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PREFACE

This paper is the twenty-fifth in a series growing out of studies

of radar cross sections at the Engineering Research Institute of The
University of Michigan. The primary aims of this program are:

1. To show that radar cross sections can be determined analyti~-
cally.

2. A. To determine means for computing the radiation patterns from
antennas by approximate techniques which determine the pattern
to the accuracy required in military problems but which do not
require the uﬁique determination of exact solutions.

B. To determine means for computing the radar cross sections of
various objects of military interest.
(Since 2A and 2B are inter-related by the reciprocity
theorem it is necessary to solve only one of these problems)

3. To demonstrate that these theoretical cross sections and theo-
retically determined radiation patterns are in agreement with
experiﬁenté.lly determined ones.

Intermediate objectives are:

1. A. To compute the exact theoretical cross sections of various

simple bodies by solution of the approximate boundary-value

problems arising from electromagnetic theory.
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B. Compute the exact radiation patterns from infinitesimal
solutions on the surface of simple shapes by the solution of
appropriate boundary-vé.lue préblems arising from electromagnetic
theory.
(Since 1A and 1B are intef-related by the reciprocity
theorem it is necessary to solve only one of these problems).
2. To examine the various approximations possible in this préblem
and to determine the limits of their validity é.nd utility.
3. To find means of combining the simple -~body solutions in order
to détermine the cross sections of composite bodies.
4, To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.
5. To»collect, summarize, and evaluate existing experimental data.
Titles of the papers already published or presently in process of publication
are listed on the preceding pages.
The major portion of the effort in this report was performed for the Air

Force Cambridge Research Center under Air Force Contract AF-19(604)-1949.

K. M. Siegel
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SUMMARY

The problem of the diffraction of a plane electromagnetic wave by an imperfectly
conducting wedge is solved subject only to the physical approximation implied by the
usual impedande-type boundary conditions imposed on the faces of the wedge. The method
is based on one which was originally proposed by A.S. Peters for the treatment of a
problem in hydrodynamics and leads to a difference equation for a function related to the
Laplace transform of the field with respect to the radial distance from the edge. This
is solved exé.ctly to give an expression for the total field valid for any angle of wedge.

Several particular cases are examined and some ramifications of the theory are discussed.

viii
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CHAPTER 1

INTRODUCTION

During the last few years considerable attention has been focussed on diffraction
by structures whose conductivit’y is assumed to be infinite. In practice, however, the be-
haviour of actuél metallic bodies may differ appreciably from that found theoretically in
the ideal case, but attempts to take the conductivity into account have not met with gre’aﬁ
success.

One problem which is of some importance is diffraction by an imperfectly conducting
wedge. The first satisfactory treatment of the effect of loss in the wedge faces was carried
out by Raman and Krishnan (Ref. 1) who employed the ingenious device of multiplying by the
appropriate Fresnel reflection coefficient that part of the two-dimensional Sommerfeld
integral solu_tion (for perfect conductivity) which gives rise asymptotically to a plane wave
reflected from the wedge. This provides for the lose effect on the reflected plane wave,
but though the solution reproduces some of the observed diffraction phenomena, it violates
the reciprocity condition concerning the interchangeability of transmitter and receiver.
Moreover, the -mefhod is inadequate theoretically in that it does not give the solution of the
previously specified boundary-value problem.

In recent years more rigorous approaches to the problem have been taken by Jones
and Pidduck (Ref. 2) a.nd Felsen (Ref. 3), and the two methods are similar in many respects.

Both adopt the usual approximate boundary conditions at the wedge faces and, using Green's
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functions, express the solution as a perturbation about that appropriate to a perfectly
conducting wedge; this process leads to an integral form for the loss correction due to
the finite conductivity.

Jones and Pidduck obtained a formal expression for the correction term when the
incident field is that of an electric or magnetic line source parallel to the apex of the wedge,
but considered in detail only the case of an incident plane wave. The integral was further
simplified by assuming the point of observation to be far from the apex and well within the
shadow region, but even then its form was not such as to be amenable to numerical calcu-

‘lation.

Felsen (Ref. 3), however, has shown that a reduction of the perturbation integral

can be achieved without approximation in the case of an electric current source, the resulf
~ being valid for arbitrary positions of sburce and observation points and for wedges of open
angle less than r. A series representation of the correction term is given and this is

rapidly convergent when the source or point of observation is near the wedge apex. For
plane wave diffraction observed at large distanées, an asymptotic calculation of the solution
yields a set of plane waves reflected from the wedge faces with reflection coefficients
appropriate to the material of the wedge, together with a cylindrica,l wave which appears

to emanate from the apex, and this is analogous to the result obtained by Raman and Krié_hnan.

It should be noted that both the methods just described involve the assumption that
the solutipn can be expanded as a series in ascending powers of 'rl » Where nis the reciprocal

of the complex refractive index of the material comprising the wedge. Unfortunately this may
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not be justified and in the particular case of a metallic half-plane it has been shown (Ref. 4)
that only for an H—pblarized incident field (magnetic x}ector parallel to the edge) can the exact
solution be so expa.nded, that for the other polarization containing a term n log'rk . Accord-
ingly, any treatment of the more general problem based upon this type of expansion is of doubt-
ful validity, especially when the incident field is E-polarized.

In order to verify whether such an expansion is possible, it is necessary to solve the
prbblem subject only to the (physical) approximation implied by the assumed boundary conditions,
Ih the mathematical sense the solution is then exact, but the existing methods in diffraction
theory are insufficient for its derivation; Whilst the Wiener - Hopf technique is capable of
treating the half-plane, the corresponding integral equai:ion is not susceptible to solution in this
manner when the two surfaces of the diffracting strqcture are no longer parallel. If the sﬁructure
is perfectly éonducting‘the Sommerfeld method, based upon multi-valued solutions of the wave
eqﬁation, applies equally well to the wedge and the half—plane ; the procedure, however, is of .

a largely intuitive nature é.nd does not lend itself to problems with mixed boundary conditions.
Finally there is the method proposed by Kontorovich and Lebedev (Ref. 5). This is'ideally
suited to the wedge problem and when the condﬁctivity is infinite the resulting integral equation
can always be inverted directly using a special type of transform relation, whilst its logical
nature suggestp that it may also be applicable to an imperfectly conducting wedge. Unfortunately,
this proves to be impossible since the integral equation is no longer capable of direc‘t inversion.
Moreover, to seek a solution by successive substitution is equivalent to expanding the unknown

function as a series in powers of 7] , and even this technique is limited to the case of H-polarization
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by the way in which W’Leriters into the equation.

In his quest for alternative .methods' the author was led to consider that developed
by Peters (Ref. 6)for the exact solution of a problem in hydrodynamics. The basis of the
method is the expression of the differential equation and the boundary conditions as a
difference equation for the_determinétion of a regular function whose real part represents
the velocity potential, and although the method has been extensively criticised (the
integral solution obtained by Peters is not convergent), it can be modified to give the

exact solution for diffraction by an imperfectly conducting wedge.
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CHAPTER II

PETERS METHOD

In reference 6, Peters derives the solution of 2 mixed boundary-value problem
for the equation (72-k2) § = 0 in a sector, the problem arising in connection with water
waves on a sloping beach. In terms of polar coordinates (r, 6, z) the method enables

golutions to be found for the two-dimensional equation

/ 2
1 0.+ 1 -k'p =0 1
prr_+‘?1’."¢r 3 foo 7 @
in a sector 0 <0< ¥ under the houndary conditions
?_)cO:lrﬁ for 0 =0 (2)
and By =0 for0=1, 3)

where X is a real constant and the suffices denote differentiation. The first

condition is that for a free surface whilst the second is for a barrier and expresses
the fact that there is no motion normal to it. Solutions of (1) representing progressive
water waves are found by prescribing the required behaviour at the origin and at
infinity.

The important stages‘:in the method are (j) application to the differential
equation of a Laplace transform with resp_ect to the radial distance r; (ii) change of
the transform variable from s to p to yield Laplace's equation for a functiqn 'gZ/((p, 0);
(iii) identification of ‘)b(p, 6) with the real part of a complex function f(w) regular in
0< Im.w< 7", where w=p+i@; (iv) expression of the boundary conditions as conditions
upon f(w) and their reduction to forms suitable for the use of an image technique;

and (v) derivation and subsequent solution of a difference equation for f(w).
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Although specifically developed for a discussion of water waves on a beach,
the method can be applied to most problems which involve the solution of (1) in a
sector of arbitrary angle 7" ; boundary conditions other than (2) _and (3) can also be
admitted, but the reality of these is essential for the success of the method as it
stands.

The diffraction of an electromagnetic wave by a metallic wedge is a similar
problem to that considered above and it is natural to attempt a solution in an analogous
manner. Instead of (1) We now have the wave equation, but the change in sign of k? affects
the method only as regards the transformation from s to p. The boundary conditions
are also of the general form (2) but differ in thit A is no longer real. This appears to
prevent the conditions from being cast into forms suitable for imaging, but the difficulty
can be overcome by treating separately the real and imaginary parts of the function

T/J(p, 6) and with these modifidations’ the method serves to provide an exact solution of

the diffraction problem.
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CHAPTER Il

FORMULATION OF THE ELECTROMAGNETIC PROBLEM

The wedge is defined in terms of the cylindrical polar coordinates (r, 8, z)
by the equations 6=0 and 6= 7', where 7' is the open angle of the wedge.

For simplicity the incident field is taken to be a plane wave normal to the
apex of the wedge (z axis) and at an angle @ (0< a<7") to one of the bounding faces,
and if the magnetic vector is assumed to lie entirely in the z direction (H-polarized),
it can be represented by

¢i (r,0) = eikr cos(6-a) (4)
where the affix 'i' denotes the incident field. M.k.s. units are employed and a time
factor eikct suppressed.

Since the diffracting structure extends to infinity in the z direction, the use
of the plane wave (4) implies that the problem is two-dimensional, and hence the
solution can be expressed in terms of a function f)(r, 8) signifying the z component
of the magnetic vector in the total (incident plus scattered) field.

The wedge itself is regarded as composed of a homogeneous material whose

1./ .y _s
T |y o ke€,

where € and o are the permittivity and conductivity of the material and 60 is the

complex refractive index is

permittivity of free space. Clearly
Q<arg < Tla

with the two extremes corresponding to a pure dielectric and a perfect conductor
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respectively.
At the faces of the wedge the usual approximate boundary conditions are
imposed. These are
¢9—ik‘)'( rp=0 for =0 (5)
and o+ikn rp=0  foro=7 (6)
(for their deriviation see, for example, Grunberg, Ref. 7) and the problem now

confronting us is the exact solution of the wave equation

g+ —:;- ¢r + ,1:12_ Do+ ¥ =0 (7)

under the conditions (5) and (6), together with certain additional conditions

(to be discussed later) at the origin and at infinity.
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CHAPTER IV

THE ADAPTATION OF PETERS'. METHOD

Consider the Laplace transform

00
p% (s,0) = 5 e % f(r,6) dr (8)
(4]
at the outset s is regarded as a real parameter and the transform is supposed
~ to converge for s > £, where € is a small positive number. If rf(r, 8)—0

as r—»0, application of the transform to equation (7) gives

2 2 2
(k" +s )¢*ss+3s pr + P + QAQ‘:@ =0,
0

that is,

- LI Srept
for0<@<¥ands> ¢ .
At first sight this does not appear to be simpler than (7), but when 8 is
replaced by
s =k sinh p (10)
it is found that the function",b (p, 6) defined as
Y (p, ) =k cosh p f* (k sinh p, 6) (11)
satisfies |
-klbpp + % 0 =0 (12)
Thus ¥ (p, 6) is a harmonic function of p, in the semi-infinite strip 0< 6< 7]
0¢ sinh_1 €/k<¢p< w. Furthermore, from equations (5) and (6) the boundary conditions

on the function are ,
g cosh® P +17 W’p cosh p - Ysinhp) =0, (13)

9
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'()becosth -1 ("l,Up cosh p -Wsinh p) =0, (14)
for 9 and 0 and 6 = 7" respectively.
As noted in Chapter II the technique which is adopted is to separate
'l// (p, 0) into real and imaginary parts. Let
Y®.0=9% 00 +i? (0,0
where'?./} and'(/J2 are real functions of the two real variables p and 8. These

functions individually satisfy equation (12) and are subject to the boundary conditions
1
",Ue 1 cosh’ p - { ( a'%z +b 'l,bpi) coshp - (aY? +bY) sinhpk =0, (15)

‘50 2 cosh® p + { (a.}b; -b ‘L,l/:) cosh p - -(a'l,Ll -b'¢2’) sinhp] =0, (16)
6 ' ‘ .

at 9 =0, and

1 |
1/49 cosh? p + {(a'l//p2+b1[z;) coshp - (aP?+bY! sinhp}=0, (17)

2 2 ' 1 2 i 2 : =
h™ p - ( -b hp - - =-b nh =0, (18)
1/Je cos‘ p { a'l,bp 'lpp) coshp - (ay Y2) sinhp }

at @ = 7\, where‘)z =a + ib with a and b real.

Following Peters, p and 6 are now regarded .as the real and imaginary parts
respectively of some complex variable w. We shall write

Ww=p+io, (19)

but it must be emphasized that the complex notation is not the same as that which is
implicit in the problem. Although the same symbol i is used in both cases to denvbte
\]T no confusion should arise since the two notations are never.simulta‘neously ‘employ
Indeed, the new 'i' is introduced solely for the purposes of the analysis and its presence
implies that the analysis is carried out in a three-dimensional space which is in some

respects analogous to the Riemann space used in the Sommerfeld method for treating

10
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diffraction by a perfectly conducting wedge.
Let f(w) and g(w) be two functions regular in the strip 8: 040< 7,
0< sinh”’ €/k ¢ p<oo. The harmonic functions P! (p,6) and Y2 (p,6)

can then be identified with the real parts of f(w) and g(w) respectively, so that

W' (0,0) = Re. ) (20)

and Y’ (p,6) = Re. glu), (21)
and in terms of f(w) and g(w) the boundary conditions (15) - (18) become
Re. [i cosh? wf'(w) - | {(.ag'(w) + bf'(w)) coshw - (ag(w) +bf(w)) sinh w}]= 0 (22)
Re. [i cosh? wg'(w) + {(af'(w) - bg'w)) eoshw - (af(w) - bg(w)) sinh w}}é 0 (23)
at 6 = 0; |
Re. [i cost? (-19) ') + {(ag'G) +bfw) cosh(u-iT)

- (agle) +biW) sish @-17)}| =0 (24)

Re. [i cosh® (w-i7) g'lw) - {(af'(w) -bg'w) cosh (w-i7")

- (af(w) - bglw) ) sinh (w-i?)")} =0 (25)

atg= "7 » Where the primes denote differentiation with respect to w. The problem
remaining is therefore the determination of two functions regular in S and satisfying

these conditions.

11
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CHAPTER V
THE DIFFERENCE EQUATIONS
The form of the conditions (22) - (25) enables us to analytically continue
the functions f(w) and g(w) across the lines Im. w=0 and Im. w=7" . The way in
which this is carried out may be illustrated by considering equation (22) in which
~ the expression in square brackets maps the lower boundary of the strip S (that is,
the positive real axis of the w plane) into part of an imaginary axis. Consequently,

the expression can be continued across the real axis using Schwarz's reflection

principle, and for w in S we have®

i cosh?® wfl(w) + { (ag'(w) + bf'(w) coshw - (aglw) + bi{w) sinhw}

=i cosh? wf'(w) - { (ag'(w) + bf'(w)) coshw - (aglw) + bf(w)) sinh w} (26
Simila_rly, from equations (23) - (25)

i cosh? w__g'(w) - {(af'(w) - bg'w) coshw - (af(w) - bgw)  sinh wJ

= i cosh? wg'(w) + {(af(w) - bg(w) cosh w - (af(w) - bglw) sinhw} s (27,
i cosh’ WH?) ') - [(a_g—'(w) + bf'(w)) cosh (wH ¥')

- (agl) +Dbw) sinh @HT)| =icosh® (HT) f'(wh2i T)
+ igagv(m. 2i0 ) + bf'(wt2if)) cosh (WH T') - (ag(wt2iT) + bf(w+2i¥")) sinh (w+17(‘)}

_ _ _ (28
i cosh? (wH 1) gl(w)+{(af'<w) - bg'W) cosh (WHT)

- (fa_ff(w) —bE(w)) sinh (wH Y )}' =icosh(wH ") g'@W2i7 ) (29,
- { (af'(wH2i7 ) -bg'(W+2i¥)) coshlwH ¥*) - (af(wt2i 7 ) - bg(w+2i ")) sinh (wﬁT)%

Together these provide the analytical continuation of f(w) and g{w) from the strip S into t

We write w = p-i@ for the conjugate of w, f(w) for the conjugate of f(w); flw) is f(w)

with conjugate coefficients and f() is () with w replaced by , so that f(@) = f(w).
12
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wider strip - ¥'< Im. w<3Y¥ .
After sbmé re-arrangement, the above equations can be integrated directly,
giving rise to four equations involving f(w), g(w) and their conjugates:
i icosh w - b} f(w) - aglw) = { icoshw+ b} f(w) + agl) + c1 (30)
{ icoshw - b} g(w) + af(w) = {i cosh w + b} 2w - af(w) +c (31)

2
{i cosh (WH ) + b} fr2i ¥ ) + ag(w2i V')

= [icosh WHT) -b} £(w) - ag(w) +te, (32)
{icosh (@HT) +b] glos2i¥ ) - affws21 )
= iicosh (WH ¥ ) -b} gl) + af(w)+c4 (33)

where ¢ , cz, cg and ¢ 4 2Te arbitrary constants. Elimination of the conjugate
1

functions then leaves
[{i cosh (wH¥€) - b} { icoshw - b} -az] glw) ~ [[1 cosh (WHY) - b}
{i coshw - b} - a2] glwt2it) = -a [i &cosh(wﬁ ¥ ) + cosh w} —Zb] f(w)
-a [ i { cosh (wH ¥ )+coshw} +,2b] fwk2i¥) +c -ale +c.)
| 2 1 3
+(icoshw - b) (c_+c,) (34)
2
-and
[[ i cosh (WH YT ) -b} { icoshw - b} —az} flw) - [%\ icosh (wHY') - b}
{icoshw —b} _az] f(wk2if) =a [i icosh (wH ¥) + cosh wk -Zb] g(w)
+a [i { cosh (wH ¥ ) +coshw} +2b] glwt2i§') + cl+a(c2+c4)

+ (i cosh w - b) (ct1 + 03)., (35)

13
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If we now introduce the functions F(w) and G(w) defined by
Flw) = fb) +1 gw) (36)
Glw) = flw) - 1 glw) (37) '
we have,. on multiplying equatiop (35) by i and subtracting from and adding to,
equation (34),
i\'\ +cosh (wH ¥ )} { n_ +cosh w} F(w) = {V\-cosh (wH X )] ( - coshw‘k
Flwt2if ) - c - 1cz+ (ai +b ~1i cosh w)((c + 1c +cg +ic ) (38)
{'V\- cosh (WH ¥ )} { - cosh w] Glw) = {Y\ + cosh (WH T )} i;\+ cosh wg

Gw+2i ¥ ) - cl + ic2 - (ai-bH cosh w)(c 1c + c3 1c ), (39)
respectively, where rVL = a~ib,

These linear difference equations are necessary conditions which must be
satisfied by the functions F(w) and G(w), but for our purposes it is sufficient to
consider the corresponding homqgeneous equations which follow from neglecting
the arbitrary constants ‘cl, ..... s ¢,. The conditions upon F(w) and G(w) are

4

therefore
| {VL + cosh(wHi K‘)} { Y+ cosh w } F(w) = {"f\ - cosh (wH Y )} {\'\-cosh w} F(wt2it),

(40)

'{;\-cosh(wﬁ\f‘)} {”L  cosh w} Gl = {v\ + cosh (w+i‘&‘)}F\+ cosh wx G21Y).

It is clear from the symmetry of equations (40) and (41) that if X(w,"\) is a
solution of (40), a possible solution of (41) is G{w) = X{w, - VL ), although this may

not be the required solution. Nevertheless, from (30) and (31),

14
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Gl = - Y teoshw  Flw (42)
ﬁ- cosh w

__ tcoshw F(w) (43)
Gl) = " -coshw

and thus the two cannot be chosen independently of one another. To specify (for
example) F(w) automatically determines G{w) using equation (42) and for this
reason it is sufficient to restrict attention to equation (40).
To reduce it is a form amenable to solution we make the substitution
{ =&Y (44)
which maps a strip of the w plane on to a sector of the j plane. As it stands the
transformation is multivalued, but a one-to-one correspondence can be established
by inserting a cut into the j plane, the precise locatiqn of the cut being immaterial
providing the strip 0 { Im. & <{'is mapped on to the sector 0 ¢ arg j <Y .
Let |
F(w) = H(S ) (45)

so that

F#2i ¥) = H(f R

Since
+coshlaHT) = S (¢ 4T 0 ) ( e
Vllcoswﬂ‘(‘-zj. j Tle );‘+'C2e )
and _
oh oHf) == S Te Te '
V\-COS (5 p! = - T() - 1e )g‘(,ze ),
where

',jl=vl+i ‘/ 1-vl 2 and T,z;eyk -1 _|/1-VK2' , (46)

15
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equation (40) becomes
(+T e ) (47 e Fy(e +T) (e +T) HT)
(f+Te N(§+T e NE+THG +T) HE (a7
= .-y PN _ A 2if
-(f-ble )(S Lz’e )(j CI‘)(S bz) H(Se ).

The solution of this equation is the crux of the problem now remaining.

16
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CHAPTER VI

THE RELATION BETWEEN §(r, §) AND F(w)

Before proceeding to the solution of the difference equation it is necessary
to consider the way in which @(r, ) is to be expressed in terms of F(w). Only by
doing so it is possible to formulate in their entirety the conditions to be imposed
on the required function Flw).

It will be remembered that the Laplace transform $* (s, ) led us to a
funétion‘}ﬁ(p, 6) whose real and imaginary parts were represented as the real
parts of the functions f(w) and g(w) respectively. Moreover,

f(w) = -é- {F(w) + G(w)} ,
g = | 6l - F(w)} ,
and if F(w) and G(w) are written as |
F(w) = A(p, 6) +iB (p, 6), G(w) = C (p, 6) +1iD (p,0),
where A, B,C and D are real funcﬁons, then |
Re. ) = 1 {A(p,0) + Ctp, 0]
and Re. gl(w) =§ {B(p, 6) - D(p, 9)]
But Y0 =y (0,0 +1? p,6
= Re. f(w) +1i Re. gw) ,

where the 'i' is that which implicit in the problem, and hence

W (0,0) = i- {A(p, 6) +1i B(p, 6) + C(p,6) - i D(p, 9)}
1
|

F(w) +<‘;«3)} : (48)

By using equation (43) we now have

17
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17 5 -
= — _ N +coshw 49
Y o =3 {ro Far— 7 | (49)

which gives the function‘sb (p, 6) directly in terms of F(w) .

This result is important in enabling us to pass directly from the complex
notation of Chapter IV to that of Chapter III without having to separate F(w) and G(w)
into their real and imaginary parts. The nature, of the function ‘Q//(p, 6) is such that
F(w) and G(w) can be taken over in their entirety and in going to equations (48) and
(49) the analytical "i' has been displaced by the naturally-occuring 'i' of Chapter
III.

The form of equation (49) suggests that it may be possible to devise a more
straight-forward derivation which would avoid the necessity for introducing the
fupctions ‘}Zf* (p, 0) and'glxz (p,08). This is indeed so and the new method turns out
to be very much more concise. However, owing to the two complex notations which
are now simultaneously employed, the steps in the argument are more difficult to
follow,_ and for this reason the original treatment is to be preferred.

When a suitable expression for F(w) has been found we have, from equations
(11) and (49),

_ 1
p* (s,0) = Kooshs 3@ (p, 0)

le

I { F(pt) - —\tcosh (p-if), F(p-ie)}
" 2kcoshp n_ - cosh (p-if)
(50)
where k sinh p =s. 8o far s has been regarded as a real quantity, but from the

theory of the Laplace transform @* (s, 6) is known to be a regular function of s in the .

18
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half-plane Re. s 2 £. Consequently, if s is complex, the right hand side of (50)
is a function of the complex variable p which is regular in the domain corresponding
to Re. s > £ , and 0 then takes on the role of a parameter.

The inversion formula for the Laplace transform gives

J e’ ¢% (s,6) ds, (51)
L

p(r,0) =

Y

2wi
where the path of integration is a straight line parallel to the imaginary axis and
to the right of all singularities of §% (s,6). The transformation to the p plane is
effected by s=k sinh p, which maps the whole of the s plane on to each of the strips
(m-Y/p) 7 <Im. p (m+/3)mw, m=0, +1, +2,....

but though the transformation is multivalued, the range of p cannot be chosen
arbitrarily. The choice of strip is governed by the initial assumption that real s
and p correspond, and this implies that the s plane is mapped on to

#/3 < Im. pg /5. (52)
Since the right hand s half-plane corresponds to.the right hand half-strip in the

P plane,

- 1 kr sinhp | .ay _ N_+cosh(p-if) o }
f(r,0) iri L, e 7‘ F(p+i6) Y( " cosh (pif) F(p-i6)} dp,

where the path of integration {' in the p plane is a loop from p = o -i 2"/ 5 to
p=00 +i ”/ 2.
If we now write p:‘(ﬁ /2 -7 ) mapping the above strip of the p plane on to

a displaced and rotated strip of the complex ¥ plane, then

Bir,0) = - — - L,, gHir cos Y i F [mg -zz+e)} (53)

Wrsin(V+0) oz _y —e)g dv
q—sin<y+e) 2
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where j/" is a loop path from 7 = ¢ + i¢o to / = i¢co whose precise form between
these points is immaterial providing it lies above all singularities of the integrand.

In general the transformation from s to 7 using s = ik cos > will introduce
branch points into the 7) plane at 2 =mz, m =0, +1, +2,...., and it is natural
to take thé resulting branch cuts parallel to the imaginary paxis. | The transformation,
however-,: may serve to remove_branch points, a mu_ltivalued function in the un-cut
s plane becoming single-valued in the un-cut » plane. This will certainly be true
if the function F [i (% - U+ G)} satisfies the following condition:

() In-r < Re. {#, F [i (%ﬁ —M?} has only a finite number of poles and
is otherwise regular and free of singularities for all 8, 0< 6 <7,

Since the integrand of (53) is then single-valued in the un-cut 2 plane,
deformation of .¢'' outside the strip to which it was originally confined is possible
and, moreover, necessary if the integral is to converge. From a study of the
regions in which the path may approach infinity, we are led to choose the path L
of Figure 1, and whilst it is convenient to take the end points to be /= 3%/, + ico
and V = —ﬁ/ 5 +i0o, any path commencing at infinity in the strip # < Re. 2 ¢ 2% and
ending at infinity in the strip -# < Re. < 0 will do providing all singularities of
the integrand lie below it.

If it is further assumed that

m A Esini(v+6) F [1@”1 -0 =F UE +2 +9)
1 -sin(V+6) L2 | 2
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then
ikr cos?
® F [1(5-7}+0)} dw
D2

Ple.0) = 5o J e
L

_ 1 ikr cos 7V x
i S + S e F o li(3 -V+6)| dv  (54)
/
L L
where L' is the path shown in Figure 1.
\_i/
S(r)

L

S(-m)

FIGURE 1
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In view of the condition (I) the only signularities between the two paths are poles

and hence i

K . .
B (r,6) = 1 lj —J el r cosV F [i(% _.y+6)] dv-—% p

4x S(r) S(-) R

with ¢R denoting the sum of the residues at the included poles. It now only remains

to make the substitutions 8 =2V+x on S(zr) and B =2 - x on S(-=) to give

¢(r9)=-l—— —ikrcostF (3% _g4 Lo
? 4x S e 1(—2— B 9) -F 1(2 —B+9)

| a

i
-5 Py (55)

(0)

where S(0) is a steepest descent path through the origin, and this is a solution of
the desired form.

If the poles of F ‘Fi ( !é?— ~U+ 6)] are chosen correctly, the term 21. ¢ R will
give the geometrical optics contribution and the integral can then be interpreted as
the diffracted field. The expression for ¢ (r,0) as a whole will represent a possible solu-
tion of the diffraction problem ifa function F can be found satisfying our assumptions,
and it will be shown that the conditions (I) and (II) are not only consistent with those

imposed on F in the original analysis but also serve to specify a unique solution of the

problem.
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CHAPTER VII

THE CONDITIONS ON H( ¢ )

Let us first review the way in which the difference equations (40) and
(41) were derived,

The functions f(w) and g(w) defined by (20) and (21) are, by virtue of the
wave equation (7), regular in the strip 0 <Im. w < ¥ and consequently F(w)
and G(w) are also regular in this strip. The boundary conditions on the faces
of the wedge enable F(w) ‘a,nd G(w) to be analytically continued into a wider strip
- ¥ < Im. w< 3¢ , the values of the functions in the wider strip being given
in terms of their values in 0 £ Im. w< ¥ by the difference equations (40) and
(41). These equations are directly analogous to the ones obtained by Peters
(Ref. 6) in his discussion of the water wave problem.

vy

X

A\
/ \‘C’ /
/
/ \
| \ \ //

* 7,

Because of the relations (42) and (43) connecting F(w) and G(w) it is
sufficient to consider only equation (40), and this can be gonverted into a difference
equation for a function H( § ) by means of the transformation (44). In thej plane the
function H(j ) must be regular in that region which corresponds to the strip S of the
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w plane; it must therefore be free of singularities in

2, o 1<exp{ sinh 1 %}é‘§[<mg 0<arg§<‘(‘
and since € is small, this is essentially the sector 0 <arg S < ¥ with the
inside and boundary of the unit circle excluded (Figure 2).

The behaviour of H({ ) for large 5 r is specified by the form of §(r, 9)
when r is small. For a half plane (3 = 2x) of infinite conductivity the
admissible edge condition has received considerable attention and it is now acc-
epted that no field component can have a singularity of greater order than r—%"“
as r—0. In itself, however, this does not serve to ensure uniqueness when
the field is a two-dimensional H-polarized wave incident in the plane normal
to the edge since all components are finite for r=0. This point has been brought
out by Clemmow (Ref. 8).who shows that the condition becomes sufficient if the
field is made three-dimensional and, in fact, for an H-polarized wave incident
on a half-plane,

Hzm constant as r—; 0.

For the actual case of a wedge or corner the work of Jones (Ref. 9)
has more direct application and leads us to impose the same condition on the
wedge as on the half-plane. Although Jones was concerned only with perfect
conductors, the presence of finite conductivity is unlikely to éffect the general
nature of the singularity, and we shall f;herefore assume that

f(r, ) ~_ constant as r—-0, (56)
which implies
H(S )eu constant asl'i ‘J—wo, (57)
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In passing it should be noted that the conditions: @ remains finite and
r 2p/ ?or—0as r— 0 used by Pauli (Ref. 10) in his analysis of the solution
for a perfectly conducting wedge are satisfied by a function whose behaviour
is given by (56). This is also true of the condition: r §=—>0 as r— 0 assumed
in the derivation of equation (9).
The difference equation (47) is valid independently of the field incident
on the wedge, but the precise form of the solution is, of course, governed by the

incident field. For the simple. case of the two-dimensional plane wave (4) it can

easily be verified that if the incident field is taken by itself

,0) = cosh p
—Lp (v, 6) sinh p - i cos (6-0)

and this influences the choice of H( S ). To produce the required geometrical
optics field (and, in particular, the plane wave 4), it is nécessary that H( j )
should have one or more poles of suitable residues, a fact which is equivalent
to specifying the behaviour of § (r, 6) for large r.

In addition to the physical conditions described above there are three
others which are more intimately connected with the final reduction of the expression
for p (r,0). Two of these have been listed in Chapter VI and can be translated into
the following conditions on H( § ):

(D with the exception of geometrical optics poles, H( g ) is regular in
[y arg 5 < 3x/2+ % forall Ij |, a fact which ensures the 'partial' regularity
in -w/y+06¢ arg‘§§3x/2+9for any 9, 0<0<Y;

()

\ml L/*q'

¢ ’C - i
_ _é B H( S ) = H( e_ ) , (58)
g -T) | 5
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~ where g =p-i 6.

The third condition concerns the residues at the geometrical optics
poles and amounts to a restriction on the allowable zeros of H( S ). It
guarantees that the solution is finite for all angles a at which the plane wave
is incident, but is most conveniently formulated after an examination of the

perfectly conducting wedge.
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CHAPTER VIII

THE SOLUTION FOR INFINITE CONDUCTIVITY

When VL =0, T, . and ’Lz reduce to + i respectively and the difference
equation (47) collapses to
HE ) =H(g oo ). (59)
This represents the equation for a wedge of infinite conductivity and the solution
H( 5 ) = ho(j ), say, must give rise to the -Sommerfe}d expression for f(r, 6).
For large and small r the general behaviour of f(r, 6) is independent of the
- conductivity of the wedge and hence the conditions to be imposed on ho( é ) can be
deduced from Chapter VII. They are
(i) ho(; ) =ho<5 ezn” ),
(ii) ho( 5 ) is regular in Z s
(iii) ho( ‘5 ) ~u constant as \S \»Oo,
and (iv) ho( 5 ) has.one or more poles whose residues
serve to provide the geometrical optics field, With the exception of these poles,
h*o(j ) is regular in T/, < arg ¢ <3”/2 + 7.
There is also the condition

- ir
= e
ho( j ) ho ( j ) (60)
(see equation 58), but this satisfied automatically by a choice of ho(j ) in

accordance with the above.

The solutions of equation (59) are of the type

| Ty
h(g) = AL ) (61)
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where /\is a single-valued function of its argument, and this leads us to
propose the following expression for h( <)

= : (62)
ho( <) 1——’1—’—7_ = Iy

Q2
1-0%E
Ql, Q2, q1 and q2 are constants whose values have yet to be found and for this
purpose a knowledge of the incident field alone is sufficient. The expression
given by (62) certainly fulfills the conditions (ii) and (iii), and is of such a form
as to enable (iv) to be satisfied.

The constants will now be evaluated. From equations (53) and (62) we

have, when Vk =0,

ik:
P(r,0) = - 41 f e BV Q s 0 + Q
" A 1-e 9 em/z ur/z-V 1- eqze —in/z(n-/z-z
Q Q
+ 1 + 2 dv  (63)
in/ {x/ ~V-0) ’ - : \
1- e-'qil,em'/2 2 1-e2e in/, r/ 2 ™7 -9)

where n = 27/ ¢ . The poles of the integrand are at

= 4N 1 2 . s 2
Ry B B +0-2Im.q; Im.2=2% . q 6
Re <n Z) 76 -2 q V=2 Regq (64)
Reuv=<-1-§-— +=}=) #+60-2Im.q; Im.”/=2 Re.q ; (65)
n 2 - n 2 n 2

withN=0, +1, +2,..... and since the incident field is
° 'k
¢1(r3 o) = el r cos(0-a) 9 @)
it is clear that the poles must occur for real values of 2 , requiring that q1 and

q, be pure imaginary. The geometrical optics poles therefore lie on the realV/ axis

and will be 1',nc,],u,ded3ﬂg in a positive sense in any deformation of the path of integration

%
As yet the path is confined to the strip 0 £ Re.” < = and consequently only
poles on this part of the axis can be absorbed.
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into the lower half /plane.
The incident field (4) will be provided by poles of the form
V =+ (0~a) +2Mm, M=0,+1,+2, ...,
which coincide with the poles (64) of the first term in the integrand of (63) if

2 Im.q =2 (é§1=M+_l=\ T +0+ (6-0);
n 1 n 4)

the lower sign may be discounted since qjl is independent of 6.
Hence

Im.q =(2N-Mn+n)r+no
1 4 2

and the corresponding poles lie in the interval (0,) if
a-2Mr £ 6 a + 7 -2Mr.
Since 0< 0, a < 2x/n withn:1, the only admissible value of Mis M = 0. We

therefore take

q =in (z + a\, (66)
rozZ\Zz )
and if
Q =-n (67)
the resulting pole at 2/ = 6 - a has residue L elkr cos wﬂ)f With this choice

2xi
of Q1 and qﬂ the third term in (63) provides no contribution to the incident field through

the residue at its pole.
The illuminated region of geometrical optics is
0£ 6 {min (7+a, 2r/n) (68)
and that part of the range which has not yet been accounted for is covered by the fourth

term in (63). If the above process is repeated for this term, it is found that
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q2=i%(_§;_a) (69)
and

Q =n, (70)
2

The poles of the first and fourth terms in the integrand of (63) then yield the required

incident field over the entire range (68), whilst the second and third terms provide

the rest of the geometrical optics field ——————a fact which can easily be verified.
We thus have
F i(T -V+ 0 =n 1 - 1
2 in/y( v -8-a) -in/y( v - 6+a)
1-e 1-=-
(71)

and the corresponding function h ( g )is

h(€)=n { . : ) ™= J
AES L e ¢ 0/ | - g-in/alr/s+e) K n/s
/ (72)
n__inx/,
o £ e __ . (1)
n n/y e1nm‘/4 cos BT + o0/

272 g

This has the required properties and, in particular, satisfies the condition (60).

If any further poles had been included in the expression for hé( £ ) there would
have been residues additional to those of geometrical optics which would have violated
the condition upon the behaviour of eré, ) for large r. For this reason it is thought

that the conditions (i) - (iv) in conjunction with (60) are sufficient to determine a unique
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function ho( ¢ ). Obviously it would have been possible to arrange for the incident
field to be provided by the poles of the second and third terms in the integrand of
(63) and yet another approach would have been to impose the condition (60) at

the beginning, thereby relating Qz and qz with Q1 and qlo If desired the poles in
the whole range -7 £ Re.? < 7 could now be absorbed and the incident field

would then follow from the residue of the first term only. With both methods,
however, the final expression for hg({ 5 ) is identical to that of equation (72).

The main reason for giving a detailed derivation of hg(j ) is that this
function is part of the complete solution of the difference equation (47). Never-
theless; ho(( ) by itself does represent the solution appropriate to a perfectly
conducting wedge and whilst this problem is hardly one for which the present
method is well suited (for example, the method proposed in Ref. 5 is more simple

‘and straight-forwazrd), it is of interest to follow the solution through to its
conclusion.

The geometrical optics field produced by the function h,( 5 ) is of the

expected form and need not be discussed, but for the diffracted field we have

¢]) (£, 8) = 2 J emikr cosf i 1
T a Js(o) LB T [ pw-ora) dp
=ikr cos,
. j e g { 1 - ST g dg,
4 S00) 1 gem/z((B-w@Qwa) lweum/ 2(ptr=-0+&
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the terms of which can be combined in pairs to give

D n nr J -ikr cosf 1
P (r,0) =1 — sin — e
2 n ) - ny
4 S(0) cos J.;ﬂi cos >
1 dB (74)
cos n(i+6-a) - cos &

This is the well known Sommerfeld formula. Only in the particular casen =1
(half-plane) is the integral capable of exact evaluation, and for other values of n

it is necessary to use asymptotic methods assuming r large (see, for example,

Ref. 10). It should be noted, however, that if h/ 2 is an integer m, ’DD(r, 6) vanishes,
which cdnfirms that a wedge of angle'”/ m can be treated using a finite number of
plane waves. This is true even if the wedge is imperfectly conducting, the complete
solution being a set of plane waves whose directions can be obtained from image

considerations.
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CHAPTER IX

THE SOLUTION FOR FINITE CONDUCTIVITY:
GENERAL THEORY

The singularities of H(; ) which are necessary in order to produce
the required geometrical optics field are identical with those of ho(( 5 ) and
this suggests that some simplification can be achieved by writing
HiE )=n (g HiE) (15)
where Hl(j ) also satisfies (47). h@( &) is the function derived in Chapter
VIII and since this represents the solution for a wedge of infinite coenductivity,
the above separation implies that
Hjl(é )=1 as n-—0.
The conditions governing the choice of H1< § ) will be discussed in the
next chapter, and for the moment we note only the requirement that Hi( } ) be
‘regular in Z . Let h( } »¢) be a function which is regular in the larger sector
0« arg $ < 2% forall l /E, l Y 0 and which satisfies
(g +elnic = < ol g ¥ Ll (76)
where ¢ is some parameter. Then h( 3 el , ©) satisfies
(} 4o e V) h(} SO g(é ce” ¥ ) h(j e?¥ ¢)
and hence, by multiplication, h( j ,C)isa som’d;i@n of the difference equation
(540 (g0e™) bl g 0= g <) (g ce™) B¢ 6™ Lo
(1)

which is regular in 0 < arg £,¢ ' for all \5\ > 0,
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It is obvious that the problem of finding a suitable function Hz.( 5 )
is tantamount to the solution of two equations of the general form (77) and this
fact leads us to consider (76) in some detail.

The equation (76) is directly analogous to those obtained by Petars
(Refs 6, 11) and while it can be treated by reduction to an ordinary difference
equation, fhe more direct approach adopted by Peters is to be preferred.

If the ‘g plane is transformed using & = /™ and if the logarithms of
both sides of equation (76) are taken, the function

log { h( _5 90)} = E(u)

is seen to satisfy

_ 2iw = ul/n"c
E() - E(ue™") =log {:iﬁ_l__} s ('78)

+c
and a particular solution of this equation can be found in the following manner.
Let the initial point of a half-line X be the origin 0, the positive direction
along Z be that direction which is away from 0, with positive side on the left when
Z. is traversed in the positive direction and let L make an angle {1 with the real
axis of the complex u plane. Suppose that w(u) is a function regular in a region

containing L and such that

X(u) = —l / Wit g (79)
2xi i t=u ;

is regular in {2<argu < 2r+. . It is well known that if t_ is a point on L and
2imr

X(to), X(t,e ) are the limits of X(u) as u approaches t, from the positive and

negative sides of ZCrespe@tively, then

X(t ) = %_ wity) +P(t )
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and
2im 1
X(tye ) =- " w(to> +P((to)3
where P(to) is the principal value of the integral in (79) when ust . A
consequence of these formulae is that
2ir
X(to) - X(tce ) = w((to)g
and if this result is applied to (78) it is seen that the integral

@ 1/
1 1 log { t 10 ¢ 1 dt
2ri t-u Lti/n.;_c

o

represents a function which is regular in 0 ¢ arg u ( 27 and which satisfies
equation (78) at least when u approaches < from the positive side. In terms of

/{ | the integral is

a0 .
Hg)= 2 I log /0 -c | 4
2zl ) taﬁn d/n+c
0

© 3f
- 1 [(® gftfn-1 log {th } dt
nri J tzEnmcz

o
and hence, by making the substitution t%/n=c¢ £ /v,

NG e ( n-
pey - o (TS log | 1-(¢) | av
j ig! \:} v2 =52 L v 7

o

(80)

The function I 5 ) here defined is regular in 0 < arg {< Y'and exp { 1(5 )}
satisfies (78) at least when j =p =+ + 0, where p is real and positive. Still more
can be asserted. Since log { 1= ( %} n } —> 0 asv —a, I 3 ) can be analytically
continued into a region which contains (0, ¥ ) by moving the path of integration in
(80), and the process will now be examined.
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. n
With reference to equation (80) we first remark that % 1- %%—} } has a
+ i
branch point at the origin of the v plane and zeros at v = - celmr for all integer
m, each of these giving rise to a branch point of
n
- (£
log {1 (V) } (81)
In order to make (81) single-valued it is necessary to insert certain cuts into
the v plane and for convenience we choose radial cuts joining the origin to
+ im¢ , .
ve~-ce , the branch of the logarithm being defined as that for which
- £ arg log & =.
A valid representation of I<§ ) in the sector 0 ¢ arg j ¢ ¥ is provided
by equation (80). The path of integration is the half-ray from the origin making

an angle arg (c j ) with the positive real axis, and when a,rg} = ¥/, the integral

can be written as

1 mc'eif/z 1 n
- c
W5)= —p 3 v- & log {1_(’}7’) & dv
)
° n
s —L S L jog {1 9(2_) } dv (82)
27ri ) vV - =V
if /[,
-mce

If 0 £ arg ¢ ¢ = the integrals in equation (82) represent I( /Z; ) in the half-plane
argec + "“/ g =m £ arg } Large + {/ 9, since they define a function which is regular
in this region and which coincides with I( 5 ) when arg ; = ¥ /2
The analytic continuation of I( 5 ) can be achieved as follows. If C is
an arc of a circle of (large) radius R with centre at the origin in the v plane
1i ' 8
R o J_glww log {Ia(ac%) } dv = 0.
ev- 5 v
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Moreover, forargc+ 1/, -7 < arg § < arge+ /3,

PN
v R

has no singularities in the sector arg ¢ + \\/2 < arg}  argc+ ¥,

and hence, if C is any ray in this sector, i/,
ce
C jo
and

Hg)= —* g —4 log \1 "9 T w
C

n
s 1 1 log {1 - (=) v (83)
Zm g-oo ce! ¥/a v "3 («-v }

for arg c + 2?/2 -7 < arg_f < arge+ ¥/, These last integrals, however,

define a function of j which is regular inargc+ ¥/, -7 < arg j < arge+ &
and which coincides with I(j ) when arg ¢ + 6\/2 -7 < argj ¢ argc+ Y/s
Since analytic continuation is unique, it can be concluded that I( j ) is regular in
argc + 1(\/2 -7 <argj < arge+ ¥,

In a similar manner we can shift the path in the second integral of (83)
and so find that I(//é. ) is regular in arg ¢ - < arg § < arge+ e ifj is in
this sector

I(j)= e 5 - log {1_ (_&Anl dv

27i C v=,§ L S

* 211}1 J{D vig log{I- (%»)n} dv. (84)

—

This process of rotating the paths of integration can be repeated, but care must

be takenr about the Jictribution of the singularities of the integrands. #ci example,
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(81) is singular at v=0, v=ce1mx\ and if C is rotated in an anticlockwise direction
the effect of the singularity at ée“ must be considered. If 01 is a ray in the
sector arg ¢ +¥ < argj <argc+2¥ andif argc =7 ¢ args cargc+ Y,

b ]

C C r
1

then

where [ is a loop path which circumscribes in a clockwise sense the branch cut

from ce ' to the origin. The integral along[" is

1 n i¢
J;‘—’VT logil-@‘%) } dv = - 27i log < ’-jce )

and hence, for the sector argc -x £ arg §< arg ¢ + 2% ,

it
10§ ) = -log (jz;_cil)+ 1 J 1 10g {1-«5;)n} dv. (85)

27i V =

» n
+ 1 S 1 log{l-(_g-)} dv
2ri v

n S

where the integrals represents regular functions in this sector.

By vrepea,ted use of this method the path 01 can be moved into a path C'
along the line argv = argc + eo(say) and D can be moved into a path D' along
argv =argc+ 90 - 2w. If these two integrals do not now cancel, C' and D'
must then form the opposite banks of a brangh cut, and in the sector
argc + 90 - 2w ¢ arg S argc+ 90 ( which is to be regarded as a sheet of _

a Riemann surface), the function I( j ) has logarithmic singularities only; with
the exception of the one at the origin, these are situated on the circumference

of a circle whose radius is| ¢/ with centre at the origin.

38



THE UNIVERSITY OF MICHIGAN
2591-2-T

The above representations may be used (see Ref. 6) to verify that

exp {I(j )} =h({ ,c) (86)
satisfies equation (76) and we can therefore write
® cf e B
= 1 - =
h(j ,C) = exp [ - jo vgsz log [1 () } dv], (87
For small | $ |, |
h( £ o) rv € n/, (88)

and if the branch point at j =0 is excluded, the only singularities of h( j ,C) are
poles outside and on the boundary of the sector arg ¢ -7 { arg 5 g argec+ ¥ ;in
the interior of the sector h( j ,C) is regular and moreover, free of zeros.
Although these results have been obtained for the case in which
0 < arg ¢ < 7, other values of arg c can be treated in a similar manner. For
- example, if -r < arg ¢ < 0 it is still true that (87) satisfies equation (76) and is a
regular zero-free function in arg ¢ ¢ axESf ¢frarge +m, ] _§ , >0, Outside this
sector, however, the behaviour is in direct contrast to that of h( 5 ,c) for
argc > 0, For small | j | it behaves as | é _n/ 2 and this branch point is the only
singularity, the points which were poles of h( -5< ,¢) for arg ¢ > 0 now being zeros.
These facts are obvious when it is realized that the corresponding solution of
equation (76) for argc < 0 is {h(( 5 »ceiﬁ)} ”13 where h( 5 ,C) is given by
equation (87).
The apparent discontinuity in the solution when Im. ¢ changes sign can be

traced back to the derivation of equation (80) in which it was assumed that the line

Z. lies ina region of the u plane where

i/n -
log L ¢
ui/n+ec
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is regular., Since i has been taken to be the positive real axis the condition is
violated when ¢ is real and though such values can be taken account of by a deformatio
of the path g , it is more convenient to exclude them from our consideration. I
necessary, real values of ¢ can always be treated as a limiting case.

The expressioh of h(_ § ,C) given by equation (87) is merely a particular
solution of (76), but is sufficient to enable us to determine a function H(. S ) in
accordance with the required conditions. For this purpose ¢ must be identified
successively with ’(;1 and "czg where
v E N+i 1-1n 2

and

)
0

1/ S g'\"i \/1_ "kz
1

The branch of|1 - v’k ‘ can be chosen arbitrarily and taking that with positive sign
\

2

. x
we have, since 0 < argy] & /4.9
\

Tl4 (arg T, < Ti2and /2 < arg T < /4
2

with (@1[ >1 and|f@2j £1;

the moduli equal unity when v\ is real, corresponding to a pure dielectric wedge.

Sinee]/l) > 1, the circle on which the main singularities of h(} , T)lie

1 1

‘:\—“‘V

intersects the region ” and the assumption of regularity in Z dictates the choice
of function. On the other hand, the corresponding circle for h( 5 s C 2) is every-
where outsideZ and the regularity condition in this case would have no effect,
notwithstanding the fact that the 'singularities’ are zeros and h( j A 2) is regular
forall § , \53 >0,
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CHAPTER X

THE CHOSEN FUNCTIONH ( % )
-1
The conditions upon the function H ( 5 ) can be deduced from Chapter
, _
VII and are

(i) H1< _§ ) satisfies the difference equation

—~ =i it
(£ +T e ) (g+T e N (§+T ) (E+T ) H(S)

-y A 2if
P 1 : T . (89
(5 Lle (¢ (Jze Mj ’Cl)((_g Lz)}ll(_ée ). (89)
(ii) HI(S ) is regular in Z 2 0 <arg_é< X \5\ >1,
(iii) In -r/2 < arg § < 3z/2 +X Hx( € ) has, at most, only such singularities

as are cancelled out by ho((j ). Since ho(_g )is proportional to j n_ elmr/ 2

(equation 73), the only allowable singularities of Hl( _§ ) are those arising

from a pole factor ( k: n einﬁ/ 2) -1 .

(iv) In order for the residue at the geometrical cptics pole 3 = gl +ato
produce the required incident field (4), it is necessary for H1< 5 ) to
have the value unity at this point for alle, 0 £ o < ¥' . This can be

ei((m’/ 2—!-01)] } -1

achieved by normalising with the factor { I—I1 [ and if
this is to be finite for all « in the range, H1< ¢ ) must be free of zeros

inw/y ¢ arg g < Tfa+ ¥ .

(v) Hl(s ) ~ constant as | €|~
(vi) Hl(ﬁ )>1as v\eoo

(¢ -T) (2 -T,)
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In seeking to derive a function Hn( 5 ) in accordance with these
conditions we first observe that to multiply a solution of the difference equation
by either Sn - tnn or jn - T’zn does not affect the satisfaction of the equation
but does change the location of the singulafitiesg This fact is most important
and is made use of in the following way.

In Chapter IX it was shown that equation (89) could be split up into two
equations of the form (76) which can be solved in a relatively simple manner to
yield a function h( ; ,8) regularin 0 < arg &« ¢ for all €1 > 0 and whose
reciprdcal is also regular in this region. When c = ’L)l the sector of regularity
is O 1< arg ¢ <3S+ ¢ s {vhereﬂ‘/4 < 8 =arg U 1é %[y, and is bounded
by poles at§ = T g-lr-img §=7 1 llm#1)¥ 20 1 2,.... Byit-
self this function certainly contributes to the solution of (89), but whilst the 'region
of regularity is m§re than sufficient to satisfy (ii), it is not in agreement with
condition (iii). However, the interfering singularities can be annulled by multiply-
ing the function by 5 n . 'Cln without affecting the sétisfaction‘of the difference
equation and the regularity is now in accordance with the conditions (ii) and (iii).

When c= T ’ the situation is somewhat different in that the bounding
'singularities' are here zeros, which allows h( € , T 2) to be used by itself. Hence,

consider
n n
-T h 0] 9,‘ °
((’g ('1»(5 ,En)h(é_b)

2

This reduces to 3 . emw/ 2 when VL%* 0, and to comply with the limit condition
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inw/,

(vi) it is necessary todivide by jn -e , a process which is permissible

in view of the identical factor contained in ho( 3 ). The new solution is now

n n
S B A
J(é ) = 3 n - einﬂ?; h«é s U 1) h((é s C 2) (90)
n
Dot . ‘5\00 . { 1/n o 1/n “’C)\

= exp |——s—— log t 1 t 5 |} dt

g 2l togn (W(g/wt

1 2

which clearly satisfies conditions (i) - (iii). Since h( _§ ,T l)) is entirely free of
zeros and h( 3 > T )is free in - S { arg _§ < T - S+ ¢ , the condition (iv) can
2
be satisfied (but only by the smallest possible margin) by using the constant normalising

factor J [ ei(ﬂ/ 2+a)] » and this gives

H( § ) = JCS ) , (91)
1 3 [ei(zr/ 2+a)]
which represents the required solution of the difference equation (89).
For large | E S log { J( 5)} ~s constant (see Ref. 6) and hence

Hl(g ) ~v constant as \5\ - 00,
Since the condition (vi) is obviously complied with, there now remains only the condition
{(vii) and it is shown in the Appendix that this also is satisfied. The analysis given there
strongly suggests that (vii) is vital for the unique specification of Hl(( §). Ifany
factor additional to those of equations (90) and (91) were to be included in the expression

for H1(3 ) it would have to transform into itself when € eei“/g ; if, then, it were to
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appear in the denominator of Hn(( j ) its own singularities would conflict with
condition (iii) and if it appeared in the numerator the normalising factor demanded
by condition (vi) would violate (iv).

For this reason it is believed that the conditions (i) - (vii) are not only
essential, but also enable Hl(( _§ ) to be uniquely determined. Whether or not this
is true, they have certainly led to the true solution of the present, quite general,
problem. With the exception of (vii) all the conditions have a physical origin
and whilst it has not been possible to attach d direct meaningful interpretation to
(vii), it is obviously necessary for the reduction of the solution in the manner
described in Chapter VI.

The final check upon the determination of H( 5 ) and, indeed, upon the
method as a whole, must come from an examination of the resulting expression

for  (r,6). From equations (73), (75), (90) and (91) we have

e

-

n
. in/alv -0)_ fey e /s~ +6)] & i ei(ﬁ/g‘*ﬂl)l%
cos n-—(l:i) - COS —ng-— ‘

‘ T - = 0
F [i( 5 7/+_0>] 5

2
exp[__l_ [ . o Mtl/n -1, \ ( t’l/n. ",Cﬁgz__,th
2ni t - N/ 27VH6) elimyq, /Nl g,
[#] &
(92)

and the expression for f (r,6) then is

f(r,0) = - L y eikrcosv F [i (T -v+0) } dv
4r 2

L

. J Jkr cos v N +sin(V+6) [i (X -v-0]4
4z W - sin(++6) 2 J
L
| (93)
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where L is the path shown in Figure 1. It is now a simple matter to verify that
the boundary conditions (5) and (8) are fulfilied.

For small values of § we make the substitutions .= 7 -8 in the first
integral of equation (93). This eliminates 6 from F and displaces the path an
amount 0 to the left, but since the integral is fr’eesge of singularities in the
intervening region, the path can be shifted back to its original position.

With the second integral in (93) the corresponding substitution ispt-=7 + 8

and hence »
B, 6) = - _3_ f [ eikr‘ cos( u +6) . #ﬂ# olkr cos(p~) F [i(% QMB dj
4r L V( - 8in M

which can be inserted into the b@undary condition on the lower face, 8=0, of the
wedge togive
d ¢ - ikV\ rf =0
o0
as required.
When ¥ -6 is small the appropriate substitutions in equation (93) ave

M=V H  -6), leading to an expression for f(r, 6) in the form

Bir,0) = - —L— J { lkr cos(p-1) o [i«g o )4
4 ;
L
_ N tsin(p+¥) kT cos(pm -4Y) o HE cpw-v) |1d (94)
n - sin(p+ ') 2 1o |

This can be written alternatively as

dir,0) = -—L J { Jkreos(ju+6-8) p -sinm ike cos(pm -G+ 1)
4x L ] N +sinm
FM%V&N” dpn

_
The fact that 6 can be made as small as we please ensures that no geometrical
optics poles are included.
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by using the difference equation (40) for F(s), and when 6= ¥ we now have

._g.aé@.__ +iknrf=0
in accordance with the boundary condition on the upper face of the wedge.

| The only remaining conditions are for large and small r. For large v
the radiation condition is satisfied by the solution for infinite conductivity and
consequently, by virtue of the decomposition of H( € ), for all conductivitieé.
And similarly with the edge condition. Since all the requirements are met, .the
uniqueness theorem for electromagnetic problems enables us to conclude that

the solution which has been obtained is, indeed, the true and correct solution

of the problem formulated in Chapter IIIi.

46



THE UNIVERSITY OF MICHIGAN
2591-2-T

CHAPTER X1

SOME ELEMENTARY EXAMPLES

The degree of complication of the final expression for f(r, 6) is
determined by the form of H ( é ) and it is of interest, therefore, to consider
i
Hl(} ) for certain particular values of wedge angle.

From equation (90) we have

®
i/n
h(§ ,e) =exp[ 1 S 1 log { t -C ] dt]
$ 27i A t-¢ n t1/n 3¢
and hence n-1 /
i/n
>

(0.0)
Y { il 2 E o { e )

2 » o

.=_ n [gé_l_tl_ log ( tl/nf-..-,c ]J Lm

2ri
n-1 i/n -1
ct /

t '-5 n tz/ n_ (32
© n-1 n -1
n_ o, 1 S £ ot ¢ (95)

t-jn tz/n -c

dt

u
i+

0

with the upper or lower sign according as arg ¢ 2 0 respectively.

If ¥ is of the form pW/q (that is, n = 2q/p> where p, q are integers > 1,
the integral is capable of considerable reduction and, in some instances, of complete
expression in terms of trigonometrical factors. The simplest cases are those for
which p=1 and whilst the analysis is then superfluous in that f(r, ) reduces to the
geometrical optics field alone (see Chapter VIII) and is independent of h(j »C),
some trivial examples can be quoted.
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Thus, for q =1 we have ¥' =7 and

_ £ £
W5, T) s g . ME.T)- -5-5—2—

giving

J(5)=(}-/C1) (5"02)
§2+1

Similarly, when ¥ /2 (q=2)
IE) = (§-T) (5 -T,) (5+iT) (£+1iT))
4 -1
and when [ =1r/3 (q = 3), S
| ~ -ir/3 L o .
X ) _ (8-T) (£ -Ty) (£-Tpe JEN (€ -T,077/3 (¢ 7., 2ir/3, 7,0

6
< +1
The generalisation to a wedge of any angle w/ q is now obvious, and it can easily be

verified that all these functions satisfy the conditions (i) - (vii) of Chapter X.
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CHAPTER XTI

THE HALF-PLANE

When p # 1 the solution becomes more complicated and this can be
illustrated by taking the simplest wedge of this type, namely, the haif»plane, for
whichp=2and q =1.

For n =1 equation (95) becomes

2 liogn(s,a} =+ —L1- 4+ L 5 1 ©_  at
B gog (j ’Q‘\S -2 7l / twj 12 . o2
| + 1 K 1 {]pg(tmj ) a-log(tmc)aé
2 5 27 j -G
] ®
- T { log(t- € ) - log(t+c>} }o
1 ( 1 1\, 1 1 1
= 4 -
+ 1 (log ¢ - log £ ) ( 1 - 1 )
- 27 j -C j + o
giving €
log h(§ ,c) = j‘ - log h( »C) d
=+ -1 log S log $ =€+ 1 log ¢ log =~5..7%.
2 j -C 2 j +c 27i £+
- L lggleg £ 4 _1I jmgﬁ log €& ¢ dx
2mi $ e 2wl o e 4o

where the lower limit of integration was chosen in view of the known behavicur

of h( § ,¢) for large | €| . Hence

g0 (j_‘gjc)ﬂ/z | (i ;z)i/z. %;;%> E%r(}@g@mmg_ﬂ

log 53 > S
27i e” +c |
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with the upper or lower sign for arg c >< 0 respectively, and from this we obtain

' 1
J(_S)= {(_§—'C1)r(_§ -T,z)} 1/2 { (S "'T‘l) . +’t2)—l poen) log 11

§-1i (£+T)(5-T»y | (96)
~ ~ g log «
{ (§ +Ly)(§ +"‘2)rm exp [ 1 j jlog (e =% ) (ex _Tg)}
(§ -T,) (£ -Tp) 2ri \ X \ X

o e+ " et 4T,

log( £ el™)

The pole at 5 =i is cancelled out by the corresponding zero of ho( ‘5 ) and if this point is

excluded the behaviour of J( ‘g ) is as follows:

argj = §a: pole 'args = - &42r : Rand N-Z
-&: zero $+2r : Rand N-Z

§: zero - &43r : zero

-&4r : Rand N-Z 1y +3r : zero

" S4r : RandN-Z Y HMr : pole

where g =arg U . and 'R and N-Z' means 'regular and non-zero'. Thus, with the
exception of the pole at _S =i, J( j ) is regular in S -1 & arg j £ - 5 + 47, thereby
satisfying conditions (ii) and (iii) of Chapter X, and since it is also free of zeros
ind< arg £<- § +2x, which region includes (r/3, 7/3+ Y ), condition (i) is fulfilled.
It is no more difficult to show that the remaining conditions are satisfied.
The particular case of an imperfectly conducting half-plane can he treated by
the Wiener~Hopf téchniqe»(Ref. 12) and the svolutiorlx can be used to provide a check
on the present method. For this purpose it is necessary to work through to the final

expression for {(r, ).
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The function HiS ) is given in terms of J( 5 ) by equation (91) and since

h(§)s= g -i .
O'E j-l(ij)% cos Z +i

2

equation 73), we have
1 log T

(5)={1 1 S | TS T is W] /e {,‘;5 -Ty) ¢ §+tz>}z?r '
S-20¢) Poosd i L(E+T) (£-Td

{ (§ +'Clz)_(§ +.’C2)~lzili— log( § o™ exp[: 1 j\logj log {( et - T,y )(ex - E&ﬂ dx]

€ 15T o SRR
Vi (97)
iving
. y . -1
e [y vee)] -- [Za S {a[JR)]
| ] - 1)
-2 Vo2 cos % - cos —,
| S
M _-sin(? -6) V1-n? -cos (-6 }27“- Og'Bl
i Vt + sin(v -6) } Y /1 - Ykz + cos (V-9)
(7 - v -6) |
{ §_+sin(y - 6) YoV Oan) o 1 "/, log < reos 3 ) d"}
V\ - sin (V -6) 2 W teos x
' 0
(98)

\n expression for the total field now follows by inserting this result into equation (55).
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If 7 is replaced by = + B, equation (98) becomes

-1
[T 3ir/4 i(x/y+a) . 1/2
F [i (- _._7; -B+ 0)] = - _._1_._7-; e (J [e/2 ﬂ {vk+ sin (3—6)}

cos a_+sin -0
2

1 10gT, -
vl' h2+cos (8-6) ~\ - og 1{ v\ + sin (8-0) -} 3/4 +(B-8)/ (21
’ 1- W2 - cos (B-6) V\ - sin (B-6)

_ x/2-(B-6)
L1 + \
exp j log ( \4\ coS X , dxl
LZ‘K W -cosx /
)
3ir/4 i(w/g+a), -1
= .1‘ f’h e {ale ) :S _!k_tam_(ﬁzﬂl.._ L(-B+6),
2 VL cos a + sin -6 sin B-9 |
| 2 2 2
say, where sin B 1/4 - B/QW)
L@ = ﬂ y V L rcos g P ( - sing
rk+smB 2 jl-y\-cosBJ V\-l-sinB
/2B
exp | —1 J\ log (_‘ﬂc_*'_‘lo_s_?f.) dx:} . (99)
» 27 W -cos x
o
Also
| 3i +
. [i(_:?l. . Be8) ] Y @1 . ir/4 1(11‘/2 a) } - sinB-0) . 1o
2 2 yl _ cos _o_z -sin 8-0 \Sin -0
2 2 2
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and hence, from (55), the diffracted field is given by

be (.0 = - 1 \/?1 eSizr/ 4 j L(:-B-FO) h\ + sin (3~0)
8 1 J [el(”/ 2% )] cos 2 +ginBo
$(0) 2 2
-ikr cos B
- n\' - 8in (B'G> —\ e dB
cos & = gin @;—_6_ sin 6—;9—

| 2 os%0s B ke cos(s-
‘ 1= Zecos -ikr cos(B-6)
B
27 J [e]‘(ﬁz""a)] cos a + cos BB
. S(6)
(100}

The geometrical optics terms are of the expected form and need not be considered.
Equati.on (100) is identical to the solution obtained by the Wiener-Hopf method
(Ref. 12) and this fact provides striking confirmation of the present theory. Indeed,

L(B) is merely the 'split’ function {L_,_(k. cos B) } -1 introduced in that paper, with

=} 4
o 171!'/ J[ ei<ﬂ/2"'a>]

JTin

equal to the complementary function { L (-k cos a) ‘k -1 .
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CHAPTER XIII

4 3r
WEDGES OF ANGLE " /2 AND 2"/3

There is obviously no limit to the number of examples that could be
worked out and for each wedge angle the solution can be exprected to reveal some
new features. However, to illustrate the general nature of the results it is
sufficient to consider particular wedge angles, and the two that have been

3
selected are ¥ = ”/ 2 andY¥ = 2‘mﬂ/ 3.
3r 4
When {' = /2 (n="/3) the integral expression for h( § ,c) can be evaluated

completely to give
§4/3 _ cj] 4/3 e 411{/3

(£ +TH(§+ 1T

h(j ,TJ ﬂ) =

and

(€ T € 4Ty

j4/3 - 4/3eam/3
2

L

h( € ,Ta) =

from which we obtain
3 = ' ‘ (§ -Tu(§ -Ta(g -iTy (g ~T3) . (101)
| (j 4/3 _ , 2in/3, (4 4/3 _ T‘n 4/3 , 2ir/3 (g 4/3 "T'z 4/3 2in/3)

With the exception of the poles provided by the first factor in the denominator (and
fhese are cancelled out by the corresponding zeros of h, ((.5 s J(j ) is regular in
o+ < a,rgj 4 7”/2 -6 , and since it is also free of zeros in 5<arg_§ < 5”/2 S,
the conditions (ii), (iii) and (iv) of Chapter X are satisfied.

Moréoverg from equation (73),

4f3 _ . 2ir/3

h(g)= = £
= 3 54/3_253/3 ei”/s

20 2i/3
cos 3 +e
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1d hence

. -1
L L2011 " (¢ )5 Ty -iTY (s -iTy

() = =
3 4/3 i . : :
_S /._2$2/3 e11r/3 cos %g_ +ev2,11r/3) (34/3 _,614/3 e.2175"/3) (3 4/3"54/3921”/3)

(¢ \

here
J [ei(‘zr/z-l-a)] = . AW +sinei(h ~cosa)
| m 22 (cos 42 -1m)
Sin 3 coSs ——3-—’
ith
4/3 4/3
T = ._..]:._ ((Cl +’t2 >a
2
iving
F [i( T -V+e)] - L~ sintv-0f{n-cos (v -0)}
: ] (Vk-l-sina) (Vk-cosa)
{ cos %ﬁ -T) sin ;%g

icosgé(v =0) ~T:H cos %_ (v-6) - cos %{

If this is inserted into (55), the eqﬁation for the diffracted field can be reduced

) the form
20 2 1
D 2 —=- COS -
(r,0) = 1 f N -sinfB h +cosB (2 cos 3 ’3& t o )
J3ri V‘L-Fsina vlk‘-_vcosa cos 4 (x-p)-T
S(6) 3
(cos Ao T) sin %‘l‘_ sin %

{eos%(w-ﬁ-B)-T} {cos -;;—‘(a-ﬁ)}-cos —i—“—} {eos 35_. (7r+B)-cos5—g-}

e-ikr cos (B-9) a8 (102)
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It will be observed that the integrand is composed entirely of trigonometrical
factors and as a result the solution is not very much more complicated than that

for the corresponding perfectly conducting wedge.
When {'=27/3 (n =3), the evaluation of h(£ ,¢) is more tedious and

ultimately leads to the following expression for J( _§ )s

» 2iw3 i -~ Air/3 11
ya (£-TOE =Ty [(€, eZiztr/3M!g e ir M_g 4:173’/3)(3 e in/ )\/2
33+i «S +’C1) (5 +€2) J
: . S1/2xi lo
3¢ 47T, ~
& (£ mlez”‘” WE +To2 ™ 3 € 2, By e et 3»} /8 {«j 20
2 ~ 2ir/3 . . 4ix/3 . 4] .
(} 11!’/ Lze 2ir/ ) 5 +'ble x/ ) j +bze4m/ 3> (g “"’C’l ) (5 y 'Cz)
3 3 3 ~3-1/(2m)1 , "
(e° e’ 1) [(2xi) g £ oxp . Slogg log ,3%x _T,3 x _T,3 \’g .
3 38 3 .8 2mi 2 3x 3 SX’C” i
(s T Ng -T,) ¢ *Y 3

3 ~1 _
With the exception of the poles arising from the factor ( 5 +i) , I( 5 ) is regular
in § - < argj < 8r/3 - 5 and is free of zeros in g<arg§ < 57/3 - S,

Also
o(i) = 3 +1i
,3/2 317r/4 3a

g3 cos 5 -i

and hence
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3/2 )
[i (3 -V +9) ]’:6 i { J [ei("/2+a)] ] 'y —sim(V-0)
1 -\

3 3
cos > « cosz (7 ~6)

| §_V_\(_ sin( Y -6+ 2.1r/3)} § Y) -gin{ < -6- 27r/3)}] /2 h +gin(V -6+ 21/3)% ih\—sin(‘V-G 2#/3)}} ¥e
 + sin (¥ ) {v\ - sin( Y -6+ zﬂ/s){{vvsm( Y -6- 27/3)}

/1 02 -cos( -6)§ §/1-1 2 -cos(w-6+2r/3) ¢ { /1-1 - cos(v -6- 2n/3) } logs,
/ 1- T2 +cos(2 -0)] {/1- W7 +cos(V o+ 2m/9)] {/1- v\’ + cos(V/ -6- 2/3)}

N tsin(v -0 § Y _+sin( -6+ 21/3) 1§ n_+sin( ¥-6- z,r/s)f
M -sin(@ -0 § ] W -sin( Y-+ 2r/3)] § Vk - sin( V-6- 21/3) }

7!'/2 -(7-9) \
> |1 5‘ log (n-cosx\ }\-cosx+21r/3) ( 14 -cosx-21r/3)} dx
27 W +cos x | vt+cosx+21r/3 VQ + 008 x + 27/3

(o]
- Lvl-sin(v 0% § v. -sin( -e+z7r/3)'f $ W _-sin( ¥ -6- zﬂ/3} T(- VY+r+6)

cos 3 ('V -6) ﬂ cos:—z3 o - cos \3._(7, -0) 'g 3 ['ei(ar/z‘+a)]

] IL/4 ~(7 -6) /(2q)
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say, where

.3
3/2 sin 5 B

i— n+aing} v -s1n(l3+21r/33)§ {‘C,-—s.in(B-Z?rﬁ)]g ;%

[

T(B)= -6i7;

- ) y
L in+sinB-27B) v -sin(B+2x)! Fﬁ s
) - |

| §Y-siniB-228)} |n+sinBrand)} |

1 [~z ) 177%? log Z7
) ,1 rﬁ +c@sB§ 1/1-\’? +cos(B+27/3)} { ‘\/1 N +cos(B-2m/3)]

i(’\}—ln ‘-co)sB} lf\,!1~72 —c@s(Bﬁ-ZW/SE { A1 ~ —cos(BanZ?r/S)}

- Bli2x)

e

—-smB {W—sm(B-i-Zvr/B)g } -sin{B-2m/3)}

|
M"“Slﬂﬁf M+sm<3+2m/3»?) ?0+sm(ﬁ-nzﬁ/3»4~'

.

72-B |
Y) ) / ’ ) g \ '/ =
exp 1 J log\ /M +cos x\ f+c@sx+27r/3\ N +cos x 21;{3 i

. l
' \-cosx) \1-cosx-27f3. {1-cosx ~27r/3 /

s S

—-—

With this definition of T(B),

[ 1(1r/2-|-a):l - {n+sine} {n+sinler2ad)t / r3+sin<a_3ﬂ/3>i) Tiria)
sin 3 a
F .i (i"l’; - B+e) . ‘Sm(ﬁ"‘”% n-siniB-o+2a31; ;/k-"sm<(3~9-21r/3)i T(6-f)
L 2 Sln—- (B-6) SGOS 3 a+ sin = (B 6) ( 1(7"/2"'“) |
2 2 2 ) L
F |i (- T _B+ 9) = | N+sin(8- 9)5 Zﬂ+sm((B-6+27r/3)c } Nt+sin(B- g_uzgr/:g)g T(6-B)
: r
- - sin > 3 (-6) {c@s % a-sin 3 <B-=0)j J ':Lei(”/z +aﬂ
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and if these are inserted into equation (55) we obtain

2 3 3
P 4y -3) - 2co8 > (8-0) . y
P, = - [ntan cosgacos g 6O pog -ikroosd g

S(0) cos 3(B-6) + cos 3 & J Eei(ﬂ/ 2 +a)_]

2
5 ? { '\’L_(4'Q -3) - 2 cos .g_a‘cos_g’_ (B-O)}

8ri {m + sin o } { N + sin(a+27r/ 3)} { n + sin(a-27/ 3;}-{

S(0)

sin 3 & T (6-8) o ~lkr cos B ds.
cos 3 (B-0) + cos 3 a T (z +d)

A final substitution of 8 in place of 6-8 then gives an expression for the scattered

field in the form v

2 4
v by vi o =3) - 3 3
¢D(r,9) = 3 J {m 4 -3) -2 COSny @ COS 3 ‘B}

8ri

) , \ 1 . L
S(6) \3 N+ sin ar {v\} sin{ + 27/3) } { . + sinla - 27/3) |

(104)

sin 3 & T(B) o-ikr cos(B-6) dB .
cos 38 + cos 3a T(r +2)

The fact that H1(§ ) is more complicated for ;" = 2x/3 than for ' = 3r/2 has
led to a more involved solution and, indeed, equations (103) and (104) are typical of

those wedge angles for which the expression for h( j( , ¢) is capable of any reduction.
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The function T(B) contains an irreducible integral which can be split up into a product

of separate integrals of the type

W = cos x

y
S 10g< [l + cos X \) dx (105)
0

and this seems to be true of most values of n of the form 2q/p, where p and q are
integers. And only foch these n is it possible to simplify h( 5 ,¢) at all, |

Many wedges of angle Y' = Im/ q have been examined and for all of them h( j »C)
can be written as a product_of linear factors or as a product of such factors with
integrals of the form (105). This suggests that if (105) were to be evaluated numerically
for 0<y £ w it would cover all wedges of homogeneous refractive index 1/ n and angle -
lm/ q, and would enable the appropriate h((j ,C) to be calculated in a relatively straight-

forward manner.
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CHAPTER XIV

SOME RAMIFICATIONS

- In the preceding chapters a method has been developed for the exact solution
of second order differential equations of the form (7) under boundary conditions imposed
on radial surfaces. The method has been illustrated by application to the two-dimensional
problem of a plane electromagnetic wave diffracted by a metallic wedge, but differential
equations other than (7) can be treated, as can boundary conditions more complex than (5)
and (6). Indeed, it is obvious that boundary conditions containing derivatives of higher
order than the first can be treated in a similar manner.

Our main interest is centred on the electromagnetic problem and whilst only an
H-polarized incident plane wave has been considered, it should be emphasized that the
method can be applied to more general types of incident field.

Thus, for an E-polarized plane wave having E; given by equation (4), the boundary
conditions (5) and (6) are replaced by

Bo-1(*q) ro=0 (106)
for 6=O and

P+ iQ(/YOr p=0 (107)
for = Y , respectively. If, then, the difference equation is retained in its original form,
the parameters T’i and , must be interpreted as

lﬂ<1+ \m) and%((l- 1-&)
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and the formulae for H( ~§ ) and f (r, 6) now differ from those for H-polarization in
having llvk inplé,ce of -

This result agrees with that found for an imperfectly conducting half-plane
(Ref. 12) and is an important advantage attached to a (mathematically) exact solution
of the boundary-value problem. In particular, it enables the solution for one
polarization to be deduced from that for the dther (and opposite) polarization by means
of the transformation

YE-ZH, H—~-E W-1/v »

a duality which is a direct consequence of the impedance-type boundary conditions and
which corresponds to the invariance of Maxwell's equations under the transformation
YE~ZH, H —-E.

If the plane wave is incident at an oblique angle the problem is no longer two-
dimensional, but the solution can be found from the above in the manner described
in Ref, 13. By regarding inodified forms of the two-dimensional solutions as single~-
component Hertz vectors, two fundamental fields are obtained which can be used to
determine the solution for a general_three-dimensional plane wave, and hence the solu-
tion for any incident plane wave ean be deduced from that given in Chapter X by peﬁorxﬁjng
only simple transformations.

For an incident field produced by either anelectric or magnetic line source

parallel to the apex of the wedge, the solution can be derived by integrating the
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corresponding plane wave solution with respect to its angle of incidence o.
If the incident field is that of a ﬁoint source the analogous technique is to integrate
the appropriate three-dimensional plane wave solution with respect to the
component angles of incidence, and this method was used in Ref. 12 to determine
thé field diffracted by a perfectly conducting half-plane when excited by a dipole.
Finally there is the generalization to the case of a partially inhomogeneous
wedge. If thé two faces are composed of different materials having unequal
refractive indices, the method can still be used althéugh the simplification to
the difference equation represented by equation {76) no longer holds.
To conclﬁde this chapter we shall examine briefly the solutions which
have been obtained for particular wedge angles. In Chapter I reference was
made to the dangers involved in attempting an approximate solution by assuming

a series expansion in powers of (E and for a half-plane the expansion of L(B) gives

L(B) = v\1/2 &1» ~N ( 1-_4w_w >+0<V\z”

sin B

(see equation 99). For large V\f, however,

L{B) = / Zsin“g= [1 - _IVC {sinB (1==‘f£’=> - ‘?:TeosB(IHQgZ m)} +0(=1-@) }
and the correspondence between the two polarizations now shows that a series
expansion is not valid for E-polarization owing to the term in log Y(

For a wedge of angle BW/ g it is obvious that a series expansion is always
possible (see equation 102), and this, surprisingly enough, is true also for ¥' = 27[/ 3
(equation 104). No attempt has been made to expand the solution for arbitrary wedge
angle, .but it seems unlikely thatthe term in log vkis peculiar to the solution for a

half-plane.
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CHAPTER XV

CONCLUSIONS

As developed in this paper the method is, in many respects, similar
to that of Wiener and Hopf, of which it may be regarded as an extension; the
use of different transformations,» however, makes difficult any detailed compar-
ison between the two.

The crux of the Weiner-Hopf technique is the. splitting of a function into
two parts with overlapping regions of regularity (see, for example, Ref. 14)
and as applied to the problem of an H-polarized plane wave incident on a metallic

sheet the task is the determination of a function L +{ J ) such that

+ k

L+«j) L-l-(_}) = Tm——

where L _,_(j ) is regular in the upper half-plane of the Fourier transform

?

variable)’{ . By treating the_}f plane as a Riemann surface, the above equation

can be written as

f_*;_(;g_i__ . ky + V2 -33 (108)
L+(j em% kv\ JP

which is, to all intents and purposes, a difference equation for L, _'_(}' ). The

equation has a “periqdicity” 27, equal to the open angle of the %redge’, and givés

the value of the function at the point_‘f in terms of its value at the corresponding
point on a lower sheet of the Riemann sur_faeeg Moreover, the right-hand side of
(108) closely resembles the Fresnel reflection coefficient of the diffracting half-
plﬁxie, a fact which is brought out more clearly on making the transformation

j = keospB.
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The essential feature of Peters' method is the derivation of a function

- Fw) satisfying the difference equation

F(w) = {XL -cosh W } ' & n_-coshlwH ¥' ) -\ (109)
FluH2iy') N +cosh w W tcoshlw ) )’

the right-hand side of which is related to the product of the Fresnel reflection
coefficients for the two faces of the wedge. Equation (109) can be written
alternatively as

Fw - W -cosh w
Flwt ¥ ) v[ +cosh w ? (110)

where Y is the open angle of the wedge (c.f. equation 76), and the analogy with
the Wiener-Hopf method is now obvious.

The above comparison shows that the two techniques are of essentially
the same type. The analysis involved in similar and in ea.eh case the Fresnel
reflection coef_fi_eient plays a dominant role, notwithstanding the fact that the
final solution contains the coefficient explicitly only in its geometrical optics terms,
The method originated by Peters represents a new and powerful tool for the exact
solution of diffraction problems and is particularly suited to such problems as the
imperfectly conducting wedge where the physical discontinuities lie in ineclined
planes. By comparison the Wiener-Hopf approach and others (for example, that
of Clémmowr, Ref. 8) based upon it are more limited in scope, being virtually
restricted to cases which involve discontinuities in parallel planes.

The present method has much of the elegance associated with the older
technique, although its simplicity is somewhat marred. by the necessity for
introducing complex variables additional to those implicit in the problem, and this

is liable to cause confusion in converting conditions upon §(r, 6) into conditions upon
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the required solution of the difference equation. With both tr_eatments, however,
most of fhe analytical difficulties are concentrated in the solution of equations of
the form (108) or (109).
Note added in proof:

Dr. L. B. Felsen has drawn the attention of the author to a paper by
Malyuzinec (Ref. 15) dealing with the radiation of sound by a vibrating wedge.
In an appendix the solution is stated for a problem which is equivalent to thé
diffraction of an H-polarized electromagnetic wave by a wedge whose faces have
different refractive indices. Although no details of the method are given
(Malyuzinec refers the reader to previous papers by himself: Refs 16-19), a
preliminary examination suggests that the results are in agreement with those
which we have obtained. |

The author is indebted to Dr. Herschel Weil, of the Radiation Laboratory,

for carefully checking various parts of the manuscript.
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APPENDIX

The chosen function Hi( j ) is

,' n _ : ~ ~
%g)té‘tl b( € ,T1) BCE , Ta),

)
where h(‘_g ,€) is given by equation (87), and for H1(S ) to satisfy the conditions stated

in Chapter X it is necessary that

£+ ) [(8+%)  m(Fr=m [_e
(J T)(sc H(E) l(j

E "'_ ’E)l, E e.’(lz/

To prove the relationship we consider first h( g s¢). This is defined in terms

of h(j ,c¢) and if g is replaced bgg,_ in the integrand of the expression for h( § ,C), wWe

have oocg _
£ = L 5 log 1-(-9—)11} dv (Al
log {h(g ,0)} i L ?-—_—E—'E { v
- : oc - )
= log (*g.——i) + 1 3 s log {1“(%-)11} dv
§ +e i v - R 2
o
o (—$20) 4 a7
S +c
where
- 1 ? ;/n N og(1- t
s [ e () @

(o]
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When ¢ =U ; the path of integration in equation (A2) can lie anywhere in the
sector { n( & 1), nS} , Where g = arg G r and if its inclination to the positive
real axis is denoted by n Alg the integral defines a‘fu.nction which is regular in
-1+ Al <_argS- < A1 Since argg - A <0, all the allowed values ofj- lie below
the path and this fact enables us to rotate the path in an anticlockwise direction so as

to collect a contribution from the residue of the integrand at its pole t =T ng giving

_ - in(A 47) 1/n -1*
1(53@1>=-1og{1‘—(0§ )n} _ i : j‘me 4 @_&L{?w 108(

g/n 2

tn) dt.
~§ nri A t'7 3 S

The integral now defines a regular function of g in-¥+7r +A 1< arg;{-(w + A
1

n : ‘

and the transformation t = ( G ﬂg s) reduces it to the form
ooei 4 1 - ‘
iw .
_l___ _,Fe‘,éa__z.,ﬁ.m 10g[ < <1_ ’52 l ) ds,
i j %s
0

] .
where - 5 ¢ A ¢ -6 + ¥ . But this represents a regular function of el
1 N -~

S

’ i /
< arg emf /A + 7 and hence, from equation (A1), it can be written as
1 £—)< 1
« ,
we )

log(h e'i"”r T ).}4»11#_5 ol € 1 n} )
( £ 2 m Fig"-e?” * _%) *

o

in

The remaining integral can be simplified by intreducing a new variable x, where

x=87T . § e—ms and since the new path lies in the sector (-r + 5 . ) ) we can now wrife

® 0
+ 1 1 log {‘_‘““7 dx.  (A3)
wi x° =T
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The casec = T \ can be treated in a similar manner. The path of
integration is initially confined to the sector{ Y , nir- $) } , but if it is

rotated in an anticlockwise direction we obtain

_ ~ s n in(A +1r) 1/n -1
g, T )=log{ 1- (bz el ) } - 1 _ ®©e 2 2t ] log(lww'gm_)
# 2 - nri m en
§ 0 U, §
(A4)
where - % <A2< T - 8 . The apove sequence of transformations then gives
n
. i ; .
1('§',’cz)=1og{1- (Tzf') } + log {h < e T,l)}
3 §
© .
+ L X zT”“ log{- (g_é“) “}d:
"o x T @22 | $
(A5)
Hence,
— ~ - - —~ V8 n
log (é.ﬂu) <_§_+_l&) H($ )} =log ) & -(T,°) }
£ -1 §-T, ;o _ oy
+log {h({e® ¢ \l+log { n i T
{ ( T Lz)} { (es P }
-~ n
+ 1 © ( U1 T, )log{- (__&_EE_)}
7l S *- 2 2 -T2 £
. 2 2
and since i P n]
_ n e -
{ £ - T 2e1r) } = (T ei‘ll‘/z)n ( £ ) ,Lj_ '
‘ -n _inx/, 2 ir \'n ing/y |
3 <e_ ) -e J
we have §
<§ Tu)(i 'C,> H(§) =W(g) Hl(ei”), (2
§- 1, /N 8-T, s
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where

00 ~ ir (B
=1, irfa, . 1 0 T, _ <xe'~ )
log {W(g)}—nlog (T '?) + - ‘[ ( x———-l——-—z_ e + x——————-z; 72 log{ g & dx
1 2

@
= imfyy . _n x=0y
s rr

(o)

In the complex x plane the branch cuts radiate from the orgin to —Tls = T’ and

if the path of integration is rotated through an angle #, contributions are obtained from

the integrations along the branch cuts to ’Cl and’t,zei” s giving

ir
© -0 Tye Ti
S = j + 27i [ log x-J =27i [log x]
0 o o o
=00 " ir
= X +27i  log < _(‘_E_?____) .
N
Uy

An identical result would have been obtained by moving the path in a clockwise direction,

and using the fact that

T

(o) o

we now have

Thus

(A7)

1°g{W(-§-)-} n log (’Czei”/z) - _% log ('Cz

[

0,
which confirms that Hl( E ) has the required property.
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