0 and the zeroes of H(s) and the zeroes of H(s) must be found nu-
merically. Because H'(s) is monotonic, it is found that the zeroces of H(s) oc-
cur between the -A2,. Letting y2y be the values satisfying H(-73,) = 0, from
the theory of residues

-y, Xt 1 4

grat) s = E S —F R T €

e
He ¥ H{y)

(48)

A = Vo

Table IV gives the values of y2 , H'(-7% ) for the first three values
of m. The term H(O) has been shown by othersl to be given by

H (0) = + '/4 (14‘9)
hence, the wall temperature may be easily calculated with the aid of
, Y 2t
1) = 4 - Z ———r
§* v - TN A (50)
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TABLE IV
THE VALUES OF 72m, H'(-72m) FOR THE FIRST THREE VALUES OF m
Roots of H(s) = 0, Values of H'(-72))

H(-S):—z .S_M

mso Sz *

$
XM: 4~\+/3 r-y,=01|'2)..
/ o’ _1/3
Co R (1) = -2 025872 X,
Roo (1)
C,. K
H(s) = =

-1
m 72 -H! _72 -—s
n ( m) 7%p H'(-7%D)

1 25.639 8.854 x 10-8 4. 405

84,624 2,062 x 10-3 5.7308
3 176.40 9.435 x 10~% 6.0084

no
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TABLE V
VALUES OF Vﬁ, H' (-71%) FOR THE FIRST THREE VALUES OF m FOR A FLAT DUCT

Roots of H(s) = 0, Values of H' (-7%,)

/
F(S) = —Z ~_ka"\ (D
S+% an

/
H-I(S> Z Ko Ym (1)

—
(s +3’3>\:)
AM: 4mf‘{(3 ™ s 0, ’,2""
= -1
m oyz,  B'(-rp) —=——
m m 72m Hv(_.),gm)
1 L49.345 T7.45 x 104 27.2
2 185.94% 1.67 x 10-4 32,1
3 409.45  6.89 x 10-5 35.4
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A SAMPLE CALCULATION FOR CONSTANT WALL HEAT FLUX

By way of illustration consider the computation of the asymptotic val-
ue of the Nusselt modulus for the case of constant heat flux at the wall. Com-

bining Equations (44) and (48) with q(&) = g = constant, the following is ob-
tained.

t qn ‘{7‘* e Yo (15 -%0 (2-3?)
t) —t, = ° - - e 4
£ (20 % % e [+ o W) ; C'"R"‘é\ N A Jd! (51)
Letting px = xt, where B = nk/2WCp, and integrating Equation (51) gives
Yo BX
t(%t/\.+>'t° = Illo {46%_2 | - € m\e
ﬁ oy ¥ ¢ [PERVEY
_v,,,,"Qx
- 2GR T A
™ dad XM\ (>‘~\"Yn~\)
which may be rewritten as
't-('x’; /L") _To = Ao - \__.l
l?( Ligx-Z W)
2
Y Rl ] (53)
€ ¢
+’§ “,: H'(-'::) - g mRMm Y,,:(Xt—Yw")

Equation (53) shows that far down the pipe (x* + ®) the derivative of
t with respect to x is independent of x or r+; i.e.,

i3 - 4“;;, For z2t o (54)
2% 'y

Substituting this quantity into Equation (2) leads to
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i S (55)
Ao *U A 9”*(n QM)
which may be integrated directly to give
¥
-r
D -t e = ._%( - X } (56)
Now the mixed mean temperature along the pipe is given by
T (¥ =8, = 2TM4Z _ dng (57)
W ep o X
but the mixed mean temperature is also defined by
/
T () = f wpcp txtat) apatdat (58)
W Qf
Substituting Equation (56) into Equation (58) and integrating results in
7 N
Tonen (£1) =T 0) = %, —1-7;- (59)
Combining Equations (59) and (56)
t ]
t ('x-* /\'+) = 4“' A:r A,+ T -7 Ny 60
’ GFF - ) T G )
and substituting Equation (57) into Equation (60)
4
1.(1'.'/ A'D —‘tp = A—“k— /L+L" A'* 7 61
* Ldex+ F " 4ed (61)
at rt = 1. This expression reduces to
Do )
el -t = gk Dpr + %) (62)
but from Equation (52), since Rp(1l) = O,
txt = 2§ [dgx-5 ——L (63)
) - % Lfgx-2 X H-x

Hence,
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— _ _ ~ -
LYTHIER T T F omousE (64)

(Note that the first three terms sum to approximately -0.27.) Now, the Nusselt
modulus is given by

Nu = —2%§ (65)
Rty ~twmm)
From Equation (60)
D) =t = Yy "M (66)

which when substituted into Equation (65) gives
48
Nu= /5 & 436 (67)

Substitution of (64), (58) and (53) into (65) yields the local value
of the Nusselt Modulus for the case q(x¥) = constant.

! (68)

CALCULATION FOR LINEARLY VARYING WALL TEMPERATURES

In similar fashion the use of the boundary condition Tw(x*) -T, =
A x* where A = any constant, gives:

q(x*) = Ak L a4t Z Cw RI(1) c-x:z* (69)
*no n, P }\:
‘ _
T At -2 A4 _gas Cv R, (1) e-k,x (70)
' A X
L Cm (1) ="
N = P2 3 A (72)
_S’i + 5 Cn R:,(l) -X:,'l*
768 " a \:" e
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APPROXIMATIONS FOR SMALL zi

Whenever x* is small, a large number of the terms in the series, Equa-
tion (3) must be taken. The Leveque solution is a good approximation for such
cases. As shown by Tribus and Klein,? the wall temperature and heat flux for
such a case are related by

C kRS e Nspuys (K (72)
and ‘
P"z P l/3
T « RILS: (73)
IR 5 >J S (2-1)%
For flat ducts
3 Um
(d4) - /4 (7h)
4 4=
for round ducts
du 4y
(—‘g ‘3:0 = M\/ﬂ" (75)

Substitution of Equation (75) into Equations (72) or (73) (and noting
that the mixed mean temperature of the fluid is essentially equal to its inlet
value at small values of x*) gives for the three cases under consideration:

For constant wall temperature:

2 x+‘% +=% +
New 22X ja5es > £t < o.00! (76)
s P(Y3)
For constant heat flux
Uy oY /, = /
2193 (%) +74 -%
Nu = 3 x = 16393 ¥ (77)
For linearly varying wall temperature
)
-4
1 - (78)
Nu = 327 X = Q.0398 % I
LRNL7
¢ (Y3)
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Figure 1 shows a graph of the functions Ry, Rj, and Ry compared with

solutions given by Jakob. Figure 2 shows the variations in Nusselt modulus for
three cases

(1) wall temperature constant,
(2) heat flux constant, and

(3) wall temperature increasing linearly along the pipe wall.
The Nusselt modulus is defined by the equation

- znt) _dn,
Nuw _¥;agt?r__' ny (79)

- rm
The mixed-mean temperature, tpy, is determined by integrating the heat flux
from the origin (Xt = 0) to the position where g(x) is known.

CONCLUSIONS

The methods used in this paper have a wide applicability. For exam-
ple, the liquid metals systems analyzed by Poppendiek4 could be treated by the
methods used here. The unsymmetrical boundary conditions treated by Yih and
Cermak® can also be readily treated by these methods.

The authors are somewhat surprised at the fact that whereas the as-

ymptotic formulae are all supposed to be valid only for very large A, in ac-

tuality values of n as small as L seem to give excellent results. The reasons
for the good results are not now clear.

APPENDIX A

The equations for a flat duct system with walls at y =+ D (A-1)

Defining Re = WUy pb/u, x* = (x/b)(RePr)-1, y* = (y/b) the equation to
be solved is

s (A-2)

-5y

which has a solution
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& %2
o = Y. (4t e
Z, Kl (8-3)
satisfying @ = 1 at xt =0, 6 » 0, xt + 0, if y(y*) satisfies
Y N (- g)Y =0 (A1)

with Y'(0) = Y(1) = 0, Y(0) = 1. Ay is the value of A to permit Y (1) = O. The
coefficients Ky, are given by

-2
K., (A-5)
)YM
a‘ I Xz Am
By the methods in the text the KB approximation is found to be

+

w0t

Y<3*> =
lfz*t

(A-1k)

for 0 ¢ y© < 1.

Defining z = 1 - y*, the solution of A(A-4) for z << 1 is found to be

Ty = 4 Ot [ (B -R)T, F Y. o (07,08 2

The eigenvalues are

A = 4+ S (A-25)
Y, "y %
3§_>x‘%“ = (-1 2 XM N A (he2)
gt=1 36 (%) 2
Ko = (1) 3% r(% z""' - (A-30)
T -
Y. - %\ % (A-31)
< Aa*>:;*=. I -7\__"" 2% M
3% (%)
-+ (A-32)

?(1'>= —% (t, -'t)ZKY(') 4
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To obtain the fluid temperature for a given heat flux use

xt
t-t, = % i_a ‘5(1*-5,3*) 16045 (A-L1)

The integrating kernel, g, is given by

_ve ot ot
tiye Y - S -2 K 4 Z —
3(%’3) SRR HEAS TS o "‘3)5 %0 = Yo (A-18)
where the -72, are the zeroes of
— ' A-L
H('S) = -5 KMYM ('2 ( 7)
~ S+
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