Analysis of ToxR-dependent transcription activation of \textit{ompU}, the gene encoding a major envelope protein in \textit{Vibrio cholerae}

J. Adam Crawford,1 James B. Kaper2 and Victor J. DiRita1,3 \footnote{For correspondence. E-mail vdirita@umich.edu; Tel. 734 936 3804; Fax 734 936 3235.}
1Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. 2Center for Vaccine Development, Division of Geographic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA. 3Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

\section*{Summary}

The membrane proteins ToxR and ToxS regulate a variety of genes associated with the virulence of \textit{Vibrio cholerae}, the agent of human cholera. One of the ToxRS-regulated genes is the \textit{ompU} gene, which encodes a porin that may also act as an adhesin. To begin to understand the mechanism of \textit{ompU} transcription activation by ToxRS, we performed genetic and biochemical studies on the \textit{ompU} promoter. Deletions with a 5' end-point at or downstream of –128, relative to the start site for transcription, did not direct expression of a lacZ reporter gene in wild-type \textit{V. cholerae}, although the –128 promoter fragment did direct ToxRS-dependent reporter gene activity under conditions of ToxR overexpression in \textit{E. coli}. Consistent with the activation data is that membranes containing ToxR and ToxS caused a gel electrophoretic mobility shift when mixed at low concentrations with deletion fragments whose end-point is at –211, but not with –128 or –68 fragments. ToxRS membranes did shift the –128 fragment when added at higher concentrations. DNase I footprinting analysis of \textit{ompU} promoter DNA complexed with ToxRS membranes demonstrated protection of three sites: an upstream site ranging from –238 to –139, and two downstream sites ranging from –116 to –58 and –53 to –24. Within the DNA protected from DNase I digestion by ToxRS membranes, there are no elements bearing similarity to those identified previously within the promoters of two other ToxR-dependent genes, \textit{ctxA} and \textit{toxT}. We suggest a model for transcription activation that involves sequential ToxR-binding events to distinct regions in the \textit{ompU} promoter.

\section*{Introduction}

\textit{Vibrio cholerae} causes the human diarrhoeal disease cholera. Pathogenic strains of \textit{V. cholerae} express several virulence factors that are co-ordinately regulated by an inner membrane protein called ToxR. The genes encoding these factors are collectively termed the ToxR regulon, and include genes for the following: the cholera toxin (CTX), an ADP-ribosylating enzyme that intoxicates intestinal epithelial cells, resulting in the secretory diarrhoea associated with the disease (reviewed in Kaper et al., 1995); the toxin co-regulated pilus (TCP), an adhesin that mediates intestinal colonization (Taylor et al., 1987; Herrington et al., 1988); the accessory colonization factor (ACF), which may play a role in signal transduction related to motility (Peterson and Mekalanos, 1988; Everiss et al., 1994; Hughes et al., 1994; 1995); and OmpU, a porin that may also function as an adhesin (Sperandio et al., 1995; 1996; Chakrabarti et al., 1996).

Although ToxR is localized in the membrane, it is a transcription factor with an amino-terminal cytoplasmic DNA binding/transcription activation domain and a carboxy-terminal periplasmic domain of undetermined function (Miller et al., 1987; DiRita and Mekalanos, 1991; Ottemann et al., 1992). The cytoplasmic domain of ToxR shares ≈30% homology at the amino acid level with the carboxy-terminal DNA-binding domain of OmpR and is therefore included in the OmpR family of transcription activators, which bind DNA by virtue of a winged helix–turn–helix domain (Ottemann et al., 1992; Martinez-Hackert and Stock, 1997). Unlike OmpR, ToxR does not contain a phosphoacceptor domain and is believed to be activated in a manner other than phosphorylation. Activation may involve an additional membrane protein, ToxS, upon which ToxR is dependent for maximal activity (Miller et al., 1989; DiRita and Mekalanos, 1991). ToxS has been hypothesized to stabilize a dimeric state of ToxR required for transcription activation (DiRita and Mekalanos, 1991; Dziejman and Mekalanos, 1994). Few regulatory proteins sharing the topological and functional features of ToxR have been described to date. \textit{V. cholerae} has at least two proteins in this class, ToxR and the TcpP protein, a regulator...
encoded in the tcp gene cluster (Häse and Mekalanos, 1998). Other such regulators among different species of bacteria include CadC of Escherichia coli (Neely et al., 1994), PsaE of Yersinia pseudotuberculosis (Yang and Isberg, 1997) and ToxR analogues of Vibrio fischeri, Vibrio parahaemolyticus and Photobacterium sp. strain SS9 (Lin et al., 1993; Reich and Schoolnik, 1994; Welch and Bartlett, 1998). All of these proteins except CadC have a ToxS-like component associated with activity of the ToxR-like protein.

As mentioned above, expression of virulence factors is co-ordinately regulated by ToxR. Random insertions of the transposon TnphoA into the V. cholerae chromosome revealed that at least 17 genes are under ToxR regulation (Taylor et al., 1987; Peterson and Mekalanos, 1988). However, several of these genes are not activated directly by ToxR, suggesting that another factor directly activates their transcription (DiRita et al., 1991). This observation led to the discovery of ToxT, an AraC homologue that can activate transcription of several ToxR-regulated genes (DiRita et al., 1991; Higgins et al., 1992) and whose own transcription is regulated by ToxR, thus implying a cascade model of virulence gene regulation controlling virulence gene expression in V. cholerae (DiRita et al., 1991; DiRita, 1992). ToxR controls toxT transcription by regulating a toxT-specific promoter (Higgins and DiRita, 1994), but toxT may also be autoregulated as the gene lies at the distal end of the operon encoding the ToxT-regulated tcp genes (Higgins and DiRita, 1994; Brown and Taylor, 1995). Recent work suggests that TcpP and TcpH, which are predicted to be membrane localized, are also involved in activation of toxT expression, perhaps in conjunction with ToxR or with another regulator (Carroll et al., 1997; Häse and Mekalanos, 1998).

Several observations suggest that ToxR has other functions in virulence gene regulation besides activating toxT transcription. For example, expression of the ctxAB genes, which in V. cholerae are encoded on the genome of a filamentous converting phage called CTXΦ (Waldor and Mekalanos, 1996), can be activated in E. coli independently by ToxR or by ToxT, but toxT mutant strains of V. cholerae that express wild-type levels of ToxR are deficient for ctxAB transcription (Champion et al., 1997). Thus, the exact role of ToxR in ctxAB expression remains uncertain, although a ToxR binding site within the ctxAB promoter has been identified and well characterized (Miller et al., 1987; Pfau and Taylor, 1996).

Adding more complexity to virulence gene regulation by ToxR is the existence of a branch of the ToxR regulon comprising at least two genes that do not require ToxT for their expression (Champion et al., 1997). These are ompU, which encodes the porin and putative adhesin OmpU mentioned above, and ompT, which, unlike the rest of the regulon, is under negative control by ToxR (Miller and Mekalanos, 1988).

The sequences of the two ToxR-regulated promoters that have been best described to date, those of the ctxAB and toxT genes, do not contain any conserved motifs suggestive of a consensus binding site that might be recognized by ToxR in activating their transcription. The distinguishing features of the ctx and toxT promoters, respectively, are a heptad, TTTTGAT, directly repeated three to eight times depending on the V. cholerae strain, and a set of three inverted repeats of sequence unrelated to the TTTTGAT motif (Miller et al., 1987; Higgins and DiRita, 1994; 1996; Pfau and Taylor, 1996). The isolation of promoter point mutations, deletion analysis and DNase I footprinting demonstrated the presence of ToxR binding sites in these promoters, but failed to reveal the ToxR-binding code (Higgins and DiRita, 1996; Pfau and Taylor, 1996; J. A. Crawford and V. J. DiRita, unpublished).

To gain further understanding of ToxT-independent regulation in V. cholerae and to continue clarifying the DNA-binding properties of ToxR, we investigated regulation of OmpU expression by ToxR. In this report, we present evidence that ToxR binds to the ompU promoter region and may directly activate ompU transcription. We also present data that identifies the ToxR-binding regions in this promoter and we propose a model for the molecular basis of ToxR-dependent transcription activation.

Results

Identification of a ToxR-regulated promoter upstream of ompU

Primer extension analysis of RNA isolated from V. cholerae wild-type classical strain O395 and its toxR mutant derivative (JJM43) revealed a ToxR-dependent transcription start site 159 nucleotides upstream of the ompU start codon (Sperandio et al., 1996). To characterize the nature of this ToxR-dependent transcription, we constructed ompU reporter plasmids by fusing varying amounts of ompU upstream DNA to a promoterless lacZ gene in the plasmid TL61T. The 5' end-points for these fusions, relative to the ToxR-dependent transcription start site, are −675, −352, −211, −128, and −68 (each has a 3' end-point of +22). To remove the presumed −10 basal element, an additional construct was made in which the DNA extending from −353 to −26 was fused to lacZ (Fig. 1).

ompU–lacZ fusions were mobilized into classical strains O395 (wild type) and JJM43 (toxR mutant) V. cholerae and tested for their ability to direct synthesis of β-galactosidase in each background. As is seen in Fig. 1, constructs with upstream end-points at −675, −352 and −211 all directed high levels of ToxR-dependent β-galactosidase activity, whereas the −128 and −68 constructs expressed low levels of β-galactosidase in both wild-type and toxR mutant V. cholerae. As predicted, the −352 to
–26 construct, which deletes the putative basal promoter element at −10, expressed very low levels of β-galactosidase in both strain backgrounds. From these results, we conclude that the region upstream of −128 in the ompU promoter contains a ToxR-responsive regulatory element controlling transcription of the ompU gene that initiates at the position previously mapped (Sperandio et al., 1996).

Transcription activation of ompU by ToxRS in E. coli

The dependence of ompU transcription on ToxR in V. cholerae suggests that the direct activator of ompU transcription. As described above, the vast majority of ToxR-regulated genes in V. cholerae are not activated directly by ToxR, but rather are activated by the ToxR-controlled ToxT activator. However, as ompU transcription is independent of ToxT (DiRita et al., 1991; Champion et al., 1997), we developed the simple hypothesis that ToxR binds to and activates the ompU promoter directly without a requirement for other V. cholerae factors. To test this hypothesis, we assayed the β-galactosidase activity of the ompU–lacZ fusions in an E. coli background, reasoning that any factors that ToxR might require for function would probably not be present.

For this experiment, the ompU promoter deletion fragments described in Fig. 1 were subcloned in front of a promoterless lacZ in the plasmid RS551 and recombined onto the chromosome of E. coli strain TE2680 (Elliott, 1992). These various ompU–lacZ chromosomal fusion strains were transformed with pVJ21, a plasmid expressing ToxR and ToxS (Miller et al., 1989), or with the parental plasmid ACYC184, and assayed for β-galactosidase activity. The results, shown in Fig. 2, demonstrate that ToxR and ToxS are sufficient for activation of ompU in E. coli, although they do not mirror what is seen in V. cholerae regarding the limits of ToxR dependence in the ompU

Fig. 1. Analysis of ompU–lacZ operon fusions in V. cholerae

Fusions were made by cloning PCR products containing portions of the ompU promoter in front of a promoterless lacZ gene on a broad host range plasmid. After determining that the PCR product sequence was wild type, the recombinant plasmids were introduced into V. cholerae. β-galactosidase activity was measured as described in the Experimental procedures and is reported in Miller Units (Miller, 1972). ∆toxR and toxR⁺ represent V. cholerae strains JM43 and O395 respectively. The 5’ and 3’ end-points of the ompU promoter region in each construct are labelled relative to the +1 transcription start site, as are the putative −35 and −10 RNA polymerase binding elements. Each strain was analysed at least three times.

Fig. 2. Analysis of ompU–lacZ operon fusions in E. coli

ompU promoter fragments identical to those described in Fig. 2 were subcloned into pRS551 and recombined onto the chromosome of strain TE2680 as described in Experimental procedures. β-galactosidase activity was measured as described in Experimental procedures and is reported in Miller Units (Miller, 1972). −ptoXRS and +ptoXRS represent, respectively, chromosomal fusion strains containing pACYC184 or pVJ21. Each strain was analysed at least three times.

© 1998 Blackwell Science Ltd, Molecular Microbiology, 29, 235–246
procedures at the same OD 600 that the described in Experimental procedures. Each strain was analysed by immunoblotting with ToxR polyclonal antisera as E. coli strain is TE2680 carrying the ToxR and ToxS from pVJ21 in E. coli might provide enough ground in V. cholerae. A possible explanation for this is that although DNA upstream of ToxR binding, overexpression of that although DNA upstream of ToxR to recognize an otherwise poor binding site downstream of -128.

To determine the relative steady-state levels of ToxR in E. coli (pVJ21) and wild-type V. cholerae, we performed an immunoblot assay with anti-ToxR serum on total protein extracts normalized for culture growth. Bands on the immunoblot were quantified by densitometry, which showed that the steady-state level of ToxR was fourfold higher in E. coli (pVJ21) extracts than in V. cholerae wild-type extracts (Fig. 3). This confirms that ToxR is overexpressed in the E. coli background from pVJ21 and supports the hypothesis that the -128 deletion may contain a weak ToxR binding site that requires higher levels of the protein for activation. Further support for this hypothesis comes from the observation that the -128 fusion is activated 18-fold in O395 harbouring pVJ21 (data not shown), and therefore overexpressing ToxR and ToxS, compared with only a twofold activation in the absence of ToxR overexpression (Fig. 1).

Analysis of ToxR binding to the ompU promoter region

Two other promoters in the ToxR regulon, the toxT and ctxAB promoters, harbour specific sequence elements to which ToxR binds. In the ctxAB promoter, the ToxR binding site includes a series of direct repeats with the sequence TTTTGAT (Miller et al., 1987; Pfau and Taylor, 1996), whereas in the toxT promoter, ToxR recognizes DNA containing an inverted repeat sequence, rather than the direct repeats in the ctxAB promoter (Higgins and DiRita, 1994; 1996). To begin analysing the binding requirements for ToxR-dependent activation of the ompU promoter, we performed electrophoretic mobility shift assays using DNA fragments that correspond to specific regions upstream of ompU.

Deletion fragments used in the transcription analysis presented above were radiolabelled and incubated with membrane fractions of E. coli containing pVJ21 (ToxRS⁺), or the parental plasmid ACYC184. The binding reactions were then subjected to electrophoresis on polyacrylamide gels as previously described (Higgins and DiRita, 1994). The binding reactions were performed with a series of membrane dilutions in order to obtain a semiquantitative estimate of how well they interact with specific promoter fragments. As can be seen in Fig 4A and B, although ToxRS membranes bind to DNA fragments having the -128, -211 and -352 end-points, the most efficient binding, i.e. that which is observed at higher membrane dilutions, is to fragments with DNA upstream of -128. Thus, although ToxRS membranes bind with equivalent efficiency to the -352 to +22, -211 to +22 and -352 to -26 fragments, the -128 to +22 fragment was bound with reduced efficiency, as estimated by densitometric analysis of the gel shift (Fig. 4C). The negative control membranes lacking ToxR and ToxS do not bind to any of the probes, even when added at the highest protein concentration used for the ToxRS membranes. In addition, a non-specific DNA fragment competed at insignificant levels with the -352 to +22 probe, demonstrating that ToxRS membranes bind in a sequence-specific fashion to the ompU promoter (data not shown).

These results demonstrate that DNA upstream of -128 is required for highest efficiency binding by ToxRS membranes and that DNA downstream of this position can be bound by ToxRS but with reduced efficiency in the absence of this upstream region. They are consistent
with the ompU–lacZ studies presented above in which the −128 fusion was activated in E. coli expressing ToxR from a multiple copy number plasmid, but not in V. cholerae expressing lower levels of ToxR from the chromosome.

The results of the electrophoretic mobility shift assays predicted that the ompU promoter contains binding sites for

Determination of the ToxR binding sites in the ompU promoter by DNase I protection

Fig. 4. Ability of ToxR to bind and shift ompU promoter DNA.
A. and B. Radiolabelled restriction fragments representing various regions of the ompU promoter were used in electrophoretic mobility shift assays as described in Experimental procedures. The numbers corresponding to the 5' and 3' end-points of each promoter fragment are relative to the +1 transcription start site. Labels at the top of the figure indicate whether DNA alone (no protein), membranes without ToxR and ToxS (RS−), or membranes containing ToxR and ToxS (RS+) were used in the assay. Decreasing protein concentration for the series of RS+ reactions is indicated by the triangles.
C. Histogram of data from densitometric analysis of the shifted fragments shown in A and B. The percentage of the probe bound is measured on the y-axis. Probes are indicated on the x-axis. Δ-10 indicates the (−352) to (−26) probe. Relative protein concentrations are indicated in parentheses.
ToxR located both upstream and downstream of -128. To precisely map the position of the ToxR binding sites and to gain further insight into the sequence-specific requirements for ToxR binding to the ompU promoter, we performed DNase I footprinting experiments. The -352 to $+22$ fragment, which was bound with highest efficiency by ToxRS membranes and activated to maximal levels in both V. cholerae and E. coli, was radiolabelled and incubated with membrane fractions of E. coli containing pVJ21 (ToxRS$^+$), or the parental plasmid ACYC184 as described in Experimental procedures. The binding reactions were next treated with DNase I, and subjected to electrophoresis on a denaturing polyacrylamide gel. As can be seen in Fig. 5A and B, three separate regions in the ompU promoter were protected from DNase I cleavage by ToxRS membranes; taking both strands into account, the limits of the protected regions are from -238 to -139, -116 to -58, and -53 to -24. The gels shown in Fig. 5A and B are representative of what we repeatedly observe in these footprinting experiments: that the two upstream sites are more strongly protected than the site at -53 to -24. The DNase I cleavage pattern generated in the presence of negative control membranes (pACYC184) was identical to that of DNA alone (data not shown).

Consistent with the results of electrophoretic mobility shift assays (Fig. 4A and B) and the genetic analysis of the ompU promoter shown above, the footprint data show that ToxR binding sites are located both upstream and downstream of -128 in the ompU promoter. A summary of the genetic and biochemical data presented above is shown in Fig. 6. Sequence analysis of the ToxR-binding regions in the ompU promoter did not reveal the presence of either the direct or inverted repeat sequences required for ToxR binding and transcription activation at the ctxAB and toxT promoters (Fig. 7). The possible implications for transcription activation resulting from ToxR binding within the ompU promoter are discussed below.

Discussion

This report describes an analysis of the requirements for ToxR-dependent transcription of ompU, which encodes a major outer membrane protein and is in the ToxT-independent branch of the ToxR regulon. The simplest conclusion to be drawn from our results is that ToxR is the direct

Fig. 5. DNase I footprinting of ToxR on the ompU promoter. A. and B. Restriction fragments corresponding to the -352 to $+22$ promoter region, having been radiolabelled on one strand (A is the top strand, B is the bottom strand), were subjected to DNase I footprinting as described in Experimental procedures. Labels at the top of the figure indicate whether membranes without ToxR and ToxS (‘-‘) or membranes containing ToxR and ToxS (‘+‘) were used in the experiment. Bars to the side of the figure represent regions of the probe protected by ToxR and are labelled relative to the +1 transcription start site.

© 1998 Blackwell Science Ltd, Molecular Microbiology, 29, 235–246
activator of ompU; this is based on the observations that ToxR directs high level expression of ompU–lacZ reporter fusions in E. coli, and that binding of ToxR to ompU promoter DNA correlates with its ability to activate expression in both E. coli and V. cholerae. Of the three genes whose promoters ToxR controls (toxT, ctxAB and ompU), the data for ompU are the most straightforward to interpret when trying to ascertain the molecular mechanism for transcription activation by ToxR. Data regarding the expression of ompU in E. coli and V. cholerae are generally quite consistent between the two species. In contrast, disparities between what is observed in V. cholerae and in E. coli make it difficult to arrive at a simple conclusion regarding how the ctxAB and toxT promoters may be regulated by ToxR. For example, the ctxAB promoter is activated to high levels in E. coli with either ToxR or ToxT supplied in trans (Miller and Mekalanos, 1984; DiRita et al., 1991) but is not detectably expressed in V. cholerae in the absence of functional ToxT, irrespective of the presence of ToxR (Champion et al., 1997). Also, although toxT expression requires ToxR in V. cholerae, a toxT–lacZ gene fusion was not activated in E. coli by ToxR, suggesting that another Vibrio factor may be required for toxT expression (Higgins and DiRita, 1994). Indeed, recent work has shown that two other gene products in the tcp gene cluster, TcpP and TcpH, play a role in ToxR-dependent toxT expression (Carroll et al., 1997; Häse and Mekalanos, 1998). That ompU activation may be the most direct function for ToxR is consistent with a model (Champion et al., 1997) in which ToxR evolved to control ompU and ompT expression, and that its more indirect regulation of ctxAB and tcp arose upon acquisition of those gene clusters at a later time (Kovach et al., 1996; Waldor and Mekalanos, 1996).

Figure 8 presents a model for how ToxR interacts with the ompU promoter to activate its transcription. This model is derived in part from a hypothesis proposed by Pratt and Silhavy (1996) for how OmpR activates transcription and is also similar to a model proposed by Stibitz and colleagues for transcription activation by BvgA, a response regulator that controls the virulence of Bordetella pertussis (Boucher and Stibitz, 1995; Boucher et al., 1997). We propose that ToxR binding to sites in the −238 to −139 region promotes binding to sites in the −116 to −58 and −53 to −24 regions that results in transcription activation, presumably through interaction between ToxR and RNA polymerase (Fig. 8A). The model is based on our observation that deletion of sequences upstream of −128 result in a weaker promoter that requires overexpression of ToxR to be activated (Fig. 8B). The precise mechanism...
for the role of upstream binding by ToxR is not clear from the current data, but we consider it unlikely that upstream binding is required to place ToxR in phase on the helix with RNA polymerase. If that were the case the promoter with a -128 upstream end-point would not be expected to activate transcription whether or not ToxR were overexpressed. We hypothesize that ToxR bound at the upstream site recruits other ToxR proteins to the downstream sites through protein–protein interaction, which may involve co-operative binding by ToxR. This type of mechanism might provide a rationale for the predicted multimeric structure of functional ToxR (Miller et al., 1987; DiRita and Mekalanos, 1991; Dziejman and Mekalanos, 1994). The model shown in Fig. 8 makes predictions about the affinity of ToxR for each individual binding region and the contributions of each binding region to transcription activation by ToxR, and these are currently being tested.

Our data demonstrate the presence of ToxR binding sites required for transcription activation of the ompU promoter, but the sequence of the ToxR-binding regions in the ompU promoter does not include elements found in the ctx and toxT promoters (Fig. 7). The model for evolution of this system alluded to above suggests that co-ordinate control of these three promoters by ToxR is a result of convergent evolution (Champion et al., 1997), which might account for this lack of obvious sequence similarity.

Evolutionary considerations aside, it is instructive to explore possible mechanisms by which ToxR may recognize these three different promoters as an apparent requirement for their activation. There may be a conserved sequence required for ToxR binding in all three promoters that could be difficult to identify simply by analysing the primary sequences, perhaps in part because of the overall $A+T$ richness of the ToxR binding sites in all three promoters. A consensus site masked in this way would be particularly difficult to identify if it were degenerate. This seems to be the case for OmpR binding sites, which share little sequence conservation (Huang and Igo, 1996; Pratt and Silhavy, 1996). Second, ToxR may recognize a structural feature of the DNA, rather than (or in addition to) a specific primary sequence. Two facts about the ompU promoter lead us to consider this as a distinct possibility. This promoter is highly $A+T$ rich, with several runs of A residues, and such DNA is predicted to be bent (Haran et al., 1994). Also, DNase I digests the ToxR binding site with reduced efficiency (Fig. 5; negative control reactions), suggesting that DNA in this region is less accessible to the enzyme. This is perhaps due to distortions in the minor groove where DNase I recognizes and binds DNA (Suck, 1994). That ToxR binds and protects these regions is consistent with the hypothesis that it may recognize distorted DNA.
Experimental procedures

Bacterial strains and plasmids

The V. cholerae and E. coli strains and plasmids used in this study are listed in Table 1. Strains were grown in Luria broth (LB) medium at 30°C. The strains were maintained at −70°C in LB medium plus 20% glycerol. Antibiotics were used at the following concentrations: ampicillin, 100 mg ml⁻¹; tetracycline, 12.5 mg ml⁻¹; kanamycin, 30 mg ml⁻¹; chloramphenicol, 50 mg ml⁻¹; and streptomycin, 100 mg ml⁻¹. Plasmids were introduced into E. coli strains by transformation and into V. cholerae strains through triparental mating with E. coli strain MM294(pRK2013) as a donor of mobilization functions.

DNA manipulations

Plasmid DNA was purified with Qiagen columns (Qiagen). PCR was performed using the Expand High Fidelity PCR System (Boehringer Mannheim) as specified by the manufacturer. PCR templates were either a ZAP clone of ompU DNA (Sperandio et al. 1996) or plasmid AC113, containing the ompU promoter region extending from −675 to +232. When necessary, synthesized primers contained added recognition sequences for restriction endonucleases to facilitate directional cloning. PCR products were purified by agarose gel electrophoresis followed by gel extraction with the QIAEX II gel extraction system (Qiagen). Cloning was performed using standard protocols (Sambrook et al., 1989). Double-stranded sequencing of plasmid DNA was sequenced as previously described (Higgins and DiRita, 1994).

Transciptional fusion analysis

PCR products harbouring various portions of the ompU promoter region were generated with flanking Eco RI and Bam HI sites and subcloned into Eco RI–Bam HI-digested pTL61T. After verifying the sequences to be wild type, plasmid DNA was transferred into V. cholerae strains O395 and JJM43. V. cholerae cells containing plasmids were grown overnight in LB medium with a starting pH of 8.5 at 30°C then diluted 1:50 in fresh LB medium with a starting pH of 6.5 and grown at 30°C for 2.5h. Cells were harvested and β-galactosidase activity was measured as described (Miller, 1972).

Construction of ompU–lacZ chromosomal fusions in E. coli

The ompU–lacZ chromosomal fusion strains were constructed using the method of Elliot (1992). Briefly, the same PCR fragments cloned into pTL61T were subcloned into EcoRI–BamHI digested pRS551 and linearized by digestion with Xho1. Linear DNA was transformed into E. coli strain TE2680 and cells were selected for kanamycin resistance (KanR) and chloramphenicol sensitivity (CmS), which indicates recombination of the fusion onto the chromosome. pVJ21 (ToxRS⁺) and the parental vector pACYC184 were separately transformed into each ompU–lacZ chromosomal fusion strain and β-galactosidase activity was measured as for V. cholerae strains with the following exception: the starting pH of the media was always 6.5 as there is no observable effect of pH on ToxR-regulated gene expression in E. coli.

ToxR immunoblotting

Whole-cell lysates of each strain were prepared by growing each strain as described above in the β-galactosidase assay protocol. Each overnight culture was back-diluted 1:50 and grown for 2.5h at 30°C. A 1 ml sample of each culture was pelleted, resuspended in SDS–PAGE sample buffer and boiled for 5min. OD₆₀₀ equivalents of total cellular protein were electrophoresed on a 10% polyacrylamide gel with a 5% stacking gel, transferred to nitrocellulose and probed with ToxR polyclonal antisera as previously described (DiRita et al., 1996). Parallel gels loaded with the same sample volumes were electrophoresed and stained with Coomassie brilliant blue to ensure equal loading on the blotted gel.

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Description</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. cholerae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O395</td>
<td>StrR</td>
<td>Laboratory collection</td>
</tr>
<tr>
<td>JJM43</td>
<td>O395 ΔctxA1 ΔtoxR43</td>
<td>Herrington et al. (1988)</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE2680</td>
<td>F⁻λ⁻ IN(rrnD-rrnE) 1 Δ(lac)X74 rpsL galK2recD1903::Tn10d-Tet trpDC700::putPA1303::(KanR-CamS-lac)</td>
<td>Elliott (1992)</td>
</tr>
<tr>
<td>AAEC189</td>
<td>F⁻ΔfrmA recA supE44 hsdR17 mcrA mcrB endA1hi-1 Δ(argF–lac)205(U169) λ⁻</td>
<td>Blomfield et al. (1991)</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pTL61T</td>
<td>lacZ transcriptional fusion vector; ApR</td>
<td>Linn and Pierre (1990)</td>
</tr>
<tr>
<td>pACYC184</td>
<td>Cloning vector; TcR CamR</td>
<td>Chang and Cohen (1978)</td>
</tr>
<tr>
<td>pVJ21</td>
<td>pACYC184 c::toxRS; CamR</td>
<td>Miller et al. (1989)</td>
</tr>
<tr>
<td>pRS551</td>
<td>lacZ transcriptional fusion vector; ApR KanR</td>
<td>Simons et al. (1987)</td>
</tr>
</tbody>
</table>

StrR, streptomycin resistant; ApR, ampicillin resistant; TcR, tetracycline resistant; KanR, kanamycin resistant; CamR, chloramphenicol resistant.

Table 1. Strains and plasmids used in this study.
Preparation of membrane fractions

E. coli strain AAEC189 containing either pVJ21 (ToxRS⁺) or pACYC184 were grown overnight at 30°C in LB media. Cells were collected by centrifugation, resuspended in lysis buffer (20 mM KH₂PO₄, 50 mM KCl, 5 mM EDTA, pH 7.8, 1 mM leupeptin, 1 mM peptatin A, 16.7 mM phenylmethylsulphonyl fluoride) and passed through a French Press twice. Unbroken cells were removed by centrifugation at 350 × g for 15 min. The lysate was loaded onto a 15%/70% discontinuous sucrose gradient and centrifuged at 36,000 r.p.m. in a SW41 swinging bucket rotor for 90 min. The membrane fraction was removed from the 15%/70% interface and resuspended in cold 20 mM KH₂PO₄, 1 mM EDTA, pH 7.8. Membranes were pelleted by centrifugation at 36,000 r.p.m. in a SW41 swinging bucket rotor for 90 min and then resuspended in cold 20 mM Na₂HPO₄, 1 mM EDTA, pH 7.8. Protein concentration was determined using the Bio-Rad Protein Assay (Bio-Rad).

DNA gel mobility assays

ompU promoter fragments, having been subcloned into pBluescript SK[±] (+) (Stratagene), were isolated as DNA probes for the experiments described in Fig. 4A and B by first linearizing plasmid DNA with *SalI* and subjecting these samples to an end-labelling reaction containing dATP, dGTP, dTTP, each at 2 mM, 30 μCi of [α-³²P]-dCTP (3000 Ci mmol⁻¹, Amersham), and 5 units of Klenow (New England Biolabs). Reactions were incubated at room temperature for 5 min, followed by 70°C for 15 min. Samples were next digested with *SacI*, which cuts the probe fragment out of the vector. Next, reactions were electrophoresed on a 1x TBE, 5% polyacrylamide gel and subjected to autoradiography. Probe fragments were excised out of the gel and eluted in 0.5 M ammonium acetate, pH 7.5, 0.1% SDS, 1 mM EDTA, pH 8.0, overnight at 37°C. Next, the samples were ethanol precipitated and then used in gel shift reactions. Retardation of radioactively labelled DNA fragments was performed as previously described (Miller *et al.*, 1987) with the following modifications. Assays were performed in 20 μl volumes with membrane fractions containing 500 mg ml⁻¹ protein for the negative control reaction (ToxRS⁺ membranes), and 500 μg ml⁻¹, 250 μg ml⁻¹, 125 μg ml⁻¹ and 62.5 μg ml⁻¹ protein for the experimental reactions (ToxRS[−] membranes). Each reaction contained 10 μg ml⁻¹ salmon sperm DNA and 3000 c.p.m. of probe. The binding reactions were incubated at 30°C for 30 min. Autoradiographs were quantified directly using an AMBIS 4000 scanner set for densitometric reading.

DNase I footprinting

Footprinting probes were generated by cutting pBluescript SK[±] (+) (Stratagene) containing the −352 to +22 *ompU* promoter region with either *SacI* (for labelling the bottom strand) or *NotI* (for labelling the top strand), subjecting these samples to the end-labelling reaction described above in the DNA gel mobility assay, and cutting the probe fragment out of the vector with either *SacI* (bottom strand probe) or *SalI* (top strand probe). Probes were isolated and purified as described above in the DNA gel mobility assay. Binding reactions were performed as described above in the DNA gel mobility assay with the following modifications. Reactions were set up in 70 μl volumes containing 1000 μg ml⁻¹ protein for the negative control (ToxRS[−] membranes) and experimental reactions (ToxRS⁺ membranes). Each reaction contained 70,000 c.p.m. of probe. Under these conditions, 100% of the probe is bound by ToxR, as measured by electrophoretic mobility shift assays. To the binding reactions, CaCl₂ and MgCl₂ were added to final concentrations of 1 mM and 5 mM respectively. DNase I (0.01 units) (Boehringer Mannheim) was next added and incubated at room temperature for 2 min. The reactions were stopped by addition of a stop solution consisting of 200 mM NaCl, 2 mM EDTA and 1% SDS, followed by three phenol–chloroform extractions. Reactions were next ethanol precipitated, washed twice with 70% ethanol and electrophoresed on a 5% polyacrylamide, 6.9 M urea gel. To precisely map the position of the ToxR-binding regions in the *ompU* promoter, a sequencing reaction was performed (Amersham Life Sciences, T7 Sequenase Version 2.0 DNA sequencing kit) on the appropriate strand of the −352 to +22 *ompU* promoter clone in which the 5′ end of the sequencing primer corresponds to the 5′ end of the footprinting probe. The sequencing reaction was electrophoresed alongside the footprinting reactions.

Acknowledgements

We gratefully acknowledge the generous assistance of Drs Nico Yu and Eric Olsen in developing the DNase I footprinting method used in this work. This work was supported in part by grants AI 31645 (to J.B.K.) and RR-00200 (to the Unit for Laboratory Animal Medicine, University of Michigan) from the National Institutes of Health. J.A.C. is a Rackham Predoctoral Fellow of the University of Michigan and a trainee of the University of Michigan Genetics Training Grant. 5T32 GM 07544. DNA sequence analysis was supported in part from grant RR-00042 to the Clinical Research Center at the University of Michigan.

References

