
ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2007.00023.x

STATISTICAL TESTS FOR TAXONOMIC
DISTINCTIVENESS FROM OBSERVATIONS
OF MONOPHYLY
Noah A. Rosenberg1,2

1Department of Human Genetics, Bioinformatics Program, and the Life Sciences Institute, University of Michigan,

Ann Arbor, Michigan 48109-2218
2E-mail: rnoah@umich.edu

Received January 30, 2006

Accepted October 17, 2006

The observation of monophyly for a specified set of genealogical lineages is often used to place the lineages into a distinctive

taxonomic entity. However, it is sometimes possible that monophyly of the lineages can occur by chance as an outcome of the

random branching of lineages within a single taxon. Thus, especially for small samples, an observation of monophyly for a set

of lineages—even if strongly supported statistically—does not necessarily indicate that the lineages are from a distinctive group.

Here I develop a test of the null hypothesis that monophyly is a chance outcome of random branching. I also compute the sample

size required so that the probability of chance occurrence of monophyly of a specified set of lineages lies below a prescribed

tolerance. Under the null model of random branching, the probability that monophyly of the lineages in an index group occurs by

chance is substantial if the sample is highly asymmetric, that is, if only a few of the sampled lineages are from the index group,

or if only a few lineages are external to the group. If sample sizes are similar inside and outside the group of interest, however,

chance occurrence of monophyly can be rejected at stringent significance levels (P < 10−5) even for quite small samples (≈ 20 total

lineages). For a fixed total sample size, rejection of the null hypothesis of random branching in a single taxon occurs at the most

stringent level if samples of nearly equal size inside and outside the index group—with a slightly greater size within the index

group—are used. Similar results apply, with smaller sample sizes needed, when reciprocal monophyly of two groups, rather than

monophyly of a single group, is of interest. The results suggest minimal sample sizes required for inferences to be made about

taxonomic distinctiveness from observations of monophyly.
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A set of lineages of a common type—species, orthologous ge-

nomic regions in different individuals, or other taxonomic enti-

ties that have a tree-like genealogy—is monophyletic if no other

lineages under consideration descend from the most recent com-

mon ancestor of the set. Monophyly is often used in assembling

members of lower-level taxa into higher-level taxa. For example,

monophyly of the copies of a genomic region in a set of indi-

viduals (or monophyly for a large fraction of the regions of their

genomes) might be used to group the individuals into a distinctive

population or species (Avise and Ball 1990; Moritz 1994; Baum

and Shaw 1995; Hudson and Coyne 2002).

Studies of monophyly in a genomic region typically gather

genetic sequences from individuals of a group whose monophyly

status is of interest, as well as from individuals belonging to one or

more additional groups. Trees constructed from these sequences

are then used to make inferences about monophyly for the group

of interest (for representative examples, see Johnson et al. (2005);

Steiper (2006); Weisrock et al. (2006)). Suppose that data on a

lineages from group A and b lineages from other groups are an-

alyzed, and that the set of a lineages is seen to be monophyletic.

If monophyly of the set of a lineages is treated as an important

requirement for identifying group A as distinctive, the use of the
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observation of monophyly for this purpose requires at least two

conditions to hold. First, evidence must exist in support of the

view that the a lineages are indeed monophyletic. Second, it must

be improbable that the chance branching of a + b lineages within

a single taxonomic group could lead to monophyly of the spec-

ified set of a lineages. In other words, even if the a lineages are

known with certainty to be monophyletic, sample sizes must be

large enough that chance can be eliminated as the source of the

observed monophyly.

One way of assessing the first condition is with a likelihood

ratio test (Huelsenbeck et al. 1996). With this method, the likeli-

hood of a set of DNA sequences is maximized separately under a

null hypothesis of monophyly of the set, and under an alternative

hypothesis in which the set is not constrained to be monophyletic.

The null hypothesis of monophyly is rejected if the ratio of the

unconstrained and constrained maxima is sufficiently large.

This type of test, however, does not address the second con-

dition. If a and b are small, under a null hypothesis of a single

taxonomic entity in which lineages follow a random-branching

model, the probability is sizeable that in a collection of a + b total

lineages, a specific set of a lineages is monophyletic (Brown 1994;

Rosenberg 2003). Thus, even if it is strongly supported by such

approaches as that of Huelsenbeck et al. (1996), the observation

of monophyly might potentially be attributable to chance rather

than to the distinctiveness of group A. Monophyly of the a lin-

eages from group A must be unlikely under a suitable null model

to assert that group A is indeed distinctive. For the special case that

the b lineages all belong to the same group, scenarios of chance

monophyly under a null model and of monophyly resulting from

a barrier to gene flow are shown in Figure 1.

In this article, using a random-branching model and assum-

ing that the monophyly status of a set of lineages can be known

Group A Group B Group A Group B

Figure 1. Chance and isolation as causes of reciprocal monophyly.

Lineages are classified as belonging to one of two groups, A and B.

In the diagram on the left, the lineages of the two groups are recip-

rocally monophyletic by chance—both groups have small sample

sizes, all lineages belong to the same unsubdivided population,

and random branching within that population has by chance led

to monophyletic groupings for A and B. In the diagram of the same

genealogy on the right, the lineages of the two groups are recip-

rocally monophyletic, but instead as a result of genetic isolation

(represented by the center line).

with certainty, I develop statistical tests of the null hypothesis that

monophyly has occurred by chance. These new methods can be

viewed as a type of genealogy-based test of a null hypothesis that

lineages have been sampled from a single taxonomic group. For

the new tests, as a function of the statistical significance level, I de-

termine the sample sizes needed in genealogical studies for avoid-

ing the conclusion that monophyly is a consequence of chance,

so that appropriate sample sizes for an investigation of mono-

phyly can be chosen prior to the study. The results are described

in terms of genetic lineages at a locus for individuals from the

taxonomic “groups” for which taxonomic distinctiveness is being

tested. These groups can be viewed as different populations of the

same species, or as populations that represent different putative

species.

TESTING FOR CHANCE
OCCURRENCE OF MONOPHYLY
THE NULL MODEL

In the Yule model (Yule 1924; Harding 1971; Slowinski and

Guyer 1989; Maddison and Slatkin 1991; Aldous 2001; Steel

and McKenzie 2001; Rosenberg 2006), bifurcating genealogies

are generated forward in time by a process in which each lineage

has equal probability of being the next to branch into two; equiv-

alently, they are generated backward in time in such a way that

each pair of lineages has the same probability of being the next to

coalesce. This model of random branching is a component of the

coalescent model for the evolution of genealogical trees within

populations (Nordborg 2003; Hein et al. 2005), and thus it pro-

vides a sensible null model for the branching of lineages within the

taxonomic “groups” that we consider. Consequently, the observa-

tion of monophyly in a genealogical dataset can be viewed as a

test statistic for the null hypothesis that the lineages in the dataset

are drawn from a single taxonomic entity that evolves according

to the Yule model. If the null hypothesis is rejected, then it is in-

ferred that the random branching of the Yule model does not hold,

perhaps because lineages were drawn from multiple distinctive

groups separated by genetic barriers. If the null hypothesis is not

rejected, then the observed monophyly is likely enough to have

occurred by chance that it should not be regarded as evidence of

a genealogical separation of groups.

Notice the distinction between these potential conclusions

and those of the monophyly test of Huelsenbeck et al. (1996). In the

test of Huelsenbeck et al. (1996), it is concluded that monophyly

is either supported or not supported by the data. The test here,

however, assumes that monophyly is supported and concludes

that it either is or is not interesting—in other words, the new test

examines whether monophyly has been produced by evolutionary

processes or, of less interest, by insufficient sampling. I consider

two versions of a test of the meaning of monophyly: one based on

318 EVOLUTION FEBRUARY 2007



TESTING FOR CHANCE OCCURRENCE OF MONOPHYLY

Table 1. Significance level at which the null hypothesis of random branching in a single taxon can be rejected, when monophyly of group

A is observed. Given the sample sizes for each row and column, the probability of monophyly of group A is computed under the null

hypothesis (eq. 1); a probability below 0.01 is assigned to the smallest integer power of 10 larger than or equal to it.

Lineages
Lineages external to group A (b)

from group
A (a) 1 2 3 4 5 10 20 50 100

2 0.333 0.222 0.167 0.133 0.111 0.061 0.032 0.013 <10−2

3 0.167 0.083 0.050 0.033 0.024 <10−2 <10−2 <10−3 <10−4

4 0.100 0.040 0.020 0.011 <10−2 <10−2 <10−3 <10−4 <10−5

5 0.067 0.022 <10−2 <10−2 <10−2 <10−3 <10−4 <10−5 <10−7

10 0.018 <10−2 <10−3 <10−3 <10−4 <10−5 <10−7 <10−10 <10−13

20 <10−2 <10−3 <10−4 <10−4 <10−5 <10−8 <10−11 <10−17 <10−22

50 <10−3 <10−4 <10−5 <10−6 <10−7 <10−12 <10−18 <10−30 <10−41

100 <10−3 <10−5 <10−6 <10−8 <10−9 <10−15 <10−24 <10−41 <10−60

monophyly of the lineages from group A when the lineages not

from A have arbitrary sources, and one based on the reciprocal

monophyly of the lineages of groups A and B when all lineages

derive from one of these two groups.

TESTING FOR CHANCE OCCURRENCE

OF MONOPHYLY OF A

Probability of monophyly of A under the null model
Consider c = a + b total lineages, where a of the lineages de-

rive from group A, and the remaining b lineages are from groups

other than A. We are interested in how to interpret an observation

of monophyly for the a lineages from group A. Under the Yule

model, the lineages of group A are monophyletic with probability

(Rosenberg 2003, eq. 11)

PA (a, b) = 2(
a + b

a

) a + b

a(a + 1)
. (1)

Using equation (1), Table 1 gives rejection probabilities for the

null hypothesis that monophyly of the a specific lineages is due

to random branching of the c total lineages. Provided that several

lineages are considered both from group A and not from group A,

the rejection probability rapidly becomes quite small: for example,

PA(6, 6) ≈ 6.18 × 10−4.

Minimal sample sizes for rejecting the null model
We can use equation (1) to evaluate the sample sizes required

for rejecting the null model at specified significance levels. It is

straightforward to show that the function PA (eq. 1) is monotoni-

cally decreasing in both a and b. Because of the decreasing nature

of PA as a increases, for any � between 0 and 1 and a fixed value

of b, equation (1) can be used to obtain the minimal sample size a

needed so that an observation of monophyly enables rejection of

the null hypothesis at significance level �. If b = 1, that is, if the

meaning of monophyly of group A is tested using a lineages from

A and one lineage not from A, the minimal number of lineages

needed is

a =
⌈√

�2 + 8�

2�
− 1

2

⌉
(2)

where 	x
 is the smallest integer larger than or equal to x. More

generally, by numerically solving equation (1) for a in terms of b

and �, Table 2 gives the minimal sample size needed from group

A to achieve PA ≤ �.

Table 2. For a fixed sample size external to group A, the mini-

mal sample size needed from group A so that the probability of

monophyly of group A is less than or equal to � (P A ≤ �).

Lineages
�

external
group A (b) 10−1 10−2 10−3 10−4 10−5 10−6

1 4 14 45 141 447 1414
2 3 7 16 34 74 159
3 3 5 10 18 33 58
4 3 5 8 13 21 33
5 3 4 7 10 16 24
6 2 4 6 9 13 19
7 2 4 6 8 11 16
8 2 4 5 7 10 14
9 2 3 5 7 9 12

10 2 3 5 6 9 11
20 2 3 4 5 6 8
50 2 3 3 4 5 6

100 2 2 3 3 4 5
200 2 2 3 3 4 4
500 2 2 3 3 3 4

1000 2 2 2 3 3 3
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Similarly, for a fixed value of a, the minimal value of b can

be determined so that with a lineages from group A and b lineages

not from group A, the probability under the null hypothesis that

the lineages of A are monophyletic is no larger than �. This com-

putation is only sensible for a ≥ 2, because for a = 1, monophyly

is guaranteed. For a = 2, this minimal value of b is

b =
⌈

2

3�

⌉
− 1. (3)

For a = 3, it is

b =
⌈√

�2 + 4�

2�
− 3

2

⌉
. (4)

More generally, as a function of a, Table 3 gives the minimal

sample size needed outside group A to achieve PA ≤ �.

Finally, for a fixed value of c = a + b, the minimal sample

sizes needed from group A and not from A to achieve PA ≤ �

can be determined from equation (1) (Tables 4 and 5). At a fixed

value of c, the null hypothesis of random branching is rejected

at the most stringent significance level when a ≈ b (Fig. 2). By

finding the smallest value of a for which the rejection probability

with sample sizes a + 1 and c − (a + 1) exceeds that for sample

sizes a and c − a, it can be shown that for fixed c ≥ 3, the rejec-

tion probability is smallest when a = (c + 2)/2 (even c) or a =
(c + 1)/2 (odd c). Thus, use of nearly equal sample sizes, with a

slightly greater sample size within group A than outside group A,

leads to the most stringent rejection probability. More generally,

a slightly greater effort in obtaining samples from A rather than

Table 3. For a fixed sample size from group A, the minimal sample

size needed external to group A so that the probability of mono-

phyly of group A is less than or equal to � (PA≤�).

Lineages
�

from group
A (a) 10−1 10−2 10−3 10−4 10−5 10−6

2 6 66 666 6666 66666 666666
3 2 9 31 99 315 999
4 1 5 12 27 61 132
5 1 3 8 15 28 51
6 1 3 6 10 18 30
7 1 2 5 8 13 21
8 1 2 4 7 11 16
9 1 2 4 6 9 13

10 1 2 3 5 8 12
20 1 1 2 3 5 6
50 1 1 1 2 3 4

100 1 1 1 2 2 3
200 1 1 1 1 2 2
500 1 1 1 1 1 2

1000 1 1 1 1 1 2

Table 4. For a fixed total sample size (c=a+b), the minimal sample

size needed from group A so that the probability of monophyly of

group A is less than or equal to � (P A≤�).

Total
�

lineages
(c=a+b) 10−1 10−2 10−3 10−4 10−5 10−6

10 2 4 – – – –
20 2 3 4 5 7 –
30 2 3 4 5 6 7
40 2 3 3 4 5 6
50 2 3 3 4 5 6
60 2 3 3 4 5 5
70 2 2 3 4 4 5
80 2 2 3 4 4 5
90 2 2 3 4 4 5

100 2 2 3 4 4 5
200 2 2 3 3 4 4
500 2 2 3 3 3 4

1000 2 2 2 3 3 4

external to A produces more stringent rejection probabilities. This

result can be seen from the asymmetry in PA, that is, from the fact

that a > b leads to PA(a, b) < PA(b, a).

TESTING FOR CHANCE OCCURRENCE OF RECIPROCAL

MONOPHYLY

Probability of reciprocal monophyly under the null
model
We again consider c = a + b total lineages, where a of the lineages

derive from group A. Suppose now that the b lineages not from

group A all derive from a second group B, that the lineages of

Table 5. For a fixed total sample size (c=a+b), the minimal sam-

ple size needed external to group A so that the probability of

monophyly of group A is less than or equal to � (P A≤�).

Total
�

lineages
(c=a+b) 10−1 10−2 10−3 10−4 10−5 10−6

10 1 2 – – – –
20 1 1 2 4 6 –
30 1 1 2 3 4 5
40 1 1 2 2 3 4
50 1 1 1 2 3 4
60 1 1 1 2 3 4
70 1 1 1 2 3 3
80 1 1 1 2 2 3
90 1 1 1 2 2 3

100 1 1 1 2 2 3
200 1 1 1 1 2 2
500 1 1 1 1 1 2

1000 1 1 1 1 1 2
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Figure 2. Logarithm (base 10) of the probability of monophyly of

group A as a function of the fraction of a sample that derives from

group A.

group A are monophyletic, and that the lineages of group B are

separately monophyletic. We are now interested in how to interpret

this observation of reciprocal monophyly. Under the Yule model,

the lineages of the two groups are reciprocally monophyletic with

probability (Brown 1994; Rosenberg 2003, eq. 9)

PAB (a, b) = 2(
a + b

a

) 1

a + b − 1
. (5)

Using equation (5), Table 6 gives rejection probabilities for the

null hypothesis that reciprocal monophyly of the specified sets

of lineages is due to random branching of the c total lineages.

Reciprocal monophyly is less probable under the null hypothesis

than monophyly of group A, so that with the same sample sizes, an

observation of reciprocal monophyly of A and B leads to a smaller

Table 6. Significance level at which the null hypothesis of random branching in a single taxon can be rejected, when reciprocal monophyly

is observed. Given the sample sizes for each row and column, the probability of reciprocal monophyly is computed under the null

hypothesis (eq. 5); a probability below 0.01 is assigned to the smallest integer power of 10 larger than or equal to it.

Lineages
Lineages from group B (b)

from group
A (a) 2 3 4 5 10 20 50 100

2 0.111 0.050 0.027 0.016 <10−2 <10−3 <10−4 <10−5

3 0.050 0.020 <10−2 <10−2 <10−3 <10−4 <10−5 <10−6

4 0.027 <10−2 <10−2 <10−2 <10−3 <10−5 <10−6 <10−8

5 0.016 <10−2 <10−2 <10−3 <10−4 <10−5 <10−7 <10−9

10 <10−2 <10−3 <10−3 <10−4 <10−6 <10−8 <10−12 <10−15

20 <10−3 <10−4 <10−5 <10−5 <10−8 <10−12 <10−18 <10−24

50 <10−4 <10−5 <10−6 <10−7 <10−12 <10−18 <10−30 <10−42

100 <10−5 <10−6 <10−8 <10−9 <10−15 <10−24 <10−42 <10−60

rejection probability than does an observation of monophyly of

group A: for example, PAB(6, 6) = (7/22)PA(6, 6) ≈ 1.97 × 10−4.

Minimal sample sizes for rejecting the null model
Analogously to the case in which monophyly of the lineages of

group A is of interest, for fixed values of � and a, equation (5)

can be used to calculate the minimal sample size b needed so that

an observation of reciprocal monophyly enables rejection of the

null hypothesis at significance level � (Table 7); because of the

symmetry of the situation, the same results are obtained when b is

fixed and a is allowed to vary. For a fixed value of c, equation (5)

can be used to determine the minimal sample sizes needed from

groups A and B to achieve PAB ≤ � (Table 8). At a fixed c, the

null hypothesis is rejected most stringently when a ≈ b (Fig. 3);

for fixed c ≥ 4, it can be shown that the rejection probability is

smallest when a = c/2 (even c) or a = (c ± 1)/2 (odd c).

Discussion
The results here give rejection probabilities for the null hypothesis

that sampled lineages follow a random-branching model (Tables 1

and 6), and minimal sample sizes necessary for rejecting this hy-

pothesis from an observation of monophyly (Tables 2–5, 7, and

8). Thus, the methods presented can assist not only in evaluating

the outcomes of genealogical studies of monophyly, but also in

determining in advance the appropriate sample sizes that should

be gathered for such studies.

It is observed that monophyly of a specified set of lineages is

usually unlikely under the null hypothesis of random branching,

that samples in which lineages from the index group constitute

approximately half the total sample enable rejection of the null

at the most stringent significance levels (Figs. 2 and 3), and that

fairly small samples are sufficient for rejecting the null hypothesis.
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Table 7. For a fixed sample size from group A, the minimal sam-

ple size needed from group B so that the probability of reciprocal

monophyly is less than or equal to � (PAB≤�).

Lineages
�

from group
A (a) 10−1 10−2 10−3 10−4 10−5 10−6

2 3 7 15 33 73 158
3 2 4 9 17 32 57
4 2 3 7 12 20 32
5 2 3 5 9 14 22
6 2 3 5 7 12 17
7 2 2 4 6 10 14
8 2 2 4 6 9 12
9 2 2 3 5 8 11

10 2 2 3 5 7 10
20 2 2 2 3 4 6
50 2 2 2 2 3 4

100 2 2 2 2 2 3
200 2 2 2 2 2 2
500 2 2 2 2 2 2

1000 2 2 2 2 2 2

An important conclusion is that when monophyly of a particular

set of lineages is of interest, incorporating several lineages outside

that set into the analysis substantially decreases the total number

of lineages that must be studied.

Reciprocal monophyly of two sets of lineages is less likely

under random branching than monophyly of one set of lineages.

Therefore, in the reciprocal monophyly case, smaller sample sizes

Table 8. For a fixed total sample size (c=a+b), the minimal sam-

ple size needed from the group with smaller sample size so that

the probability of reciprocal monophyly is less than or equal to �

(PAB≤�).

Total
�

lineages
(c=a+b) 10−1 10−2 10−3 10−4 10−5 10−6

10 2 2 5 – – –
20 2 2 2 3 5 8
30 2 2 2 3 4 5
40 2 2 2 2 3 4
50 2 2 2 2 3 4
60 2 2 2 2 3 3
70 2 2 2 2 3 3
80 2 2 2 2 2 3
90 2 2 2 2 2 3

100 2 2 2 2 2 3
200 2 2 2 2 2 2
500 2 2 2 2 2 2

1000 2 2 2 2 2 2
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Figure 3. Logarithm (base 10) of the probability of reciprocal

monophyly as a function of the fraction of a sample that derives

from group A.

are required for achieving corresponding levels of significance

than in the case of monophyly of a single collection of lineages.

Small sample sizes may be sufficient for very stringent rejection

probabilities if for each of the two groups, at least several lineages

are sampled (∼10).

When one or both of the sample sizes is particularly small

(<5), statements regarding monophyly should often be interpreted

with caution. For small samples, however, the monophyly of lin-

eages from the same set of individuals across a collection of mul-

tiple independent loci can assist considerably in rejecting a null

hypothesis that there is no genealogical separation among groups.

For a lineages from group A and b lineages outside group A, the

probability under the null hypothesis of random branching that

the corresponding a lineages across L loci are monophyletic for

at least k of the loci is

L∑
j=k

(
L

j

)
PA (a, b) j [1 − PA (a, b)]L− j . (6)

The analogous probability in the case of reciprocal monophyly,

when the b lineages are all part of group B, is

L∑
j=k

(
L

j

)
PAB (a, b) j [1 − PAB (a, b)]L− j . (7)

Even for small a and b, for L sufficiently large and k sufficiently

close to L, these probabilities quickly become small, so that when

multiple loci produce similar inferences, there is considerable po-

tential for excluding chance as the cause of observations of mono-

phyly.

A variant of the problem considered here was investigated by

Nordborg (1998). A previous study (Krings et al. 1997) had exam-

ined mitochondrial DNA sequences from 986 modern humans and

a Neanderthal, and had observed that the modern human sequences
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appeared to be monophyletic. To test if Neanderthals and modern

humans could have mated randomly during the time of their coex-

istence, Nordborg (1998) commented that under plausible scenar-

ios, the 986 sampled modern human sequences likely traced back

to only a relatively small number of ancestral sequences extant at

the time of the extinction of the Neanderthals. Thus, whereas a

monophyletic sample of 986 modern human lineages concurrent

with a single Neanderthal sequence would provide strong evi-

dence that the Neanderthals and the modern humans were not a

randomly mating population (PA(986, 1) ≈ 2.06 × 10−6), the ob-

servation of monophyly of a much smaller set of lineages ancestral

to the 986 sampled lineages is considerably more equivocal (for

example, PA(4, 1) = 0.1). This difference in probabilities high-

lights the fact that if the samples from A and from external to A are

taken from different points in time, computations of PA and PAB—

following Nordborg (1998)—should make use of the distribution

of the number of lineages ancestral to the more recent of the two

samples, rather than the sample size in the present.

The results here are important for the application to genetic

data of the genealogical species concept (Baum and Shaw 1995;

Shaw 1998; Hudson and Coyne 2002), which delineates species

by monophyly of the genetic lineages of their members, and in

DNA barcoding (Hebert et al. 2003; Moritz and Cicero 2004;

Meyer and Paulay 2005; Hickerson et al. 2006), which may also

use monophyly in species demarcation. Such methods represent

only a small subset of approaches to the identification of species;

however, if these monophyly-based approaches are used, then

sample sizes should be made sufficiently large that chance can

be excluded as the cause of observed monophyly. The fact that

the probability of monophyly under random branching decreases

rapidly with sample size ensures that even with sample sizes as

small as 10 inside and outside an index group, chance monophyly

of the index group has probability below 2 ×10−6. Thus, chance

production of monophyly—which should not be disregarded for

small samples—is not likely to cause misleading inferences about

genealogical distinctiveness if reasonably large samples are used.
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