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PREFACE

This is the thirty-first in a series of reports growing qut of the study of
radar cross sections at The Radiation Laboratory of The University of Michigan.
Titles of the reports already published or presently in process of publication
are listed on the preceding pages.

‘When the study was first begun, the primary aim was to show that radar
cross sections can be determined theoretically, the results being in good agree-
ment with experiment. It is believéd that by and large this aim has been achieved.

In continuing this study, the objective is to determine means for computing
the radar cross section of objects in a variety of different environments. This
has led to an extension of the investigation to include not only the standard
boundary-value problems, but also such topics as the emission and propagation
of electromagnetic and acoustic waves, and phenomena connected with ionized
media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterei's in order to verify
data determined theoretically; (b) investigation of antenna behavior and ci‘oss
section problems not amenable to theoretical solution; (c) problems associated
with the design and development of microwave absorbers; and (d) low and high

density ionization phenomena.

K.M. Siegel
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SUMMARY

The exact solution is obtained for the problem of a plane wave incident at
an oblique angle on a half-plane of large but finite conductivity, The usual
approximate boundary conditions are applied and these lead to coupled Wiener-
Hopf integral equations from which to determine the currents excited on the
surface of the sheet, The resulting expressions for the field components are
found to be entirely different from those which would have been obtained by
applying the technique used for the derivation of three-dimensional solutions
in the case of perfectly conducting structures and, indeed, not one component

is given to the required accuracy by this technique,

viii
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INTRODUCTION

In this paper attention will be confined to diffracting structures which are
two-dimensional in the éense of being composed of cylinders of arbitrary cross
section whose generators are all parallel to the z axis of some coordinate system.

If a structure of this type is perfectly conducting, it is possible to deduce
the solution for a three-dimensional incident field from the solution for a two-
dimensional field and, in particular, the solution for a plane wave at oblique
incidence can be obtained from that in which the plane wave is normal to the
z axis, The method is based upon the fact that any solution of the two-dimensional
wave equation gives rise to a solution of the three-dimensional equation on re-

-ikz sin
placing the propagation constant k by k cos 8 and multiplying by e

If the particular solution considered represents the solution for the electromagnetic
problem in which the incident field is a two-dimensional plane wave, and if it is
modified in the above way and then taken to be the z component of an electric or
magnetic Hertz vector whose other components are zero, a solution of the three-
dimensional problem is produced, The corresponding incident field has either HZ

or E, zero (depending on whether the two-dimensional field was E or H polarized),
and the two fundamental fields so generated can be combined to give the solution

for any incident field. The method has been described in detail by Clemmow (Ref. 1),
and was used by Senior (Ref, 2) to determine the field of a dipole in the presence of

a half-plane,
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When the structure is not perfectly conducting the method is no longer
applicable and the question then is whether an analogous technique can be developed
to treat such cases. To attempt an answer to this an obvious approach is to tackle
a particular problem in the hope that its solution may indicate a general trans-
formation and apart from the problem of a circular cylinder (for which the solution
is almost trivial), one of the most simple is that of a plane wave incident at an
oblique angle on a half-plane of large but finite conductivity. The present paper
is devoted entirely to a consideration of this problem,

The crux of the analysis is the determination of coupled integi'al equations
for the electric and magnetic current distributions excited on the surface of the
half-plane, These are of Wiener-Hopf type and can be solved to give expressions
for the currents in terms of the "'split' functions which characterized the solution
for normal incidence (Ref. 3). The field components are then given as integrals

over the currents, and some ramifications of the results are examined,

2
THE INTEGRAL EQUATIONS

Consider a thin semi-infinite sheet of large but finite conductivity occupying
the half-plane y = 0, x>0 of a rectangular Cartesian coordinate system (x,y,z).
A plane wave is incident in a direction making an angle & with the positive x axis
and an angle 7/2 - B with the z axis; B = 0 then corresponds to incidence in the

plane perpendicular to the diffracting edge,
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The actual form of the incident field matters little as regards the analysis,

but in order to simplify the comparison of the results with those for a perfectly

conducting sheet the field is taken to be a quasi three-dimensional plane wave

which is E-polarized and whose components are given by

i ~ik(x cos @ cos B+y sina cos B+z sinS)

E =(-cosasinfcos B, -sinasinfcosf, cos® B)e
(1)

-ik(x cos @cos B+y sin@cos B+z sin B)

§i=(—Y sinacos B3, Y cosacos 3, O)e
(2)

| where Y = 1 /Z is the intrinsic admittance of free space and a time factor e—iwt
is suppressed. The above field is that which is obtained by modifying a two-
dimensional E-polarized plane wave in the manner described in the previous
section,
If Vi is the reciprocal of the complex refractive index of the material com-
prising the sheet, the boundary conditions to be applied can be written as
E-@-En= 0 Zn,H , (3)

where n is a unit vector normal drawn outwards from the sheet, On the upper
surface n is in the positive y direction, and equation (3) then gives

E,= y ZH, , E;=-nZH
Similarly, on the lower surface

EX=-7ZHz » E,=nZHy

As a consequence of these conditions, the tangential components of both the
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electric and the magnetic vectors will be discontinuous on crossing the sheet,
and it is convenient to regard these discontinuities as due to the presence of

electric and magnetic currents in the sheet, We therefore write

y=+0 y=+0
E, = Il(x', z') , Hxl = Iz(x', z')
y=-0 y=-0
y=+0 y=+0
E = IS(X', z') |, , Ez, = I4(x', z")
y=-0 y=-0
where I‘2 and I 4 are the electric currents and I1 and I3 are the magnetic ones,
I1 and I 4 3Te perpendicular to the diffracting edge whilst I2 and 13 are parallel,

and when the field is normally incident (8 = 0) I3 and I , are identically zero.

The electric field at a point (x,y,z) can be expressed as a surface integral

in the form:

1 tkp
ER,y,zF 54— S {ikZ(gAE)-(p_A_E_I W -@. _E)V} ep ds (4)
S

(see, for example, Ref. 4, p.467) where n is a unit vector normal drawn into the
volume contained by the surface S, The differentiation is with respect to the
coordinates of the observation point and p is the distance to a variable point
(x',y',z') on S.

The surface S is made up of two sheets which envelop the diffracting
structure, together with a cylinder of infinitely large radius centered on the

z axis and meeting the two sheets at x = oo ., The integration over the cylindriecal



THE UNIVERSITY OF MICHIGAN
2778-2-T

portion is easily shown to produce the incident field and accordingly equation (4)

can be written

i (0] ® ikp y=+0
E(X:Y:Z) =E (X)Y:Z) + —1" {ikZ(n H) "(n E) v '(n . E)V}_G__' dx'dz' .
- - 47 AT TATA - - P y=-0

(5)
On the upper surface of the half-plane

nH = (Hy, 0, -H)
from which we obtain y=
EAH' = (I,, 0, -L)
y_._
Similarly,
y=+0 ikp
vlkp =I_§_’_IQ__I_3_,I_8_6
—A—A PRI, 39y’ 39x loaz’1day) p
and
i y=H0 ik
0 BVe 12 (2. %) (2 2 b))
- =" y-—O k ox* 9y’ ez/ P

and if these are inserted into (5), the equation becomes

i (0 0] 0 0]
E(x,y,Z)=E(x,y,Z)+41—g S {mz<14, 0, -1,) -

-0

ikp
1_ 312 314 (a ’_g_’_@_) e dx' dz' .
o0Xx Jdy 0z p (6)

At normal incidence the fields and currents are independent of z (and hence z')

d, 8 -1, O 1__8_)
ay 38x 1E)z,lay

and, in addition, there is no current Iys the terms in the third group of the above

integrand then disappear.
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An assumption is now made concerning the dependence of the field upon the
coordinate z, The diffracting structure itself is two-dimensional and since all
-ikz sinf

the components of the incident field involve z only through a factor e R
it seems reasonable to assume that this dependence will also apply to the total
field, A consequence of this is that

I(x',z")= o “lkz'sinB

I_x'

p( )

forp=1, 2, 3, 4, which makes it a trivial matter to carry out the integration
with respect to z' in equation (6).

To evaluate the z' integral it is sufficient to consider

e

© ©
S e—ikz'sinB tkp dz,=e—ikzsinB S e-ik(z'—z)sinB olkP dz'
- p -0 P

where, of course, p= \/(x'-x)2 +y?+(z'-z)® , and if we put z'-z=QsinhY

/ 2 '
with Q = Y (x'-x) +y2 , the integral becomes

®
-ikz sinB ikQ(cosh¥ -sinBsinh ¥)
e e dy

-0

-ikz sinf3
e

Y =7i

. w .
e ikz sinBS e1chosBcosh(x+i:anh sinB) d H(()l)(chosB) .

-

The nature of this result shows that the assumption about the z dependence is

self-consistent and allows us to suppress the coordinate z throughout the subsequent
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analysis. Equation (6) can then be written as

(0]
_l 21 _ . 9 1 O Libas 9
E(x,y)=E(x,y) 43 {kZ(I‘PO, IZ)+1<13 5y 135{“1{51“611’11 -537)
0.

z (. 814)(3 5 )} (1) :
+ 2 = <L <L o
k (1ksm}312+ 5x' /\3x 3y * iksinB H, (kQ cos B) dx
(7)
The above integrand involves -:—14- , and if I 4 Were zero at the edge of
XY

the half-plane, integration by parts would enable the derivative to be replaced by
14 _g—x— . It is known that in the case of an H-polarized plane wave at normal in-
cidence the magnetic current perpendicular to the edge vanishes at the edge
(Ref, 3), and for simplicity it will be assumed that the same is true at oblique
incidence, If this behaviour is not postulated at the outset, the solution of the
integral equations becomes more complicated, although the analysis can still be
carried through, The details are given in Appendix I and from these results it
follows that I4(0) must be‘ identically zero.

Equation (7) now gives rise to three scalar equations for the currents:

. 2
E,(x,y)-E, (x,y)= -iS {kzi4 (1+é aif’) +il, -% +iZsinBIZ-9—a§}Hél)(chosB)dx|
. .

(8)
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©
i 1 T 0 ke {7 i 9 _ . Z 5 g dx!
Ey(x,y)—Ey(x,y)— 1 i1 —8—)—(+ksmB I,-i ZsmBIZ@— alae 14 5xoy | L0 (kQcosB)
0

(9)

(4]
. 1 2 . 0 . s d l)
EZ(X,Y)'Elz(X:y)z :1— 3 {kZ cos 312-1 I1 By +i ZsinfB 14—597( } H(()

0 (10)

(kQcos B) dx' .

Integral equations for L, and I 4 can be obtained from these by letting the
field point approach the half-plane successively from above and from below., By

taking the limits of equations (8) and (10) as y——->i' 0 and using the fact that

0 6]
lim lim n 2 gz .
(Y-""'O +y——>-0> S I‘p(x) oy HO (kQcosB) dx'= 0,

0

we have

0 ¢]

2
i __1 1 o

0

+1iZsin I, —E)aE } Hf)l)(kIX'—xl cosf) dx' ,

00
Ez(x,+0) +Ez(x, -0) —ZE; (x,0) = —é— % { k Z cos?B I, +

0

+iZsinB 1 9 \( Hg) (k‘x'—x[cosB) dx' ,
4 ox
and since

Ex(x, +0) + Ex(x, 0 =%z,

E,(x,+0) + Ez(x, -0) = -” Z IZ. s
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it follows that
~ikx cos @ cos B . © L g
7714(x)+2YcosaschosB e = - > {kI4 (1+1—{§— 5?) +
0
+isinB1I 2 }H(I)(k‘ |x'-x| cos B) dx ' (11)
29x )70
. -ikx cos @ cos 3 ) oo
7 Iz(x)+2Y cos Be = - > {kcos2 B IZ +
0
- ) @ \
+isinp I4 3% HO (k| x'~x| cos B) dx' (12)

which are coupled Wiener-Hopf equations for the determination of the electric
currents I, and I 4

To obtain the integral equations for I; and I3, either of two procedures can
be followed, The first of these has its origin in the observation that the currents
IZ and I 4 whose equations have already been found are both electric currents, and
the starting point for the derivation of equations (11) and (12) was the expression
of the electric field at a point (x,y,z) in terms of a surface integral over the
currents. Consequently, it is to be expected that if the magnetic field were written
as a surface integral analogous to that in equation (4), the same analysis as the

above would lead to equations for I. and I_.

1 3

The second method is equivalent to this, but avoids the necessity of going

back to the expression of the magnetic field as a surface integral over the field
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components, If equations (8) and (10) are differentiated with respect to y before
the field point is allowed to approach the surface of the sheet, equation (9) can
then be used to determine Hy and H,.

If this second method is adopted, the fact that

oE oE
X |y Tz
Hx'lk<az 8y>

and '
Y [ OE oE
H =i— . S duat 2
Z k \ oy ox

gives, by suitable differentiation of equations (8), (9) and (10),

(0]
. 2
}&(X’Y)'H;(X’Y)zéli S {lel (1+Ti5 52?) —112—53; *
0
+1i YsinBI3 5??} H(()I) (kQcos B)dx' (13)
(00)
H (x,y) -Hl(x,y) = = KY cos? BIs-11, <2~ -1YsinBL 2= Y (kQcos B) dx'
z ¥y 7, >y 4 3 4 ay 1aX 0 cos .
0

(14)

Comparison with the equations for Ex and E z reveals the expected symmetry between
the electric and magnetic fields and currents., Indeed, equations (13) and (14) cor-

respond to (8) and (10) under the transformation

10



THE UNIVERSITY OF MICHIGAN

2778-2-T
E—H ZH —> ~YE
I3 — 1, Z1,—> -YI,

and this duality enables us to write down immediately the integral equations for
I1 and I by reference to the equations for I and I 4° The results obtained in

this manner are identical to those which would have been found if the first of

the above methods had been employed, and are

-ik x cos @cos B 1 .00 L 2
%Il(x) -2sinacosfBe - =-3 S {k11(1+-—1;2— o) +
0
+1isinB I3 ETa:Z } Hg) (k |x'—x| cos B) dx' (15)
o
7%IS(X) = —% S {kcos2 BIS+isinﬁll—8§}-§ } H(;)(k | x'—x | cos B) dx' (16)
0

(c.f. equations 11 and 12). To complete the duality between the electric and

magnetic quantities, it will be observed that the additional transformation 7 —> 1

7

is required. The absence of the inhomogenous term in equation (16) is caused

by the fact that H; is zero,

11
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3

THE SOLUTION OF THE EQUATIONS

In view of the similarity between the equations for Il’ IZ’ 13 and I 4 it is
sufficient to restrict the analysis to just one of the coupled pairs. Let us there-
fore consider equations (11) and (12) and attempt to cast them into forms suitable
for solution by the Wiener-Hopf method,

Take first equation (11). This holds only for x >0, but if a function ¢4(x)
is introduced such that 4(x) is zero for x >0 and is equal to the right hand side

of (11) for x< 0, the equation can be written as

1,(x)+@,(x)+2Y cosasinBcos BY(x)= - L ’ kI (1+_1_. i) +
7 4 4 n S = > 4 k2 axz
-0
+isinf I, 8%( } Hf;) (k]x' -xlcos B) dx' ' (17)

where I and I4 are defined to be zero for x< 0 and

-ikxcos a cos B
e for x>0

Y (x) =

0 for x <0,

In this form the equation is valid for all X,
The application of a Fourier transform to equation (17) can be justified by a

study of the growth orders of the functions ¥ (x), IZ(X), 14(x) and ¢4(x) for large | x|.

12
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The Fourier transform of, for example, Y/ (x) is

Y = L SOO e—igxy/(x)dx
Vor J-m

and from the definition of Y/(x) it is immediately obvious that 7/7 ({) is regular
in a lower half-plane of the transform variable Z . For the currents Ip(x),
p =1,2,3,4, the assumption that
-ik x cosa cos f3
I(x)~ e

as X =» implies that the transforms Tp(? ) are regular in the same region and,
finally, by using the asymptotic expansion for the Hankel function when x is large
and negative we have that ap(f ) is regular in an upper half-plane. All these regions
of regularity overlap and within the common strip it is permissible to apply a
Fourier transform to equation (17).

By inserting the Fourier integral representation of the Hankel function,

the right hand side of equation (17) becomes

e’} 2 ig(x-x")
-1 {kI4(x') 1 +_12_ % + isinB Iz(x') _8_} < d% dx'
2T k* ax ox g/kz COSZB - g 2

-Q0

13
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which can be written alternatively as

if x
: S {%(kz—zzﬁgz)—!sinB'fz(S)}e dg
¢ |

Var

r

where [ = Y2 coszﬁ- ¢?2 andfisa straight line path from -0 to o lying within
the strip of regularity of the integrand, Application of a Fourier transform now

gives

— 2 _g2 —_ -
—¢4(§)= 2 Ycosasinf cos B +<y+k 4 > 16)- ¢ sinB Iz(g) _

™ i( £ +k cos a cos B) k[ r (18)
and similarly, from equation (12),
- 2 ¢ sinB = k cos” B\~
-§.(%)= & Y cos” P - —-——I(Z)+< +—=]1,(8) .
2 Jj i( S +k cos @ cos B) r7 4 7 r 2
(19)

These are sufficient to specify Tz(g) andil(g) .

The obvious way in which to attempt the solution is to eliminate EZ(? ) and 34(g)
in turn and thereby obtain equations for each current separately, Unfortunately,
however, the resulting equations are not capable of being treated by the Wiener-Hopf
technique, An essential feature of the technique is the separation of the terms into
two groups having overlapping regions of regularity, and in the process of eliminating
a current it is necessary to multiply one or other of the functions 52(2) or 54(2)

by a quantity which destroys its regularity in the upper half-plane. A consequence

14
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of this is that coupled equations of the above type are, in general, not capable of
being solved, and it is only by virtue of a particular symmetry existing between
equations (18) and (19) that-TZ( €) andil( £) can be determined,
The clue to the method of solution came from an attempt to guess a relationship
between the currents, If it is assumed that
T(6) = () T, (%),
then f(g) must be such as to reduce (18) and (19) to essentially the same equation,
Since both _I_Z(g) and 'f4(§) are regular in a lower half-plane, £(£) must also be
regular in this region, and from the way in which ” enters into the factors multiplying
the currents it is clear that f(£¥) must be chosen to satisfy
(K- 4 2)fk § sinB = (@ cos’B-k ¢ fsinB) f .

The resulting values of f(£) are

.f and - k sin B )
k sin B 14

but neither of these is sufficient to bring into agreement the remaining terms in
equations (18) and (19).

The failure of the method is not very surprising since it presupposes an
extremely close connection between the currents. On the other hand, the method does
reveal a simple relation between the coefficients of —fz(g) and -I-4(§) in equations (18)
and (19), and suggests that a profitable approach would be to use the values for f(%)

to derive equations for certain linear combinations of the currents,

15
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If (18) and (19) are multiplied by k sin B and § respectively, and then sub-

tracted, we obtain

(T 5xsmpTy)} (7+f5)+ [2 v (eonbokoosasiulBleosd _yeqingg, (5)- £, (5),

i(§+kcos acos B)
(20)
and since the manipulation has not affected the regions of regularity, this is an
equation for ¢ Tz(g)—k sinB T4(§ ) which can be solved by the Wiener-Hopf technique,

For this purpose, let

kcos B — K- (;)
r K, (£)

7cosB+

where K +(f4 ) and K (%) are regular in upper and lower half-planes respectively.
Bearing in mind the définition of {7, it is apparent that K +(§ ) and K (%) differ
from the "split'" functions given by Senior (Ref, 3) only in having k replaced by
kcos 3, and accordingly their a.ﬁalytical expressions can be obtained from that
paper.,

If equation (20) is multiplied through by cos BK +( ¥), it can be written as

Ki(-k cos acos B)

i( & +k cosacos fB)

{ZTZ(Z)—k sinBT4(§)} K (%)~ % Yk cos @cos?B

- ’/ZYCOSZB (ZCOSB‘kCOSaSinzﬁ)IgL(Z)+kcosaK+(—kcosacosB)
T i( £ +kcos acos B)

{ksmB¢4(§) §¢2(!)}COSB K, (£).

16
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The left hand side is regular in a lower half-plane, whilst the right hand side
is regular in an upper hali-plane, and, moreover, these two regions have a com-
mon strip, It follows that each side must be equal to a function which is regular
throughout the whole ¢ plane and its growth order as | £| — oo then shows it to be

at most a constant, Hence

K,(-kcos acos f3) LA
(& +kcosacosB) K (%) K_(g)

gEZ(Z)—k sinBil(Z )= —'/-;2_ Ykcos @ cos?f

(21)
where A' is independent of & ,
To determine Tz(g ) and -f4(§) individually, another linear combination is
considered which introduces the second value of f(¢). Multiplying equation (18)

by &, equation (19) by k sin B, and then adding, we have

{ksinﬁ'fz(gﬂ §T4(€)} (7+ %) +EYsinBcosB kcosB+5cosa

i( £ +kcosacosf)
= - §0,(5) -ksinB @, (%), (22)

which is an equation of the Wiener-Hopf type for ksinBTZ(g )+ & i—4(§). The factor

multiplying these currents can be written

+

7 [

where L +(§) and L_( %) are regular in an upper and a lower half-plane respectively,

7 [ cos B
kcosf

kcosf | _ [ L_(%)
kcosfB L+(§)

17
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and since L+(§) and L_(%) differ from K+(’§) and K_( %) only in having 7€08 B

replaced by cosfB , their expressions can also be deduced from the formulae

7
‘given by Senior (Ref, 3).

kcos B L, (%)

7 VkcosB+ §

If equation (22) is multiplied through by , its

terms can be rearranged to give

{ksinBT (§)+ g‘i (¢ )} /kCOSB‘.? L_(g)+ 2 Y 1_{;2_ SinzasinBCOS3ﬁ L+("kCOSQCOSB)
2 4 - T 7 i( g¢+kcosacosp) vkcos B(1l-cos @)

=—f£—Y k _ sinBcos®B (kcos B+8cos ) ‘—————-L"'(g) -
T 7 i(% +kcos acos B) W

L,(-kcos acos B) — - L.(§)
ksinacosf — J -{g¢ (§)+ksinBp,(5)} KeosB
k cos B(1-cos @) 4 2 } 7 VkcosB+ %

(23)
and by the same argument as before each side of this equation must be equal to a
function regular throughout the whole  plane, Using the fact that for large |¢] ,
L +(‘§) and L_($) are O(1), the right hand side of (23) then shows that the analytic
function is at most a constant, and hence,

sin’@sinf cos 3B L,(-kcos acos B)

$+kcosacosB VkcosB(l-cos e)(k cos B-%)L_(%)

_ _ 2
ksinBT, ()¢ $T,(5)-1/ 27 5

+ B

VkcosB-4 L _(%)

(24)

18
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where B' is independent of ¢ .
Expressions for 'I_Z(S) and_1—4(§ ) can be obtained from (21) and (24) by
eliminating each current in turn. The resulting formulae can be simplified to

some extent by defining new constants A and B such that

A' = i ",i Y cos B {A+K+(-kcosacos8)} s
T

B' =i /Z Y sin’y sin B cos?s [ kcosB B,
™ 7 l1-cosa -

and this leads to the equations

(‘§2+k2 sinzﬁ) 'I‘Z(g) =i [2 Y¥cos 8 {EK+(—k cosa cosP) + A(Y+k cosa cos B)}

T (% +k cosa cosB) K_(%)
+ i‘/_Z v K siny sinB cos?B k cos 3 {kL+(—kcosacosB)+B(g +kcosozcosB)}
m 7 (1-cosa)(kcosp -§) (¢ +k cosa cosB) L_(%)

(25)

( gz o s%8) TZ}(?) - J’Z Y ksing cos B { $K;(-kcosacosB)+A(§+kcosa cosB)%
T (E+kcosacosf) K (£)

+i ,]Z Y £ sinf sinB cos?B k cos f {kL+(—kcosoz cosp) +B(% +kcosa cosB); .
T 7 (1-cosa)(k cosB-%) (%+k cosacosf) L_(¥)
(26)

As they stand, the above equations do not have the required regularity in
that the expressions for T,(¥) and E(Z ) have poles at the points € = +ik sinf which
lie in the region where the transforms must be free of singularities. If the poles
are eliminated, however, two conditions are obtained and these serve to specify
A and B uniquely.
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The equations forTZ(é’ ) and _I;(g ) each give rise to the same conditions
on A and B, and it is therefore sufficient to consider only equation (26). For
T4(§ ) to be regular at % = ik sinB, the right hand side of (26) must be zero at
this point in order to balance the corresponding factor on the left, and the

condition for this is

A =1 eiB/2 —;- sin%w sin B cos B , cos B K_(iksinf) B -isinf K¢ (-k cosarcosf)
1

-cos @ L_(ik sinf) cosa cosf+1isinf
iB/2 _ K (ik si
+ ie 1 sin%xsinB cospB cos 8 Ly (-k cosa cosp) - (ik sinf)
Yj 1 -cosa cosacosP +isinf L_(ik sinf)
(27)

Similar analysis applied to the point ¥ = -ik sinB gives

-ig3/2 3 s -k
A = -ie Bl 1 sin’e sinB cosB / cosp K_(-ik sinf) B +isinf Ky( -k cosa cosp)
1-co

Y sa L _(-ik sinP) cosa cosp - isinf

- ie—iB/Z Ly(-kcosacosp) K_(-iksinf)

1 gsin’y sinf cosp [cosB
1-cosa cosacosp-isin8 L_i-iksinp)

(28)

and from (27) and (28) it is a simple matter to determine A and B. The values

obtained are

A = sin {i cosa cos B Q(B) - sinP P(B)} K+(-k cosa cosf)
(cosza coszﬁ + sinZB)P(B)

+ 2 sin%e sinf cos B _cosfB L+(—k cosa cos B)J

l1-cosa
(29)
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B = 1 [{isinB Q(B) - cosacosf P(B)} L+(—kcosa cos fB)

(cos?a cos?B+sin?B)P(B)

+27) cosa , 1 - cosa K, (-k cosa cos B)
sinZy cos 3

@), Q@ = oPl? K(ksing) , -if/2 K_(-iksinp)
L_(ik sinf) L_(-ik sinp)

(30)
where

(31)

If the expressions forTZ(Z) andT;l(Z) are now examined, several facts
are immediately apparent. Since all the split functions are O(1) for large l k4 | s
7 =0, it follows that
T = o(gl ™ , T, = o(|3/%
and hence

Iz(x) ~ constant, 14(x) ~ xl/Z

as x-» 0, This shows that the electric current perpendicular to the edge is zero
for x = 0 (in accordance with our previous assumption), whilst the electric current

parallel to the edge is finite there. The same behaviour is found™ in the case of

*
In Reference 3 it is incorrectly stated that K4(%), etc. are O( |Z|'1/2) for large
|£]. This does not affect the derivation of the solution given therein, but does
invalidate the statements about the behaviour of the currents for small x.
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normal incidence (B = 0), and it will be noted that a consequence of the finite
conductivity is the removal of the current singularity at the edge.

When 8 = 0 equation (29) gives A = 0, and equations (25) and (26) then reduce to

2y Ky (-k cos a)
T (¢+kcosa) K (%)

‘i}('s) = i

and
14(1) =0 ,

which agree with the known solution for normal incidence. The only other case of
interest is that in which 7 = 0, but this is most conveniently considered in the
next section.

It is now time to turn our attention to the magnetic currents—I-l(g) and_%(g ).
These have to be determined from the integral equations (15) and (16), which are
of similar form to the equations (11) and (12) already discussed. Although the
correspondence is not complete because of the lack of symmetry in the incident
electric and magnetic fields, it is sufficiently close for us to omit the details of
the solution, By the same method as was used for equations (11) and (12) it is

found that

(‘52+k2 SiDZB)Tl(Z ) = —if_T__k Sina sinZB coszB { kL;(-k cosa cosP) +C(§ +k cose cosB)g
L (% +k cosacosB) L_(§)

-i \/—Z.y $ sino cosp k cosfB {gK+(—kCOSa' cosf) +D(5+k cosa cosB)%
4 (1-cosa)(k cosB-5) (§+k cosacosp) K (%)
(32)
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kL, (-k cosa cosf) +C( S+kcosa cosp) }
($+kcosacosB)L_(%)

T = [ ssasnpents
( sin"B) 3( ) 1\]7 sina sinf cosB

- ’_&_ 7ksinu sinf cos "k cosf {§K+(-k cosa cosPB)+D(§ +k cosa cosB)}
m (1-cosa)(k cosB-%) ($+kcosacosp) K (%)
(33)

(c.f. equations 25 and 26), where the constants C and D have the values

C = 1 [{i sinf3 Q'(B) - cosa cosf P'(B)} L_'_(—kcosacosB)

(cos’x cos?B+sinZB)P'(B)

+ 27 cosa |_CoSB K, (—kcosacosﬁ)}
1-cosa
(34)
sinf3 -C_OS&

D = 1-cosa [ {i cosa cosf Q'(B) - sinf P'(B)} K,(-k cosa cosf)

(cos?a cos?B+sinB)P'(B)

+ 2 sinB cosp [ 1=cosa 1, (-k cosx COSB)}
COSB (35)

with
-iB/2 K (iksinp) , i8/2 K(-ksinf)

P'(B), Q'(B) = e — =+
L_(ik sinf) L _(-ik sinB)

(36)
The remarks made about the electric currentsTZ(Z) andT4(‘5) apply also to the

magnetic currents T:;(S) andTl(S).
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4

THE FIELD COMPONENTS

Since the electric and magnetic fields can be written in terms of the
transforms 'fp(S) alone, explicit determination of the currents 'I_p(x) is un-
necessary. From equations (8), (9) and (10) we have, by inserting the Fourier

representation of the Hankel function and restoring the z dependence,

E =Ei-ifi_g
X X 4 T

Z K-8 T(5) -z $sinB T (g) -T(%) _Y_} dg
{ 4 n 2 37 Tyl y

ko
4 (37)
=l _1[2(C( % _ksinf T gy AT £ y
B, = E| ‘ZJ;S iﬁ 15(8) - £ ZE T ) Z[smﬁ L(8) + 14<3>J ,_y,.}sb ag
¢ (38)
i — P —
E =E +_1 _Z_S' {ZM I(z)—zis_l_f_lﬁ_l(g)ﬂ(!)_y_} g
2 4 1
Z Z 4 N7 y [’ [ [y (39)
with § = ei§x+i lyl " - ikz sing
and if these are expressed in the form
E=E+L S Lo 205 gag
27 Y 2+ sin’8  Ykcosacosp (40)
the components of E (%) are
5X(3) =15 sim sinf cosf chosB(l +cosa)(kcosB+5) KL(k cosa cosB)+B(§+k cosacosf)
R L (%)
) K2 sinB 5K, (-k cosa cosp) +A(%+k cosa cosp)
\/k2coszB-§2 K_(%)

24



THE UNIVERSITY OF MICHIGAN
2778-2-T ’

- _l_ g singo sinB COSB kL+('kCOSa COSB)"‘C(Z"'k COSa COSB)
I3l L (%)

+7) Y ksing chosB(Hcosa) YK (-k cosa cosP) +D( § +k cosa cosp)
M kcosB- § K_(%)

(41)

25 12 i
= $tkisin’B sina sinf cosf 1 [kL+(—kcosacosB)+C($+kcosacosB)

E %) =
y VI2cos2B - &2 L_(%)

% |j_| J cosp(l+cosa)(k cosf+g) 5( kLy(-k cose cosp) +B( $+k cosa cosﬁ)}]
y k
(42)

7) KLu(-k cosa cosBHB(S +k cosa cosp)
L (%)

EZ(?) = -_1 sinasin®Bcosp \/kcosB(l-fcosar)(kcosB—
7

k$ CKy4(-k cosa cosP) + A(5+k cosa cosp)

) {icos’B-42 K (%)

KL (-k cosa cosf) +C( § +k cosa cosB)

L_(%)

+ l_z’_l k sino sin?fcosf

$K,(-k cosa cosp) +D( & +k cosa cosp)

Y ¢ [kcosB(l+cosa)
Iy k cosB - % K (%)

(43)

The corresponding equations for the magnetic field can be deduced from
(37), (38) and (39) by using the duality referred to in Section 2, and if we

similarly write
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. S # () cosp dag
27i ¢ t2+K sin’8  $+kcosacosB (44)

(c.f. equation 40), it can be shown that

YK, (-k cosa cosp) +D(4 +k cosa cosp)

K (%)

'H’X(.‘E) = 7_k£ Jk cosB(l +cosa)(k cosB+%)

+ ____11_2____ S]_m Sln B cosB kL+( _k COSQ COSB) +C(Z+k coS¢ COSB)

JiFcos?B-42 L (%)

Yy 5K (-k cosa cosp) +A(§+k cosa cosp)
M K_($)

- 1 Y ksinasin®Bcosp JkCOSB(I‘FCOSa') KL(-k cosa cosp) + B(§ +k cosa cosf)

7 |yl kcosB - § L_(£)
(45)
N () = g +Ksin’ B [ZK (-k cosa cospB) + A(¥%+k cosa cosp) |
y [Zcos®s -2 X (;) ¥

- |_Y_|_ jcoSB(1+cosa) (kcosB+5) {‘(,K (-kcosa cosp) +D(§+k cosa cosB)}
y k
(46)

¢ Ky (-kcosa cosf) +D(§+k cosa cosp)

7+z(§) = -7 sinf3 chosB(1+cosa)(kcosB+g)
K (%)

+ K3 sino sinB cosB KL4(-k cosa cosf) +C(§+kcosa cosp)

J@coszB - g2 L_()
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Yk sing YK (-k cosa cosp) +A( § +k cosa cospP)
Il K_(8)

KL, (-k cosa cosf) + B(§+k cosa cosf)

¢ sing sinf cosp J k cosf(1+cosa)

) 7 lyl kcosp - § L (%)

(47)

An exact evaluation of the integrals in (40) and (44) would appear to be
impossible, but for most purposes approximate values are sufficient and these
can be obtained by the method of steepest descents. The present paper, however,
is more concerned with the formulas themselves; and of particular interest is the
extent to which they differ from the ones predicted by the technique described in
Section 1. If the technique were valid for imperfect conductivity, the field

components would be given by

E = (_isinﬁ U - i sinf ou_, U00825>
k ox k oy

g= 1Y (_-3U  oU, o)
k gy = ox

where U is the modified two-dimensional solution, and hence

E =g - L S R cosB ¢ as (48)
Zmi Jk2cos?B-5%  $4kcosa cosB

H = _}f . S cosf ¢ ds (49)
2mi szcoszﬁ 2 $+kcosa cosp
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with

e
I

(Z sinB, [ Y_ sing, kcos26> Ky(-kcosa cosf) | . 7_}’_ J(Hcosoz)(k cosp+g)
¥l K (%) |y k cosf

S = ([’1 y , -%, 0> Ky(-kcosa cosf) {1_7 %’ J(lmosa)(kcos§+g) }

|y| K_(%) k cosf

It is immediately obvious that this differs from the true field, and with
many of the components the discrepancy is at least 0(7). On the other hand,
the boundary conditions themselves only reproduce the physical conditions to 0(7),
and if this accuracy were achieved by even two of the components found by the
above technique, they might be sufficient to describe that portion of the true
solution to which a physical interpretation can be attached. To determine whether
such components exist, it is necessary to expand _g (%) and (%) as series in -

Using the expressions for the split functions (Ref. 3), we have -

Ky(§) = kcosB+$ {1 -2 ’kzcoszB—gz (1__ sint % ) +725 (1og 7cosf _ 1)
\] kcosp 7k 2 k cosf rk 2

+0 (pzlogy )} (50)

L) = /_’2— 1 - 7k (L- - sin __g__) +0(7) (51)
cosf 7 Kcos? - g2 2 kcosf

where the expansions have been carried out under the assumption that € is

finite. Substitution into the equations for A, B, C and D gives
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A= _&{ /1 -cosa <log’7L;§@ -1) - Jl+cosa (1( -a) + (1)10g*7)}

sin’
T cosf

B = - ’ » 1 , {1.,_ 7 Qog Wczosﬁ - _% (ﬂ._a,)l-l-COSa/

cosf (1+cosa)cosp 7 cosp sina cosf3

+ O(v)zlog 7 )}

Q
]

) i { 1og:l‘;_(’sﬁ -1- (r-a) cotoz+0(7log7)}

T cosf

D = __:rL (7 -¢)sin®B { 1+0(710g7»)} ;

sina \fcos B

and it is now a simple matter to compare the two sets of field components.

From a study of equations (40) and (44) it is seen that because of the factor
(§,2+k2 sinZB) in the integrands, the components HZ and Ey are the only ones for
which the technique is likely to succeed. The former is identically zero according

to equation (49), but from equation (44) the true field has

= i 2 eilsin? §sina 1 v 1 - cos
#z 7s1nB(§ +ksmﬁ)%__— +T_ \/ os &

JKicos?B- 52 M kcosB(kcosB - §)

[(Z+kcosa cosp) (log 2cosf - 1) - k (7 -a) cosacosf /__.__1 + cose
2 1 - cosa
+ (T +sint 4 kcosB - & +0(nl
<2 . k coSB) ,’ kcosB + % J X og?)}

29




THE UNIVERSITY OF MICHIGAN
27178-2-T

a similar analysis shows

which is of order 7 log7 . For the component Ey

that the value predicted by the technique is again in error by terms 0(7) log 7)
and, in fact, this is the same with all the field components. In consequence,
the technique which is so usefull for treating perfectly conducting bodies fails
completely when the surfaces are imperfectly conducting.

The above discussion is based upon a comparison of the expansions for

E(%) and (%) with those for

2412 sin’ and  SHKsinB g
J k2cos?B - §2 ¥ k2cos?B -2

3

and the implication is that discrepancies are automatically reflected in the
corresponding expansions for the fields. Since the proof is not quite straight-
forward, a few words of explanation are in order,

The expansions for the split functions were derived under the assumption
that ¥ is finite, and this restriction applies to all the subsequent formulae. In
equations (40) and (44), however, the variable of integration ¥ takes values from
-0 to oo and if the expansions for ff_(Z) and M%) are merely integrated term by
term, the expressions which are obtained are incorrect.

The difficulty can be overcome by using the method of steepest descents
to approximate the integrals in (40) and (44). Almost the entire non-exponential
portions of the integrands can then be removed at the saddle point § = ¢ o and

included in this are the functions £(%) and A¥(£). Since % o 18, of course,
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finite, £ (%) and A(%) can now be expanded as before and the individual terms
génerate corresponding terms in the expansions for g and H. A direct con-
sequence of this is that all the field components contain terms in % 1og7 in

addition to those involving powers of Vi alone.

)
CONCLUSIONS

In this paper the solution has been obtained for the problem of a plane wave
incident at an oblique angle on a metallic half-plane. The analysis requires the
solution of coupled Wiener-Hopf integral equations for the Fourier transforms of
the four current distributions, and the resulting expressions for the fields are
exact, subject only to the (physical) approximation implied by the impedance-type
boundary conditions. The solution has applications to the coastal refraction of
radio waves, but this topic is reserved for future consideration.

It has been shown that the technique commonly employed to determine
oblique incidence solutions for perfectly conducting bodies cannot be used when
the conductivity is finite and, indeed, all the field components produced in this
way are in error by terms O(‘rz log7z). It would be extremely valuable if a technique
could be developed for treating finite conductivity, but unfortunately the analysis
has not suggested one. From the solution given in this paper it is clear that such
a method would have to call upon the normal incidence results for both polariza-

tions, with 7 replaced by Ki cosf in one case, and by -7 secf in the other. However,
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the presence of the factor %2 + i sinZB in the expressions for all but two
components and, in addition, the occurrence of the complicated constants A, B,

C and D, make the existence of a technique very unlikely.
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APPENDIX: PROOF THAT 14(0) = 0

If it is not assumed at the outset that 14(0) is zero, the equations from

which to determineTZ(‘S) and -1—4(3) are

_a (%) =JZ YcosasinBcosB _ 1% I,(00 <+
* T j(4+kcosacosp) If2r [°

kz‘ 52 —I' _ 4si T s
- /,,) 4 (®) ——‘—@F )
(A1)

- 2 . o ,
-0 = [& Y cos B _isinB L0 _ §sinB 7 ©) + [ »+ kcos B)—I %)
? JT i($+kcosacosf) f2r [ [ 4 7 [ 2

(A2)

which differ from equations (18) and (19) only by the single terms involving I 4(0).
As in Section 3, the first step is to derive new integral equations for those
linear combinations of_ITZ(g) and_I:l(g) which are suggested by the functions £($).
If equations (A1) and (A2) are multiplied by ksin8 and 4 respectively and then
subtracted, a Wiener-Hopf integral equation for ¢ —IE( ) - ksinB —I:L(g) is obtained.
What is more, this process has also served to eliminate 14(0) and consequently
the solution is identical to that given in equation (21).
The second equation for a linear combination of T;‘(Z) andTél(‘S) is found by
multiplying (A1) by % and (A2) by ksin3. On adding the resulting equations, we

have

{ksmBTz(z> + za(g)} <7 +_[_"> 1L O ¢P+idsin’p
k k y2r [

+ 2 Y sinBoosp keosBtS cose = - €g,(g) - ksing T, (5)

i($+k cosa cosf)
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which can be written alternatively as

l{ksinBTz(Z)+ ST} (keospry) - 10§40 | RocmTy g (g
J-Z? kcosB - ¢

+ 114000 [kcosB ¢4k’ sin’ L+(kCOSI3)F
Jzr 2 kcosB - %

+ ,’—2— Y’E. (kcosB+ %) sin%y sinBcos?fB L.,.(—k'cosacosB)
4 i($+kcosa cosf) chosB(l -cosa)

= - JZY k (kcosp+%) sinf cos’B [(kcosB+ Zcosa) ﬂg_)__
‘ ™7 i($+k cosa cosp) VkcosB+%

- k sin’e cosB Ly (-k cosa cosp) ]
' \lkcosB(l -cosa)

Jar kcosp - % Vkcosp+4 J2kcosB

i 14(0) chsB ‘-I’Z""‘kzsinzB % ‘L_'_(g) _ L_',_(kCOSB) }

_ {‘{’b—(g)+ksin3-a(g)} keosB  \[kcosB+5 L,(%)
4 2 »

This is now in the form required for a Wiener-Hopf split. The left hand side is

regular in a lower half-plane, whilst the right hand side is regular in an upper
half-plane, and since the two regions overlap, each side must be equal to a

function regular throughout the whole ¢ plane. The growth orders of the two
sides as ,S| —> oo then specify the function as B''+ C'" & , where B'' and C"

are independent of ¥ , and hence -
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ksinﬁl—z(z)+ (T =i [Z¥ K sin®sinBcos’g Ly (kcosacosp)

LAY %+k cosa cos chosB(l—cosoz)(kcosB—S)L_('é)

! 14(0) gz-}-kzsjnzB k COSB L+(k cosp) _q + B''+ C" g
JE k200s26— g2 Jz(kcosB—S) L (%) (kcosB-l-!),lEcosB—! L_(%)

(A3)

From equations (21) and (A3), TZ(S) can be eliminated to give an
expression for_I;(%) alone. The equation obtained in this manner is

2 — K,(-k
($2+K sinZB) 14(‘5) =i ’i Y k? cosa sinf coszﬁ +{-kcosa cosf)

L} ($+kcosacosf) K (%)
+ i ’_é. y k¥ sin% sinB cos’B j k cosf Ly(-kcosa cosf)
T 7 (1-cosa)(k cosB-%) (&+kcosacosB)L (%)

_ 114(0) g il sin®B J K cosh L+(kcos B) .
yer K cos’ - 2 2(kcosB - %) L (%)

+ (B"+C" %)% _ A'ksing
(kcosB+ %) JkcosB - ¢ L (%) K_(%)

from which it is seen that I 4(5) = 0(] Y| / ). The Fourier transform

relationship now gives

14(x) ~ x1/2 as x —> 0

and accordingly the electric current perpendicular to the edge is zero there.
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