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ABSTRACT
In this paper, we revisit the parametrizations of the equation of state of dark energy and point

out that comparing merely the χ2 of different fittings may not be optimal for choosing the

‘best’ parametrization. Another figure of merit for evaluating different parametrizations based

on the area of the w(z) − z band is proposed. In light of the analysis of some two-parameter

parametrizations and models based on available SNIa data, the area of w(z) − z band seems

to be a good figure of merit, especially in the situation that the value of χ2
min for different

parametrizations are very close. Therefore, we argue that both the area of the w(z) − z band

and χ2
min should be synthetically considered for choosing a better parametrization of dark

energy in the future experiments.

Key words: cosmological parameters.

1 I N T RO D U C T I O N

Current observations, such as those of CMB anisotropy (Spergel

et al. 2007), supernovae type Ia (SNIa) (Riess et al. 2004; Davis

et al. 2007; Riess et al. 2007) and large-scale structure (Tegmark et al.

2004; Eisenstein et al. 2005), converge on the fact that a spatially

homogeneous and gravitationally repulsive energy component, re-

ferred as dark energy, account for about 70 per cent of the energy

density of the universe. Some heuristic models that roughly describe

the observable consequences of dark energy were suggested in re-

cent years, a number of them stemming from fundamental physics

and others being purely phenomenological. However, the nature of

dark energy still remains mysterious to physicists and astronomers

although many possible candidates have been proposed. Dark en-

ergy present in the equations of cosmological dynamics through its

effective energy density and pressure. The ratio of pressure to energy

density (the equation of state) is very important in the Friedmann

equation regardless of its physical origin. If dark energy is some

kind of dynamical fluid, its equation of state would likely not be

constant, but would vary with redshift z or equivalently with cosmic

time. The impact of dark energy (whether dynamical or a constant)

on cosmological observations can be expressed in term of w(z) =
p(z)/ρ(z) which is to be measured through either the cosmic expan-

sion history H(z) (obtained e.g. using SN data) or through large-scale

structure. Therefore, it is sagacious to study the parametrization of
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the equation of state of dark energy empirically with as few prior

assumptions as possible.

To reveal the nature of dark energy and narrow down the can-

didate list, a very powerful measure is to map out the evolution of

the equation of state as redshift changes. However, in data fitting,

we need to parametrize the equation of state w(z) in simple form

and then constrain the evolution of w(z) in terms of the parameters

we introduced in our parametrization except the case in which w(z)

is already such as in the quintessence field (Padmanabhan 2003;

Copeland, Sami & Tsujikawa 2006; Hao & Li 2003a, 2004; Liu &

Li 2006), phantom field (Caldwell 2002; Hao & Li 2003b; Liu &

Li 2003; Li & Hao 2004), or Chaplygin gas model (Kamenshchik,

Moschella & Pasquier 2002; Hao & Li 2005). Unquestionably, the

way we parametrize the equation of state is bound to affect our abil-

ity to extract information from the data. There are many different

parametrizations have been introduced based on simplicity and the

requirement of regular asymptotic behaviours (Johri 2004; Johri &

Rath 2006, 2007). However, will these choices of parametrizations

give us maximum power to extract information from the data? Some

analysis existing in literatures compared the different parametriza-

tions by looking at their corresponding χ2, which are justified by the

generalized likelihood ratio test in statistics. But this measure is no

longer fair when the χ 2 is small but the curvature of the likelihood

function is very big, meaning that the constraints on the parameters

are loose although the resulting χ 2 is small.

In this paper, we introduce another figure of merit in analogous

to Albrecht et al. (2006) and Albrecht & Bernstein (2007), the

area of the w(z) − z band to evaluate the performance of different

parametrizations. The justification of this measure lies in that our ul-

timate goal is to constrain the shape of w(z) as much as we can from
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the data. In our analysis, we will compare the parametrizations with

identical number of parameters. Note that comparing parametriza-

tions with different number of parameters based on Akaike’s Infor-

mation Criterion (AIC), Bayesian Information Criterion (BIC) or

other criteria is arbitrary in the sense of the criteria one chooses. In

a sensible Bayesian method, a model is penalized for having a larger

number of parameters that gives a reasonable fit (not the best fit com-

pared to models with more parameters) is awarded with increased

evidence for that model (see e.g. Liddle et al. 2006). However, this

is not what we are concerned and the purpose of this paper is just

to show what is the best way to parametrize the equation of state of

dark energy for a variety of prevalent models with identical number

of parameters. Our results show that the widely used parametriza-

tion, w(z) = w0 + w1z/(1 + z), is not the one that can tell us most

of the information of w(z) in two-parameter parametrization family

based on the SNIa data.

Among the many observations that can help to constrain the shape

of w(z), SNIa data provide most sensitive and straightforward con-

straints. Therefore, in this paper, we will study the effects of differ-

ent parametrizations on our understanding of the evolution of dark

energy based on SNIa data.

The outline of the paper is as follows. In Section 2, we discuss

the expansion history of the universe and the observational variables

from the SN experiments. In Section 3, two parametrization families

and some prevalent models of equation of state of dark energy is

introduced. Throughout the paper, we only consider two-parameter

models and parametrizations. In Section 4, the method and results of

the analysis is presented. In the last, we conclude with some remarks

on the choice of parametrization of dark energy.

2 T H E E X PA N S I O N H I S TO RY
O F T H E U N I V E R S E A N D S U P E R N OVA

In the framework of standard cosmological model, assuming a spa-

tially flat (k = 0) Friedmann universe, the equations governing the

expansion of the universe are

H 2 = H 2
0

[
�M(1 + z)3 + (1 − �M) f (z)

]
(1)

and

q = 3w(z)(1 − �M) + 1

2
, (2)

where H ≡ ȧ/a is the Hubble parameter, q ≡ −ä/aH 2 is the

deceleration parameter, �M ≡ ρM/ρC is the cosmic matter density

parameter and w(z) is the dark energy equation of state, which is

defined by

w ≡ pDE

ρDE

. (3)

The dark energy density parameter ρDE evolves as ρDE(z) = ρ0
DEf (z)

and

f (z) = exp

[
3

∫ z

0

1 + w(z′)
1 + z′ dz′

]
. (4)

To date, SNIa provide the most direct indication of the accelerating

expansion of the universe. For the distant SNIa, one can directly

observe their apparent magnitude m and redshift z, because the ab-

solute magnitude M of them are assumed to be constant, i.e. SNIa

are standard candles. The luminosity distance dL(z) is the ‘meeting

point’ between the observed m(z) and theoretical prediction H(z):

m(z) = M + 5 log10

[
dL(z)

Mpc

]
+ 25 (5)

and

dL(z) = (1 + z)

∫ z

0

c dz′

H (z′)
. (6)

3 PA R A M E T R I Z AT I O N S O F DA R K E N E R G Y

Although H(z) is more directly related to the observable luminosity

distance and then is easier to measure more accurately, in order to

investigate the evolution of dark energy with time and the scalefac-

tor, constraints on w(z) is essentially equivalent to that of H(z) and is

also crucial for understanding the nature of dark energy (Huterer &

Starkman 2003). Since w(z) is a continuous function with an infinite

number of values at a finite redshift range, w(z) must be modelled

using just a few parameters whose values are determined by fitting

to observations. A merit of using w(z) with a particular parametriza-

tion is to compare the performance of different experiments. Note

here that no single parametrization can represent all possibilities

for w(z). A reasonable parametrization must be accorded with the

demand that dark energy is important at late times and insignificant

at early times.

There exist plenty of parametrizations for the equation of state

w(a) (Johri 2004; Johri & Rath 2006, 2007) where a = (1 + z)−1,

but most of them are purely phenomenological. May be, we should

consider some of them in the sense that they are generalized from

the behaviour of physically motivated sets of models (Linder 2008).

For single parameter models, e.g. w = constant, no dynamics

is embodied and can not parametrize the rate of change of w and

then high fine-tuning is needed. The physical symmetry motivated

one-parameter models, such as topological defects, are not consis-

tent with the observation data. More parameters mean more degrees

of freedom for adaptability to observations, at the same time more

degeneracies in the determination of parameters. For models with

more than two parameters, they lack predictability and even the next

generation of experiments will not be able to constrain stringently

(Linder & Huterer 2005). Therefore, we only consider the two-

parameter models in this paper. Of course, two-parameter models

also have limitations; for example, it is hard to describe rapid vari-

ation of w(z) in most of these models.

Various two-parameter parametrization approaches have been

proposed in the literatures. The simplest way to parametrize the

rate of change of w is to write the first-order Taylor expansion. This

is the linear redshift parametrization (Linear) (Huterer & Turner

2001; Weller & Albrecht 2002), which is given by

w = w0 + w1z. (7)

This parametrization is not viable as it diverges for z � 1 and

therefore incompatible with the constraints from CMB (Caldwell &

Doran 2004) and BBN (Johri 2002). The Upadhye–Ishak–Steinhardt

(UIS) parametrization (Upadhye, Ishak & Steinhardt 2005) can

avoid above problem,

w =
{

w0 + w1z, if z < 1,

w0 + w1, if z � 1.
(8)

We here mainly consider the following two commonly used two-

parameter parametrization families.

Family I:

w = w0 + w1

(
z

1 + z

)n

, (9)
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Family II:

w = w0 + w1

z

(1 + z)n
, (10)

where w0 and w1 are two undecided parameters, n = 1, 2, . . . .

Both of the parametrization families have the reasonable asymp-

totical behaviour at high redshifts. The case with n = 1 in the

above parametrization approaches is the same as the most pop-

ular parametrization introduced by Chevallier & Polarski (2001)

and Linder (2003) parametrization (CPL). This simple parametriza-

tion is most useful if dark energy is important at late times and

insignificant at early times. The one with n = 2 in family II is

the Jassal–Bagla–Padmanabhan (JBP) parametrization, which can

model a dark energy component that has the same equation of state

at the present epoch and at high redshifts, with rapid variation at

low z (Jassal, Bagla & Padmanabhan 2005).

Another two-parameter parametrization of dark energy equa-

tion of state, we consider here, comes from the direct H(z)

parametrization, first suggested by Sahni et al. (2003),

H 2 = H 2
0

[
�M(1 + z)3 + �2(1 + z)2

+ �1(1 + z) + (1 − �M − �1 − �2)
]
, (11)

which is corresponding to an effective equation of state of dark

energy (P2)

w(z) = −1 + (1 + z)[�1 + 2�2(1 + z)]

3
[
�2z2 + (�1 + 2�2)z + 1 − �M

] . (12)

On the other hand, there are also two-parameter models that have

direct physical meanings. For example, generalized Chiplygin gas

model (GCG) (Bilic, Tupper & Viollier 2002; Dev, Jain & Alcaniz

2003; Chimento & Lazkoz 2005; Liu & Li 2005), which has effective

equation of state

w(z) = −1 + a2(1 + z)3(a1 − 1)

z(z2 + 3z + 3)a1 − (1 + z)3
. (13)

4 M E T H O D A N D R E S U LT S

We use the Fisher matrix methods to compute the covariance matrix

for the parameters wi . If the parameters wi gives the true underlying

distribution w̄, then a χ2 distribution of data values is in proportion

to exp(−χ2/2), where χ2 is determined by

χ 2 =
∑

i

(μi − μth)2

σ 2
i

, (14)

where σ i is error of the distance modulus μi and μth is theoretical

prediction to the data. For SNIa data we use here, μth = μth (z;

{wi}) = m(z) − M. Using Bayes’ theorem with uniform prior to the

parameter, the likelihood of a parameter estimate can be described

as a Gaussian with the same χ2, which is now viewed as a func-

tion of parameters χ2 = χ2({wi}). The distribution of errors in the

measured parameters is in the limit of high statistics proportional to

(see e.g. Albrecht et al. 2006)

exp

(
− 1

2
Fi jσwi σw j

)
,

where the Fisher matrix Fi j is defined by

Fi j = 1

2

〈
∂2χ 2

∂wi∂w j

〉
, (15)

and 〈· · ·〉 means average over realizations of the data. The covariance

matrix of the parameters is simply the inverse of the Fisher matrix,

Ci j = (F−1)i j . (16)

The error on the equation of state w(z) is given by (Nesseris &

Perivolaropoulos 2005)

σ 2
w =

N∑
i=1

(
∂w

∂wi

)2

Cii + 2

N∑
i=1

N∑
j=i+1

∂w

∂wi

∂w

∂w j
Ci j , (17)

where N is the number of the free parameters. σw is function of z,

we define the area of w(z) − z band as

s = 2

∫ zh

zl

σw(z) dz, (18)

where the integral interval (zl , zh) is taken as (0, zmax).

We make use of the full gold data set (Riess et al. 2004) (157 data

points, 0 < z < zmax = 1.755) and the combined Essence, Hubble,

SNLS and nearby SN catalogue as compiled by (Davis et al. 2007),

for a total of 192 SNe, respectively, assuming a flat universe with

energy density in matter �M = 0.3. The value of the Hubble constant

H0 is marginalized analytically.

The main results are listed in Tables 1 and 2. Table 1 shows the

minima of χ2, the best-fitting values of the free model parameters

and their standard deviations in the two parametrization families

and several prevalent dark energy models introduced in Section 3.

The values of the corresponding areas of the w(z) − z bands of

different parametrizations and models are also shown in Table 1.

All of these quantities are worked out by using 157 gold SNIa data.

As a comparison, Table 2 shows the results of the same physical

quantities based on the newly compiled 192 SNIa data. To better

explain the results, we plot the w(z) − z bands for parametrizations

of family I, family II and the selected prevalent models in Figs 1–3,

respectively. In Figs 4 and 5, we show the portraits of χ 2
min–s phase of

parametrizations of family I and family II and the selected prevalent

models in the light of the results obtained by using 157 gold SNIa

data and newly compiled 192 SNIa data, respectively.

As is shown in Fig. 4, it is clear that for parametrizations in

family I, the minima of χ 2
min and s are coincide with each other at

n = 1, which corresponds to the widely used CPL parametrization.

However, in family II, the minimum of χ2
min does not coincide with

the one of s. The minimum of χ 2
min is located at n = 4, while the

minimum of s is located at n = 3. Note that n = 1 parametriza-

tion (i.e. CPL) have neither the minimum χ2
min nor the minimum s.

Therefore, if we have to choose a parametrization in family II, n = 1

parametrization will not be preferred, and the two most competitive

parametrizations are n = 3 and 4. But as the difference between two

χ 2
min is much less than the difference between two s, we would prefer

the n = 3 parametrization. For the prevalent models we investigated

here, the value of χ 2
min of GCG model is much greater than those of

CPL, UIS, Linear and P2 models, so it is not preferred in the sense

of data fitting, but it may still be interesting because of its physical

meaning.

As an improvement and extension of earlier data, the newly com-

piled data set (Davis et al. 2007) provide us more sample data.

Compare Fig. 5 with Fig. 4, we find that although there exit minor

changes between the results based on the 192 newly compiled SNIa

data and those based on the 157 gold data, the main results remain

unchanged. First, for parametrizations in family I, the best one is

still n = 1 due to its smallest area of w(z) band, albeit the minimum

value of χ 2 for n = 4 parametrization is slightly smaller than that

of n = 1. Secondly, as is also shown in Fig. 4, parametrizations in
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Table 1. The minima of χ2 and areas of the w(z) band for different models using 157 gold SNIa data (Riess et al. 2004).

Model χ2
min w0(a1 or �1) w1(a2 or �2) s

UIS 174.365 −1.408 02 ± 0.255 438 1.709 41 ± 0.928 001 1.699 18

Linear 174.365 −1.399 78 ± 0.249 302 1.666 05 ± 0.892 594 2.138 68

P2 174.207 −4.162 34 ± 2.621 76 1.674 58 ± 1.068 13 0.895 176

CPL 173.928 −1.577 05 ± 0.326 346 3.294 26 ± 1.697 27 1.628 03

GCG 177.063 0.999 827 ± 0.006 630 69 83.4676 ± 3209.18 1.589 43

Family I

n = 1 173.928 −1.577 05 ± 0.326 346 3.294 26 ± 1.697 27 1.628 03

n = 2 174.606 −1.270 11 ± 0.192 597 6.203 95 ± 3.446 87 2.130 84

n = 3 175.09 −1.171 71 ± 0.154 602 12.8437 ± 7.657 29 2.717 02

n = 4 175.444 −1.124 97 ± 0.138 595 26.4417 ± 16.8124 3.377 56

Family-II

n = 1 173.928 −1.577 05 ± 0.326 346 3.294 26 ± 1.697 27 1.628 03

n = 2 173.409 −1.872 62 ± 0.456 452 6.628 31 ± 3.292 76 1.142 53

n = 3 172.824 −2.396 35 ± 0.691 99 13.7569 ± 6.659 22 0.731 673

n = 4 172.454 −3.2745 ± 1.116 72 28.3698 ± 13.8425 1.300 27

Table 2. The minima of χ2 and areas of the w(z) band for different models using 192 SNIa data (Davis et al. 2007; Riess et al.

2007; Wood-Vasey et al. 2007).

Model χ2
min w0(a1 or �1) w1(a2 or �2) s

UIS 195.412 −1.1192 ± 0.277 32 0.048 5532 ± 1.171 51 2.217 78

Linear 195.409 −1.126 28 ± 0.281 052 0.081 1196 ± 1.189 01 2.923 36

P2 195.382 −0.591 863 ± 1.719 77 0.166 512 ± 0.679 303 3.077 26

CPL 195.411 −1.124 56 ± 0.331 918 0.096 1458 ± 1.891 59 1.885 32

GCG 195.529 1.000 55 ± 0.008 982 14 95.6168 ± 1553.63 1.623 94

Family I

n = 1 195.411 −1.124 56 ± 0.331 918 0.096 1458 ± 1.891 59 1.885 32

n = 2 195.413 −1.113 69 ± 0.212 35 0.135 963 ± 4.910 12 3.1127

n = 3 195.402 −1.124 07 ± 0.181 828 1.527 26 ± 14.2855 5.132 55

n = 4 195.314 −1.152 42 ± 0.164 779 13.4211 ± 34.8666 7.013 32

Family-II

n = 1 195.411 −1.124 56 ± 0.331 918 0.096 1458 ± 1.891 59 1.885 32

n = 2 195.409 −1.134 75 ± 0.412 811 0.203 332 ± 3.097 53 1.137 99

n = 3 195.399 −1.172 58 ± 0.546 306 0.631 377 ± 5.281 64 0.641 504

n = 4 195.356 −1.293 67 ± 0.787 516 2.284 02 ± 9.618 53 0.960 275
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Figure 1. w(z) − z band for family I parametrizations. The left-hand four panels are obtained by using 157 gold data (Riess et al. 2004) and the right-hand

four panels are obtained by using latest 192 SNIa data (Davis et al. 2007; Riess et al. 2007; Wood-Vasey et al. 2007).
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Figure 2. w(z) − z band for family II parametrizations. The left-hand four panels are obtained by using 157 gold data (Riess et al. 2004) and the right-hand

four panels are obtained by using latest 192 SNIa data (Davis et al. 2007; Riess et al. 2007; Wood-Vasey et al. 2007).
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panels are obtained by using latest 192 SNIa data (Davis et al. 2007; Riess et al. 2007; Wood-Vasey et al. 2007).

family II, as a whole, have both smaller areas of the w(z) band and

lower minimum value of χ2 than those in family I, and among the

parametrizations in family II, n = 3 and 4 are still the two most

competitive ones. Finally, among the selected prevalent models, al-

though the area of w(z) band of P2 model becomes relative larger,

the relative locations of these models does not changed significantly,

and compared with CPL, UIS, Linear and P2 models, GCG model

is still not preferred due to its relative larger χ 2
min. The minor dif-

ference between Figs 4 and 5 may arise from the data calibration

of different data sets among which we shall leave in a future work

about a comprehensive comparison.

5 C O N C L U S I O N S A N D D I S C U S S I O N S

Traditionally, forming the so-called Bayes factor (likelihood ratio

for frequentists) Bi j ≡ L(Mi )/L(Mj ), where L(Mi ) is called likeli-

hood for the model Mi to obtain the data if the model is true, is

used in comparison of the cosmological (and/or dark energy) mod-

els (John & Narlikar 2002; Lazkoz, Nesseris & Perivolaropoulos

2005). Generally, L(Mi ) is dependent on the prior probability and

the likelihood, which is determined by χ2, for the model parameters.

And when one has no prior to the model parameter, everything is

determined by χ2, which is a measure of the fit to the data. How-

ever, according to the above analysis based on the latest SNIa data,

there exist lots of cosmological models and parametrizations of dark

energy which lead to very similar χ2
min. This is especially true for

the results we obtained based on the newly compiled 192 data. The

best-fitting of any parametrization or model we consider here is

within the 1σ bound of those of others, see Table 2 or Fig. 5. Under

this circumstance, how do we compare them? Or what parametriza-

tion approach should be used to probe the nature of dark energy

in the future experiments? The Bayes approach only works in the

condition that fittings of models are distinctly different. When the

difference of χ 2 is very small, one should pursue other figures of

merit. The above introduced area of w(z) − z band, we think, is

such a figure of merit and our point is that both χ2 and the area of

w(z) − z band should be synthetically considered for choosing a

better parametrization of dark energy in the future experiments.

Bearing this point in mind and according to the results presented in

the above section, we find that the widely used CPL parametrization,
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280 D.-J. Liu et al.

172 173 174 175 176 177 178
0.5

1

1.5

2

2.5

3

3.5

2
min

a
re

a
 o

f 
th

e
 w

(z
) 

b
a

n
d

 

 
Typical models
Family I
Family II

CPL(n=1)

P2

Linear

UIS

GCG

n=2

n=3

n=4

n=2

n=3

n=4

Figure 4. The portrait of the χ2
min–s phase of parametrizations of family

I and family II and some prevalent models obtained by using 157 gold

SNIa data.
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Figure 5. The portrait of the χ2
min–s phase of parametrizations of family I

and family II and some prevalent models obtained by using newly compiled

192 SNIa data.

which has a very simple interpretation in terms of the scalefactor,

is not statistically ‘special’ among the two-parameter parametriza-

tion families, instead n = 3 in family II, which looks like a varia-

tion on the CPL parametrization, is more preferred. Note that CPL

parametrization corresponds to the n = 1 case in both family I and

family II and if we also take n as a free parameter, family I and

family II are just two three-parameter parametrizations. However,

in this work we only consider two-parameter parametrizations and

n is not treated as a free parameter. So n = 1 and n = 3 actually

denote two distinct parametrizations, in which the evolution of w(z)

is qualitatively different.

There is an interesting question that whether the differences

among the area of w(z) band are significant enough to single out

one parametrization. In our opinion, the answer is somewhat de-

pended on the observational data. As far as the data we used here,

the differences among the areas of w(z) band are so significant that

we can pick out n = 3 of the family II as the best parametrization

among the models we consider in this work. However, this does not
mean that the other parametrizations are completely ruled out. For

example, the simple CPL parametrization and P2 model still do well

to a certain extent. It should be also pointed out that, the differences

among the areas of w(z) band are much more significant than those

among χ 2
min for both 157 gold data and latest 192 data. This fact

indicates that the area of w(z) band is likely to be a good figure of

merit, especially in the situation that the value of χ2
min for different

parametrizations are very close.

Generally speaking, the motivation from a physical point of view

should be at the top priority when we choose cosmological mod-

els. However, it is perfectly clear that in the absence of any com-

pelling dark energy model, the suggested parametrizations are phe-

nomenological. Then the reason why people might prefer a given

parametrization is because of its simplicity and also because they

feel that it allows us to extract useful information for a very large

class of models, and hopefully the ‘true’ model is one of them.

Anyway, to estimate the effects of dark energy one needs to quan-

tify them and parametrization of w has turned out to be an efficient

tool in this respect. Therefore, there is a subtle balance between

motivation from a physical point of view and fitting results. To help

making decisions in this situation, we need to know what is the best

achievable fitting result from various models or parametrizations

with the same number of parameters. This will serve as a fiducial

criteria for us to choose a best model. The figure of merit introduced

in this paper is to help to define what is the best.

As is well known, besides SNIa observations, there exist lots of

other experiments probing different aspects of dark energy and we

will have many more data from these experiments (Albrecht et al.

2006). However, in terms of constraining the evolution of w(z), SNIa

approach is the most sensitive and direct one. Other methods, such

as CMB and cluster counts, are primarily good for the energy density

constraint. But it will be advantageous to test all the parametrization

with all the combined data sets in the future. The current analysis

in this paper could be directly generalized to the case with multi-

experiments by maximizing the product of the likelihood of each

experiment. It is worth noting that the best parametrization of dark

energy models for SNIa data may not necessarily be the best one for

other observational data. We will report that in a preparing work.
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