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ABSTRACT

An important problem in connection with radar absorbers is the design of
absorbing coatings to reduce 'non-specular' scattering contributors such as
edges, traveling and creeping waves. The present study is directed at the
first two. The surface treatment is simulated using an impedance boundary
condition and the main tools employed are high frequency diffraction analyses
and a computer program for the direct digital solution of the integral equation
for the induced current. For simplicity attention is confined to a two-dimen-
sional problem, and the body used to illustrate the techniques is a 15° half
angle ogival cylinder illuminated by an H-polarized plane wave incident in a
plane perpendicular to the generators of the cylinder. By a combination of

analytical and numerical techniques, surface impedances are specified providing
significant and broadband cross section reductions over -given aspect ranges.
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1. INTRODUCTION

The problem of reducing the backscattering cross section of a target is a
rather old one, and the specification, manufacture and application of radar
absorbing materials is now a well-developed art. These materials are custom-
arily designed to reduce the backscattering over a range of frequencies for
normal (or near normal) incidence on a surface, but the fact is that many
targets of concern are so shaped that in the aspect ranges of most interests
no surfaces are viewed at normal incidence. This is true, for example, for
many aircraft at front and rear aspects, but even in the absence of
specular contributions, the scattering from the wings, fuselage, etc., can
still be significant. It is therefore important to seek absorbing materials
which are effective in reducing 'non-specular' scattering and the present
study is directed to this end.

The three main types of non-specular scatterer are edges (or other dis-
continuities in the slope or higher derivatives of the surface), traveling
waves and creeping waves. All are aspect and polarization dependent and
diminish with increasing frequency. Their magnitudes are generally small
compared with any specular contribution that may exist, but they can be im-
portant under all circumstances and most particularly when there is no specular

scattering.

Traveling and creeping waves are forms of surface wave whose propensity
to cling to surfaces sets them apart from edge-diffracted contributions. The
waves are distinguished from one another mainly by the illumination of the
surface on which they travel. Creeping waves are born at the shadow boundaries
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of bodies whose radii of curvature are electrically large. They propagate
into the shadow region following geodesic paths, leaking off energy in the
direction of the forward tangent to the path as they go. As a result of this
leakage, the wave attenuates as it pkogresses and its electromagnetic proper-
ties at any point are almost exclusively determined by the local geometry of
the surface. It is evident that such a wave can traverse the rear of a
smoothly curved body such as a circular cylinder, and on reaching the boundary
of the shadow and 1it regions, the energy radiated is in the backscattering
direction. For a metallic body creeping waves are only an appreciable source
of scattering when the incident electric field is perpendicular to the surface
at the shadow boundary, but once established they are no longer dependent on
the incident field. They are closely bound to the surface over which they
travel and this fact, combined with their natural rate of decay even on a
metallic surface, makes it possible to diminish their effect using lossy
coatings.

Traveling waves are also significant only when the electric vector is
perpendicular to the surface. They are supported by surfaces of large
radius in the direction of travel almost all of which are illuminated, and
in contrast to creeping waves, they tend to build up as they travel, being
fed by the incident field. As regards backscattering, a traveling wave is
harmless as long as it continues to travel forward, but when it reaches any
discontinuity in the surface or its electrical properties, a portion may be
reflected back to contribute to the backscattered field. The resulting field
has a fan-shaped pattern characteristic of a traveling wave antenna. As in
the case of creeping waves, a traveling wave contribution can be reduced by
appropriately loading the surface.
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The third source of non-specular scattering is edge diffraction as, for
example, by the front and rear edges of an ogival cylinder. This also is
strongly polarization dependent. Thus, for a plane wave at near edge-on
incidence in a plane perpendicular to the axis of an ogival cylinder with its
electric vector parallel to the edge (E polarization), the front edge is
the primary source. On the other hand, for H polarization the rear edge is
dominant, and its scattering can be reduced by the same method used for the
traveling wave, but even so the front edge still contributes a small amount.
It may therefore be necessary to treat the front edge as well to produce a
substantial decrease in the scattering from the entire body.

In three previous studies (Knott et al, 1973b; Knott and Senior, 1974;
Senior and Liepa, 1977) techniques were developed for reducing non-specular
scattering using surface treatments and/or resistive sheets extending out from
the body. The present work is a continuation of these but is exclusively
concerned with the specification of a surface treatment to reduce edge and
traveling wave contributions to the backscattered field. The surface treat-
ment is simulated using an impedance boundary condition and the main tools
employed are high frequency diffraction analyses and a computer program for
the direct digital solution of the integral equation for the induced current.
For simplicity attention is confined to a two-dimensional problem and the
model used to illustrate the techniques is a 15 degree half angle ogival
cylinder illuminated by an H-polarized plane wave incident in a plane perpen-
dicular to the generators of the cylinder. The task confronting us is to
devise schemes for broadband reduction of the backscattering cross section
with particular reference to a range of aspects about edge-on.
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2.  GENERAL CONSIDERATIONS

Our analyses and computations are based on the use of an impedance boundary
condition to simulate the effect of a coating applied to the surface. It is
assumed that the (normalized) surface impedance n is a function only of the
local properties of the coating regardless of the field and the geometry of
the surface to which it is applied, and this is an assumption which is in-
capable of prior validation. In particular, it is not evident that an actual
coating will present the same impedance close to the edge of a body as it
does when over a broad face, nor is there any assurance that a material can
be found to yield a desired impedance independent of both the incident field
and the surface geometry. In spite of these shortcomings, the concept of a
surface impedance is a valuable one especially for a study such as this, and
the fact that for bodies with a variety of different coatings good agreement
has been found between measured scattering patterns and those computed using
the appropriate surface impedance provides confidence in its validity.

For a surface whose impedance is specified at every point, the impedance
(or Leontovich) boundary condition can be written as

E-(n-En = nInH (1)
where n is the unit vector outward normal and n is the surface impedance
relative to the intrinsic impedance Z of the free space medium above the
surface. n may vary over the surface and is zero for perfect conductivity.
The derivation of (1) has been discussed by Senior (1960) and we remark that
in contrast to the analogous boundary condition involving the normal deriv-
ative of the field, (1) does not contain any tangential derivatives of n.



015224-1-T

An immediate consequence of (1) is that the surface supports electric
and magnetic currents whose densities K = n.H and Ef = - n.E respectively
are related by

and in general both are non-zero. By trivial manipulation, (1) can also be
expressed as

H-(h- HA = -

3|=<

n.E (2)

(Senior, 1962) where Y = 1/Z. This the dual of (1) under the transformation
E+H,H~>-E, Z< Y,n>1/n, implying K » K* and K* ~ -K . It follows
that in spite of our concentration on the case of H polarization, the
analogous results for E polarization can be obtained by replacing n by 1/n.

If an H polarized plane wave is incident in a plane perpendicular to
the generators of a cylinder whose profile is C, the problem is a scalar one
for the component HZ parallel to the generators. The electric current is
now in the direction of the tangent to the profile, i.e. K = §K, and the
scattered magnetic field is HS = 2HS with

H (o) = 1K JC {ﬁ' f i M (kr) + in(s')Ho(])(kr)} K(s')ds' (3)

where r (= rr) =P - P' is the vector from the integration point to the point

of observation and Ho(]), H](]) are Hankel functions of the first kind of

-jwt

orders zero and one respectively. A time factor e is assumed and

suppressed.
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On taking the 1imit as the observation point approaches C, we have
Hi(s) = dks) - T (a2 (D ey + ints ) (D ke)  k(s') ds'
2 4 C 1 0
(4)

This is an integral equation for the surface electric current density K(s)
and is the one on which the computer program RAMD (see Senior and Liepa, 1977)
is based.

The first terms in the integrands of (3) and (4) are contributed by the
electric current and the second by the magnetic current. In the far zone of
the body the Hankel functions can be replaced by the leading terms in their
asymptotic expansions for large argument to give

S (o) ; F%E' oilko - n/8)p (5)

in which the far field amplitude P is

P =% [ {n L0 - n(S')} K(s')e 1K b0 g (6)
C

The form of this expression suggests three possible procedures for re-
ducing the scattering in some chosen direction p , and these could be
employed singly or in combination:

(i) reduce the amplitude of the current over the entire surface
of the body,
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(i) adjust the phase of the current to ensure that there is no
stationary phase point in the range of integration, and

(iii) choose the surface impedance so that A' - 5 - n(s') is
small over the surface.

The first two are the bases for the more conventional approaches to cross
section reduction. An absorber does serve to reduce |K| , but not always by

a sufficient amount to rely on this technique alone. Shaping of the body is
directed at the second method, and the elimination of all specular reflections
is, in fact, equivalent to the elimination of the stationary phase points
associated with the incident field phase. Unfortunately, such shaping may
also accentuate surface wave effects. In the case of an ogival cylinder there
is a stationary phase point created by the (backward) traveling wave, and it
is then necessary to reduce this portion of the surface field as much as
possible.

The third method is more novel. If
n=n-op (7)

at every point of the surface, the scattering will be zero in the direction

5 and (presumably) small in some range of aspects about this direction. The
required impedance depends neither on the frequency nor the angle of incidence
and is always real, but there is a difficulty: for any closed surface the
specification demands a negative real (active) impedance over a portion of

the surface. Thus, to suppress the edge-on backscattering from an ogival
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cylinder of half angle @ , n must vary from sin? at the front through zero at
the middle to - sin® at the back. We have verified (Senior and Liepa, 1977)
the validity of the scheme by using program RAMD to compute the bistatic
scattering from a cylinder. The impedance did null out the scattering in the
backwards direction, and reduced it below that of the bare body within 18 degrees
of edge-on while increasing it at larger angles. In an attempt to avoid the
negative impedances, we also computed the scattering for an impedance equal to
the modulus of the optimum, and for a treatment in which the cylinder was left
bare where the optimum impedance is negative. Unfortunately, neither was
effective, and the edge-on backscattering was actually larger than for the
bare body.

Although the optimum surface impedance is non-physical for any finite body
of non-zero thickness, one geometry for which it is both realizable and simple
is the infinite wedge, and for edge-on incidence in particular the requirement
is that

n = sin® (8)

where @ is the half angle of the wedge. This is not irrelevant to our task
since the edges of the ogival cylinder resemble that of a wedge, and we shall
now examine the scattering from a number of discontinuities in the surfaces of
coated bodies.
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3.  SCATTERING BY EDGES AND OTHER DISCONTINUITIES

The problem of immediate concern to us is the backscattering from the
front and rear edges of the ogival cylinder, and this can be analyzed using
the infinite wedge as a model. We treat first a wedge of arbitrary angle and
then particularize the results to the case of a half plane and a wedge of half
angle 15 degrees. We then examine several types of impedance discontinuity
on an otherwise smooth surface and compare the scattering with that provided
by a geometric discontinuity.

3.1 Backscattering from a Wedge

A wedge of half angle @ having the constant surface impedance n on both
faces is illuminated by an H polarized plane wave incident at an angle wo to
the symmetry plane of the wedge (see Figure 3-1). As shown by Maliuzhinets
(1959) the far field amplitude of the edge diffracted wave in the direction @
is then

.
) j coS ;)‘ ('” - g0) Yy ("' Q)
PR, B, 50) = -5 (- 0,0 Y sin %.+ sin %—(ﬂ - 9,)
. y (27 - @)

sin -1- (20 - @) - sin l— (w-9,) [ (9

where v=2(r-Q)/r =28/ . (10)
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Figure 3-1: Wedge geometry.

It is sufficient to take @ < @, QO < m and in the particular case of back-
scattering (@ = @)

0
1
. cos — (m - @) )
P (ﬂs ¢3 n) == _}4_ v S:n T 1 ]'ﬂ' :"éw—%)
> sy (z-9)
1 y (27 - @)
+ . (1)
cos %-( %;—- p) ! (m - 9)

The function ¥ is given as the solution of a difference equation and can be

expressed in terms of the special functions ¥, introduced by Maliuzhinets:

¢
¥ (a) = vyla+atx)p, (a+e-x) vy (a-0+x ¥, (a-2-x
= (v, () byyp (0% x) ¥y (a - %)

where n = COS Y. (12)

10
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Hence

v (n = 0)= oy (Y vy (1 =0+ vy (1= =)

and

v (-0) = vy () vy (-0 + %) vy (0 - X)

=§)¢ (2) ¥y /n (Tr/Z)}4 cos 1; (3 -0+ x) cos ]; (3-8 -x

-1
'{U)@/Z (Tf'g"'X) IPQ/Z (w-ﬂ- X)}
(Maliuzhinets, 1959), giving

Similarly

!gﬁ%%”f‘%%'= %‘{%os %-(%g'- ) + cos %%:}9 (r-0+x)g(r-0-x (15)

and when (13) and (15) are substituted into (11) we have

2

1 il
o cos = (m - @) cot 5~ {cos]—(l—ﬂ)
P(Q’g,n)——gCosl(l__ﬂ)cgsl(i"_ﬁ) v 2
v ‘2 v+ 2

. COS l.(§£., g) - sinz-x:} g(r-0+x)g(r-0-x%)
A v m X) g \m X/

(16)

11
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Certain conclusions can be drawn which do not require a knowledge of the
function g (a) and are valid for wedges of all angles. In general P is in-
%-(%;-— @) = 0, corresponding to the direction @ = /2 + o of
specular reflection from the upper face of the wedge. For angles in the
immediate vicinity of this direction we may replace @ by n/2 + o in all factors

except the cosine to get

finite when cos

2
; sin X . .
P (9, 8, n) ~ - T3 g(z-a+x)g(F-0a-x) .
™ cos —-(7§ - )
Vv
But
v T - 3 o X
o/2 (7= 2% x) = Vg (5 -2-X) cot 3
and

2

(Maliuzhinets, 1959). Hence

2 2
g(z-2+x) g (z-9-x)=tan §cosec X

implying )
. tan X
' 2
P (Qa 0, ﬂ) v z%' 1

CcOoS ;

_il-n 13
3 " TEacecy (-0
(jj‘“ 9)

The diffracted field is therefore infinite when @ = /2 + @ except whenn =1,
and since

i1 - 1
P (Qs 9, n) %’1 ¥ 2 @ - 1/2 - Q (17)

for @ ~ n/2 + @, the singularity is identical to that displayed by the physical
optics approximation.

12
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For grazing incidence along the upper face § = @ and cos %—(n -p) = 0.
P (P, @, n) is then zero provided n = 0. However, we caution that this is a
situation in which a traveling wave may be excited and, in addition, plane
wave illumination is not possible unless n = 0. Also

2

P (5 5> n) = - Rl 2 cos I - sin” X Z+x) 9 G- x

22 2 " 2 s T v v) 32T X9 X

Y
which can be reduced to
2
2 . X
. (1 + cos &) sin = 2

P (L, T .)=--1 v 1 - Y Vsec X (18)

2’ 2 Yo ogin %~ cos %— v

using the expression (14) for g (a) and the relations given by Maliuzhinets
(1959). In the particular case n=1, i.e. X = 0,

T\ 2
(1 + cos ;)

T oW -1
Pl )
sin —
\Y)
whereas for a perfectly conducting wedge

P (%3 %3 0) = - i%—(B - sec %) cot %%

(Bowman et al., 1969; p. 263). For 2 = 15° (v = 11/6),

TOw _ .
P (é, '2“, ]) = -1 0.10134
compared with
T W _ .
P (5, "2“, 0) = -1 1.18475.

Our final observation is the most important of all. As evident from (16),
P (@, @, n) is zero if

13
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1/2
sin % ={cos ]; (_121 - @) cos —]\; (37“ - )} (19)

and for any wedge and any angle @ it is now possible to determine X and hence
n such that the edge diffracted field is zero in the backscattering direction.
Results for @ = 0(5)1800 and three different wedge angles are given in Table 3-1.
If p = n (edge-on incidence), (19) reduces to

. X i
sSin — = CO0S 75—
v 2v

implying

n = sin Q

(cf equation 8). In all cases n is real and positive, corresponding to a
purely resistive coating, with n < (») 1 if @ > (<) n/2 + . For a half plane
(v = 2) the requirement is simply

n=1+cos®. (20)

To proceed further, however, it is necessary to determine the function
g (o) for the wedge in question and we shall now examine two particular cases.

3.1.1 Half Plane

If =0 (o = ) so that v = 2, (16) yields
P9, 0 n) - g SR (1 tcosp-mgln-Brx)glr-0-x
(21)
where, from (14),
2
v, (1/2)
( ) = ﬂ/z . . (22)
) ¢ﬂ/2 o

14
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But

o . (a) = ex 1 ? 2u - msinyu 4

/2 PN ar ' T cos u
(Maliuzhinets, 1959) and since

cos &+ 11172 a .
_ 2 1 72u-rmsinu ‘

Yy (a) = B+ ] €XP N~ Br £ osu U
(Bowman, 1967), it follows that

o J?'cos%+1 { ()}-2

a) = ———— (¥ (a
TT/Z f2‘+-‘ m
giving
) 2 v (o) |4
g (a) = J%T;;;—%T:—;- v (w/2 (23)

The function wﬂ(a) has been tabulated by Bucci (1974) for a range of complex a.

Alternatively, in terms of the function

w/2-0
: . - - d
fa)= (0 +sina)/*exp(- %g o (24)
introduced by Senior (1975),
. 1/2 2
g (o) = (F3incl {f (a)} (25)
cos 5'(%" a)

and when this is substituted into (21), we have

cos P

. 2
P, 0n)=-7 1-0c0sP (14 cos p-n) {% (m-P+x) fln-0- xi} :

(26)

16
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In the particular case of edge-on incidence (@ = =),

. 4
P ('ﬂa Ty T]) = - J’él (f(X)> (27)

where we have used the fact that f (a) is an even function, as evident from its
alternative representation
-1/4

exp 2 j CVdV . (28)

f (a) = (COS a) 05 v

Equation (27) differs from the ana]ogous expression in Senior (1975) only in
having n replaced by 1/n, as necessary by the change from E to H polarization.

A program has been written to compute f (x) for all real n, but (24) and
(28) can be used to provide asymptotic approximations to f (x) whose accuracy
is adequate for many practical purposes. Thus, if |n|<< 1 then x = /2 - n
and (24) yields

f) = 27 exp (- ) (29)
so that

P (n, m, n) = - %f-exp (- %?) | (30)
implying

P (r, m, 0) =0 (31)

On the other hand, for |n]| >> 1

F )= e { 2 [1+n (Zn)]} (32)
giving

P my m, n) = - %— exp { }?%{ [1+1n (Zn)]} (33)

17
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and implying
P ('”9 Ty °°) = "% (34)

corresponding to a perfectly conducting half plane with E polarization. It now
follows that if* n = |nle'®, lo] <n/2 ,

[P (m, 7, n)| = %-Inl exp {} % [n|cos %} (|n] << 1) (35)
P (m, m, n)| = 1gexp {— ﬂ——z[ﬂ[(] + 1n (2|n]|) cos & + © sinfe]}
([n] >> 1) (36)

and these are independent of the sign of 6. Between them the two expressions
provide rather accurate coverage of the entire range 0 < |n| < =, with an error
of no more than about 5 percent with the possible exception of the interval

0.8 < |n] < 2.

* With n defined in this manner and n = cos X,

and for |n| > 1

sin x,. = ¢ 21/ {\l“ - 1nl2)% + 4 |n|2 sinf o +1 - lnlz}]/2

sinh X, = 2"]/2{;(1 - nl2)% + 4 [n]2 sin® o - 1+ lﬂl%}]/z

with the upper (lower) sign for o > (< 0).
18
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We have used (35) and (36) supplemented by the tabulation of Bucci (1974)
to compute |P (m, m, n)| as a function of |n| for different values of 5. The
results for 6 = 0, n/4 and «/2 are shown in Figure 3-2 and it is seen that
arg n has most effect for |n| somewhat greater than unity. If 6 = /2 correspond-
ing to a reactive surface, the exponent in (24) is purely imaginary, and as
noted by Kay (1957) the modulus of the scattered field then has a simple
algebraic expression. From (24)

1F(x)] = (1 T+ [n2)1/"
giving

P (momn) =g Il 0+ 1+ 2] (37)

for arg n = n/2.

Since P (n, m, 0) = 0, the metallic surface is actually the optimum for
minimum backscattering at edge-on incidence, and |P (@, @#, 0)| is plotted as a
function of @ in Figure 3-3. Alternatively, we can null out the backscattering
in any direction @ = =/2 by choosing n in accordance with (20), and Figure 3-3
also shows the curve for n = 0,13397 for which the null is at @ = 150°. Both
fields are, of course, infinite in the specular direction § = 90°, but the
angular range where the field is large decreases with increasing n < 1.

3.1.2 Wedge of Half Angle 15°

For a wedge of half angle @ = 7 - ¢ with ¢ = %%-where m and n are integers
with n odd, Maliuzhinets' function wQ(a) can be expressed as a product of
trigonometric factors. A particular case is @ = 15°, i.e., ¢ = 117/12 implying
v = 11/6, for which m = 3 and n = 11, and we then have

vg(a) = 15

where h(a) is the even function
19
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6
{%os T%-+ cos 2?%15} i {}os T%—+ cos Eﬁ%%?l {}
1 p=1
£ )
i

cos <% + cos ZPa cos <2 + cos 2L
1 11 11 p=1

->
——
Q
-
1]
v
™
o
holQ
N
=
N =W

11 33

o

It follows that

Yorgl®) = Ty T e T RE) e
giving m 11 2 T 11 2
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We have computed this expression as a function of @ for a variety of ,
and the results for n = 0(0.25)2.0 are plotted in Figures 3-4 and 3-5 (note the
expanded scale of the latter figure). In contrast to the situation with a
half plane, the edge-on backscattering is no longer zero for perfect conduc-
tivity, but can be made zero by choosing n appropriately. From Table 3-1 the
required impedance is n = 0.25882 and the resulting edge diffracted field is
shown in Figure 3-6. It is essential that the impedance be real to obtain
the effect. If arg n # 0 (or ), there is no longer a zero in the backscattered
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Figure 3-4: Backscattering from a 15° half angle wedge having the real
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Figure 3-5: Backscattering from a 15° half angle wedge having the real
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Figure 3-6: Backscattering from a 15° half angle wedge with impedance n= 0.13397ei]e
for 6 = 0, n/6, w/3 and 7/2. The broken line is for a perfectly con-
ducting wedge (n = 0).
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field and this is illustrated by the curves for n = 0.25882 eie with 6 = n/6
m/3, and w/2 included in Figure 3-6. For the purely reactive impedance

’

(6 = n/2) the scattering is comparable to that from the perfectly conducting
wedge.

If the desire is to reduce the backscattering over some range of aspects
about edge-on, it is more effective to null the field at an angle less than
180°, even at the expense of an increase in the edge-on return. The impedance
necessary to produce a null at any given @ in the range 150° < @ < 180° is
shown in Figure 3-7, and the edge-on backscattering as a function of n,

0.1 <n <0.4, is plotted in Figure 3-8. The average cross section reduction
which can be achieved can be judged from Figure 3-9 showing the backscattered
field for the four impedances creating zeros at 150, 155, 160 and 165°. Over
the range from @ = 150° to 180° the average power reduction is greatest for

n = 0.32267 (null at @ = 160°) and is -17.7 dB, although the edge-on reduction
is then only -13.8 dB. Once again, much of the performance is lost if n is
not real. If, for example, n = 0.32267 e16 with 6 # 0, there is no longer a
null at § = 160°. The entire curve is now raised above that for & = 0, but

as seen from Figure 3-10 the curves for small 6 still have local minima at
aspects determined to a first approximation by Re. n.

3.2 \Tmpedance Discontinuities

To minimize the backscattering cross section of a body over a range of
aspects it may be necessary for the impedance to be a function of position on
the surface, and this could result in discontinuities in the impedance or its
surface derivatives. It is therefore of interest to examine the scattering from
such a line singularity.

We can treat the case of a jump discontinuity in n by considering a wedge
of half angle o = /2 with different face impedances (see Figure 3-11). From
(9) with v = 1 we then have

i s f ¥(-p)  ¥(2n - 9)
P (0, Qo) ) %’sin g+ s?n GO {}(n(— % ) T wg“ - gg) (39)

0
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Figure 3-7: The impedance for zero backscattered field in the direction ¢.
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Figure 3-8: Edge-on backscattering as a function of n.
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Figure 3-9: Backscattering from 15° half angle wedges with impedances n = 0.29498,
0.32267, 0.35771 and 0.39973, creating zeros at ¢ = 165, 160, 155 and
150° respectively. The broken line is for a perfectly conducting
wedge (n = 0).
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Figure 3-10: Backscattering from a 15° half angle wedge with impedance n = 0.32267 e’
for the o shown.
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Figure 3-11: Geometry for impedance discontinuity.

where

T R

ta) = by (0t 3% 3) bnpp (at g = %) vy (o= 5+ x)oyp (0= 7= x)

(40)
(Maliuzhinets, 1959) with «/2 < @, Qo < 3 /2. In (40)

1,2 =05 Xy, (41)
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Similarly

\{;(2.” - Q) = wﬂ/z(% - Q + Xz)wn/Z(@ZL - ﬂ - Xz)wﬂlz(% - w + X])w‘n'/2<-3—g = Q -

4 3 3
Voo (H - Bt (5 - P - x)
= 1 (cos 9 - nz){wﬁzw—)} /2 1 v/2_ 2 1

and
l}'("Q) = IP_”/Z(% - Q + Xz)lbn/z(% - Q - Xz)\Pﬁ/Z(" _12[ - g + X'| )‘Pﬂ/z(" 12[ = w - X])

(cos @ + nq){cos @ - n,)

" Tcos @ - ny){cos @+ n,) ¥(2n - 9)

on using the fact that
- 1 s
wﬂ/z(a - m) = tan 5 (a0 + z)wﬂ/z(a + 7).

Hence

_ cos @ cos QO 1
PD, 8) = ilny - m) Sirg v B, (cos P - ny)lcos B - ny)

3 3 3 3

R A AR TS R L A R X1)¢n/2(;%" Bo - xq)
3 3 3

Ll A I e Rl RV e Il N o el Y

(42)

and in the particular case of backscattering (QO = @)

2 -a -
. . glr -0 + x,)9(r -8 - x,)
_ 1 sin 2 2
P8, 0) =5 (ny-my) Secm(sin o+ n]> glm -6 + xq)9(r -6 - xq)

(43)
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where g(a) is given by (14) and 6 = @ - n/2 is the angle measured from the
surface with impedance no-

For a small discontinuity in the impedance such that Ng =My Ny =t A
we have, to the first order in a,

P (0, 0) = - %-A sec 6 {g;%ig—g—;}z (44)
since the product of the g functions is unity to this order. The expression

is identical to that obtained by Kaminetzky and Keller (1972) by applying boundary
layer techniques to a surface of large but finite radius, and is qualitatively
similar to that for the edge-diffracted field of a metallic wedge whose angle

is close to n. The scattering increases with increasing ¢ < n/2 and for grazing
incidence

'Y
P == (45)

if n = 0. Thi{s shows the importance of having a surface treatment commence with
a discontinuity in the impedance which is as small as possible and, hopefully,
zero if we are to avoid introducing another source of scattering. On the other
hand, if n # 0, for o = 0

P=0 (46)

but it is then no longer possible to have a plane wave at grazing incidence,
and for any surface wave that may exist the reflection coefficient is not
necessarily zero.

If the impedance is a continuous function (perfect fairing of a coating),
there may still be discontinuities in its first derivative and these could now
produce diffraction. The asymptotic analysis of Kaminetzky and Keller (1972)
also provides an expression for the scattering from a small discontinuity of
this type, and in the backscattering direction

. o 12
P (D, B) = - g sec” o [;%‘—Q%};] (47)
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y=0+
where A" = [%§Jy=0- . The result is somewhat similar to that for a line
discontinuity in curvature of a perfectly conducting body (Senior, 1972). For
grazing incidence (6 = 0) with n =0

= _ A
P (0, 0) = - P (48)
and because of the k'] factor the practical significance of this type of
scattering is much less than for a discontinuity inn. If n# 0
P(0,0)=0 (49)

but we again caution that no account has been taken of any surface waves that
may exist. Even a discontinuity in the first (or higher) derivative of the
impedance can reflect a surface wave, and in previous numerical studies of
cross section reduction techniques it was found necessary to eliminate dis-
continuities in the first derivative as well as in the impedance itself.
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4. CROSS SECTION REDUCTION OF AN OGIVAL CYLINDER

For surface treatments which can be simulated by a surface impedance, we
can use the foregoing analyses to aid in the specification of an impedance for
maximum cross section reduction. To illustrate the concepts and procedures
involved, we consider the case of an ogival cylinder of half angle 15 degrees
(see Figure 4-1) having the following dimensions:

half angle (9)
surface radius (R)

15 degrees

34.3536 cm

17.9876 cm (= 2RQ)
17.7828 cm (= 2Rsing)

surface length, top
overall length (2)

Figure 4-1: Ogival cylinder geometry.
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A plane electromagnetic wave is incident at an angle @o to the negative x-axis
in a plane perpendicular to the generators of the cylinder with its magnetic
vector parallel to the generators (H polarization), so that

-‘ik(xcos(b0 + ysinﬂo) (50)

HZ = e

The far zone scattered field

st(g’ go) ,LJEEET ei(kp - w/4) P(D, go)

is observed in a direction @ where 90 = @ for backscattering, and the task is
to minimize the backscattering cross section

o(9) = 2 |p(p, 9)|° (51)

with particular reference to the range of angles * 30 degrees about edge-on:
@ = = (= 180 degrees). Obviously the impedance should be chosen the same on
the top and bottom surfaces of the cylinder, and we can therefore confine
attention to 0 < @ < 180 degrees.

Our aim is to reduce the backscattering over a wide range of frequencies
from (about) 5 GHz on up on the assumption that the surface impedance is fre-
quency independent and can be chosen at will. At 5 GHz A = 5.99585 cm and
since the body is then 31 long it is reasonable to expect that high frequency
asymptotic techniques can be used to analyze the scattering. Two of the main
contributors to the scattering are the front and rear edges, with the latter
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contributing either directly or via a surface wave on the body. As the fre-
quency and/or the aspect changes, constructive and destructive interference
will produce a backscattering cross section which varies, and to achieve a
broadband reduction it is necessary that the contributors be individually
reduced.

The primary tools in our investigation are a computer program for the
numerical solution of the integral equation (4) by the moment method and an
explicit analytic/integral expression for the backscattered field developed
using asymptotic techniques. Program RAMD solves (4) for any specified sur-
face impedance n(s) and, hence, determines the far zone scattered field. All
our computations used 96 samplint points distributed uniformly over the two
sides of the cylinder, implying a cell size A/16.

For the three constant impedances n = 0, 0.5 and 1 the backscattering
cross sections o(@) at 5 GHz computed in this manner are shown in Figure 4-2.
The case n = 0 represents the bare or perfectly conducting cylinder. The
cross section decreases via a series of oscillations from broadside (@ = 900)
to edge-on (@ = 180°), and we observe the rather broad lobe centered on
@ = 1580 which can be attributed to a traveling wave. Increasing the impedance
to 0.5 decreases the broadside return by about 10 dB, but decreases even more
the scattering for @ X 140° and effectively suppresses any traveling wave
return. By increasing n to 1 we achieve a further 22 dB reduction in the
broadside cross section. The pattern now consists of a series of Tobes of
almost equal amplitude, but for @ = 180° the scattering actually exceeds the
bare body value.
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The amplitudes and (normalized) phases of the corresponding surface fields
K = HZ are shown in Figures 4-3 and 4-4 respectively. The physical optics
approximation is

kPO - 2n - i iki-r (52)

where the notation is as defined in Appendix B. As n increases, the increasing
suppression of any (backward) traveling wave component is clearly evident from
Figure 4-3, and for n > 0.5 the physical optics approximation is remarkably
accurate. This is true for the phase as well as the amplitude, and in Fig-

ure 4-4 we have plotted arg K - arg kPO,

In view of this agreement, an analytical approximation which combines the
physical optics expression for the backscattered field with the edge waves of
Chapter 3 should provide a reasonable estimate of the scattering. The necessary
formulae are derived in Appendix B and a program has been written to evaluate
the physical optics integral numerically for any specified (continuous) surface
impedance n and hence compute the backscattering cross section. For
152 < p < 165° only the upper surface of the ogival cylinder contributes and
the resulting cross sections for n = 0 and 1 are plotted as functions of @,
90° <9 5_1650, in Figure 4-5. Since the theory ignores any surface (or
traveling) waves that may exist, the accuracy of the prediction could be ex-
pected to improve as n increases towards unity, but in actual fact the curves
for both n = 0 and 1 agree almost equally well with those computed using
program RAMD and have a common failing: the maxima and minima are progressively
displaced.
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The reason for this displacement has not been found. With the analytical
approximation the minima occur at almost precisely the angles corresponding to
destructive interference between the two edge waves regardless of n, i.e., at

9 = cos”] (- %%j
where m is an odd (even) integer if the two edge contributions have the same
(opposite) sign for incidence at the angle @. With the output from RAMD,
however, the locations of the minima are consistent with the destructive
interference between two edge waves emanating from the ends of a body whose
length &' is slightly less than 2. From the computed backscattering cross
sections for f = 4.5(0.1)5.5 GHz and n = 0, 0.5 and 1, the 4 or 5 clearly
defined minima in the range.950 <P < 150° have been read off and the equiva-
Tent lengths %' deduced. For any one n the results are virtually independent
of frequency and show only a weak dependence on the minima locations, with &'
ranging from 0.97% for n= 0, to 0.942 for n= 0.5 and back to 0.96% for
n = 1. Although it is believed that the effect is real, there is no obvious
explanation, and we are forced to conclude that the minima are not exclusively
determined by the edge waves from two identical wedges located at the ends of
the cylinder.

In spite of this shortcoming, the analytical approximation appears to
accurately predict the main contributors to the scattering for aspects @ < 165°
and can be used to devise and evaluate techniques for cross section reduction
in this range. As an illustration, consider the problem of reducing the
backscattering cross section at broadside (@ = w/2). As seen from (B.8) there
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are three contributors to the far field amplitude: the two edges and the
(unterminated) surface, and since we are not interested in phase cancellation
as a means of cross section reduction, it is necessary to seek a surface
impedance which will reduce the individual contributors. Clearly this should
be symmetric fore and aft, i.e. n(-a) = n(a), in which case

P(n/2) = 2M(n/2, w/2, n,) + P*W"T(x/2) (53)

and a convenient measure of the backscattering averaged over frequencies is then

2;: o, + 0O
1 2
where
(o}
1 _2 W 2
= = £ |2P"(v/2, /2, )]
and
22 |psurfyp) ) 2
A m '

This enables us to restrict our use of the analytic approximation to the
single frequency f = 5 GHz.

For the bare body (n = 0)|P¥| = 1.1846 and |pSUrf| = 5.2236, giving
g/A = 12.62 dB. As evident from Figure 4-5,'there is a marked improvement
on going to the uniform impedance n = 1: |P¥| = 0.10134 and lPsurfI = 0.02454,
producing the much smaller cross section g/A = -15.76 dB, and this impedance
was the starting poiht for our investigation. We can null out the surface
contribution by choosing

n = Cosa
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(see B.9), but then |PY| = 0.11816 and G/x = -14.49 dB. To reduce P and
still keep Psurf small, we first examined the effect of adding 'tips' to the
cosine variation so as to raise the impedance to a value no at the edges.
The actual profile used was

| . |
- (2 - a) {1-(9_32)}s1na2 , oy, <o <@

(see Figure 4-6) for which the impedance and its first derivative are con-
tinuous, 0 < |a| < @ , but due (apparently) to the contributions of the con-
cave regions, no combination of oy and n, Was found to reduce g/k below its

value for the uniform impedance n = 1.

We now reverted to the uniform impedance and added tips to produce the

profile

n=1 |°‘|i°‘2

. ma - a)
n2+(1—n2)sm§é§—_——olt-£} a2<lal_<_§2

Starting with a, = 0.18786 corresponding to a tip length of 1 inch, the
cross sections were determined for a sequence of increasing ny > 1 to determine
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Figure 4-6: Impedance profiles for broadside incidence.
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the minimum Q/A. The results are listed below and in each case the minimum
occurs for no = 1.115:

v

oy = 0.18786 R o/x = -18.65 dB
0.22483 = -18.77
0.25441 = -18.89
0.26106 = -18.89

where the tip lengths are 1, 0.5, 0.1 and 0.01 inches respectively. Although
it is doubtful whether the full effect would be realized if the length was
less than about A/4, it is evident that by raising the impedance at the edges
to 0.115 we can reduce the average cross section 3 dB below that for the uni-
form impedance, thereby achieving more than 31 dB reduction in the cross
section of the bare body over a wide frequency range.

In an aspect region about edge-on (@ = =) the analytical approximation
is significantly in error because of the omission of surface wave effects,
and it is then necessary to resort to the computer program RAMD. To illustrate
this we consider the problem of minimizing the backscattering cross section
over an angular range of ¥ 30 degrees about edge-on. The problem is one of
practical importance and similar to that previously investigated by Senior
and Liepa (1977).

Although the analytical approximation is no Tonger applicable, the

underlying concepts are still valid and, in particular, the edges of the
cylinder continue to play a dominant role in the scattering. This is evident

47



015224-1-T

from computed data for the backscattering cross section at edge-on incidence.
The results for the uniform impedances n = 0 and 1 at f = 4.5(0.1)5.5 GHz are
plotted in Figure 4-7, and since the frequency variation is close to sinusoidal,
we can determine the magnitudes of the two contributors to the scattering from
the levels of the maxima and minima. Thus, for n = 0,

IP]I = 0.077, |P2| = 0.046
whereas for n = 1
|P]| = 0.135, |P2l = 0.010 .

For a 15 degree half-angle wedge, P = i10.078 and -i0.137 for n = 0 and 1
respectively, and these now serve to identify P] with the scattering from the
front edge of the ogival cylinder. Presumably, therefore, P2 is due to the
rear edge whose contribution appears as a result of surface waves on the
cylinder.

This process can be repeated at other aspects throughout the angular region.

As @ decreases it is clear that at least one of the contributors is no longer
frequency independent, but if we attribute the entire frequency variation to
the rear edge contribution we can compensate for it by using the differing
levels of two adjacent maxima or minima to deduce the values appropriate to
the 5 GHz frequency. The magnitudes of P] and P2 obtained in this manner are

shown for n = 0 in Figure 4-8. The close agreement between the lower set of
values and the theoretical curve for the scattering from a wédge clearly
identifies P] as the front edge contribution, and the minor departures are
no more than to be expected in view of the deductive analysis employed. The
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Figure 4-7: Edge-on backscattering cross sections of the 15° half angle
ogival cylinder with impedance n = 0 (----- )and n =1 (—).
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Figure 4-8: Deduced magnitudes for the front (xxx) and rear (---) edge contri-
butions for n = 0 at 5 GHz. The solid line is the theoretical result
for a 15° half angle wedge coincident with the front edge.
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other points then define the rear edge contribution P2 whose magnitudes exceed
those of the front edge for @ < 175° and reach a local maximum at @ = 153°.
This is almost precisely the location expected for the traveling wave peak
according to the formula

@ =180 - 49.9 J@; , degrees

(Senior and Knott, 1968). As @ decreases below 153 degrees, ]P2| also decreases
and then increases again in accordance with the theoretical expression for
(direct) scattering from a wedge coincident with the rear edge of the cylinder.

The above process for finding the magnitudes of the two contributors is a
very tedious one and a number of other methods have been tried to reduce the
labor. One that is reasonably effective is to draw cumulative plots of 9/x
versus @ at all of the frequencies and to sketch in the bounding curves. The
latter are then assumed to represent

2 0 w2
7 1Py 2Pyl

from which [P;| and [P,| can be found. The cumulative plots for n = 0 are
shown in Figure 4-9, and the accuracy that would result from using the bounding
curves can be gauged from the crosses showing the extrema deduced from Fig-

ure 4-8. The process is certainly much simpler but its accuracy is also less
than that desired, particularly for those aspects and/or impedances where P2
has a significant frequency dependence, and we have therefore used the original
method in all our analyses. This requires the construction of individual plots
of o/r versus frequency, 4.4 < f < 5.6 GHz at each of the angles § = 150(1)1800
for each impedance variation considered, but the results seem worth the labor.
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Figure 4-9: Cumulative plots of the backscattering cross section for n = 0.

The crosses show 2/ (IP]I ! |P2l)7
from Figure 4-8.
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The values of IP]I and |P2| obtained appear accurate and meaningful and the
only difficulties experienced were in seeking to deduce the frequency variation
of |P2| from two adjacent and low minima. In such cases it was found desirable
to extend the frequency range for which data is computed to include a second
maximum and to use two maxima instead.

|P]| and |P2| for the four uniform impedances n = 0, 0.5, 1 and 2 are

plotted as functions of @, 150 < @ < 180°, in Figures 4-10 and 4-11. The
front edge contributions are in excellent agreement with the theoretical values
(shown as the dashed curves in Figure 4-10) for a 15 degree half-angle wedge,
and, as expected, the rear edge contribution decreases with increasing n, the
decrease being most dramatic for @ < 160°. To obtain a broadband reduction in
the backscattering cross section it is necessary to reduce both sources indi-
vidually, and in the case of P2 it is obvious that n should be as large as
possible. If, for example, n = 1, Figure 4-11 shows that |P2| is reduced by an
amount ranging from 14 dB at 180 degrees to 18 dB at smaller angles. To reduce

|P]|, however, requires a value of n in the vicinity of 0.3, and based on the
simulation of the leading edge by an infinite wedge we would expect lP]| to be
zero at edge-on incidence if n = 0.25882.

To test this conjecture, data were now computed for the ogival cylinder
with the uniform impedance n = 0.25882. The values of |P,| are included in
Figure 4-11 and are comparable to estimates made by interpolating the results
for n = 0 and 0.5. Figure 4-12 shows a plot of the corresponding front edge
contribution along with the theoretical curve for a wedge. It is seen that
IP]I decreases from 0.0038 at @ = 1800 to a minimum of 0.0028 at @ = 174.5°
and then increases rather rapidly. From the consistency of the data points
for adjacent values of @ it is believed that the effects are real, and the
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Figure 4-10: Deduced magnitudes of the front edge contribution for n = 0, 0.5,
1 and 2. The broken lines are the theoretical wedge results.
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Figure 4-11: Deduced magnitudes of the rear edge contribution for n = 0, 0.5,
1, 2 and 0.25882.
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Figure 4-12: Deduced (xxx) magnitudes of the front edge contribution for n =
0.25882, compared with the theoretical wedge result ( ).
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rapid increase for @ < 170° is compatible with the decreasing angle of the
ogival cylinder compared with a wedge. For @ > 170%, however, no convincing
explanation for the behavior has been found. The values of |P1| are consistent
with those for a wedge having an impedance n = |nje'® with |n| = 0.264 and

o = 2.5°, but for scattering at these low levels it is not unlikely that the
curvature of the surface in the vicinity of the edge is also a contributing
factor. We must also be careful not to lose perspective, and over the range
170 < @ 5_1800 the computed front edge contribution in Figure 4-12 is more

than 25 dB below the already-low return for the perfectly conducting edge.

To reduce both the front and rear edge contributions we obviously require
an impedance which is as large as possible over most of the surface (including
the rear portion) to decrease the rear edge return, but which is also close to
0.25 in the vicinity of the front edge. In addition, the impedance variation
should be smooth with no discontinuities in at least on/3s to avoid the intro-
duction of new sources of scattering, and a general variation which meets these
criteria is

=3
i

%-(nm + n]) - %-(nm - n1)cos 1Ts/s1 , 0<s < S

(55)

[ A
wn
-

where M is the impedance at the front and s is the surface distance measured

from the front to the rear (s = sm).

As an illustration, suppose that the maximum achievable n(= nm) is 1 and
that the taper extends over the entire front half of the body, i.e., s] = sm/2.
For ny = 0.25882 the resulting front edge contribution is plotted in Figure 4-13,
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where we have included for comparison the data for the uniform impedance

n = 0.25882 and the theoretical wedge return. |P]| now has a very shallow
minimum at @ = ]780, and is greater than it is for the uniform impedance.

The impedance taper has therefore increased the front edge contribution, showing
that |P]| is not entirely determined by the impedance at the edge. |P2| is
plotted in Figure 4-14 with the corresponding curve for the uniform impedance

n = 1. As expected, the rear edge contribution is greater than for the uniform
impedance since the taper has removed some of the absorber from the surface.

The average cross section ht obviously increases with decreasing @ and is
dominated by the front edge contribution for @ < 160%. To reduce & it is there-
fore necessary to reduce |P| for @ 5 160°, and this we can do by increasing
the value of n at the front edge, even though this may serve to increase |P]|
for @ close to 180°. With this objective in mind, results were obtained for
the same S1 and N, @s before, but with n = 0.26287, 0.27497, 0.29498 and
0.39973. For a uniform impedance wedge these values are such as to produce
zeros in the backscattering from the edge at @ = 1750, 1700, 165° and 150°
respectively. Not surprisingly, the effect on |P2| is relatively small. 1In
all four cases the values lie between those for the uniform impedance n = 1
and for the tapered impedance commencing with ny T 0.25882, and to increase
" from 0.25882 to 0.26287 reduces [P2| by less than one percent. For the
largest " (= 0.39973) the data for |P2| are included in Figure 4-14.

With |P]|, however, M has a considerable effect and the data for the four
values of n, are plotted in Figures 4-15 through 4-18, along with the corres-
ponding curves for wedges and the uniform impedance Ny - As ™ increases,
]P](180°)| initially decreases, and then increases for n, 0.28. The minimum
as a function of @ also becomes more pronounced, occurring at an angle some-
what greater than predicted by wedge theory. It is deepest for Ny o= 0.29498
but then rises rapidly with increasing n], suggesting that the net return from
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Figure 4-13: Deduced (xxx) magnitudes of the front edge contribution for the

impedance profile (55) with ny = 0.25882, nyp = 1 and sy = sp/2,
compared with the magnitudes "(----) and the theoretical
wedge result (——) for the uniform impedance n = 0.25882.
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Figure 4-14: Deduced magnitudes for the rear edge contribution for the impedance
profile (55) with ny =1, sy = s /2 and ™ = 0.25882 (xxx),
ny = 0.39973 (.. ), compared with the result (—) for the uniform
impedance n = 1.
60



0.08 -

0.06 4

0.04 -

)|

0.02 7

015224-1-T

0

T ! !

180 170 ¢ (degrees) 160 150

Figure 4-15: Deduced (xxx) magnitudes of the front edge contribution for the im-

pedance profile (55) with ny = 0.26287, ny = 1 and sy = sy/2, com-
pared with the theoretical wedge result for the uniform
impedance n = 0.26287.
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Figure 4-16: Deduced (xxx) magnitudes of the front edge contribution for the im-
pedance profile (55) with ny = 0.27497, ny = 1 and sy = Sp/2, com-
pared with the theoretical wedge result for the uniform
impedance n = 0.27497.
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Figure 4-17: Deduced (xxx) magnitudes of the front edge contribution for the im-
pedance profile (55) with n; = 0.29498, ny = 1 and sy = sp/2, com-
pared with the theoretical wedge result for the uniform
impedance n = 0.29498.
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Figure 4-18: Deduced (xxx) magnitudes of the front edge contribution for the im-
pedance profile (55) with n] = 0.39973, Ny = 1 and sy = sp/2, com-
pared with the theoretical wedge result for the uniform
impedance n = 0.39973.
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the front edge is made up of a contribution associated with the actual impedance
at the edge and one due to the impedance variation.

For cross section reduction purposes the impedance profile that is most
desirable depends on the particular objective, and in Figure 4-19 the average
cross section g/x is plotted as a function of @ for the above five values of
ﬂ]. The edge-on backscattering is least if n] = (0.26287 or 0.27497, but when
the cross section is averaged over the entire range 180° >0 3_1500, the latter
jmpedance is slightly superior, and reduces the average bare body cross section
by 21.1 dB. However, the averaged (over angle) cross section is actually
least for the impedance ﬂ] = 0.39973, which yields a reduction of 22.0 dB in the
bare body return. It also gives the greatest reduction in the traveling wave
lobe, and the resulting cross section is now almost constant over the entire
aspect range.

We have also examined the effect of different impedance tapers using the
same values of " (= 0.25882) and o (= 1) as before, and, in particular, data
have been computed for the cosinusoidal taper (55) with Sq = sm/4 and sm/8.
These correspond to taper lengths of only 0.75) and 0.375X respectively at
5 GHz, and not surporisingly even the front edge contribution now shows some
frequency dependence, especially for S1 7 sm/8. However, by using adjacent
maxima and minima in the individual plots versus frequency, values of |P]| and
[P,| have been deduced appropriate to 5 GHz, and the results for |P,| are shown
in Figure 4-20. For the most part the data points Tie between the curves for
the uniform cylinder with " = 1 and the cylinder whose tapered impedance has
Sy = sm/2, and the variability near @ = 155% is no more than expected in view
of the uncertainties in the deductive analyses. For the front edge contri-
bution, however, the reduced values of 51 substantially increase the scattering.
As seen from Figure 4-21, the results for sm/4 and sm/8 are comparable to those
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Figure 4-19: Average backscattering cross sections for the impedance profile (55)

with ny = 1, s, - sp/2 and Ny = 0.25882 (— - —), 0.26287 (= --—),
0.27497 (---), 0.29498 (— =<~), 0.39973 (---), compared with the bare
body (n = 0) result (——).
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Figure 4-20: Deduced magnitudes of the rear edge contribution for: profile (55)
with ny = 0.25882, np = 1 and sy = sp/2 (---), sp/4 (xxx), S/ 8 (e0°)s
profile (56) with ny = 0.25882, n, =1 and sy = sy/2 (08@); uniform
impedance n = 1 (—).

67



015224-1-T

0.1 4 .
X
L] | x
X
0.075- e x
/
/
/
/
/
/
/
/
b3 /,
/
/
x /
/’ o
0. 054 x /

‘ P

0180 170 s (degrees) 160 150

Figure 4-21: Deduced magnitudes of the front edge contribution for: profile (55)
with nj = 0.25882, n =1 and sy = sp/2(---), s,/4 (xxx), s;/8 (--+);
profile (56) with ny"= 0.25882, n =1 and sy = sm/2 (B@Q); uniform
impedance n = 1 (—). m
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for uniform impedance wedges (see Figure 3-8) with n = 0.198 and 0.017 respec-
tively, and the large impedance slope now has more effect than the actual

impedance at the edge.

As a further illustration of the effects of a rapid impedance variation,
data have been obtained for the impedance profile

- “I) sin §§§ , 0<s<s,

n=n, + (n
1 1

m

with n, =0.25882, n =1 and s; = s /2, and the resulting values of |P,|
and IP]I are included in Figures 4-20 and 4-21. |P2| is quite in accordance
with expectations and is bracketted by the values for the uniform wedge and
the wedge with the taper (55) extending over half the body, i.e., Sy = sm/2.
IP]I, however, is much greater than for the latter wedge, and the minimum
centered on § = 166° is suggestive of a complex (equivalent) edge impedance
having |n] =0.3. For @ < 170° [P | is also less than for the analogous profile
(55), implying a larger reduction in ¢ in this aspect range, but if this is
the objective, Figures 4-17 through 4-19 show that an even better performance
can be achieved using the profile (55) with ny = 0.3; and since the front
edge contribution is virtually independent of frequency if S = sm/2, the
results obtained are then meaningful for all frequencies f > 5 GHz.

In seeking to realize the above impedances using a coating, one of the
main difficulties is the requirement that the impedance be real. As previously
remarked, much of the desired reduction in the front edge contribution is lost
if the impedance is complex and to demonstrate this fact computations were
performed for the impedance profile (55) with 1 = sm/2, Re. n = 0.25882,

Re. n. =1 and arg n = 30° instead of 0. The results are shown in Figures 4-22

m
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and 4-23. Over most of the aspect range the values of IP]I are substantially
larger than for the case n = 0, and are reasonably approximated by the data
for the corresponding uniform wedge. For the larger @, |P2| is similar to
but somewhat smaller than for 6 = 0, suggesting that |n| rather than Re.n is
the determining factor in this aspect range, but for @ % 165° the curve shows
hardly any evidence of the local maximum that previously characterized the
rear edge return. Because of the changed shape of the curve, it would appear
that [P,| is influenced by the value of the impedance at the rear as well as
by the attenuation of the field on the surface. This is certainly not un-
reasonable physically and it is unfortunate that there is no easy way to
separate the two effects.
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Deduced (xxx) magnitudes of the front edge contribution for the im-
pedance profile (55) with Re. ny = 0.25882, S1 = Sp/2 and arg n = 30°,
compared with the results for arg n = 0 (---) and the theoretical
wedge result (—) for the uniform impedance n = 0.25882 (1 + i/V3).

71



0.04 ,

0.03 1

‘ P

0.02

0.01 4

015224-1-T

0
180

Figure 4-23:
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Deduced (xxx) magnitudes of the rear edge contribution for the im-
pedance profile %55) with Re. ny = 0.25882, s, = sp/2 and arg n = 30°,
compared with the results for arg n = 0 (---) and the theoretical
wedge result (——) for the uniform impedance n = 0.25882 (1 + i//3).
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APPENDIX A. EDGE DIFFRACTION COEFFICIENT

A program has been written to compute the edge diffraction coefficient for

backscattering from a 15° half angle wedge using the expression for P (@, @, n)

given in (38). The required inputs are the real and imaginary parts of the

angle x satisfying (12), and a program listing and specimen output are as
follows:

100
500

501

910

COMFLEX XsF17yF17SQyARGFSyFSSQySINEYyQySINSQyP1SyFALFA
DATA PI1/3.1415927/yFP11/72.8797933/+811/.5454545/
8PI2/1.5707963/yRAD/ 0174533/ +yDEG/S7 2957795/
ARG=CMFLX((17.XPI)/12.+0.)

F17=FALFA(ARG)

F178Q=F17%F17

ARG=CMPLX(~(S.XPI)/12.50.)

FS=FALFA(ARG)

F3SQ=F3%FS

ROOT2=SQRT(2.)

READ(S,500) X

FORMAT(2F10.3)

WRITE(46y301)

FORMAT(1H1y’ EDGE SCATTERING COEFFICIENT (15 DEGREES) ‘)
XR=REAL. (X

XI=AIMAG(X)

WRITE(469310) XReXI

FORMAT(1HO»SXs ’X = (“9sF8.S9 v’ sF8.Syv’ )’ // 94Xy
E'PHI»12Xy'MOD’ 211Xy’ ARG ‘/)

SINE=CSIN(S511%X)

SINSQ=SINEXSINE

FHIF=180,

FPHI= 0.

D0 200 I=1,34

FHIR=RADXFHI
QA=F17SQ/(FALFA(X~-FPHIR+P11)XFALFA(X+FHIR+P11))
Q=QXF58Q/ (FALFA(X-FHIR~-F11)XFALFA(X+PHIR-F11))
C0S6=C0O0S(S11%FHIR)
COS2=COS(S11X(PHIR-PI2))XCOS(S11X(PHIR+PI2))
F13=0.23632XCOS6XCOS6X(COS2~-SINSQ) XQXQ/C0OS2
AMF=CABS(F13)

PHASE=DEGXATAN2(AIMAG(P15) yREAL(F15))
WRITE(6»530) FHIF»AMPsFHASE

FORMAT(1H y2XyFS5,.196XE12.5¢5XsF7.2)
PHIF=PHIF-5.,

FHI=FHI+S,

GO TO 100

END
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COMPLEX FUNCTION FAIFA (A)

COMELZY 2,CCSA

DATa PI/3.1415%27,,PT32/.0951998/,P11/.2855923/

COSA=CCOS{(A/(11.,%.))

FALFA= (COSE+COS( 4.,%PI33))/(CCSA+COS(PI33)) %
(CCSA+CO5 ( 2.*PI33))/ (CCSA+COS( 5.%PI33))*
(CCSA+COS ( 8.%PI33))/ (COSA+CC3(11,%PI33)) *
(COSA+CUS (14, *PI33)) / (CCSA+CUS (17, %PI33)) *
(CCSA+COS (20, *PI33) )/ (COSA+COS (£3.%PI33)) *
(CCSL+COS (26.%PI33))/ (CCCS{A/ (22.,74))) %
(CCSR4COS (PI/12.))*

(CCS24COS (3.%E11) )/ (COSA+COS (2. *¥P11) ) *
(COSA+COS (5.%P11) )/ (CO3A+COS (4, %P 11))
SETURN
END
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EDGE SCATTERING COEFFICIENT (15 DEGREES)

X
FHI

180.0
175.0
170.0
165.0
160.0
155.0
150.0
145.0
140.0
135.0
130.0
125.0
120.0
115.0
110.0
105.0
100.0
95.0
90.0
85.0
80.0
75.0
70.0
65.0
60.0
95.0
30.0
45.0
40.0
35.0
30,0
25.0
20.0
15.0

Foed
=

( 1.34707+-0.13234 )

MOD

0.35281E-01
0.,35763E-01
0.37411E-01
0.40797E-01
0.46763E-01
0.56298E~-01
0.70495E-01
0.90746E-01
0.11914E400
0.15921E+00
0.21739E+4+00
0.306469E+00
0.45759E+00
0.76166E+00
0.16768BE401
0.68786E+05
0.19867E401
0.10699E+01
0.76313E1+00
0.60831E+00
0.51376E+00
0.44882E+00
0.40024E+00
0.36124E400
0.32790E+00
0.29762E4+00
0.26850E+00
0.23889E+00
0.20722E4+00
0.17179E+00
0.13087E+00
0.83354E-01
0.32150E-01
0.23747E~-11

77

ARG

100,93
102.58
107.33
114,54
123.06
131.60
139.20
145.48
150,45
154.31
157.29
159.58
161.35
162.70
163.73
164.50
~14,.95
~14.59
-14.40
-14.36
“‘14047
"'14073
-15.16
~15.76
~16.57
""17062
~-18.99
~20.76
~23.07
~26415
~30.37
~36.40
”45051
~-60.,39
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EDGE SCATTERING COEFFICIENT (15 DEGREES)

X
FHI

180.0
175.0
170.0
165.0
160.0
155.0
150.0
145.0
140.0
135.0
130.0
1235.0
120.0
115.0
110.0
105.0
100.0
95.0
?0.0
85.0
80.0
75.0
70.0
65,0
60.0
9540
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0

( 1.44423,-0,22407 )

MOD

0+71446E-01
0.72400E~-01
0.7538%9E-01
0.807946E-01
0.89249E~01
0.101465E+00
0.11922E4+00
0.14372E+00
0.17783E+4+00
0.225986E+00
0.29606E+00

. 0+.40406E+00

0.58720E+00
0.95725E4+00
0.20734E+01
0.83987E+05
0.24025E+01
0.12847E+01
0.921180E+00
0.72461E4+00
0.61117E400
0.53408E+00
0.47714E4+00
0.43208E+00
0.39410E+00
0.36000E+00
0.32734E+00
0.29392E+00
0.25748E4+00
0.21539E+00
0.16478E+00
0,10384E+00
0.38029E-01
0.23997E~-11

78

ARG

112.27
113.03
115.22
118.61
122,83
127.47
132.13
136.51
140.43
143,81
146.66
148.99
150.88
152,37
153.51
154.34
-23.11
"‘24 082
~-24.77
-24.96
"“25 + 41
~-26.12
-27.12
"‘28046
~-30.21
~-32.46
~35.36
~-39.11
-44,04
=-350.65
~39.76
~72.70
-91.68
-119.71
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EDGE SCATTERING COEFFICIENT (15 DEGREES)

X
PHI

180.0
175.0
170.0
165.0
160.0
155.0
150.0
145.0
140.0
135.0
130.0
125.0
120.0
115.0
110.0
105.0
100.0
95.0
90.0
85.0
80.0
75.0
70.0
65.0
60.0
55.0
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0

Py
=

( 1.57080y~0.25601 )

MOD

0,10898E+00
0.11045E+00
0,11495E+00
0.12286E+00
0.13482E+00
0.15178E+00
0.173517E+00
0.20716E400
0.25112E400
0.31271E+00
0.40211E+00
0.53973E+00
0.77333E+00
0.12460E+01
0.26739E+01
0.10757E+06
0.30626E+01
0.16334E401
0.11587E+01
0.92223E+00
0.78068E+00
0.68616E+00
0.61800E+00
0.56564E+00
0.52293E+00
0.483566E+00
0.45048E+00
0.41398E+00
0.37197E400
0.31872E+400
0.24684E+00
0.15164E+00
0.49443E-01
0.,23954E~-11

79

ARG

125.22
125,65
126.88
128.80
131,21
133.90
1346.466
139.35
141.83
144.04
145,95
147 .54
148.83
149.82
150,54
150.98
-28.83
"'28 ) 91
-29.25
"29087
~30.81
“'32009
~-33.77
~35.96
""380 76
"42035
-47.02
-33.14
-61.34
-72.58
-88.33
-110.60
~141.09
-178.31
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APPENDIX B. ANALYTICAL APPROXIMATION

For a 15° half angle ogival cylinder subject to an impedance boundary con-
dition and illuminated by an H polarized plane Wave incident in a plane perpen-
dicular to the generators, an analytical approximation to the backscattering
cross section can be developed by adding expressions for the edge waves to the
physical optics result. The method is equivalent to that of Ufimtsev (1962)
or, alternatively, to the equivalent current method of Knott and Senior (1973).

B.1 Physical Optics

A

If the incident field is the plane wave having H = zH,

with

N
3
—te>
—
x
w—

over the Tit portion of the surface and zero in the shadow. On substituting
this into (6), the physical optics expression for the far field amplitude P

becomes
pp -0k l n' . o-n) n ] ik(i - p)e g ds ,
2 1it {n' - i- n
and in the particular case of backscattering such that i=- S
Pp'0=£{ e 0. g endike sl s, (8.1)
Z 1it {n' - p +n

At the specular point n' - ; =1,
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Let us now apply this to a length ¢ of a wedge of uniform impedance n and
interior half angle @. If the incidence is such that only the upper surface is
illuminated, i.e., @ <@ < m - Q, then

n' - ; = sin (P - Q)

and
o - p'=x" cos (§ - @)
giving
2
p-o _k sin (@ -29) -n s ) -2ikx'cos (@ - Q) ...
P (0) =3 ST (g = o) ¥y S @-2) e dx'.
(6]
Hence

(0 -0) - n @ - q) {} _ o-2ikecos (@ - Q{}
| +

ol
—
-+
3

(D) T g‘tan ? - ). (b.2)

When @ = #/2 + @ the expression reduces to that in (17), implying a singularity
identical to that displayed by the exact edge diffraction coefficient (16).

If @ > n - o the lower face of the wedge is also illuminated and its con-
tribution to the edge diffraction is

PP 0g) = R0ty (g 4 g) (8.3)

which is infinite when § = 3n/5 - Q, as expected.
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In the case of an ogival cylinder of half angle 2, it is convenient to
specify the point of integration using the angle o subtended at the center of
curvature. On the upper surface

~ ~

=X sina +ycos a
p' =R {xsina+y (cos a - cos 9)} ,

giving

n' - p=sin (P + a)

“p' =R sin (@ + a) - R sin @ cos Q.

From (B.1) the contribution of the upper surface is

¥
PP+ 0y = KR 2ikRsinpcose sin(a + @) - n(a)
u 2 sin{a + @) + n(a)

= (B.4)

Sin(a + w)e'21kRSin(& + w)da

for @ <@ < m where¥ =min. (v - @, ). If @ > - q, however, a portion of
the Tower surface is also illuminated, and its contribution is

e-ZikRsin(u - ﬂ)da

-(m-0)
L Req sin(a - @) - n(a) .
Pi © 0(g) = kg o~2ikRsinfcosa j sin(g ) 2(3) sin(a - )

-Q (B.5)

The physical optics expression for P is therefore the sum of (B.4) and (B.5), i.e.,

8 . »
pP " 0(g) = K%He21kRs1ch039 J :}:%Z :’gg - 2%3% sin(o + Q)e—21kRs1n(a +0)y,
-Q

-¥

in(a - - n(a) .. -2ikRsin(a - 0)
J inde - g)) e sin(a - ple do
-4 (B.6)

+ gg_e—ZikRsinQCOSQ

valid for @ < @ < m.
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B.2 Inclusion of Edge Diffraction

The contributions of the front and rear edges to the backscattered field
can be obtained from the edge diffraction coefficient for a wedge of half angle
Q, the exact expression for which is given in (16), reducing to (38) in the
particular case 2 = 15°. Were we to merely add them to (B.6), however, we
would be guilty of tallying the edges twice, since the physical optics approx-
imation already contains some edge contributions, albeit erroneous ones. The
latter can be deduced from (B.2) and (B.3), and on subtracting them from (B.6)
with account taken of the change in phase center, the scattering from the
(unterminated) surfaces of the ogival cylinder is found to be

surf ,y _ op + 0 j sin(p - @) - my
P> () =P @)+ s s oy

tan(p - Q)e21chos(Ds1nQ

1

i sin(@ + @) - m
4sin(@ + Q) +n

)e2ichosﬂsinQ U

tan(p + @ P+q-n)

1

; sin(@ + @)
4 sin(@ + Q)

n2

-21chos@s1nQU(
n2

tan(@ + Q)e T -0 - Q) (B.7)

+

where U is the unit step function and nys Ny are the surface impedances at the
front and rear edges respectively.

On the assumption that the surface impedance and all its derivatives are
continuous (in practice it is sufficient if just n and 9n/3s are continuous),

an approximation to the far field amplitude is then obtained by adding the

wedge diffraction coefficients to Psurf. The result is

P(9) = P"(p, 9, n,)e?KReOSPsIna

+ Pw(w -0, 1 -0, n2)e-ZichosﬂsinQ U(r - @ - 0) + Psurf(g)
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where PY(8, @, n) is given in (16) and PS'T(p) in (B.7).

Some immediate deductions can be made. If @ <@ < w - @ and n is every-
where such that

n(a) = sin(a + P) (B.9)
implying

n = n(- 9) = sin(@ - Q)

n2 = n(Q) = Sin(ﬂ + Q) s
then

PP - O(p) = PSU"(g) = 0 (8.10)

and the scattering in the direction @ is entirely attributable to edge
diffraction. In particular, for broadside incidence (B.9) requires n(a) =
co0s a, in which case

P(n/2) = 2P"(w/2, /2, cos Q). (B.11)

On the other hand, if " and ny are chosen to suppress the edge diffraction in
accordance with (19), we are left with only the surface contribution and

Pg) = PSU"T(p). (8.12)

It would appear that the condition for this conflicts with (B.9) for all ogival
cylinders and for all angles of incidence except for a strip (@ = 0) at broad-
side incidence (@ = w/2) where the requirement is n = 1. To minimize the
backscattering cross section in any given direction is now an optimization
process.
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When @ = n/2 + Q the wedge diffraction coefficient for the front edge is
infinite unless n = 1. The physical optics estimate is likewise infinite, and
since the two infinities are identical (and cancel), it is convenient for
numerical purposes to regroup the terms in (B.8). On doing so we have

P(p) = Pf(w, 2, n])eZichoswsinQ + Pr(@, 2, n2)e-Zichos(bsinsz Uls - @ - )

+ pP 7 %) (B.13)

where the front edge contribution is

. sin(@ - Q) - n
Pf(gs /N ﬂ]) = Pw(ﬂ, ﬂ, n1) + %’sin(g ~ Q) ¥ nl tan (g - Q)

. sin(@ + Q) - n

) % sin(p + ) + n tan(@ + Q)U(P + o - 7) , (B.14)

the rear contribution is

" W j sin(@ + @) - Ny
P (Q, gs nz) =P (TT - Qa ™= Q, nz) - Z’sin(g ¥ Q) ¥ nz tan(g + Q)s (B.]S)

and PP * %(@) is given in (B.6). A1l three terms in (B.13) are finite for all
finite n, but the regrouping has changed somewhat the conditions for suppressing
the individual terms. Although pP - O(Q) still vanishes if (B.9) is satisfied,
(19) is no Tonger relevant to the suppression of the remaining terms in (B.13).
Thus if @ = n/2 with @ = 15°,

1]

- i {é.10134[1 +7.02667 sin’ %%%secz %T

0.93301 tan[x - IILZ_] tan [x + 31T-—2—]}

(see 18) and vanishes if n = cos x = 1.390, compared with the value n = 1.237
for which PY(x/2, n/2, n) = O.

1}

Pf’r(ﬂ/Z, /2, )
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Programs have been written to compute P(@) for @ = 15° and any desired
impedance using both of the representations (B.8) and (B.13). The results
are, of course, identical, and though (B.13) is more convenient numerically,
the computation of the individual terms in (B.8) is helpful in seeking to
minimize the scattering. Because we have not included any traveling wave
effects per se, the accuracy of our formulae diminishes as end-on incidence
(@ = m) is approached, particular for surface impedances where these effects

are significant.
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