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Summary. Generalized additive mixed models are proposed for overdispersed and correlated data,
which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of
models allows ¯exible functional dependence of an outcome variable on covariates by using
nonparametric regression, while accounting for correlation between observations by using random
effects. We estimate nonparametric functions by using smoothing splines and jointly estimate
smoothing parameters and variance components by using marginal quasi-likelihood. Because
numerical integration is often required by maximizing the objective functions, double penalized quasi-
likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are
compared. A key feature of the method proposed is that it allows us to make systematic inference
on all model components within a uni®ed parametric mixed model framework and can be easily
implemented by ®tting a working generalized linear mixed model by using existing statistical
software. A bias correction procedure is also proposed to improve the performance of double
penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious
disease data and we evaluate its performance through simulation.
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1. Introduction

Generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) provide a uni®ed
likelihood framework for parametric regression of a variety of overdispersed and correlated
outcomes. Data of this type arise in many ®elds of research, such as longitudinal studies,
survey sampling, clinical trials and disease mapping. A major di�culty in making inference
in GLMMs is that a full likelihood analysis is burdened by often intractable numerical
integration. Various approximate inference procedures (Breslow and Clayton, 1993; Lee and
Nelder, 1996; Lin and Breslow, 1996) and Bayesian procedures using EM algorithms and
Gibbs sampling (McCulloch, 1997; Zeger and Karim, 1991) have been proposed. For discus-
sion on full maximum likelihood estimation, see Aitkin (1998).

A key feature of GLMMs is that they use a parametric mean function to model covariate
e�ects, while accommodating overdispersion and correlation by adding random e�ects to the
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linear predictor. However, this parametric mean assumption may not always be desirable,
since appropriate functional forms of the covariates may not be known in advance and the
outcome variable may depend on the covariates in a complicated manner. It is hence of
substantial interest to develop a nonparametric regression model for correlated data by
incorporating a nonparametric mean function in GLMMs. This will allow more ¯exible
functional dependence of the outcome variable on the covariates.

There are very many references on nonparametric regression with independent data using
kernel and spline methods (HaÈ rdle, 1990; Green and Silverman, 1994). The generalized additive
models of Hastie and Tibshirani (1990) are widely used and well understood. However, only
very limited work has been done on nonparametric regression when the data are correlated.
Most researchers have restricted their attention to longitudinal data with normally distrib-
uted outcomes and a single nonparametric function (Hart, 1991; Rice and Silverman, 1991).
Several researchers have incorporated a nonparametric time function in linear mixed models
(Zeger and Diggle, 1994; Zhang et al., 1998; Verbyla et al., 1998). For non-Gaussian longit-
udinal data, Wild and Yee (1996) and Berhane and Tibshirani (1998) extended generalized
additive models to generalized estimating equations (Liang and Zeger, 1986). There are not
many references on modelling correlated non-Gaussian outcomes nonparametrically within
the mixed e�ects model framework. See Verbyla (1995) for discussion on mixed model
formulation of smoothing splines in generalized linear models for independent non-Gaussian
data.

Nonparametric regression with correlated data faces many new challenges. In addition to
developing an inference procedure for nonparametric functions, we also need to consider how
to draw inference on correlation parameters. Another critical issue, whose importance has
been emphasized by many (Green and Silverman, 1994; Wahba, 1978), is how to select good
estimators of smoothing parameters and bandwidth parameters. Very limited work has been
done on these issues, especially estimation of the correlation parameters and the smoothing
parameters. Conventional data-driven methods for smoothing parameter estimation are
challenged with new problems. For example, although cross-validation (Rice and Silverman,
1991) is a reasonable approach to selecting the smoothing parameters for clustered data, it is
often computationally expensive and subsequent inference on the correlation parameters is
di�cult (Zeger and Diggle, 1994) and it fails for crossed designs and spatial data. It is hence
of substantial interest to develop a systematic procedure to make inference on all model
parameters.

In this paper, we propose generalized additive mixed models (GAMMs), which are an
additive extension of GLMMs in the spirit of Hastie and Tibshirani (1990). This new class of
models uses additive nonparametric functions to model covariate e�ects while accounting for
overdispersion and correlation by adding random e�ects to the additive predictor. GAMMs
encompass nested and crossed designs and are applicable to clustered, hierarchical and
spatial data.

We estimate the nonparametric functions by using smoothing splines and jointly estimate
the smoothing parameters and the variance components by using marginal quasi-likelihood.
This marginal quasi-likelihood approach is an extension of the restricted maximum like-
lihood (REML) approach used by Wahba (1985) and Kohn et al. (1991) in the classical
nonparametric regression model (Kohn et al. (1991), equation (2.1)), and by Zhang et al.
(1998), Brumback and Rice (1998) and Wang (1998) in Gaussian nonparametric mixed
models, where they treated the smoothing parameter as an extra variance component.
Because numerical integration is often required by maximizing the objective functions,
double penalized quasi-likelihood (DPQL) is proposed to make approximate inference.
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Frequentist and Bayesian inferences are compared. A key feature of the method proposed is
that it allows us to make systematic inference on all model components of GAMMs within a
uni®ed parametric mixed model framework. Speci®cally, our estimation of the nonpara-
metric functions, the smoothing parameters and the variance components in GAMMs can
proceed by ®tting a working GLMM using existing statistical software, which iteratively ®ts a
linear mixed model to a modi®ed dependent variable. When the data are sparse (e.g. binary),
the DPQL estimators of the variance components are found to be subject to considerable
bias. A bias correction procedure is hence proposed to improve its performance. We illustrate
the method with an application to infectious disease data and we evaluate its performance
through simulation.

2. The generalized additive mixed model

Suppose that observations of the ith of n units consist of an outcome variable yi and p
covariates xi � �1, xi1, . . ., xip�T associated with ®xed e�ects and a q� 1 vector of covariates
zi associated with random e�ects. Given a q� 1 vector b of random e�ects, the observations
yi are assumed to be conditionally independent with means E �yijb� � �b

i and variances
var�yijb� � �mÿ1i v��b

i �, where v�.� is a speci®ed variance function, mi is a prior weight (e.g. a
binomial denominator) and � is a scale parameter, and follow a generalized additive model

g��b
i � � �0 � f1�xi1� � . . . � fp�xip� � zTi b, �1�

where g�.� is a monotonic di�erentiable link function, fj�.� is a centred twice-di�erentiable
smooth function, the random e�ects b are assumed to be distributed as Nf0, D���g and � is a
c� 1 vector of variance components.

A key feature of the GAMM (1) is that additive nonparametric functions are used to model
covariate e�ects and random e�ects are used to model correlation between observations. If
fj�.� is a linear function, the GAMM (1) reduces to the GLMM of Breslow and Clayton
(1993). Zeger and Diggle (1994) and Zhang et al. (1998) considered a special case of the
GAMM (1), a semiparametric mixed model, where they assumed a single nonparametric time
function f�.� and longitudinal data with normally distributed outcomes.

Model formulation (1) encompasses various study designs, such as clustered, hierarchical
and spatial designs. This is because we can specify a ¯exible covariance structure of the
random e�ects b. For example, for longitudinal data, the random e�ects b can be decomposed
into a random intercept and a stochastic process (Zeger and Diggle, 1994; Zhang et al., 1998).
For hierarchical (multilevel) data, they can be partitioned to represent di�erent levels of a
hierarchy, e.g. a centre, physician and patient in a multicentre clinical trial (Lin and Breslow,
1996). For spatial data, which are common in disease mapping and ecological studies, they can
be used to model spatial correlation, which is often assumed as a function of the Euclidean
distance between every two regions (Cressie, 1993), or a constant between every two adjacent
regions (Breslow and Clayton, 1993).

The integrated log-quasi-likelihood of f�0, f1�.�, . . ., fp�.�, �g is (compare Breslow and
Clayton (1993), equation (2))

exp � lfy; �0, f1�.�, . . ., fp�.�, �g � / jDjÿ1=2
�
exp

�
ÿ 1

2�

Pn
i�1

di�yi; �b
i � ÿ

1

2
bTDÿ1b

�
db, �2�

where y � �y1, . . ., yn�T and
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di�yi; �b
i � / ÿ2

��bi
yi

mi�yi ÿ u�=v�u� du

de®nes the conditional deviance function of f�0, f1�.�, . . ., fp�.�g given b. For simplicity, we
here assume that D is a full rank matrix. If not, the Moore±Penrose generalized inverse may
be used.

Statistical inference in the GAMM (1) involves inference on the nonparametric functions
fj�.�, which often requires the estimation of smoothing parameters, say �, and inference on the
variance components �. In the next two sections, we shall ®rst discuss how to construct
natural cubic smoothing spline estimators of the fj�.� when � and � are known; then we
propose to estimate � and � jointly by using marginal quasi-likelihood.

3. Inference on the nonparametric functions

3.1. Natural cubic smoothing spline estimation
Since the fj�.� are in®nite dimensional unknown parameters, we consider estimating them by
using natural cubic smoothing splines. Using the results of O'Sullivan et al. (1986) and noting
that equation (2) is a continuous linear functional of the fj�.�, one can show that, for given
values of � and �, the natural cubic smoothing spline estimators of the fj�.� maximize the
penalized log-quasi-likelihood

lf y; �0, f1�.�, . . ., fp�.�, �g ÿ
1

2

Pp
j�1
�j

�tj
sj

f @j �x�2 dx � l �y; �0, f1, . . ., fp, �� ÿ
1

2

Pp
j�1
�j f

T
j Kj fj,

�3�
where �sj, tj� de®nes the range of the jth covariate and � � ��1, . . ., �p�T is a vector of smooth-
ing parameters and controls the trade-o� between the goodness of ®t and the smoothness
of the estimated functions. Here fj is an rj � 1 unknown vector of the values of fj�.� evaluated
at the rj ordered distinct values of the xij �i � 1, . . ., n�, and Kj is the corresponding non-
negative de®nite smoothing matrix (Green and Silverman (1994), equation (2.3)).

In matrix notation, with �b � ��b
1, . . ., �

b
n�T, g��b� � fg��b

1, . . ., g��b
n�gT and Z � �z1, . . .,

zn�T, GAMM (1) can be written

g��b� � 1�0 �N1 f1 � . . . �Np fp � Zb, �4�
where 1 is an n� 1 vector of 1s and Nj is an n� rj incidence matrix de®ned in a way similar to
that given in Green and Silverman (1994), section 4.3.1, such that the ith component of Nj fj is
fj�xij�.

Since the evaluation of l �y; �0, f1, . . ., fp, �� in expression (2) requires numerical integra-
tion, except for the Gaussian case, it is often di�cult to calculate full natural cubic smoothing
spline estimators of the fj by directly maximizing expression (3). An approximation is hence
proposed in the next section. For discussion on full cubic smoothing spline calculations by
using Monte Carlo simulation, see Section 8.

3.2. Double penalized quasi-likelihood
In view of often intractable numerical integration required for maximizing expression (3), we
approximate it by applying the Laplace method to l �y; �0, f1, . . ., fp, �� in expression (2)
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(Tierney and Kadane, 1986). Maximizing the resultant approximation to equation (3) yields
approximate natural cubic spline estimators of the fj. Note that this approximation is exact
for normally distributed outcomes with identity link function. Speci®cally, we approximate
expression (2) by making a quadratic expansion of the exponent of the integrand about its
maximum point before integration. Ignoring the ®rst determinant term of the resultant
Laplace approximation (Breslow and Clayton, 1993), some calculation shows that approx-
imate natural cubic smoothing spline estimators ��̂0, f̂1, . . ., f̂p � can be obtained by
maximizing the following DPQL with respect to ��0, f1, . . ., fp� and b:

ÿ 1

2�

Pn
i�1

di�yi; �b
i � ÿ

1

2
bTDÿ1bÿ 1

2

Pp
j�1
�j f

T
j Kj fj : �5�

See Appendix A for a detailed derivation of expression (5). The ®rst penalty term bTDÿ1b=2
results from the Laplace approximation of expression (2), whereas the second penalty term
�j f

T
j Kj fj=2 results from the natural cubic smoothing spline property of fj .
Di�erentiating expression (5) with respect to ��0, f1, . . ., fp� and b yields their estimating

equations as

1TW��yÿ �b� � 0,

NT
j W��yÿ �b� ÿ �jKj fj � 0 � j � 1, . . ., p�,

ZTW��yÿ �b� ÿDÿ1b � 0,

�6�

where � � diagfg0��b
i �g, W � diag � f�mÿ1i v��b

i � g0��b
i �2gÿ1 � is a modi®ed generalized additive

model working weight matrix and fj needs to satisfy f T
j 1 � 0 so that fj is centred. Equation (6)

can be solved by using the Fisher scoring algorithm (compare Hastie and Tibshirani (1990),
equation (6.16)),

1 S0N1 � � � S0Np S0Z

S11 I � � � S1Np S1Z

..

. ..
. . .

. ..
. ..

.

Sp1 SpN1 � � � I SpZ

Sb1 SbN1 � � � SbNp I

0BBBBBBBB@

1CCCCCCCCA

�0

f1

..

.

fp

b

0BBBBBBBB@

1CCCCCCCCA
�

S0Y

S1Y

..

.

SpY

SbY

0BBBBBBBB@

1CCCCCCCCA
, �7�

where

Y � �01�
Pp
j�1

Nj fj � Zb���yÿ �b�

is a modi®ed generalized additive model working vector, Sj is a centred smoother for fj and
satis®es ST

j 1 � 0, and Sj and Sb are de®ned as

S0 � �1TW1�ÿ11TW,

Sj �
�
Iÿ 11T

rj

�
�NT

j WNj � �jKj�ÿ1NT
j W � j � 1, . . ., p�,

Sb � �ZTWZ�Dÿ1�ÿ1ZTW:

It follows that the resultant estimators f̂j are centred.
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If the design matrix X � �x1, . . ., xn�T is of full rank, i.e. no concurvity (Hastie and
Tibshirani, 1990), we can use the results in Section 3.3 to show that the solution to equation
(7) is unique and the following back-®tting algorithm converges to this unique solution:

�0 � S0

�
YÿPp

j�1
Nj fj ÿ Zb

�
,

fj � Sj

�
Yÿ �01ÿ

P
k 6�j

Nk fk ÿ Zb

�
� j � 1, . . ., p�,

b � Sb

�
Yÿ �01ÿ

Pp
j�1

Nj fj

�
:

The last equation suggests that b̂ can be viewed as an empirical Bayes estimator.

3.3. The generalized linear mixed model representation
We show in this section that the DPQL estimators f̂j de®ned in Section 3.2 can be easily
obtained by ®tting a GLMM using existing statistical software. This GLMM representation
provides a foundation for our joint estimation procedure for the smoothing parameters � and
the variance components � in Section 4.

Following Green (1987), equation (4.2), and Zhang et al. (1998), equation (10), and noting
that fj is a centred parameter vector, we can reparameterize fj in terms of �j (scalar) and
aj ��rj ÿ 2� � 1� via a one-to-one transformation as

fj � Xj�j � Bjaj, �8�
where Xj is an rj � 1 vector containing the rj centred ordered distinct values of the xij

�i � 1, . . ., n�, and Bj � Lj �LT
j Lj�ÿ1 and Lj is an rj � �rj ÿ 2� full rank matrix satisfying Kj �

LjL
T
j and LT

j Xj � 0. Using the identity f Tj Kj fj � aT
j aj, DPQL (5) becomes (compare Breslow

and Clayton (1993), equation (6), and Zhang et al. (1998), equation (11))

ÿ 1

2�

Pn
i�1

di�y; �b
i � ÿ

1

2
bTDÿ1bÿ 1

2
aT�ÿ1a, �9�

where a � �aT
1 , . . ., a

T
p �T and � � diag ��1I, . . ., �pI � with �j � 1=�j. A small value of � �

��1, . . ., �p�T corresponds to oversmoothing.
Plugging equation (8) into equation (4), equation (9) suggests that, given � and � , the DPQL

estimators f̂j can be obtained by ®tting the following GLMM by using Breslow and Clayton's
(1993) penalized quasi-likelihood approach:

g��b� � X� � Ba� Zb, �10�
where X was de®ned at the end of Section 3.2 and is also equal to X � �1, N1X1, . . ., NpXp�,
B � �N1B1, . . ., NpBp�, � � ��0, . . ., �p�T is a � p� 1� � 1 vector of regression coe�cients
and a and b are independent random e�ects with distributions a � N �0, �� and b � N �0, D�.
The DPQL estimator f̂j is calculated as f̂j � Xj �̂j � Bj âj, which is a linear combination of
the Breslow and Clayton (1993) penalized quasi-likelihood estimators of the ®xed e�ect �̂j

and the random e�ects âj in the working GLMM (10) and can be obtained by ®tting the
working GLMM (10) by using existing statistical software, such as the SAS macro GLIMMIX
(Wol®nger, 1996).
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Speci®cally, the maximization of expression (9) with respect to ��, a, b� can proceed by
using the Fisher scoring algorithm to solve

XTWX XTWB XTWZ

BTWX BTWB��ÿ1 BTWZ

ZTWX ZTWB ZTWZ�Dÿ1

0BB@
1CCA

�

a

b

0BB@
1CCA �

XTWY

BTWY

ZTWY

0BB@
1CCA, �11�

where Y is the working vector de®ned in Section 3.2. One can easily show that equation (11)
has a unique solution f̂j � Xj �̂j � Bjâj � j � 1, . . ., p� if X is of full rank, and the f̂j obtained
from equation (11) are identical with those obtained from equation (7).

An examination of equation (11) shows that it corresponds to the normal equation of the
best linear unbiased predictors (BLUPs) of � and �a, b� under the linear mixed model

Y � X� � Ba� Zb� �, �12�
where a and b are independent random e�ects with a � N �0, �� and b � N �0, D� and
� � N �0, Wÿ1�. This suggests that the DPQL estimators f̂j and the random e�ect estimators
b̂ can be easily obtained using the BLUPs by iteratively ®tting model (12) to the working
vector Y.

To compute the covariance matrix of f̂j, it is more convenient to calculate � and a by using

XTRÿ1X XTRÿ1B

BTRÿ1X BTRÿ1B��ÿ1

 !
�

a

 !
� XTRÿ1Y

BTRÿ1Y

 !
, �13�

where R �Wÿ1 � ZDZT. Denoting by H the coe�cient matrix on the left-hand side of
equation (13) and H0 � �X, B�TRÿ1�X, B�, the approximate covariance matrix of �̂ and â is

cov ��̂, â � � Hÿ1H0H
ÿ1: �14�

It follows that the approximate covariance matrix of f̂j is �Xj, Bj� cov ��̂j, âj ��Xj, Bj�T, where
cov��̂j, âj� can be easily obtained from the corresponding blocks of Hÿ1H0H

ÿ1. Here we
assume that the fj�.� are ®xed smooth functions in calculating the covariances of the f̂j.

3.4. Bayesian formulation and inference
We study in this section how to derive from a Bayesian perspective the natural cubic smooth-
ing spline estimators of the fj discussed in Sections 3.1±3.3, and how to derive the Bayesian
standard errors of the f̂j in the same spirit as Wahba (1983) and Zhang et al. (1998), as an
alternative to the frequentist standard errors calculated at the end of Section 3.3. These
standard errors will be used to construct con®dence intervals for the fj and their performance
will be compared.

We ®rst consider deriving the natural cubic smoothing spline estimators of the fj within a
Bayesian framework. Assuming that fj is centred and has a prior log-density whose kernel is
ÿ�j f

T
j Kj fj=2, it can be easily seen from equation (3) that the full natural cubic smoothing

spline estimators of the fj are the posterior modes of the integrated quasi-likelihood func-
tion l �y; �0, f1, . . ., fp, ��. The DPQL estimators f̂j are an approximation of these posterior
modes. Alternatively, following Wahba (1978), the posterior mode property of f̂j can be
obtained by assuming a centred partially improper integrated Wiener prior for fj. The
partially integrated Wiener prior speci®cation takes the same form as equation (8) except that
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Bj � �Iÿ 11T=rj��1=2
j ,

where �j is the rj � rj covariance matrix of an integrated Wiener process evaluated at Xj, and
aj has a normal prior N �0, �jI� and �j has a ¯at prior. This partially integrated Wiener
formulation provides an alternative GLMM representation, which takes the same form as
equation (10) except that the design matrix Bj is replaced by �Iÿ 11T=rj��1=2

j .
This Bayesian smoothing spline formulation motivates us to consider calculating the

Bayesian standard error of f̂j similar to those given in Wahba (1983) and Zhang et al. (1998).
To illustrate the idea, ®rst consider the classical nonparametric regression model

yi � f �xi� � �i, �15�
where the �i are independent random errors following N �0, �2�. Wahba (1983) suggested to
estimate the covariance of the natural cubic smoothing spline estimator f̂ using its posterior
covariance with the prior given above. Speci®cally, letA � �I� �2�K �ÿ1, whereK is the smooth-
ing matrix. The Bayesian covariance matrix of f̂ is �2A, whereas its frequentist counterpart is
�2A2 and is calculated by assuming the true f�.� to be a ®xed smooth function (Hastie and
Tibshirani (1990), section 3.8.1). As Wahba (1978) noted, in contrast with the frequentist
standard errors, the Bayesian standard errors of f̂ account for the bias in f̂ . Wahba (1983)
showed that the con®dence intervals of f calculated using the Bayesian standard errors have
good coverage probabilities when the true f �x� is a ®xed smooth function.

Zhang et al. (1998) extended Wahba's (1983) Bayesian con®dence interval calculations to
estimate the con®dence intervals of the nonparametric time function in a semiparametric
linear mixed model for longitudinal Gaussian data. As indicated in Section 2, their model can
be regarded as a special case of the GAMM (1). The simulation study results of Zhang et
al. (1998) show that, when the true time function is a ®xed smooth function, the coverage
probabilities of the Bayesian con®dence intervals of f are comparable with and sometimes
slightly better than the frequentist counterparts.

It is hence of potential interest to derive the Bayesian standard errors of the DPQL
estimators f̂j under the GAMM (1), and to compare their performance with the frequentist
standard errors, which were calculated at the end of Section 3.3 under the assumption that
the fj�.� are ®xed smooth functions. Assuming that the fj have priors given above, some
calculation shows that the approximate Bayesian covariance matrix of the DPQL estimator
of ��̂, â� is

covB��̂, â � � Hÿ1, �16�
which has a simpler form than its frequentist counterpart in equation (14). It follows that the
approximate Bayesian covariance of f̂j is �Xj, Bj� covB��̂j, âj��Xj, Bj�T, where covB��̂j, âj� can be
easily obtained from the corresponding blocks of Hÿ1. We compare through simulation in
Section 7 the coverage probabilities of the frequentist and Bayesian con®dence intervals of the
fj in the situation of our primary interest, i.e. when the true fj�.� are ®xed smooth functions.

4. Inference on the smoothing parameters and the variance components

We assumed in Section 3 that the smoothing parameters � and the variance components � are
known when we make inference on the nonparametric functions fj. However, they often need
to be estimated from the data. In this section, we propose to estimate � and � jointly by using
marginal quasi-likelihood by extending the REML approach of Wahba (1985), Kohn et al.
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(1991) and Zhang et al. (1998). A key feature of this approach is that � and � can be easily
obtained by ®tting the working GLMM (10) via iteratively ®tting the working linear mixed
model (12) using REML with � � �1=�1, . . ., 1=�p�T treated as extra variance components in
addition to �.

4.1. Motivation of marginal quasi-likelihood: review of restricted maximum likelihood
In this section, we shall brie¯y review the use of REML to estimate the smoothing parameters
� and the variance components � when outcomes are normally distributed. This will pro-
vide a motivation for our joint estimation procedure for � and � by using marginal quasi-
likelihood discussed in the next section.

Under classical nonparametric regression model (15), Wahba (1985) and Kohn et al. (1991)
proposed to estimate the smoothing parameter � by maximizing a marginal likelihood. The
marginal likelihood of � � 1=� is constructed by assuming that f �x� has a prior speci®ed
in Section 3.4 in the form of equation (8) with a � N �0, �I � and a ¯at prior for � and
integrating out a and � as follows:

expf lM�y; � , �2� g / �ÿ1=2
�
exp

�
l �y; �, a, �2� ÿ 1

2�
aTa

�
da d� �17�

where l �y; �, a, �2� is the log-likelihood (normal) of f under model (15). Wahba (1985) called
the maximum marginal likelihood estimator of � the generalized maximum likelihood estim-
ator. Speed (1991) and Thompson (1985) pointed out that this marginal likelihood (17) of �
is in fact the REML under the linear mixed model

y � 1�0 � X�1 � Ba� �,
where a � N �0, �I� and � � N �0, �2I�, and B was de®ned in Sections 3.3±3.4; � is regarded as
a variance component. Hence the maximum marginal likelihood estimator of � is an REML
estimator. The extensive simulation study of Kohn et al. (1991) showed that the maximum
marginal likelihood estimator of � has similar and often better performance compared with
the generalized cross-validation (GCV) estimator in estimating the nonparametric function.

Zhang et al. (1998) extended these researchers' results to estimate the smoothing parameter
� and the variance component � jointly by using REML for longitudinal data with normally
distributed outcomes and a nonparametric mean function. A representative special case of
their model can be written as

y � f �X � � Zb� �, �18�
where f �X � denotes the values of the nonparametric function f �.� evaluated at the design
points of X �n� 1�, b � Nf0, D���g and � � Nf0, G ���g. If f�.� is estimated by using a natural
cubic smoothing spline, using equation (8), Zhang et al. (1998) rewrote model (18) as a linear
mixed model

y � 1�0 � X�1 � Ba� Zb� �, �19�
where a � N �0, �I� and the distributions of b and � are the same as those in model (18). They
hence proposed to treat � as an extra variance component in addition to � in model (19) and
to estimate � and � jointly by using REML. Using the results of Harville (1974), this REML
corresponds to the marginal likelihood of �� , �� constructed by assuming that f takes the form
(8) with a � N �0, �I � and a ¯at prior for �, and integrating out a and � as follows:
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expf lM�y; � , ��g / jDjÿ1=2�ÿ1=2
�
exp

�
l �y; �, a, b� ÿ 1

2
bTDÿ1bÿ 1

2�
aTa

�
db da d�, �20�

where l �y; �, a, b� � l �y; f, b� is the conditional log-likelihood (normal) of f given the random
e�ects b under model (18). Note that the marginal log-likelihood lM�y; � , �� in expression (20)
has a closed form expression. The simulation results of Zhang et al. (1998) show that REML
performs very well in estimating both the nonparametric function f �.� and the variance
components �. A similar REML approach was considered by Brumback and Rice (1998) and
Wang (1998).

4.2. The marginal quasi-likelihood
In view of the impressive performance of the joint estimation procedure of � and � using REML
under the Gaussian nonparametric mixed model (18), we propose to extend the marginal
likelihood approach of Wahba (1985), Kohn et al. (1991) and Zhang et al. (1998) to GAMM
(1) and to estimate � and � jointly by maximizing a marginal quasi-likelihood. Speci®cally,
the GLMM representation (10) suggests that we may treat � as extra variance components in
addition to �. Similar to the REML (20), we construct the marginal quasi-likelihood of �� , ��
under GAMM (1) by assuming that fj takes the form (8) with aj � N �0, �jI � � j � 1, . . ., p�
and a ¯at prior for � and integrating the aj and � out as follows:

expf lM�y; � , ��g / j�jÿ1=2
�
exp

�
l �y; �, a, �� ÿ 1

2
aT�ÿ1a

�
da d�

/ jDjÿ1=2j�jÿ1=2
�
exp

�Pn
i�1
ÿ 1

2�
di�y; �b

i � ÿ
1

2
bTDÿ1bÿ 1

2
aT�ÿ1a

�
db da d�, �21�

where l �y; �, a, �� � l �y; �0, f1, . . ., fp, �� was de®ned in expression (2).
Under the classical nonparametric regression model (15), the marginal quasi-likelihood

(21) is simpli®ed as the marginal likelihood (17). Under the Gaussian nonparametric mixed
model (18), it reduces to the REML (20). Unlike the Gaussian situation considered in Sec-
tion 4.1, an evaluation of the marginal quasi-likelihood (21) for non-Gaussian outcomes is
hampered by often intractable numerical integration. An approximation is hence proposed in
the next section.

4.3. Approximate marginal quasi-likelihood inference
Since the evaluation of the marginal quasi-likelihood lM�y; � , �� in expression (21) often
involves high dimensional integration, we approximate lM�y; � , �� by using Laplace's method.
Speci®cally, taking a quadratic expansion of the exponent of the integrand of expression (21)
about its mode before integration and approximating the deviance statistic di�y; �b

i � by the
Pearson �2-statistic (Breslow and Clayton, 1993), derivations similar to those in Appendix A
give the approximate marginal log-quasi-likelihood as

lM�y; � , �� � ÿ 1
2
log jV j ÿ 1

2
log jXTVÿ1X j ÿ 1

2
�Yÿ X�̂ �TVÿ1�Yÿ X�̂ �, �22�

where V � B�BT � ZDZT �Wÿ1. An examination of equation (22) shows that it corres-
ponds to the REML log-likelihood of the working vector Y under the linear mixed model
(12) with both a and b as random e�ects and � and � as variance components. It follows that
we can easily estimate � and � by iteratively ®tting model (12) using REML.
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Speci®cally, di�erentiating expression (22) with respect to # � �� , ��, some calculation
gives the estimating equations for � and �, which are the REML equations under the working
linear mixed model (12) (also compare Breslow and Clayton (1993), equation (14)),

ÿ 1

2
tr

�
P
@V

@#k

�
� 1

2
�Yÿ X�̂ �Vÿ1 @V

@#k

Vÿ1�Yÿ X�̂ � � 0,

which can be equivalently written in terms of the f̂j as

ÿ 1

2
tr �PNjBjB

T
j N

T
j � �

1

2

�
Yÿ 1�̂0 ÿ

Pp
k�1

Nk f̂k

�
T

Rÿ1NjBjB
T
j N

T
j R
ÿ1
�
Yÿ 1�̂0 ÿ

Pp
k�1

Nk f̂k

�
� 0

ÿ 1

2
tr

�
P
@R

@�l

�
� 1

2

�
Yÿ 1�̂0 ÿ

Pp
k�1

Nk f̂k

�
T

Rÿ1
@R

@�l
Rÿ1

�
Yÿ 1�̂0 ÿ

Pp
k�1

Nk f̂k

�
� 0,

where calculations of @V=@#k and @R=@�j ignore the dependence of W on # and

P � Vÿ1 ÿ Vÿ1X �XTVÿ1X �ÿ1XTVÿ1 � Rÿ1 ÿ Rÿ1�X, B�Hÿ1�X, B�TRÿ1

is the projection matrix under the linear mixed model (12) and ��̂0, f̂1, . . ., f̂p� is the DPQL
estimator. For clustered data, it is often computationally e�cient to calculate P by using the
second expression.

The Fisher information matrix of the approximate marginal quasi-likelihood estimators
#̂ � ��̂ , �̂ � can be approximated by

I �#� � I � � I � �
I T
� � I ��

 !
, �23�

where the � j, k�th element of I�#� is I#j#k � 0:5 tr �P @V=@#j P@V=@#k�. Note that we mainly
use equation (23) to construct an approximate covariance matrix of �̂ and are not interested
in using it to make inference on � . The simulation results of Zhang et al. (1998) under the
Gaussian nonparametric mixed model (18) show that the estimated standard errors of �̂ using
equation (23) perform very well and are very close to the empirical values. We shall investi-
gate the performance of equation (23) under GAMMs through simulation in Section 7. For
terminological simplicity, we call �̂ and �̂ the DPQL estimators.

4.4. Summary of inference in generalized additive mixed models under double
penalized quasi-likelihood
Calculations in Sections 3.3 and 4.3 suggest that our inference on all model components in
GAMMs, including � fj, �, ��, can be easily implemented by ®tting the working GLMM (10)
using the Breslow and Clayton (1993) and Lee and Nelder (1996) penalized quasi-likelihood
approach. Equivalently, we only need to ®t the working linear mixed model (12) iteratively to
the working vector Y, and to use the BLUP estimators of �j and aj to construct approximate
natural cubic spline estimators f̂j and to estimate � and � by using REML. Hence the existing
statistical software SAS macro GLIMMIX (Wol®nger, 1996), which repeatedly calls PROC
MIXED, can be used to estimate � fj, �, �� in GAMMs. A more computationally e�cient SAS
macro GAMM that accounts for the special feature of the GLMM (10) and the linear mixed
model (12) is also available from the authors.
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5. Bias-corrected double penalized quasi-likelihood

When the data are sparse (e.g. binary), the normal theory based Laplace approximation may
not perform well (Lin and Breslow, 1996; RodrõÂ guez and Goldman, 1995). Our simulation
study results in Section 7 show that under these circumstances the DPQL estimators of the
nonparametric functions fj�.� often perform well; however, the DPQL estimators of the
variance components � are subject to considerable bias. Since our approximate inference
procedure in the GAMM (1) can proceed by ®tting the working GLMM (10) using the
penalized quasi-likelihood approach of Breslow and Clayton (1993), we propose to apply
the GLMM bias correction procedure of Lin and Breslow (1996) to GAMMs with some
modi®cations to obtain better estimates of the variance components.

Speci®cally, following Lin and Breslow (1996), consider the GAMM with independent
random e�ects

g��b
i � � �0 � f1�xi1� � . . . � fp�xip� �

Pc
k�1

zTikbk, �24�

where the random e�ects bk �qk � 1� are independent and follow bk � N �0, �kIqk �, and zik is a
qk � 1 covariate vector. This random e�ect structure is common in multilevel (hierarchical)
studies, such as a multicentre clinical trial, where centre, physician and patient random e�ects
are speci®ed, and in longitudinal studies where random intercepts are speci®ed.

The corrected DPQL estimator of � is constructed as

�̂C � Cÿ1CP�̂, �25�
where �̂ is the DPQL estimator of �, the correction matrices C and CP are identical with those
given in equation (20) of Lin and Breslow (1996), except that their �̂0

i used in calculating W0,
W1 and W2 is changed to

�̂0
i � gÿ1

�
�̂0 �

Pp
j�1

f̂j �xij�
�
,

and the f̂j �xij� are the DPQL estimators. Note that this modi®ed �̂0
i is the estimate of the

mean of yi in equation (24) under independence �� � 0�. The covariance matrix �̂C can be
approximated by

cov��̂C� � �Cÿ1CP� cov ��̂ ��Cÿ1CP�T:
To improve the performance of the DPQL estimators f̂j , we can use �̂C to re-estimate fj by
solving the DPQL estimating equations (11). We evaluate the performance of this correction
procedure through simulation in Section 7.

6. Application to infectious disease data

Zeger and Karim (1991) reported longitudinal data on respiratory infection in Indonesian
children. 275 preschool childen were examined every quarter up to six consecutive quarters
for respiratory infection �0 � no; 1 � yes�. The data consisted of 1200 binary observations.
The covariates of interest included age in years, xerophthalmia status �0 � no; 1 � yes�, an
ocular manifestation of chronic vitamin A de®ciency, sex �0 � male; 1 � female�, height for
age and the presence of stunting �0 � no; 1 � yes�. For a detailed description of the covar-
iates, see Zeger and Karim (1991).
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Zeger and Karim (1991) considered a parametric logistic±normal model and assumed a
linear age e�ect. An examination of the distribution of the vertical strokes in Fig. 1 suggests
that the age e�ect departs dramatically from linearity. We hence modelled the age e�ect
nonparametrically by using a cubic smoothing spline. Speci®cally, conditionally on subject-
speci®c random intercepts bi � N �0, ��, the binary outcomes yij were assumed to be inde-
pendent and to follow a semiparametric logistic model

logitfpr �yij � 1jbi�g � xT
ij� � f�ageij� � bi, �26�

where j identi®es the jth observation of the ith child, xij contains an intercept, xerophthalmia,
seasonal sine and cosine, sex, height and stunted, and f �ageij� is a centred twice-di�erentiable
smooth function of age.

We ®tted model (26) using DPQL and corrected DPQL. Note that the semiparametric
logistic mixed model (26) di�ers slightly from GAMM (1) in the extra parametric part xT

ij�,
which can be easily incorporated in the ®xed e�ects part in the working GLMM (10).
Therefore, the inference procedure discussed in Sections 3±5 can be used to ®t model (26)
with trivial modi®cations.

Since the data contained 83 distinct age values, the amount of computation using equation
(13) was minimal. Fig. 1 shows the estimated nonparametric function of age under DPQL
and its frequentist and Bayesian 95% con®dence intervals. The risk of respiratory infection
increased during the ®rst 2 years of life and decreased thereafter. The Bayesian con®dence
intervals were slightly wider than their frequentist counterparts. The estimated regression
coe�cients, smoothing parameter and variance component are given in Table 1. The data
provided strong evidence for the association between respiratory infection and sex and
season. The coe�cient of xerophthalmia provided no evidence for vitamin A de®ciency on
respiratory infection. The Bayesian standard errors of the regression coe�cients were slightly
larger than the frequentist standard errors. The bias-corrected variance component estimate
was larger than the uncorrected quantity. The simulation study in Section 7 shows that the
bias-corrected variance component estimate is often associated with smaller bias.

7. Simulation study

We conducted a simulation study to evaluate the performance of DPQL and corrected
DPQL. Each data set was composed of 100 clusters of size ni � 5. Conditionally on the

Inference in Generalized Additive Mixed Models 393

Fig. 1. Estimated DPQL estimate f̂ (age) (Ð) for the infectious disease data and its 95% pointwise fre-
quentist (..........) and Bayesian (± ± ±) con®dence intervals: the vertical strokes at 2 and ÿ4 indicate the
occurrence of 1s and 0s in the response



cluster-speci®c random intercepts bi � N �0, � � 0:5�, the binary observations yij were
generated within each cluster with conditional probabilities �i � 1, . . ., 100, j � 1, . . ., 5�

logitfE �yijjbi�g � �0 � �1ti � f1�x2i� � f2�x3ij� � bi,

where �0 � ÿ0:5, �1 � 1, ti takes value 1 for half of the subjects and 0 for the other and
mimics a binary treatment indicator, and

f1�x1� �
1

3
f2 F8,8�x1� � F5,5�x1�g ÿ 1,

f2�x2� �
1

10
f6 F30,17�x2� � 4 F3,11�x2�g ÿ 1,

Fp,q�x� �
ÿ� p� q�
ÿ� p� ÿ�q� x

pÿ1�1ÿ x�qÿ1,

and ÿ�.� is a gamma function. Here f1�x1� is a unimodal function, whereas f2�x2� is a bimodal
function. Similar test functions were used in Wahba (1983).

We assumed x1 to be a cluster level covariate with 50 equally spaced knots in �0, 1 � and
x2 to be a covariate varying within each cluster with 100 equally spaced knots in �0, 1 �.
Speci®cally, we let x1i � trunf�i� 1�=2g=100 and

x2ij �
trunf�i� 4�=5g

100
� 0:20� jÿ 1�

for i � 1, . . ., 100 and j � 1, . . ., 5, where trun �.� denotes a truncation operator. The con-
stants 1 used in f1�x1� and f2�x2� were chosen to centre f1 and f2. In other words, the means
of f1 and f2 over the distinct values of x1 and x2 were 0. 500 data sets with 500 observations
each were generated and analysed using DPQL and corrected DPQL. The entire experiment
was repeated with the binomial observations yij whose denominator was 8.

Table 2 gives the estimated ®xed e�ects �̂0 and �̂1, and their empirical and estimated
frequentist and Bayesian standard errors (SEs) under DPQL for binomial denominators
m � 1 and m � 8. For both scenarios, DPQL worked well in estimating the ®xed e�ects. The
estimated ®xed e�ects had little biases. Both frequentist and Bayesian SEs agreed well with
the empirical SEs. The Bayesian SEs were larger than their frequentist counterparts. The
frequentist SEs were slightly closer to the empirical SEs.
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Table 1. Parameter estimates for the infectious disease data

Parameter Estimate Bayes
standard error

Frequentist
standard error

Intercept 72.92 0.24 0.23
Vitamin A 0.52 0.46 0.46
Seasonal cosine 70.58 0.17 0.17
Seasonal sine 70.16 0.17 0.17
Sex 70.50 0.24 0.24
Height for age 70.03 0.02 0.02
Stunted 0.39 0.43 0.42
� 0.27 0.32
� (DPQL) 0.38 0.26
� (corrected DPQL) 0.48 0.33



Fig. 2 depicts the true curves fj�xj� � j � 1, 2) and the estimated curves f̂j�xj� under DPQL
for the binomial denominator equal to 1 and 8 respectively. DPQL overall performed well in
estimating the nonparametric functions. The estimated nonparametric functions had notice-
able negative biases when the data were binary �m � 1� and approached the true values
quickly as the binomial denominator became 8. The biases were more pronounced at the
values of x where the curvatures were high. This suggests that DPQL slightly oversmooths
the curves for binary data. This might be due to the fact that the Laplace approximation (22)
to the marginal quasi-likelihood might not perform well for sparse binary data and the
resultant smoothing parameters � were underestimated.

Fig. 3 compares the empirical and estimated pointwise Bayesian and frequentist SEs. Both
SEs agree well with the empirical SEs. The Bayesian SEs were slightly larger than the fre-
quentist counterparts. The frequentist SEs were closer to the empirical SEs when the bias
of the estimated nonparametric function was small. The Bayesian SEs agreed better with the
empirical SEs when the bias became more visible.
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Table 2. Means and standard errors of ®xed effects estimates over 500 replications{

m Parameter Mean Empirical SE Estimated SE,
frequentist

Estimated SE,
Bayesian

1 �0 70.52 0.18 0.18 0.18
�1 0.98 0.25 0.26 0.28

8 �0 70.54 0.11 0.11 0.12
�1 1.06 0.16 0.17 0.19

{True values: �0 � ÿ0:5; �1 � 1:0.

Fig. 2. True and estimated nonparametric functions (a) f̂1 (x1) and (b) f̂2 (x2) based on 500 replications: Ð,
true; .........., m � 1; ± ± ±, m � 8



Fig. 4 compares the empirical pointwise coverage probabilities of the 95% con®dence
intervals of f1�x1� and f2�x2� calculated using the frequentist and Bayesian SEs. For binary
data �m � 1�, the coverage probabilities of both the frequentist and the Bayesian con®dence
intervals were very close to 95% at the values of x where the bias was small. At these places of
x, the coverage probabilities of the frequentist con®dence intervals agreed slightly better with
the nominal value, whereas the coverage probabilities of the Bayesian con®dence intervals
were slightly larger than the nominal value. When the bias became visible, both con®dence
intervals yielded unsatisfactory coverage probabilities and the Bayesian con®dence intervals
performed slightly better. This is probably because the Bayesian SEs account for the bias in
the estimated nonparametric function. A plausible explanation of slight overshooting of the
coverage probabilities of the Bayesian con®dence intervals when the bias is small is that
the Bayesian SEs account for the global bias in the estimated nonparametric function. When
the global bias is visible, the Bayesian con®dence intervals may overcompensate for the bias
at the values of x where the bias is small. As the binomial denominator m increased to 8, the
coverage probabilities quickly approached the nominal value.

The overall performances of the frequentist and Bayesian con®dence intervals were com-
parable and the Bayesian intervals had slightly superior performance. For m � 1, the means
of the coverage probabilities of the frequentist and Bayesian con®dence intervals over the
range of x1 were 84.0% and 89.4% for f1�x1�, and their means over the range of x2 were
85.7% and 90.8% for f2�x2�. When m � 8, both con®dence intervals performed well and their
coverage probabilities quickly approached the nominal value. The means of the coverage
probabilities of the frequentist and Bayesian con®dence intervals were 90.9% and 95.3% for
f1�x1� and 91.3% and 96.3% for f2�x2�.
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Fig. 3. Empirical, frequentist and Bayesian pointwise standard errors of estimated nonparametric functions
(a) f̂1 (x1) and (b) f̂2 (x2) based on 500 replications:Ð, empirical SE; .........., frequentist SE; ± ± ±, Bayesian
SE



Table 3 gives the estimated variance components, their empirical and estimated SEs and
mean-square errors under DPQL and corrected DPQL for binomial denominators m � 1 and
m � 8. The DPQL method considerably underestimated the variance component for binary
data �m � 1�. The bias correction factor signi®cantly reduced the bias. Although the variance
was in¯ated, the bias-corrected estimate had a smaller mean-square error. A similar per-
formance of the bias correction factor was found with GLMMs (Lin and Breslow, 1996). As
the sample size increases, we expect that the bias would become more dominated and the
reduction in mean-square error would be more signi®cant. When m increased to 8, the
performance of both the uncorrected, and the corrected variance component estimates
quickly improved and the bias was negligible. Although we may obtain better estimates of
the nonparametric functions by using the corrected variance component estimate to re-
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Fig. 4. Estimated pointwise frequentist and Bayesian 95% coverage probabilities of the values of the true ®xed
functions (a) f1 (x1) and (b) f2 (x2) based on 500 replications: Ð, nominal level 95%; .........., coverage
probability of the frequentist con®dence interval; ± ± ±, coverage probability of the Bayesian con®dence interval

Table 3. Means and SEs of variance component estimates over 500 replications{

m Method Mean Empirical SE Estimated SE Mean-square
error

1 DPQL 0.33 0.18 0.21 0.06
Corrected DPQL 0.42 0.22 0.26 0.05

8 DPQL 0.46 0.09 0.09 0.01
Corrected DPQL 0.47 0.09 0.09 0.01

{True value: � � 0:5.



estimate f1 and f2 by solving equation (13), the improvement was minimal and the results are
not presented.

8. Discussion

We have proposed in this paper nonparametric regression for correlated data within the frame-
work of GAMMs. Smoothing splines were used to estimate the nonparametric functions and
marginal quasi-likelihood was used to make simultaneous inference on the smoothing param-
eters and the variance components. Because of the often required high dimensional integration,
DPQL was proposed to make approximate inference. A key feature of this approach is that
all model components of GAMMs, including the nonparametric functions, the smoothing
parameters and the variance components, can be estimated in a uni®ed parametric mixed
model framework. Speci®cally, we only need to ®t a working GLMM by repeatedly ®tting a
linear mixed model to a modi®ed outcome variable.
Our simulation studies show that DPQL performs well in estimating the nonparametric

functions. The frequentist and Bayesian con®dence intervals are comparable. For correlated
binary data, which is a worst case scenario for the approximate inference procedure, both
con®dence intervals provide approximately correct coverage probabilities, except for the
places where the curvatures of the nonparametric functions are high and the biases in
the estimated nonparametric functions are visible. As the binomial denominator increases,
the coverage probabilities of both con®dence intervals quickly approach the nominal value.
Although the variance component estimates under DPQL are subject to considerable bias
when the data are binary, the simple bias correction procedure signi®cantly reduces the bias
and yields practically satisfactory estimates when the variance components are small or
moderate (Lin and Breslow, 1996). As expected, the accuracy quickly improves as the
binomial denominator increases.

We have discussed in this paper approximate inference using DPQL and corrected
DPQL. Similarly to the performance of the penalized quasi-likelihood approach in parametric
GLMMs (Breslow and Clayton, 1993; Lin and Breslow, 1996), except for the Gaussian case,
the estimates under DPQL are often asymptotically biased in GAMMs, especially for binary
data. Although the correction procedure reduces the bias, we expect that it will not work well
when the variance components are large and it is not applicable to GAMMs with correlated
random e�ects. It is hence of interest to compute full cubic smoothing spline estimators of
the nonparametric functions in GAMMs by directly maximizing the penalized quasi-
likelihood (3) and full marginal quasi-likelihood estimators of the smoothing parameters and
the variance components by directly maximizing expression (21). Since they both require
evaluating high dimensional integration, especially expression (21), one may use Monte Carlo
simulation methods, such as Gibbs sampling (Zeger and Karim, 1991) and Metropolis
sampling (McCulloch, 1997). These methods are particularly attractive when the variance
components are large and the data are sparse. However, the dimension of integration
required by these procedures may be overwhelming. The practical feasibility of these Monte
Carlo simulation methods hence deserves careful consideration.

We have discussed in this paper the use of the marginal quasi-likelihood to estimate the
smoothing parameters. Alternative approaches to selecting the smoothing parameters include
cross-validation and GCV (Rice and Silverman, 1991; Wahba, 1985). A challenge in using
GCV is that it is so far not de®ned under GAMMs. Compared with cross-validation, our
marginal quasi-likelihood inference procedure has several advantages:
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(a) it requires much less computation;
(b) inference on the variance components is incorporated naturally;
(c) it is applicable to clustered and crossed designs.

Further research is needed to compare the performance of the estimated nonparametric
functions using cross-validation and GCV (to be de®ned) with that using the marginal quasi-
likelihood.

In this paper, we have focused on spline smoothing. It is of interest to investigate in future
research kernel smoothing for estimating the nonparametric functions in GAMMs. Unlike
spline smoothing, which allows us to estimate all model components in a uni®ed parametric
mixed model framework, a challenge in kernel smoothing in GAMMs is that new methods
need to be developed for the estimation of the bandwidth parameters and the variance
components.
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Appendix A: Derivation of expression (5)

Equation (2) takes the form
�
expfÿ��b�g db. Making a quadratic expansion ofÿ��b� about its maximum

point ~b before integration and plugging the resultant approximation into equation (3), penalized quasi-
likelihood (3) can be approximated by

ÿ 1

2
log jI� ZT ~WZDj ÿ 1

2�

Pn
i�1

di�yi; � ~b
i � ÿ

1

2
~bTDÿ1 ~bÿ 1

2

Pp
j�1
�j f

T
j Kj fj, �27�

where ~b � ~b ��0, f1, . . ., fp, �� satis®es
ZTW��yÿ �b� ÿDÿ1b � 0,

and � � diagfg0��b
i �g, W � diag � f�mÿ1i v��b

i � g0��b
i �2 gÿ1 � and ~W �W�� ~b�.

Assuming that ~W varies slowly with ��0, f1, . . ., fp� for ®xed � (Breslow and Clayton, 1993), we may
ignore the ®rst term in expression (27) when maximizing it with respect to ��0, f1, . . ., fp�. Simple
calculations show that the resultant estimators ��̂0, f̂1, . . ., f̂p� can be equivalently obtained by max-
imizing the DPQL in expression (5) jointly with respect to ��0, f1, . . ., fp� and b.
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