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Statistical Methodology: 111. Receiver Operating 
Characteristic (ROC) Curves 
Mary Grzybowski, MPH, PhD, John G. Youngec MD 

I ABSTRACT 

Measures including sensitivity, specificity, and positive and negative predictive values have been traditionally 
used to assess a diagnostic test’s ability to detect the presence or absence of disease. Receiver operating 
characteristic (ROC) curve analysis allows visual evaluation of the trade-offs between sensitivity and speci- 
ficity associated with different values of the test result, or different “cutpoints” for defining a positive result. 
The purpose of this article is to define, construct, and interpret a ROC curve using a hypothetical example 
applicable to emergency medicine practice. 
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I Receiver or relative operating 
characteristic (ROC) curve analysis 
originated from studies concerning 
the ability of human observers to dis- 
tinguish between true signals and 
white noise in radar equipment.’-’ A 
natural transition into the field of in- 
terpretation of radiologic data has oc- 
curred where ROC curve analysis has 
been applied toward interreader vari- 
ability in the evaluation of radiologic 
imaging ~tudies.~ This method has 
been subsequently used in other med- 
ical disciplines such as experimen- 
tal psychophysics and psychology, 
allergy, cardiology, and oncology 
research.’ Despite its presence in the 
medical literature over the last de- 
cade, ROC curve analysis is still 
poorly understood by many clini- 
cians. 

ROC curves have increasingly 
been used to assess the ability of di- 
agnostic tests to correctly classify dis- 
ease status, or similarly, identify who 
will and will not develop a particular 
disease or health outcome. Whereas 
traditional dichotomous treatment of 
diagnostic test results yields only sen- 
sitivity and specificity data, ROC 
curve analysis objectively evaluates 
the performance of diagnostic tests at 
various cutpoints of positive and neg- 
ative test results. This powerful tool 
allows the comparison of 2 2  diag- 
nostic tests without specifying cut- 
points for each test. ROC curve anal- 
ysis permits the comparison of new 
tests against the truth or “criterion 
standard” test that would be impos- 
sible using only sensitivity and spec- 
ificity. 
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USE OF SURROGATE 
DIAGNOSTIC TESTS 

Diagnostic testing is a cornerstone of 
making clinical decisions and patient 
management. The amount of help a 
particular test result provides varies 
from patient to patient, depending on 
the patient’s physiologic status. Nu- 
merous types of clinical data, not just 
a single test, are considered in the de- 
cision process. A test may include a 
laboratory value such as a peripheral 
white blood cell (WBC) count, an 
arterial blood pressure (BP), or the 
presence or absence of diminished 
breath sounds on chest auscultation. 
While all these tests are clinically 
meaningful, rarely are their results 
considered diagnostic of a disease 
process; i.e., they are not definitive. 
Yet the purpose of each clinical test 
is to provide some definable discrim- 
ination with the nondiseased state. 

A definitive diagnostic test de- 
clares with absolute reliability the 
presence or absence of disease. Any- 
thing less is considered a surrogate 
and serves as an imperfect substitute 
for the definitive diagnostic test.6 Di- 
agnostic tests have either continuous 
or categorical outcomes. Peripheral 
WBC counts, arterial BPs, and weight 
are continuous and may assume a po- 
tentially infinite number of values 
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along a continuum. Data that can be 
classified into 2 2  naturally occurring 
or arbitrarily selected groups are 
termed “categorical data.” Examples 
of categorical data include the pres- 
ence or absence of breath sounds, a 
positive or negative history of heart 
disease, and A-B-0 blood groups. 
Experience suggests that none of the 
above data, whether continuous or 
categorical, provide a definite answer 
in every clinical situation. Further- 
more, because many diseases can be 
tested in a variety of methods (e.g., 
physical examinations, clinical sus- 
picions, laboratory analyses), a means 
of determining the best test is essen- 
tial. 

Health care professionals are of- 
ten concerned about how well a test 
performs clinically. There is always 
the possibility of replacing a current 
test with a newer test, adding a test 
to the already existing catalog of 
tests, or simply eliminating tests that 
do not appear useful. Therefore, it is 
important to know the accuracy of 
each diagnostic test or how one test 
performs compared with another test. 

Why not opt for the definitive test 
every time? While diagnostic certi- 
tude may be comforting, it typically 
comes with a price. Definitive tests 
are often much more technically dif- 
ficult, time-consuming, and expensive 
than their surrogates.’ For example, 
the enzyme-linked immunosorbent 
assay is an inexpensive surrogate for 

Western Blot analysis for detection of 
HIV. In some circumstances, definite 
diagnostic tests may pose a bodily 
threat to patients, as in the case of 
pulmonary angiography for diagnos- 
ing pulmonary embolism or emergent 
pericardiocentesis for detecting car- 
diac tamponade. Thus, surrogates 
tests, while not as accurate as defini- 
tive tests. frequently must suffice. 

Diagnostic accuracy is the most 
fundamental component of any clini- 
cal tool. It assesses the test’s ability 
to discriminate among alternative 
states of health. A diagnostic test’s 
ability to distinguish between the 
population of diseased and nondis- 
eased patients is typically assessed by 
measuring the test’s sensitivity and 
specificity. “Sensitivity” is the prob- 
ability of testing positive given the 
true presence of disease. “Specific- 
ity” is the probability of testing neg- 
ative if the disease is truly absent. 
The ability to predict the presence or 
absence of disease from a diagnostic 
test is dependent on the prevalence.of 
disease in the population under inves- 
tigation as well as a test’s sensitivity 
and specificity. The probability that 
any positive test is predictive of dis- 
ease increases as the prevalence of 
disease in a population increases. The 
proportion of truly diseased individ- 
uals among all those with positive test 
results is referred to as the “positive 
predictive value” of the diagnostic 
test. Similarly, the proportion of non- 

I TABLE 1 
nostic Tests 

Sensitivity, Specificity, and Positive and Negative Predictive Values of Diag- 

. . . . . . . . . . . - . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

True Condition 
~- ~~ 

Disease Positive Disease Negative Total 

Test positive: 
Test negative: 

TOTAL 

u (true positives) b (false positives) u + b  
c (false negative) d (true negative) c + d  
(I + c (Tp,) b + d (Tmg) TN* 

True positive rate (TPR): 
True negative rate (TNR): 
False positive rate (FF‘R): 

Sensitivity = a/(a + c) 
Specificity = d/(b + d) 
1 - specificity 

Positive predictive value 
Negative predictive value 

[&a + b]: True positive/all who tested positive 
[dlc + d]: True negative/all who tested negative 

*TN = total sample population. 

“Cutpoinl“ 

I 

Nondiseased Population I 
I 

c Negative Test - @ - Positive Test - 
I 
I 
I 
I Diseased Population 
I 

t NegativeTest- - Positive Test - 0 

False Positives 

False Negatives 

I FIGURE 1. The cutoff value, k, discrimi- 
nates between the diseased and nondiseased 
patients in a population. Patients with a mea- 
sured value above k are defined as being pos- 
itive for the disease. Patients with a measured 
value below k are defined as being negative 
for the disease. 

diseased patients among all those 
with negative test results is the “neg- 
ative predictive value.” Table 1 sum- 
marizes the relationship of sensitivity, 
specificity, and predictive values be- 
tween a surrogate and a definitive test 
according to a diagnostic criterion us- 
ing a 2 X 2 contingency table. 

Clinicians often attempt to predict 
the presence or absence of disease us- 
ing a test to determine a patient’s 
health status based on a decision 
threshold, or “cutpoint.” For exam- 
ple, a rectal temperature higher than 
38°C in a newborn is strongly sug- 
gestive of sepsis. Although the pre- 
cise level of the cutpoint may be ar- 
bitrary, a decision threshold must be 
agreed upon to determine whether a 
test is positive or negative for an in- 
dividual. As depicted in Figure 1, a 
patient presenting with a value above 
some threshold value, k ,  is defined as 
having an abnormal test result, and a 
patient presenting with a value below 
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0 0  
1 -Specificity 

(FPR) 

1 0  

I FIGURE 2. Receiver operating character- 
istic (ROC) curves. Curve A represents a per- 
fect curve, and curves B and C represent non- 
perfect curves. Curve B is closer to the y-axis 
over a continuum of diagnostic threshold val- 
ues than curve c .  TPR = true-positive rate; 
FPR = false-positive rate. 

k is defined as being negative for 
a disease or having a normal test re- 
sult. 

Based on diagnostic test results, 
the population with abnormal results 
is divided into a fraction that is truly 
ill (true-positive ratio, TPR) and a 
fraction incorrectly classified as ill 
(false-negative ratio, FNR). Normal 
or non-ill patients are similarly cate- 
gorized into a fraction that is truly not 
ill, or normal, (true-negative ratio, 
TNR) and a fraction with erroneously 
positive test results (false-positive ra- 
tio, FPR). Sensitivity is equivalent to 
the TPR, and specificity is equivalent 
to the TNR. 

In practice, a single decision 
threshold will not accurately and re- 
liably discriminate the true health 
status of all patients. The percentage 
of patients who are considered posi- 
tive or negative for the disease vanes 
as does k ,  such that a reciprocal re- 
lationship exists between sensitivity 
and specificity. As k increases, sensi- 
tivity decreases and specificity in- 
creases. resulting in an increased 
probability of misdiagnosing an ill 
patient. As k decreases, sensitivity 
increases and specificity decreases, 
resulting in an increased probability 

of diagnosing false positives. Figure 
1 also shows the overlap of false 
positives and false negatives based 
on a specific cutpoint, k. Sensitivity 
and specificity vary with different 
decision thresholds. Accordingly, at- 
tempting to determine the value of a 
test result using the sensitivity and 
specificity at only one cutpoint level 
may influence a clinician to errone- 
ously embrace a dubious diagnostic 
technique or abandon a potentially 
useful 

ROC CURVE ANALYSIS 

If determining the sensitivity and 
specificity using one cutpoint does 
not accurately discriminate between 
health and disease or between ill and 
severely ill states of health. what 
other way is there to assess the ac- 
curacy of a test? ROC curve analysis 
is a comprehensive method of com- 
paring diagnostic tests over the whole 
spectrum of test results without hav- 
ing to specify a decision threshold a 
priori. ROC curve analysis can also 
assist in deriving an optimal value 
for k.  

ROC analysis allows the consid- 
eration of a test’s performance across 
a range of cutpoint values. It shows 
the complete spectrum of sensitivity- 
specificity pairs that correspond to all 
possible threshold values. A ROC 
curve is plotted on a 2-dimensional 
unit square plot. The y-axis and x- 
axis represent the TPR (or sensitivity) 
and the FPR (1 - specificity), re- 
spectively (Fig. 2). 

A ROC curve may be interpreted 
by simple visual assessment. Quali- 
tative information about the diagnos- 
tic test’s accuracy is reflected by the 
position of the curve on a plot. ROC 
curves must pass through the lower 
left hand corner and upper right hand 
corner of the plot. A moment’s reflec- 
tion reveals why: By definition, a test 
with 100% sensitivity (i.e., would un- 
der no circumstance misidentify an ill 
patient) unfortunately has no specific- 
ity. Conversely, a test that is 100% 
specific forfeits its sensitivity. While 

some useful clinical tests provide 
near-perfect sensitivity and specific- 
ity, none achieves 100% sensitivity 
or specificity without sacrificing all 
specificity or sensitivity, respectively. 
From the clinical perspective, achiev- 
ing the highest sensitivity and speci- 
ficity simultaneously is often desir- 
able. Curve A in Figure 2 represents 
a definitive diagnostic test, in which 
the sensitivity and specificity are both 
100% for all k levels. Such a curve 
begins at the origin in the lower left 
hand corner (0.0. O.O), continues to 
the top left hand corner (0.0, 1 .O), and 
then continues to the upper right hand 
corner ( 1  .O, 1 .O). A nonperfect curve 
is one that lies to the right of and be- 
low a perfect curve (curves B and C 
in Fig. 2). The closer a diagnostic 
method’s curve lies to the diagonal 
passing from (0, 0) to (1. l),  the 
poorer its performance. 

While determining a cutpoint 
level that could be used in deciding 
whether a test’s result is positive or 
negative would be ideal, there is cur- 
rently no definite way to determine 
an optimal cutpoint level (i.e., max- 
imization of both sensitivity and 
specificity). Other practical factors 
in determining precise cutpoints are 
involved, including economic and pa- 
tient health care concerns. For ex- 
ample, if sensitivity is the primary 
goal in emergency medicine, thereby 
sacrificing specificity, expensive eval- 
uations or therapy in patients incor- 
rectly diagnosed as ill (false posi- 
tives) may occur. The cost of 
unnecessary treatment, hospitaliza- 
tion, and resource utilization could be 
significant. Thus, deciding at which 
level k to set a test’s cutpoint can be 
quite daunting. 

Graphic evaluation of 2 2  diag- 
nostic tests is useful in that the rela- 
tive positions of 2 2  ROC curves pro- 
vide a qualitative comparison of the 
accuracies of the tests across a range 
of sensitivity-specificity pairs. How- 
ever, graphic comparisons do not in 
themselves provide quantitative infor- 
mation concerning the accuracy of 
rl ROC curve. The area under the 
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curve (AUC) is one way to quantitate 
the “goodness” or accuracy of a test 
in discriminating between the 2 states 
of health.”.” Conventionally, the 
AUC (often referred to as theta, O), 
is expressed as a single number and 
ranges from 0.5, corresponding to no 
accuracy, to 1.0, corresponding to 
perfect accuracy. The AUC does not 
provide a translation of a test result. 
General guidelines have been sug- 
gested by Swets for interpreting the 
AUC: 0.5-0.7 represents no to low 
discriminatory power; 0.7-0.9 repre- 
sents moderate discriminatory power; 
and >0.9 represents high discrimina- 
tory power.” 

To assess the value of one diag- 
nostic test or to compare 2 different 
tests, a more elegant strategy is nec- 
essary. Qualitatively, when assessing 
the performance between 2 tests, the 
curve with the highest AUC may ap- 
pear to be more accurate. Strictly 
speaking, when comparing 2 curves, 
or comparing a surrogate test’s AUC 
with a nondiscriminating test’s AUC 
(i.e., O S O ) ,  one cannot simply choose 
the test with the largest AUC. Statis- 
tical procedures are required to deter- 
mine whether an AUC is statistically 
significant or to compare the AUCs 
between 2 2  tests. A nonparametric 
procedure calculates the AUC from 
the observed points using a trapezoi- 
dal method. A very close relationship 
of the trapezoidal method and the 
Mann-Whitney U statistic was first 
noted by Bamber.” Hanley and 
McNeil developed and popularized 
this statistical procedure” and later 
demonstrated a technique for statisti- 
cally comparing 2 2  ROC c ~ r v e s . ’ ~  
They and others have also addressed 
such comparisons based on curves 
derived from dependent and indepen- 
dent data.’?-‘’ Thus, appropriate sta- 
tistical comparisons are needed to 
determine whether the accuracy of 
one test is greater than some refer- 
ence value or significantly different 
from the accuracy of another diag- 
nostic technique.I3- l6 Several other 
advanced statistical methods have 
been developed for estimating ROC 

curves, AUCs, and confidence inter- 
vals. However, such specific statisti- 
cal methods are beyond the scope of 
this paper. 

CLINICAL APPLICATION 
OFROC CURVES 

Clinical Scenario: Appendicitis is 
a frequently encountered illness in the 
ED in which clinical and laboratory 
evaluations are applied prior to a cri- 
terion standard diagnostic procedure 
(i.e.. laparotomy). Experience sug- 
gests that some physiologic parame- 
ters, such as peripheral WBC count, 
are more useful than others, such as 
oral temperature (the presence or ab- 
sence of fever), in correctly diagnos- 
ing appendicitis. The magnitude of 
this diagnostic advantage is easily ap- 
proached using ROC curves. 

Imagine a prospective study in 
which patients suspected of having 
acute appendicitis have had periph- 
eral WBC counts and oral tempera- 
tures taken. Once these data have 
been obtained, all patients are taken 
to laparotomy for a definitive diag- 
nosis and undergo appendectomies as 
needed. In such a study, 2 surrogate 
tests (WBC count and oral tempera- 
ture) can be compared with the truth 
(in this case, diagnosis at laparotomy, 
the criterion standard) and with each 
other. Certainly, if oral temperature 
were found to be as reliable as WBC 
count in determining appendicitis, 
phlebotomy could be avoided. If ei- 
ther test were as diagnostic as the cri- 
terion standard, unnecessary surgery 
could be avoided in patients with neg- 
ative tests. 

Assume 40 patients, 20 with ap- 
pendicitis and 20 with other diagno- 
ses at laparotomy, are studied. Table 

I TABLE 2 Peripheral White Blood Cell 
(WBC) Counts (IpL) and Oral Tempera- 
tures (“C) for 40 Patients Presenting to the 
ED* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . .  . . . . . .  

Appendicitis Other Diagnosis 

WBC WBC 
Count Temperature Count Temperature 

4,600 
6,790 
8,234 
9.300 

10.000 
10,000 
10.010 
10.030 
1 1,400 
1 1,890 
1 1,940 
12,200 
15,000 
15,400 
16,000 
16,700 
18,000 
18,790 
19,600 
20.500 

38.0 1,043 
36.3 1,296 
39.7 4,300 
37.9 4.500 
37.3 4,600 
37.7 5.640 
37.7 5,900 
38.2 6,920 
37.3 6.940 
39.4 6,974 
38.0 7,630 
38.9 8,245 
37.9 8,500 
39.9 8,900 
39.2 9,130 
38.8 9,360 
39.6 9,970 
39.5 1 1.000 
40.0 14,000 
38.5 15.970 

38.4 
39.5 
38.0 
36.4 
36.9 
37.8 
38.0 
36.5 
38.0 
37.6 
38.0 
36.0 
38.7 
39.0 
37.8 
39.5 
39.3 
38.5 
40.0 
39.6 

*Disease classification (appendicitis or 
other diagnosis) is based on laparotomy. 

2 contains the raw data from such a 
patient sample. Examination of these 
data reveal a wide range of WBC 
count test results and oral tempera- 
tures in both diseased and nondis- 
eased patients. One approach to in- 
terpreting these results would be to 
compare the WBC count (assumed to 
be /JLL [i.e., /mm’]) and temperature 
(assumed to be “C) means for patients 
who had appendicitis with those of 
patients who had other diseases using 
an unpaired 2-sided Student’s t-test 
(Table 3). From these calculations, it 
is clear that the mean WBC count 
among patients with appendicitis is 
significantly higher than that for pa- 
tients with other diseases (12.81 9 vs 

I TABLE 3 
tween Patients with Appendicitis and Patients with Other Diagnoses (Standard Errors)* 

Mean White Blood Cell (WBC) Count (/pL) and Mean Temperature (“C) be- 

. . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . .  . .................... . . . . . .  . . . -  . . . . . . . . . . . . . . . . . . . . . . .  . .  . . . . .  

Appendicitis Other Illness 
(n  = 20) (n  = 20) p-value 

WBC count 12,819 (996) 7,540 (821 j 50.001 
TemDerature 38.5 (0.2) 38.2 (0.3) 0.36 

*The means were compared using Student’s t-test for unequal variances. 
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3,675/p,L, p 5 0.001). Such a dispar- 
ity is not apparent between the mean 
oral temperatures (38.5 vs 38.1°C, p 
= 0.36). 

While useful, these conclusions 
leave unaddressed questions. For ex- 
ample, does the patient with a WBC 
count of lO,OOO/p,L have appendi- 
citis, or what temperature should 
prompt surgical exploration of a 
patient with abdominal pain? One 
method of analyzing the data is to 
calculate the sensitivity and specific- 
ity at several cutpoint values. Tables 
4 and 5 include such calculations at 2 
cutpoint values for WBC count and 
temperature, respectively. As noted in 
Table 4, when a WBC count k value 
of 8,500/kL is chosen, an 85% sen- 
sitivity is noted. Unfortunately, many 
people with WBC counts above this 
value will not have the disease (i.e., 
the specificity, in this case 55%. is 
low). When k is set at a higher value 
(15,OOO/pL), the sensitivity falls to 

40%, while the specificity rises to 
95%. These data reflect the reciproc- 
ity between sensitivity and specificity 
that is dictated by the cutpoint used 
to define a positive and negative test. 
Table 5 shows similar reciprocal be- 
havior between sensitivity and speci- 
ficity when the presence or absence 
of appendicitis is based on 2 specific 
oral temperature cutpoints. From 
these tables, it is evident that neither 
the sensitivity nor the specificity is 
particularly useful in discriminating 
between diseased states. 

Analysis: ROC curve analysis is a 
more precise method to determine the 
accuracy of WBC count and oral tem- 
perature when determining which pa- 
tients truly have appendicitis and 
which patients truly do not have ap- 
pendicitis. ROC curve analysis also 
statistically tests which physiologic 
parameter-WBC count or tempera- 
ture-is superior in its diagnostic 

I TABLE 4 
and Absence of Appendicitis* 

Effect of Vaned Cutpoints of White Blood Cell Counts (1111) on the Presence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cutpoint (TPR) (FPR) 
Values 2 X 2 Table Sensitivity Specificity 1 - Specificity PPV NPV 

A+ A- 
28,500 Test + 17 8 85% 60% 40% 68% 80% 

Test - 3 12 

A+ A- 
215,000 Test + 8 1 40% 95% 5% 89% 61% 

Test - 12 19 

*TPR = true-positive rate; FPR = false-positive rate; PPV = positive predictive value: NPV 
= negative predictive value; A+ = appendicitis, A- = other diagnosis. 

I TABLE 5 
of Appendicitis* 

Effect of Varied Cutpoints of Temperature ("C) on the Presence and Absence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(FPR) 
Cutpoint (TPR) 1 - Speci- 
Values 2 X 2 Table Sensitivity Specificity ficity PPV NPV 

A+ A -  
2 3 8 . 0  Test + 13 13 65 % 50% 50% 50% 50% 

Test - 7 7 

A+ A -  
2 3 9 . 0  Test + 7 6 35% 70% 30% 54% 52% 

Test - 13 14 

*TPR = true-positive rate: FPR = false-positive rate; PPV = positive predictive value; NPV 
= negative predictive value; A +  = appendicitis; A- = other diagnosis. 

0.8 / "1 .z 0.5 

$ 0.4 
0.3 .:yl I I I I I I I , 
0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 -Specificity 

I FIGURE 3. Receiver operating character- 
istic (ROC) curve obtained for peripheral 
white blood cell (WBC) count. The area under 
the curve is 0.82 (p 5 0.001). 

0.8 

0.7 

3 0.6 

$ 0.4 
0.3 

0.2 

0.14 t 
0- '3 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 -Specificity 

I FIGURE 4. Receiver operating character- 
istic (ROC) curve obtained for oral tempera- 
ture. The area under the curve is 0.566 (p = 
0.23). 

ability. Thus, 3 distinct null hypoth- 
eses can be tested: 1) the peripheral 
WBC count is not accurate in distin- 
guishing between ED patients with 
and without appendicitis (0 = 0.5); 2) 
oral temperature is not accurate in 
discriminating between patients with 
and without appendicitis (0  = 0.5); 
and 3) the accuracy of using WBC 
count as an indicator of appendicitis 
does not differ from the accuracy of 
using oral temperature as an  indicator 
of appendicitis (Ow,, = OOT). The 
ROC curves and statistical output 
must be analyzed to correctly inter- 
pret the results and to make decisions 
concerning the rejection or nonrejec- 
tion of the 3 aforementioned hypoth- 
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eses. To conduct the analyses, a 
macro program written for the Statis- 
tical Analysis System (SAS 6.01, 
Cary, NC) package was used based 
on the statistical approach proposed 
by Hanley and M ~ N e i l . ’ ~ . ’ ~  The 
graphic and statistical output is de- 
scribed below. 

Figures 3 and 4 show the ROC 
curves for WBC count and oral tem- 
perature regarding their discrimina- 
tory abilities to diagnose appendicitis, 
respectively, where the TPR and FPR 
are compared at various cutoff values. 
It is important to first assess the area 
under the ROC curve for each predic- 
tor of interest (Figs. 3 and 4, Table 
6). Visually, it is evident that the 
AUC for WBC count is greater than 
the temperature’s AUC from the 
ROC curve analysis. The ROC curve 
for WBC count is closer to the y-axis. 
By choosing to use the WBC count 
as a predictor of appendicitis, as op- 
posed to the oral temperature, a cli- 
nician would diagnose fewer false 
negatives and false positives accord- 
ing to the graphic interpretation. But 
the hypotheses need to be statistically 
tested. 

Is each AUC (WBC count for hy- 
pothesis 1 and oral temperature for 
hypothesis 2) different from O S ?  Ta- 
ble 6 shows, based on statistical evi- 
dence, that the null hypothesis can be 
rejected for the WBC count’s ability 
to distinguish between patients with 
and without appendicitis. The AUC, 
when using WBC count as a predictor 
of appendicitis, is 0.819 and is statis- 
tically different from 8 = 0.5, p 5 
0.001. It can be concluded that pe- 
ripheral WBC count is a useful pa- 
rameter for discriminating appendici- 
tis from other diseases. The AUC for 
oral temperature is 0.566. The null 
hypothesis is not contradicted by the 
data, and oral temperature is a poor 
predictor of appendicitis. Since this 
area is not significantly different from 
0.5 (p = 0.234), the null hypothesis 
that oral temperature is a nondiscri- 
minating index for patients with and 
without appendicitis cannot be re- 
jected. According to Swet’s general 

guidelines for interpreting the AUC, Due to the linkage of the data (i.e., 
WBC counts and oral temperature WBC counts and oral temperatures 
demonstrate moderate and no dis- were obtained from the same pa- 
criminatory power, respectively. tients), a method called the DeLong 

To test for differences between the statistical procedure (using a x distri- 
AUCs, a nonparametric test was used. bution) was chosen to test for the dif- 

I TABLE 6 
and Temperature by the Method of Hanley and M ~ N e i l ” . ’ ~  

Statistical Output: Areas under the Curves for White Blood Cell (WBC) Count 

. . . . , . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Predictor Area under the Curve (0) Standard Error of 0 p-value* 

WBC countt 
TemDerature t 

0.819 
0.566 

0.068 so.001 
0.092 0.234 

*Chi-square comparison of the areas under the curve of WBC count and oral temperature 
shows that the AUCs are significantly different (xz = 6.99 with 1 degree of freedom. p 5 0.01). 

TThis is a 1-sided test of the null hypothesis: 0 = 0.50. 

I TABLE 7 
(IpL) as a Predictor Variable for Appendicitis 

Statistical Output: Sensitivities and Specificities of White Blood Cell Count 

. _ . . . . . .  . . . . . . . . . . .  . . . . . .  . . . . . . . . . . .  . .  . . . . . . . . . .  . . . . . .  . . . . . . . . . . .  

True True 
Cutpoint Positives Negatives Sensitivity Specificity 1 - Specificity 

1,043 
1,296 
4,300 
4,500 
4,600 
5,640 
5.900 
6,790 
6,920 
6.940 
6.974 
7,630 
8,234 
8,245 
8,500 
8,900 
9,130 
9,300 
9,360 
9,970 

10,000 
10,010 
10,030 
1 1 .ooo 
1 1,400 
11,890 
1 1,940 
12,200 
14,000 
15,000 
15,400 
15.970 
16,000 
16,700 
18,000 
18,790 
19,600 
20,500 

20 
20 
20 
20 
20 
19 
19 
19 
18 
18 
18 
18 
18 
17 
17 
17 
17 
17 
16 
16 
16 
14 
13 
12 
12 
11 
10 
9 
8 
8 
7 
6 
6 
5 
4 
3 
2 
1 

0 
I 
2 
3 
4 
5 
6 
7 
7 
8 
9 

10 
11 
1 1  
12 
13 
14 
15 
15 
16 
16 
16 
16 
17 
18 
18 
18 
18 
18 
19 
19 
19 
20 
20 
20 
20 
20 
20 

1 .OO 
1 .oo 
1 .OO 
1 .00 
1 .oo 
0.95 
0.95 
0.95 
0.90 
0.90 
0.90 
0.90 
0.90 
0.85 
0.85 
0.85 
0.85 
0.85 
0.80 
0.80 
0.80 
0.70 
0.65 
0.60 
0.60 
0.55 
0.50 
0.45 
0.40 
0.40 
0.35 
0.30 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.35 
0.40 
0.45 
0.50 
0.55 
0.55 
0.60 
0.65 
0.70 
0.75 
0.75 
0.80 
0.80 
0.80 
0.80 
0.85 
0.90 
0.90 
0.90 
0.90 
0.90 
0.95 
0.95 
0.95 
1 .OO 
1.00 
1 .oo 
1 .OO 
1 .00 
1 .oo 

1 .oo 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.65 
0.60 
0.55 
0.50 
0.45 
0.45 
0.40 
0.35 
0.30 
0.25 
0.25 
0.20 
0.20 
0.20 
0.20 
0.15 
0.10 
0.10 
0.10 
0.10 
0.10 
0.05 
0.05 
0.05 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
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I TABLE 8 
dictor Variable for Appendicitis 

Statistical Output: Sensitivities and Specificities of Temperature ("C) as a Pre- 

True True 
Cutpoint Positives Negatives Sensitivity Specificity 1 - Specificity 

36.0 20 0 1 .oo 0.00 1 .oo 
36.3 20 0 1 .oo 0.05 0.95 
36.4 19 1 0.95 0.05 0.95 
36.5 19 2 0.95 0.10 0.90 
36.9 19 3 0.95 0.15 0.85 
37.3 19 4 0.95 0.20 0.80 
37.6 17 4 0.85 0.20 0.80 
37.7 17 5 0.85 0.25 0.75 
37.8 15 5 0.75 0.25 0.75 
37.9 15 7 0.75 0.35 , 0.65 
38.0 13 7 0.65 0.35 0.65 
38.2 I 1  1 1  0.55 0.55 0.45 
38.4 10 1 1  0.50 0.55 0.45 
38.5 10 12 0.50 0.60 0.40 
38.7 9 13 0.45 0.65 0.35 
38.8 9 14 0.45 0.70 0.30 
38.9 8 14 0.40 0.70 0.30 
39.0 7 14 0.35 0.70 0.30 
39.2 7 15 0.35 0.75 0.25 
39.3 6 15 0.30 0.75 0.25 
39.4 6 16 0.30 0.80 0.20 
39.5 5 16 0.25 0.80 0.20 
39.6 4 18 0.20 0.90 0.10 
39.7 3 19 0.15 0.95 0.05 
39.9 2 19 0.10 0.95 0.05 
40.0 1 19 0.05 0.95 0.05 

ferences in the AUCsi6 (asterisk foot- 
note in Table 6). The AUCs for WBC 
count and oral temperature are signif- 
icantly different from each other 
(0.819 vs 0.566, p I 0.01). There- 
fore, the third null hypothesis can be 
rejected, and it can be concluded that 
peripheral WBC count is superior to 
oral temperature in its ability to dis- 
criminate between patients with and 
without appendicitis (x2 = 6.99, 1 de- 
gree of freedom, p I 0.01). In con- 
clusion, these results, albeit contrived, 
showed that obtaining and measuring 
WBC counts may provide value for 
emergency physicians in the diagno- 
sis of appendicitis, whereas oral tem- 
peratures do not help discriminate 
disease (appendicitis) from nondis- 
ease (no appendicitis). 

Tables 7 and 8 represent sensi- 
tivity-specificity pair calculations for 
unique cutpoints in the data set gen- 
erated from the ROC curve analysis 
for WBC count and temperature, re- 
spectively, using the macro program 

written in SAS (this macro can be ob- 
tained through correspondence with 
the author). It is actually through the 
use of these data that the ROC curve 
is generated. 

ROC Data Details: To demonstrate 
the usefulness of the output and to in- 
terpret the results in these tables, one 
row of output serves as the example 
in this paper. The output for that row 
is explained column by column. For 
simplicity's sake, the italicized row in 
Table 7 represents one of the WBC 
cutpoints shown in Table 4. i.e., a cut- 
point of 8,5OO/pL. It will also be- 
come apparent how 2 X 2 tables 
(such as Table 1) are formulated. 

The first column (Curpoint) rep- 
resents a specific cutoff value for 
WBC counts. The cutpoints generated 
from the statistical procedure are ar- 
bitrary. As shown in the 14th row in 
Table 7, the cutpoint for classifying 
patients as having appendicitis is 
8,5OO/pL. Using this cutpoint, pa- 

tients presenting to the ED with WBC 
counts ~ 8 , 5 0 0  were classified as non- 
diseased or negative for appendicitis, 
and any patients with levels 28,500 
were classified as diseased or positive 
for appendicitis. The number of pa- 
tients who were positive according to 
a cutpoint of 8.500 is noted in the 
second column of the output (True 
Positives). For example, 17 patients 
were classified as having appendici- 
tis, according to the 8,500 WBC cut- 
point, who were truly diagnosed at 
laparotomy with appendicitis. The 
third column (True Negatives) de- 
notes the number of patients who 
were negative according to the 8,500 
cutpoint. For example, 11 patients 
were classified as having a medical 
condition other than appendicitis at 
this cutpoint. Column 2 is the cumu- 
lative total moving from the bottom 
up and column 3 is the cumulative 
total moving from the top down. In 
column 2, for example, in the last row 
in Table 7 where k = 20,500/pL, only 
1 patient is classified as a true posi- 
tive, whereas in the first row where k 
= 1,296, all 20 patients are classified 
as true positives. In column 3, in the 
first row in Table 7 where k = 1,296, 
no patients are classified as true neg- 
atives, whereas in the last row where 
k = 20,500, all 20 patients are clas- 
sified as true negatives. 

The sensitivity of the test at a spe- 
cific cutpoint is calculated in column 
4 (Sensitivity). For each cutpoint, sen- 
sitivity is defined as the number of 
patients with appendicitis who have 
WBC counts equal to or above the 
cutpoint (true positives) divided by 
the total number of patients who truly 
have appendicitis at laparotomy (true 
positives plus false negatives). For 
example, when 8,500 is used as the 
cutpoint, the sensitivity of the test is 
85% (n  = 17/20). 

The specificity of the test at a spe- 
cific cutoff value is noted in column 
5 (Specificity). For example. when 
8,500 is used as the WBC count cut- 
point, the specificity is 55% (n = 11/ 
20). The specificity is defined as the 
number of patients without appendi- 
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citis with values beneath the cutpoint 
(true negatives) divided by the total 
number of truly nonappendicitis pa- 
tients (true negatives plus false posi- 
tives). The last column is merely 1 - 
specificity. The values in column 6 (1 
- specificity) are plotted against the 
values in column 4 (sensitivity) for 
each cutpoint noted in Table 7. 
Hence, the ROC curve is created. 

The sensitivity and specificity can 
also be calculated by hand using the 
output in Table 7. Using Table 1 as a 
calculation template, one can simply 
insert the numbers of true positives 
and true negatives in the appropriate 
cells of the 2 X 2 table and calculate 
the number of false negatives and 
false positives. For example, it is 
known that 20 patients truly have ap- 
pendicitis and 20 patients have an- 

other disease at laparotomy. There- 
fore, the total sum of the columns, 
T,,, and Tncp, in Table 1 are fixed at 
20 patients each. By referring to Ta- 
ble 1 and knowing that there are 17 
true positives (cell a) from the second 
column in Table 7, the number of 
false negatives is 3 (cell c). Similarly, 
there are 1 1  patients who truly do not 
have appendicitis (cell d) ;  therefore, 
there are 9 false positives (cell b). 

CONCLUSION 

Table 9 is an overview of ROC curve 
analysis. ROC curves are frequently 
used to evaluate diagnostic tests to 
differentiate “healthy” individuals 
from “diseased” individuals. A di- 
agnostic test’s sensitivity and sensi- 
tivity are not the most useful methods 

I TABLE 9 Overview of ROC Curve Analysis ............... .............. ......................... 

in determining a test’s ability to dis- 
tinguish between diseased and non- 
diseased patients. The advantage of 
ROC curve analysis is that a graphic 
display of the sensitivity-specificity 
interdependence of the diagnostic 
test(s) with varying cutpoints allo- 
cated for the decision is produced. 

Selecting the best ROC curve cut- 
point is difficult and presents a risk- 
benefit enigma. Cost analysis can be 
performed to determine the level of 
tolerance for missed diseased and 
missed nondiseased patients. There 
may be clinical situations where 
proper categorization of all diseased 
patients may be more important than 
the risk of mislabeling nondiseased 
patients, and vice versa. Generally, 
moving up and to the right on the 
ROC curve is associated with more 

Alternate names: Also referred to as receiver or relative operating characteristic curves. 

Data type: 
Corzrinuous or caregorical durn: If there are >2 categories, the categories must be ordered in a clinically meaningful way (ordinal data). 
Dependent or independe~r data: Dependent data are data derived from different diagnostic tests from a single sample of patients. Independent 

data are data derived from different diagnostic tests from different samples of patients. 

Appropriate tests and assumptions: There is a binormal assumption used in many of the ROC-fitting algorithms. However, simulation studies 
have shown that even gross violations of the binormal assumption tend not to produce substantively different results. A parametric test is used 
when the data are binormal in their distribution. The maximum-likelihood estimation method is used to generate the model. 

A nonparametric test such as the Mann-Whitney U test has an underlying continuity assumption. For this test, the AUC is theoretically P ( X  
< Y), where X denotes the values of the test in the nondiseased group and Y denotes the values of the test i n  the diseased group. respectively. 

Principal results: The slope of the curve at a point is equal to the likelihood ratio associated with that result. 

considered usefiil in its ability to discern the diseased from the nondiseased. 
AUC: If the AUC (0) = 0.5, there is no discriminatory power of the diagnostic test. If 0 is significantly 20.5. the diagnostic test could be 

Testing the difference in the AUC for 2 different diagnostic tests provides evidence whether the 2 AUCs differ in their discriminatory powers. 

Strengths: 
1 .  Provides information concerning the discriminatory power of a diagnostic test. 
2. Provides a visual representation of the trade between sensitivity and specificity. 
3. Results can be used to choose the best clinical strategy in clinical practice. 
4. Ordinal regression models in diagnostic test assessment can be used to control for covariates. 
5. Existing computer programs for ROC curve analyses are becoming more available. Available ROC curve programs are listed in the suggested 

reading list (suggested readings 2, 7, 12, and 13). 

Limitations: 
1. Complex computations are involved. especially when evaluating multivariate characteristics. 
2. The results must be weighed against the diagnostic test’s risks and costs. 
3 .  ROC curves may not equivocally identify the superior test because it is possible for the curves to cross. 
4. Despite the results of ROC curve analysis. clinicians are frequently constrained by external forces to operate in a particular area of the ROC 

plane (e.g., they may have to maintain a sensitivity above 95% due to patients’ expectations or institutional liability issues). In such an 
environment. a curve with a lower AUC may still perform better i n  the clinical arena. given that its application is restricted. 

5. It is difficult to use ROC methods to evaluate combinations of test, whether sequential or simultaneous. Since patterns of test results are 
clinically more meaningful than single results, this is a serious drawback to the practical application of R O C  methods. 
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and more lenient standards for diag- 
nosis and, conversely, moving down 
and to the left is associated with more 
and more stringency for diagnosis. 
Therefore, the more common the dis- 
ease of interest, the more lenient 
should be the standards of diagnosis, 
and vice versa. Further, the greater 
the cost of false negatives compared 
with false positives, the more lenient 
the standards for diagnoses should be, 
and vice versa. 

As previously noted, diagnostic 
test outcomes can either be continu- 
ous or categorical. The appendicitis 
application of ROC curve analysis 
application dealt with continuous 
clinical data (WBC counts and oral 
temperatures) and a dichotomous out- 
come (appendicitis or nonappendici- 
tis). There are situations, neverthe- 
less, in which the categorical test 
result consists of >2 categories. For 
tests with >2 categorical variables, a 
fundamental requirement for ROC 
analysis is that the test results must 
be ordered in a clinically meaningful 
way. In other words, there is an in- 
herently implied order of outcome of 
interest. For example, in diagnostic 
imaging, a scaling or rating system 
may be used: normal, equivocal, and 
abnormal. 

One last relevant topic concerning 
ROC curve analysis is that of resam- 
pling methodology. There are occa- 
sions in which the underlying distri- 
bution of the data is unknown and the 
characteristics of a statistical model 
or calculated parameter are needed. 
Resampling refers to the statistical 
methods used to validate a statistical 
model without using an independent 
data set or to obtain an estimate of 
a parameter of interest and a parame- 
ter of uncertainty from a single set of 
observations. Resampling methods, 
such as the bootstrap and jackknife 
methods, involve repeating the statis- 
tical analysis a number of times, and 
each time it is repeated, a different 
simulated data set is used. Each sim- 
ulated data set is obtained from the 

observed set of data using some plan 
or algorithm. The multiple statistical 
analyses used in resampling deter- 
mine the statistical model’s or calcu- 
lated estimate’s accuracy. For re- 
searchers who wish to understand 
ROC curves and resampling methods 
in more depth, a suggested reading 
list is provided. 

The authors recognize the help of Drs. Nowak 
and Rivers. Henry Ford Hospital Emergency 
Department, and the Ann Arbor HSRD for 
supporting the development of the manuscript. 
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