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ABSTRACT

The physical optics method is applied to a variety of cone-sphere-like objects,

and the resulting expressions for the back scattered field are examined.

iii



THE UNIVERSITY OF MICHIGAN
8525-2-T

FOREWORD

This report (BSD-TR-67-182) was prepared by the Radiation Laboratory of
the Department of Electrical Engineering, The University of Michigan, The
work was performed under Contract F 04694-67-C-0055, '"Investigation of
Re-entry Vehicle Surface Fields (Backscatter) (SURF) ". Dr.Raymond F,
Goodrich is the Principal Investigator and Mr. Burton A. Harrison, Contract
Manager. The work was administered under the direction of the Air Force
Space and Missile Systems Organization (AFSC), Norton Air Force Base,
California, 92409 by Captain James Wheatley and was monitored by H. J.
Katzman of the Aerospace Corporation.

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior ap-
proval of Space and Missile Systems Organization (SMSDI), Los Angeles Air
Force Station, Los Angeles, California 90045.

Information in this report is embargoed under the Department of State
International Traffic in Arms Regulations. Private individuals or firms require
a Department of State export license.

The publication of this report does not constitute Air Force Approval of

the report's findings or conclusions. It is published for the exchange and
stimulation of ideas.

SAMSO Approving Authority.

WILLIAM J. S
CONTRACTING OFEACER

iv




THE UNIVERSITY OF MICHIGAN
8525-2-T

TABLE OF CONTENTS

Page

ABSTRACT iii
FOREWORD iv

I INTRODUCTION 1
II  NOSE-ON INCIDENCE 4
III OBLIQUE INCIDENCE 20

REFERENCES 56







THE UNIVERSITY OF MICHIGAN ——
8525-2-T

INTRODIUCTION

One of the most common and useful techniques for estimating the scattering
behavior of an object at frequencies for which all of the "effective' dimensions are
large compared with the wavelength is the physical optics method. This is basically
an extension of geometrical optics in which an explicit form for the surface field over
the entire object is assumed, thereby reducing the determination of the scattered
field to quadratures. In view of the sweeping nature of this assumption, it is not sur4
prising that the results are only approximate and, in many cases, grossly in error.
Nevertheless, the method is universal and direct, and perhaps the truly surprising
thing is the accuracy that is sometimes obtained by thoughtful and selective applica-
tion of the technique, often under circumstances when it would appear that the condi-
tions postulated in arriving at the assumed form for the surface field distribution are
violated.

Geometrical optics is, as its name implies, a ray technique. If there is a
smooth convex (or concave) surface normal to the incident field direction, this will
give rise to a specular return, and from a consideration of the power reduction in
the ray bundle produced by the divergence of the scattered beam, the cross section is

found to be

G = 7rR1R2 (1)

where R1 and R2 are the principal radii of curvature of the surface. The polariza-
tion of the scattered field is the same as if the reflection had taken place at an infinitg
tangent plane. For a restricted class of bodies it can be verified that {1) is the cor-
rect leading term in the asymptotic expansion of the cross section for small wave-
lengths.

According to geometrical optics, the back scattering cross section is zero at

aspects other than those for which a specular reflection occurs, and a natural




THE UNIVERSITY OF MICHIGAN
8525-2-T

extension of the method which serves to provide continuity of aspect coverage in the
cross section prediction is to assume that the fields indicated by geometrical optics
are excited at all points of the surface. This is the physical optics approximation.
It is equivalent to assuming that each element of surface scatters as though part of
the infinite tangent plane at that point, and leads to a surface current having the
value

J= Z(ﬁxﬂi) (2)

at each point of the illuminated region, where n is the unit vector normal to the sur-
face and __Hi is the incident magnetic vector. This current is taken as zero within
-the shadow. Since the surface field is now specified in its entirety, the calculation
of the scattered field is reduced to quadratures.

If the application of physical optics were limited to those cases where the
postulated surface fields are uniformly valid, the usefulness of this method would be
small indeed. All bodies with surface singularities would obviously be ruled out,
and for smooth convex shapes the assumption of an abrupt discontinuity at the shadow
boundary, in place of the continuous but rapid transition that actually occurs in this
region, would force us to omit all situations where shadowing is present. We are
then left with only such infinite bodies as the paraboloid, and even here the permis-
sible range of aspects is restricted.

In practice, however, physical optics is a great deal more valuable than
would appear from these remarks, and is the basis for most techniques for cross
section estimation. We shall now apply it to the determination of the back scattering
cross section of the cone-sphere-like objects of interest under the present program,
taking first the case of nose-on incidence, and separating out the contributions asso-
ciated with the tip, the join and the shadow boundary. By virtue of the postulated

current, each element of the surface contributes to the scattering independently of

its neighbors (except insofar as such neighbors may shadow the chosen element),




THE UNIVERSITY OF MICHIGAN —
8525-2-T

and this justifies us in breaking up the target into component parts should it prove

convenient to do so.
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II
NOSE-ON INCIDENCE
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For a body of revolution illuminated by a plane wave traveling in the direction

of the axis of symmetry (nose-on incidence), the general expression for the back
scattered field (Crispin et al, 1959) simplifies considerably, and if the surface is

defined by the equation

p =p(z) (3)
) 2 2 . . .
with p = |x +y (see Fig. 1), the back scattered electric vector in
}‘ —_— ez
Ei
FIG. 1
the far field can be written as
z
ikR 2
S _ALS s _ e 2 2ikz / 9p
E =XE , E = R 1kj‘ e @az>dz (4)
!

where the integration is in the direction of the incident propagation vector (so that
Zg > Zl) and is carried out over the illuminated portion of the body. The bracketed

quantity in (4) is simply the far field amplitude, and if this is denoted by S, then

Z
2 2
4i i 0
g = ir e21kz p_p dz | (5)
2 0z,
A Z
1
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which can be written alternatively as

. 2 .
s= 21 5 iikz 04 4 (6)
z

where A = 7rp2 is the sectional area of the body. In terms of S, the radar back

scattering cross section is

2
G=LIS

2
- Is]

(7)
When the physical optics integral is evaluated, it is found that three different
types of surface region can produce contributions. They are (i) places where A(z)
is stationary with respect to z; (ii) places where A, or any of its derivatives, is
discontinuous, and (iii) the end points of the range of integration. The first of these
regions leads to a specular contribution, and one of the greatest usefulnesses of the
physical optics method is for the calculation of such returns and the sidelobes there-
of. The second type of region is an important feature of any pointed shape and, as
we shall see, the associated high frequency return decreases with the increasing
order of the first discontinuous derivative of the profile p(z). Note that p(z), and
hence A(z), must be continuous if the surface is to be conjoint, though any (or all)
derivatives may be discontinuous. It is not uncommon for one of these places to co-
incide with an end point of the range of integration, from which the third category of
contribution arises, but even if A is physically continuous there, along with its
derivatives, the end still contributes by virtue of the abrupt change implied by the
cessation of integration, or, in the case of a shadow boundary, because of the dis-
continuity introduced by the physical optics approximation to the surface field.
Given an analytical expression for the physical optics integral, it is possible

to identify the portions of the surface responsible for the scattering by examining
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the phase factors of the individual terms. These terms can then be associated with
the specific local surface features giving rise to them, and when such features lie in
regions where the postulated surface field is known to be in error, the terms can be
ignored or, preferably, replaced by others based on more realistic values for the
fields.

To illustrate this procedure, consider a sphere of radius a. If the origin of
coordinates and, hence, of phase, is taken to be at the center of the sphere, the
physical optics expression for the far field amplitude in the back scattering direction

can be obtained from (5) by putting

= a.2 z2 zZ, = z. =0
p - ) 1 a: 2
We then have
2 o)
4ir 2ikz
S =- 2 e z dz
A
-a

which can be evaluated to give

__kaf, i) -2ika_i

The first group of terms has a phase factor corresponding to a reflection from the
front face of the sphere and is, in fact, the specular return. To the order shown it
is identical to the result derived (Senior, 1965) from the exact Mie series solution.
The last term in (8) has the same magnitude as the correction to the specular contri
bution, but its phase is that appropriate to scattering from the shadow boundary.
Since the optics approximation is in error in this region, the term is suspect, and

a more refined analysis leads to a shadow boundary contribution which is quite dis-
tinct from this, and is exponentially attenuated for large ka. We can therefore omit

the last term of (8) at high frequencies, and the back scattering cross section is then
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given by the first group of terms alone. At somewhat lower frequencies, however,
a valid estimate of the shadow boundary effect must be introduced.
Let us now consider the case of a flat-backed cone (see Fig. 2). If the height

and half-angle are h and o respectively, then

p = ztanca , z, =0, Z, =h

1=

FIG. 2

where the phase origin has been taken to be at the vertex. The corresponding ex-

pression for S is

h
g dir” 2aj’ J2ikz
)2
0
= ':I tan‘e {1+e21kh(21kh— 1)} (9)

and from an inspection of the phase factors of the individual terms it is seen that (9)

implies a far field amplitude

i 2
o tan o (10)

associated with the tip, and a far field amplitude

- -14 tanza(Zikh— l)e21kh (11)
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appropriate to the rim singularity at the base. For large kh the latter is approxi-
mately

2 2ikh
ae

7h
X tan (12)

which dominates the overall return at high frequencies due to its wavelength depen-
dence. The rim is, however, both a surface singularity and the shadow boundary,
and on either score the estimated scattering is suspect. As we have seen, a shadow
boundary per se is only a negligible contributor at high frequencies, but the failure
of the physical optics approximation to reproduce the essential features of the sur-
face field in the vicinity of an edge is a more serious shortcoming which invalidates
the estimate of the rim return even for some other types of capped cone for which
the rim and shadow boundary do not coincide. Here again it is necessary to refine
the physical optics estimate of the scattering.

The tip contribution is, however, another matter. In the limit of a semi-
infinite cone (h= ) no return can come from the termination, and the second part
of (9) must be ignored. This is usually justified on a mathematical basis by attrib-
uting a non-zero conductivity to the surrounding medium (giving k a positive ima-
ginary part), so that the appropriate terms in (9) are exponentially attenuated through
through the factor e2ikh. The only return is now provided by the tip, and from (10)

we have
2

A 4
Gtip = 160 tan o (13)

which is the well-known tip answer.

As with any physical optics result, we can attempt to judge the accuracy of
the predicted scattering from the tip by comparing the actual currents in its vicinity
with the postulated distribution. Unfortunately, the findings in this case are some-
what ambiguous. Probe measurements show that close to the tip the currents depart

significantly from the optics values, and it may be necessary to go two (or more)
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wavelengths along the generators before these limiting values are achieved. On this
evidence, therefore, equation (13) is suspect, but since the expression (10) for the
far field amplitude is in precise agreement with the results deduced from the exact
solution for a semi-infinite cone (Felsen, 1955) for both large and small cone angles
(see Kleinman and Senior, 1963), it must be concluded that (10), and hence (13), is
in fact correct. Note, however, that the resulting tip scatter is too small to be of
interest for most practical purposes, For example, when o = 110, Gtip is

3. 16)(10_8m2 at 10Ge, rising only to 3.16x 10_4m2 at 100 Mc, and by comparison
the return from almost any feasible type of cone termination is dominant.

With terminations other than a flat back, the physical optics estimate (9) is
unaffected unless a portion of the cap is in the illuminated region, and consequently
for a spherically-capped cone with the origin of the sphere at the apex of the cone
(or, indeed, on the axis of the cone at any distance X from the apex with 0 < X < h),

the predicted far field amplitude is identical to that in (9). But if the sphere is cho-

sen to have its origin at a distance X > h from the apex, with radius

1/2
{(htana)2+(X—h)2} :

so as to achieve a join to the cone with a discontinuity in at most the first derivative
of the profile, a part of the sphere is visible, and the physical optics return is

changed accordingly. From equation (5) with

1/2
p= {(htana)2+(X—h)2-(X—z)2} , z,=h, z_=X

(see Fig. 3) we have, for the cap alone

5= & {ezikh (@ik(X-h)+1) -ezikx} (14)
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FIG. 3

valid for X >h, and when added to the cone contribution (9), the far field amplitude
for the spherically-capped body is found to be

2 (15)

S=- i {tanzaf - e2ikh (2ik(X— h seczoz) +se02a> + eZikX}.
The first term in (15) is again the tip contribution and is believed accurate.
The third term originates at the shadow boundary; apart from the phase factor
associated with the choice of origin at the vertex of the cone, it is identical to the
result previously found for a sphere in isolation, and is erroneous for the reason
already given. The middle group of terms is more interesting, however. Its phase
factor identifies it as a contribution from the join of the cone and sphere, and its
magnitude depends on the nature of this join through the parameter X. In general,
as seen from (15),
eZikh

S =

. L {Zik(X— hseczoz)+secza} , (16)
join 4

but in the special case when the cone and sphere are smoothly mated to produce con-
tinuity of the first derivative of the profile across the join, X = hsecza and equa-

tion (16) reduces to

10
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2 2ikh
sec o e .

join i (1
The body is now a cone-sphere—a shape which has achieved such a classical status
in nose-cone studies that the term is often used in a generic sense to embrace an
entire class of smoothly terminated cones. In the present work, however, the de-
scription cone-sphere will be limited to the specific body detailed above.

Although the first derivative of the profile is continuous at the join, the
second and all higher derivatives are discontinuous there, and in particular the
radius of curvature is also discontinuous. Even for a cone-sphere, therefore, the
join is still a physical singularity (albeit a concealed one), and it would not be unrea-
sonable to expect that the contribution (17) is in error just as it is for a flat-backed
cone. On the other hand, the join is now entirely in the illuminated region, which
gives some confidence in the accuracy of the current distribution assumed locally,
and detailed analyses of back scattering data for 30° and 25° cone-spheres as func-
tions of frequency (Gent et al, 1960; Senior, 1963) have shown the cross sections to
be consistent with a join contribution of the form given here. The latter check is
admittedly somewhat qualitative, but recent probe measurements near to the join
have confirmed the overall accuracy of the physical optics approximation beyond any
doubt, and even for values of ka as small as 3 the perturbation produced by the
singularity is relatively insignificant. In essence, it would appear that the pertur-
bation to the optics distribution which, for a wedge singularity, is of order unity, is
reduced to a level O(1/ka) or less when the discontinuity is in the second derivative
of the profile. It is therefore concluded that equation (17) provides a valid high fre-
quency estimate of the scattering from this part of the surface, though it should be
noted that this would no longer be true if any portion of the surface beyond the join
were to reflect a substantial amount of energy back toward it.

At frequencies sufficiently high for the shadow boundary (creeping wave) re-

turn to be neglected, we now have, for the far field amplitude of a cone-sphere,

11
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S = - -iI (tanza - sec2a eglkh) , (18)

and whereas the tip and join contributions have the same wavelength dependence, the
latter is considerably larger in magnitude for all cone-spheres of practical interest.
Indeed,
2
4

Gjoin = Tgo Sec @ (19)

(cf equation 13), and when o = 110, Gjoin exceeds Gt' by a factor of about 750.
ip
We can therefore disregard Gtip by comparison and use (19) as a high frequency

estimate of the cross section of the entire cone-sphere. For small cone angles

o~ 00202 (20)

which is approximately one-half that which would have been obtained if the spurious
shadow boundary term in (15) had not been ignored. Failure to omit this term may
be the reason for the larger high frequency estimate suggested by Siegel (1963).

Let us now return to a consideration of the join contribution (16) for a general
spherically-capped cone. If X > hseczoz the cap is more bulbous than for a cone-
sphere, and the shape is as depicted in Fig. 3; conversely, if X < hsec2oz the cap
is less bulbous. In either case it is convenient to express X in terms of the angle

6 between the tangents to the cone and sphere at the join to give

2
hsec «¢tanotansé
1-tanotané

X- hseczoz =

2
o~ hgsec otanatané (21)

providing tanotané << 1. ¢ is positive or negative according as the cap is more or
less bulbous respectively than for a cone-sphere, and on inserting (21) into (16) we

have

12
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o/

S i 2ikh
join 4 )

secza/(1+21khtana tané)e (22)

A ridge or kink equivalent to an angular difference 6 will therefore increase the join
contribution from a cone-sphere, and hence the high frequency estimate of the over-

all scattering, by a factor
1+2ikhtana tans ,

and at sufficiently high frequencies the second term will dominate by virtue of its kh

factor, so that ultimately

{oin =2 . ﬂ):h- secza tano tané ezikh (23)

There is, however, danger in a straightforward acceptance of this result.
The join contribution now has the same wavelength dependence as the return from
the rim of a flat-backed cone (see equation 12). It is also similar in magnitude if 6
is comparable to o but, as we have already noted, the physical optics estimate of
rim scattering is erroneous primarily because of the failure of the assumed current
distribution to take account of the significant surface field reflection at a wedge-type
singularity. This reflection certainly decreases with decreasing 6, and though
there is some question whether the physical optics prediction is ever valid if 6 #0,
it is pertinent to remark that (23) is almost identical to the result obtained by Daw-
son et al (1960) using the more accurate circular wedge approximation. It would
therefore appear that (22) does give a valid estimate of the join contribution providing
6 is small, and this now shows the importance of accurate construction in the region
of the join if the expected cone-sphere behavior is to be achieved. This region is,
without doubt, the most critical one for a cone-sphere, and some of the irregular-

ities in the experimental data of Gent et al (1960) may have been due to imperfections]

amongst the 50 models employed in their study.

13
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The cone-sphere is, of course, only one particular form of terminated cone,
and though it is usually taken as the prototype of a nose-cone, this is more for the
simplicity of its design than for its optimum characteristics. It is certainly not true
that its nose-on cross section is the lowest attainable with a metallic body of the
same gross dimensions, and since the magnitude of the scattering from the join is a
major factor in determining the overall cross section, it is of interest to examine
the effect of cone terminations other than a smoothly-mated sphere. For this pur-
pose a general treatment is desirable.

Let us assume that in the vicinity of the join at least the cap is defined by the

equation
00)
2
2= an(z—h)n (24)
n=0
where the an are constant and, to make the surface continuous with that of the cone

a = (htana)2 . (25)

If equation (24) holds over a region extending up to and beyond the shadow boundary,
the only physical optics contributions provided by the cap are those associated with

the join and shadow boundary, and for the former we have

2
_ 4ir 2ikz / 9p’
Sjoin N >t2 3‘ © Q)az> dz .
h

2
Inserting the expression (24) for p°,

©
2
_ 2im Z ' 2ikz n-1
Sjoin = nanS e (z-h)" “dz ,
n=1 h

A

14
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and since
g J2ikz 0l %2-_1_11 S J2ikz 02
i h
i} (n-1) e2ikh
(-2ik)"
it follows that
. ® v o
o < B DT, o o
) 2 me1 U o(-2ik)

If we now add the join contribution (

to be

S . =-1tana {2ikh-1+icot2a
join 4 2

11) arising from the cone, the net return is found

(0.0]

D

= 0 o) 2

n'

}ezikh R

From this result it is obvious that we can, in principle at least, successively

reduce the wavelength dependence (and hence the magnitude of the high frequency

estimate) of the contribution from the join by choosing the a,n= 1,2, .

appropriately. If all the an

T

22X

join

¢« e 3

are left arbitrary, then

and the singularity is of wedge type, but if we specify

Ay

the terms O()t_l) cancel, leaving

i
4

S, .
join

{

{ 2htan2a -2y + O(\) } e21kh (28)
2

= 2htan” o (29)

tan2 a-a,t O(A)} e2ikh (30)

15
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Moreover, from (24),
2
a P
— 1
a1 2pp

2
a, = pp" + (o')

1
= L B S, 1
3 PP 3 pp'" , etc

o
|

where the primes denote differentiation with respect to z and all of the right hand

sides are evaluated at the join. The above choice of a. therefore implies

1

p! = tanc

and gives continuity of the first derivative of the profile through the join. This is the
main characteristic of the cone-sphere, and to complete the specification of this

particular shape it is only necessary to demand that

d2

2
2(0) = _l
dz

for all z, implying

a.=-1 and a =0 for n>2 . (31)
2 n

With a, and a defined by equations (29) and (25) respectively, it can be verified
that the equation for the cap is the same as that used previously in the discussion
of the cone-sphere, and the join contribution is as given in (17). Although its mag-
nitude is considerably larger than the tip return for all but the very largest cone
angles, its wavelength dependence is identical.

In view of the desirable effect on the join contribution produced by matching the

first derivative of the profile, it is natural to consider going further and matching

16
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the second derivative also. With a, and a, as given above, this additional

1
matching requires

a_ = ’can2 a , (32)

which removes the leading term from (30), and reference to (27) now shows that

S Y 2ikh
join = 167 {a3 * O()\)}e : (33)

At high frequencies the tip scattering then dominates regardless of a3, and if, for

convenience, Wwe assume a 4 = a5 =. ... =0, the equation for the cap becomes

o’ = e + aen)’ . (34)
This is the so-called cubic cap whose application to the design of low cross section
shapes has received some attention. We shall refer to it again in a moment.
Inasmuch as matching through the second derivative is sufficient to reduce the
high frequency scattering from the join to a level below that of the tip, there is
little (if anything) to be gained by attempting to match still higher derivatives. For

completeness, however, we note that if

a = hztanza/

o]
al = 2htan201
_ 2
az = tan ¢«
and
a3=a4= am_1=0,m>3,
then
m-2
i /i 2ikh
Sjoin = iy <:1:—7.7-'> m' {am+ O()L)}e s (35)

17
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and the relationship between the order of the lowest non-matching derivative and the
wavelength dependence of the physical optics estimate is here made explicit.

It is obvious that were this matching process continued to higher and higher
derivatives, we would ultimately arrive at a 'cap' which was infinite in extent and
merely the continuation of the forward cone. Attractive as it may seem, this is
impractical, and even matching through the second derivative as in the cubic cap
(34) leads to a substantial elongation of the basic cone-sphere shape (which is already
longer than desirable for aerodynamic and systems reasons). According to physical
optics, however, it is only necessary to have the cap equation (24) apply from the
join to just beyond the shadow boundary. Once we are out of the illuminated region,
it would seem that we can tolerate discontinuities in the derivatives of the profile,
and can therefore terminate the cap more sharply, but were we to do so, the short-
comings of the physical optics method would be only too apparent. Although that
part of the surface field produced by direct incident field excitation is accurately
reproduced by the physical optics approximation if the surface singularity is con-
fined to the second and/or higher derivatives of the profile, any part resulting from
the reflection of energy at singularities beyond the join (or even the shadow bound-
ary) is not taken into account ; if, therefore, the body has a point at the rear, or is
only slightly curved on entering the shadow and then has a wedge-type singularity, a
traveling wave reflection may occur, and this could not only markedly affect the
postulated current distribution in the vicinity of the join, but may also be a direct
source of substantial scatter.

The difficulty is eased somewhat if wedge and point singularities are abjured,
but even if we have a first derivative match throughout both the shadow and the 1it
regions, a surface wave reflection can still occur at places where the radius of
curvature is small. If such places are not well within the shadow, any creeping
wave reflected there will arrive back in the lit region with sufficient magnitude to

perturb the optics field, and the more we increase the distance that these waves

18
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travel, and hence increase their decay, the greater the overall length of the body.
This, then, is the dilemma that we face, and though an adequate termination can

be achieved in a shorter length if the forward cone is replaced by an ogive, the re-
duction is not significantly greater than WOIﬂd have been found by increasing the cone
angle to the same value as the vertex angle of the ogive.

The design of a low cross section shape which will profit from our understanding]
of the effect of surface singularities on the scattering is certainly not an easy task,
particularly since aspects other than nose-on must be considered: a singularity well
within the shadow region for nose-on incidence may be perilously close to the shadow|
boundary at some of the oblique angles of interest. Moreover, any serious attempt
at such design requires a knowledge of the scattering superior to that afforded by
physical optics alone, but it is hoped that the above discussion has given some
insight into the nature of high frequency scattering, and the factors which influence

it.

19
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I
OBLIQUE INCIDENCE

The evaluation of the physical optics integral is a more involved task for oblique
incidence, and the restriction to bodies of revolution no longer provides a significant
amount of simplification if the direction of propagation is other than along the axis of
symmetry. For back scattering, however, the general expression for the scattered
field does simplify somewhat, and we note at the outset that for any metallic surface
the physical optics approximation leads to a back scattered field whose polarization
is that of the incident field. Only for bistatic scattering is any depolarization pre-
dicted.

This fact enables us to suppress the vector character of the field in back

scattering, and if the incident electric vector is

i

A ik -
E =beﬂ£B

the scattered electric vector can be written as

where the (scalar) far field amplitude S is

_ 2iq A 2ik - R
s = -7 k-Ne ] (36)
A 2!

The direction of integration is that of the propagation vector, and the integration
itself is confined to the illuminated region of the surface Z whose variable
position vector is denoted by R'. The upper limit of integration is the shadow
boundary, i.e. the locus of the points on the body for which k- i = 0, where fi is

the unit vector normal drawn outwards from the surface.

20
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In the particular case of a plane wave at nose-on incidence on a body of revolu-
tion whose radius is p (see Fig. 1), the azimuthal integration can be carried out
immediately to give the expression for S shown in equation (5), but for asymmet-
rical situations equation (36) is, in general, incapable of further simplification.

The first shape to which we shall apply (36) is a right circular (flat-backed)
cone of half angle o and height h illuminated at an angle 6 to the direction of the
positive z axis. With origin of coordinates at the vertex of the cone, and notation

as in Fig. 4,

FIG. 4

k-R' = {tana/sine cos (@' - @) + cos 6 } kz'

k- ﬁdz = {tana/ sin 6 cos (§' - @) - cosGtana}z'dz'de‘ ,

and hence

S = —gﬂtanaj‘j‘{sme cos (§' - ¢)-cos6tana/} X

X exp {Zikz' (tanoz sin @ cos (@' - @) + cos 6)} z'dz'd@' . (37)

If the incidence is within the backward cone (6 < «) all of the cone surface is

illuminated. The above expression for S then becomes
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2i7 2w
S = -——tamozjv j' (sin 6 cos @' - cos 6 tan )
- exp {211{ z' (tan o sin 6 cos @' + cos 6)}z'dz' dg' (38)
and the z' integration can be carried out to give
i 2ikhcos 6
= — +
S 8ﬁcota @ e 12> (39)
with
A 2T

Il _ sin @ cos @' - cos@’canoz2 ag (40)
Y 0 (sin6 cosf@'+ cos @ cota)

'.271. . 1
I, = sin cos cosetana'z {Zikh(tanasinecosw

0 (sin6 cos @' + cos 6 cot @)

e

+ cos9) - 1} exp {2ikh tan o sin 6 cos ¢'} dg' (41)
The first integral can be treated by making the substitution

LI
t = tan ?LZ—W R
thereby reducing the integrand to algebraic form, and from a consideration of the

residues in either the upper or lower halves of the complex r plane, we have

tangoz
I. = -27

) (42)
1 (1—s1n298ec Q) 3/2

As is evident from the phase factors associated with I1 and 12, I1 is the con-
tribution from the tip, and thus (Spencer, 1951),

i tanzoz
= - s (43)
4 (1 - sin29 secza/)g/z
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which is required generalization of the nose-on value (10). It is also the physical
optics prediction for the far field amplitude due to an infinite cone, and since this is
a body whose exact solution is known, it is appropriate to compare the two estimates.
The nature of the exact solution is such that a simple expression for the scattered
field is possible only for large or small cone angles. The latter is the case of most
interest in the present study, and if the far field amplitude is denoted by SV or SH

according as the displacement 6 is perpendicular to, or in the plane of, the incident

electric vector, the analysis in Felsen (1957) gives™

1
i 9 1 - Z sin29
cos O
. l—lsin29(3—sece)
5 =~ L 2_ 4 (45)
H 4 2 <1+cos 6>
cos 6 —s

These are accurate to the first order in a2 , andif 6 is also small,

Under the same approximations the physical optics answer (43) becomes

i 2 3 9
-2 (1+20
Stip 4"( 2 >

and a comparison of these results now shows that (43) is accurate only at nose-on
incidence. This is otherwise obvious from the polarization dependence of the exact
returns for 6 # 0, since the physical optics estimate implies no depolarization.
The expression (43) is therefore quantitatively in error for all 6 # 0, but

"‘The author is indebted to Dr. R E. Kleinman for the derivation of the second
result from Felsen's paper.
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qualitatively it does give a reasonable approximation to the off-axis scattering with
either polarization. It certainly reproduces the general behavior as a function of 9,
and even for 6 as large as 20° its magnitude is still within (about) 10 percent of
both Is and Is

Vl HI '

The second integral, I is more difficult to treat, but approximate evalua-

2 J
tions can be achieved in two specific cases. If the incidence is so near nose-on that

khtanasing << 1 , (46)

the exponential in the integrand of (41) can be expanded and only the first two terms

retained. After some algebraic manipulation we then have

12 = - {1 - 2ikh cos 0 - (2kh cosG)Z} I1
2 PRV
- (2kh)” tana cos 6 Ié + O {(kh tan « sin 0)
where
2T . .

o= sin 6 cos @' - cos O tan & af

2 o Siné cos @' + cos 0 cot o ’
and using the procedure adopted for the integral Il’ it can be shown that

cos 6 sec2a
1'2 =271 <41- . (47)

2
V1 - sin2 6 sec «
Hence

I, = <2ikh cosf - 1) I, - 27 (2kh)2tanozcos9 X

2, 4
-
X {1 - cosp —— 81t Osec @ + 0 J(xhtan asin 6)°
2 2 3/2
(1 - sin Osec @)
(48)

and, as expected, the second group of terms on the right hand side vanishes as

6—>0.
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Apart from the multiplicative factor indicated in equation (39), 12 is the con-

tribution to the far field amplitude produced by the rim singularity at the base of the

cone. Thus, for incidence within the backward cone and 6 restricted as in (46)

2
0 ta 03
S, = L n @ (2ikh cose—l)ezlkhcose
rim 4 . 2 2 .3/2
(1-sin 0 sec @)

2 4 _
-i(kh)2 cose{l—cose 1-sin 6sec } 2ikh cos 6

(1- sin2 6 se02 a)3/2
(49)

and the main effect of the oblique incidence is to multiply the nose-on value (11) by
the same factor as the tip return, and to change the phase appropriately. Unfortu-
nately, this new result is also subject to the same limitations as (11), and because
of the failure of physical optics to reproduce the basic features of the actual current
distribution in the vicinity of a wedge singularity, equation (49) does not provide a
valid approximation to the angular behavior of the rim return. Here again a more
refined approach is called for.

The second case in which the integral I, can be treated is when the angle of

2
incidence is such that
kh tan a¢sin6>>1 , (50)

although still confined to the backward cone. A steepest descents evaluation of the
integrali(ﬁll) is then appropriate, and if we first make the substitution §'= §" + 7,
we have

sina sin (a+ 6)

I_~ -27tanca

9 {2ikh seca cos (a+0) - 1} X

cos (a+6)

XJO(Zkh tan o sin 6) (51)

where J o is the zeroth order Bessel function of the first kind. The corresponding

rim return is, from (39),
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sina sin (o +6) 2ikh cos 6

i
rim 4

5 {2ikhsecacos(a+9)—1} J0(2khtanozsin9)e
cos (a+6) (52)
and notwithstanding the condition (50) under which it was derived, the result goes
over into the nose-on value (11) when 6 = 0. If, on the other hand, we apply (50)

more uniformly, then

S ~%tanatan(a+0) JO(2kh tanasin@)e21khcose

rim » (53)

which is the anlogue of the nose-on expression (12), and if we further replace the

Bessel function by the leading term of its asymptotic expansion for large argument,

htan o . 7, 2ikh cos 6
Srim vmtan(a/+ 6) cos (2kh tan o sin 6 - Z)e

(54)

This can be written alternatively as

— 2ikh sec acos (oz+9)+i1 2ikh sec acos(a—9)~il
1 4/ htana 4 4
S , ~—= {———tan(a+0)<e + e
rim 2 f2Asinf

(55)
and reference to Fig. 5 now shows that the rim return is made up of contributions

from the extreme points of the base, which contributions differ only in phase. The

FIG. 5
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physical reason for requiring that the angle of incidence be within the backward cone
is evident from (55), and it is natural to expect that if this condition were violated,
the shadowing produced by the cone would remove the contribution attributable to the
most distant point of the rim. In contrast, as 6 approaches zero all points of the
rim will contribute equally, and the requirement that 6 be bounded away from zero
is also evident from the above interpretation of Srim' The mathematical repre-
sentation of this focussing effect near 6 = 0 is provided by the Bessel function J o
(see equations 52 and 53).

Before leaving this discussion of the right circular cone for 6 < o, itis
desirable to point out a further restriction common to the evaluations of both I. and

1
I,. For cones with angle o < 7/4 the direction 6 = 7/2 - o of the specular flash

2
lies outside the backward cone, but if & > 7/4 the condition 6 < « is no longer
sufficient to exclude the specular direction. Although such cones are not of direct
interest in the present study, it will be observed that the expressions which we have
i
infinite when 6 = 7/2 - o . This is due to the vanishing of the exponent in the inte-

derived for S tip (equation 43) and Srim (equations 49 and 52 through 54) are all

grand of (38) for @' =7 and 6 =7/2 - o, and the consequent creation of a pole in
both I1 and 12 when the z' integration is carried out by parts. The exclusion of
the specular direction is therefore necessary, and if o >7/4 this is a restriction
additional to those previously imposed.

In spite of the simple and straight forward nature of the expression for S given
in equation (38), it has not proved possible to evaluate the integrals analytically in
such a way as to be valid for both the specular and nose-on directions, and rather
than discuss separately the special case of the specular flash for o > /4, itis con-|
venient to include it as part of a general treatment of oblique incidence.

For angles outside the backward cone only a portion of the surface is illuminated,

and if 0 is suchthat o < 6 < 7/2 so that the base of the cone is still shadowed,

the far field amplitude is given by (37) with
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T+ @-f(z)< @ <7+ @-£(z")

and 0 < z' < h, where f(z') specifies the location of the shadow boundary. A
precise evaluation of the expression for S is now almost impossible to achieve, but
by application of the steepest descents method to the (' integral, the complication
presented by the variable limits of integration is in large measure avoided. On the
assumption that the main contribution to the z' integral is provided by those z'

for which 2kz'tane sin® > > 1, the saddle pointis @' =7+ @, and

T
i = h
4 1{ tana | 2ikz' sec acos (o + 6)
= - [ ——— 5 + 1 1
S e k Y sec a sin(a G)J‘Oe AJz dz' ,

which can be written as

LT
1_
h .
g = 1 o 4 tar.m/ tan (a+6) e21kh seca cos (a+0) X
2 2X sin6
X {1 -7 @2kh sec o cos (a+ 9)‘)} (56)

where

and is related to the Fresnel integral (see, for example, Jahnke and Emde, 1945).
For x>>1, Tx) =0 (x—l) and the function can be neglected in comparison

with the first term in ('56), in which case

T
' 2, Mtana 2ikh sec acos (o + 6)

1
= — +
S 5 e X s tan(a+0) e (57)

This represents the return in the far side lobes of the specular flash, and the phase

is that aippropriate to a contribution from the base end of the nearest generator of
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the cone. As such the far field amplitude is identical to the expression for Srim
given in equation (55) apart from the omission of the contribution from the most
distant point of the base. Since 6 > «, this point is, of course, shadowed.

If x is small compared with unity,

T (x) = 1-§ix2+ 0x%)

and consequently, as 6 approaches 7/2 - @, the far field amplitude reduces to

LT
—1 —— N
S =-53—h e 4‘v&7—f-1-1-1—a— seczaf ) (58)

This is the specular contribution. It is equivalent to the broadside return from a
thick cylinder whose length is the slant length, h seca, of the cone and whose
radius is —g— aseca, where a =h tana is the base radius of the cone, but this
choice of dimensions is not unique, nor is it sufficient for computing the side lobes.
Indeed, the far side lobes mustbe calculated fromequation (57), andto investigate the
transition from (57) to (58) it is necessary to determine S from (56) using the
available: tabulations of the Fresnel integral. The asymmetrical nature of the side
lobes about the direction 6 =7/2 - « is then apparent, and can also be seen from
equation (56) if the function T is approximated by its small argument expansion.
The net effect is to broaden the scattering pattern (including the main lobe) for

6 > /2 - @, and the weighting of energy in favor of aspects beyond the specular

direction is evident in the experimental data of Keys and Primich (1959 a,b).

In the specular direction itself the cross section is, from (58),

g = % kh3 sino sec40z
which can be written as
12 — K(ka)® | (59)
A
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where a is, as before, the base radius of the cone and

2

K = cosec aseca (60)
2
97

Inasmuch as K is a function of o alone, equation (58) is quite convenient, and the
behavior of the parameter K is shown in Fig. 6. As « increases from zero, K
decreases rapidly, passing through the value unity when o = 6. 1° (approx.) and
dropping to a shallow minimum at o = tan_l*{2_l("—’ 54.70) where K = 0.0295.
Thereafter K increases slowly.

From Fig. 6 it is a simple matter to determine the specular return for any
ka and «, but because of the practical importance of the scattering in this direction
it is desirable to have some feel for the accuracy of the prediction. This we can
obtain by comparison with the above-mentioned experimental data. Using 14
separate models with ka values spanning the range 0.933 < ka < 9.02 for each
of the half-cone angles o = 40, 7. 50, 9. 60, 120, 15° and 200, Keys and Primich
(1959a) measured the complete back scattering patterns for both vertical and hori-
zontal polarizations. Similar data for o= 300, 37. 50, 450, 52. 5o and 600 was
presented in a subsequent report (Keys and Primich, 1959b) and taking just the
values of the cross section in the specular direction, graphs suchas those in Fig. 7
can be constructed. Each point is the average of the measured values of o/ )x2 for
the flashes from the left and right hand sides of the cone, and the theoretical curves
are based on equation (59). All in all the agreement is good, particularly for the
larger ka, and though there is some scatter to the points, the general trend is well
predicted by the theoretical expression. The maximum discrepancy for ka > 3
is no more than 3db. This is attained only at one or two points and is somewhat
larger than the stated accuracy of the measured data ( T 24db), but the reading of

values from the small graphs contained in the reports could account for the
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FIG. 6: PARAMETER K (SEE EQUATIONS 59 AND 60) AS FUNCTION OF a.
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difference. Moreover, if ka > 3 the average discrepancy between theory and
experiment is more nearly 1db.

For ka <3, however, the formula under-estimates the magnitude of the flash
to an extent which increases with decreasing ka, and this is particularly noticeable
for the larger «. One reason for this is at once obvious on examining the measured
scattering patterns: as ka decreases with « constant, the nose-on lobe increases
in width whilst the magnitude of the specular flash decreases, ultimately becoming
swamped by the skirts of the frontal lobe. With o = 600, for example, there is no
evidence of the flash until ka has reached 2. 33 (horizontal polarization) or 5. 31
(vertical polarization), and though the flash emerges sooner when « is smaller, it
would still seem necessary that the slantlength be of order A or greater for the
optics approximation to have any real validity. This in turn implies ka > 27 sine,
and the lower bound is not inconsistent with the value of ka at which the specular
return emerges for the smaller angle cones.

A complete comparison of the experimental and theoretical values of o/ 7\2 at
6 =7/2 - o is presented in Figs. 8a through 8k in which the ratios Gexp/ % heor”
in db, are plotted as functions of ka for the various cone angles. Several features
are apparent. For the larger values of ka and o > 200, the theoretical formula
provides a reasonable approximation to the experimental data, and though there is
a fair amount of scatter to the points, the scatter is about the theoretical value. If
a < 200, however, the differences are more marked, and the formula now over-
estimates the data to an extent which increases with decreasing «, being of order
2db for o= 120, rising to about 5db for o= 40. We note that most of the sys-
tematic discrepancy is removed if the theoretical expression for ¢ is multiplied
by a factor of the form

1-078¢ (61)

where o is in radians.
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FIG. 8a,b: RATIO OF EXPERIMENTAL TO THEORETICAL SPECULAR FLASH
CROSS SECTION FOR FLAT-BACKED CONES WITH (a) @ = 4° AND
(b) @ = 71/2°: (xxx) Horizontal Polarization, (eee) Vertical Polarization.
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FIG. 8c,d: RATIO OF EXPERIMENTAL TO THEORETICAL SPECULAR FLASH
CROSS SECTION FOR FLAT-BACKED CONES WITH (c) a = 9.6° AND
(d) @ = 129 ; (xxx) Horizontal Polarization, (eee) Vertical Polarization.
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FIG. 8e,f: RATIO OF EXPERIMENTAL TO THEORETICAL SPECULAR FLASH
CROSS SECTION FOR FLAT-BACKED CONES WITH (e) a = 150 AND
() o=20°: (xxx) Horizontal Polarization, (eee) Vertical Polarization.
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FIG. 8g,h: RATIO OF EXPERIMENTAL TO THEORETICAL SPECULAR FLASH
CROSS SECTION FOR FLAT-BACKED CONES WITH (g) o= 300 AND
(h) o« = 37 1/20 + (xxx) Horizontal Polarization, (eee) Vertical Polarization.
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CROSS SECTION FOR FLAT-BACKED CONES WITH (i) « = 450 AND
(G) =52 1/20: (xxx) Horizontal Polarization, (eee) Vertical Polarization.
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For ka > 3 there is no obvious polarization dependence to the scattering, but
if ka is less than (about) 3, the horizontally polarized return tends to exceed the
vertically polarized one by 2 or more db. This is consistent with the polarizing
properties of a thin cylinder. If ka <1, theory underestimates the measured data,
and does so for a somewhat more extended range of ka if o is large (up to and
beyond ka =2 if o = 600). The probable cause is the relatively small slant length
of the cone, and the resonant type of current distribution that then occurs, but the
submersion of the specular return beneath the nose-on lobe is also a factor for the
larger cone angles.

In the light of this comparison it is concluded that the physical optics formula
(59) is a valid approximation to the actual specular return from the sides of a right-
angled cone for o > 200, and if ka > 3 the average discrepancy between theory
and experiment is no more than (about) 1 db. If, on fhe other hand, the formula is

multiplied by the strictly-empirical factor (61) to give

6

C o kka)Y (1-e°9 (62)

)kZ

the restriction on « is removed, and the resulting estimate would appear accurate
to within (about) 2db for all ka > 2.

For angles of incidence greater than 7/2 the base of the cone is no longer
shadowed and the expression (37) for the far field amplitude is changed accordingly.
Such angles are, however, of little interest in the present study, and rather than
pursue this investigation of the flat-backed cone any further, we shall now explore
the effects of other terminations.

Consider, therefore, the body shown in Fig. 3, consisting of a cone terminated
in a sphere with an angular discontinuity 6 between the tangents to the cone and
sphere at the join. When the angle of incidence is within the backward cone, i.e.

6 < @, all of the cone surface is illuminated, and the far field amplitude in the
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back scattering direction differs from that given in equation (38) (and henceforth

denoted by Scone) if any of the cap is visible. The condition for this is

X > h(l -tanatand) ,

which is equivalent to

6> -a-0
(see Fig. 3), and from equation (36) the additive contribution to the far field ampli-
tude associated with the cap is

S

. . 27 0%
cap 2im. 2 2ikXcos6 J S (sinf sin6' cos @' - cos O cos ') X

= - = b% i
0

A.2 —2—-(a+6)

X exp {Zikb (sin @ sinB' cos @' - cos 6 cos 9')} sinf'do' d@  (63)

where
b = {(htana)z FX - h)2} 12 (64)

is the radius of the cap and 7 = y(@') is the value of 0' corresponding to the
shadow boundary.

A precise evaluation of the integrals in (63) would be difficult to achieve, but
since the physical optics estimate of the shadow boundary effect is known to be in
error, there is no point in attempting its calculation. We shall therefore ignore
the contribution provided by the upper limit v of the 6' integration. In contrast,
the lower limit gives rise to the join contribution of the cap. This is of interest, and

if we assume that
sin0 cos 6' cos @' + cos O sin @' # 0 (65)

throughout the entire ranges of the 6' and §' integrations, thereby ruling out the

possibility of any specular return from the cap at this aspect, we can write
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cap 2im 2 2ikX costlZﬂj'

=- 21T 4% . (sin 6 sin 6' cos @' - cos 6 cos 0') X
0 E—(Q-HS)

join )&2

X exp {Zikb(sine sin 6' cos @} - cos Hcos 9')} sin6'do' d@'  (66)

where the absence of the upper limit indicates that the 6' integral is evaluated only
T

at the lower limit, 6' = 5" (a+6). It is now a straight forward matter to obtain
an asymptotic evaluation of the integral.
Since the 6' derivative of the exponent is, by assumption, non-vanishing in the

range, successive integrations by parts give

j' (sin O sin 6' cos ('~ cos O cos 0')exp< 2ikb(sin 6 sin 6' cos @'~ cos 6 cos ') }sin6'do"
—-(a+6)
2
i = + 21 i '
_ cot (a+8) e21k(h X)cos O+ 2ikhtan o sin @ cos f y
2 i ' +6
(2kb) sin 6 cos @' + cos fcot (a+6)

X{2ikh tan o (sin @ cos @' - cos 6 tan(a+6))

sin6 cos @' - cos O tan(a+6)
sin @ cos@' + cos 8 cot (a+6)

2
cosec (a+6)(1 - sin’ 0 sin2¢') <1>}
- + O EE

2
(sin 6 cos @' + cos O cot (@ +6))

which simplifies somewhat the expression Sjccilirr)l . For the cone by itself the join

contribution is, from (39),

cone

i 2ikhcos 6
. . — cotae I
join 7 2

where I2 is given in equation (41), and hence, by adding the separate effects of the

cap and cone, the net far field amplitude associated with the join is
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. 27
i 2ikhcos 6 . 1)
Sjoin 5 © j ) {21khtanozP Q O( }X

X exp {Zikhtana/ sin 6 cos ¢'} dg' (67)
with

_ (cot @ - cot (a+6)(1 - sin29 sin2¢')
(sin 6 cos (' + cos O cot @) (sin Hcos @' + cos H cot (@+6))

(68)

(cot a-cot (a+6))
Q =- 5 X
(sin 6 cos @'+ cos 6 cot @) (sin O cos @' + cos 6 cot (a+ 6 ))2

)({sin3 6 cos 3¢' + sin 6 cos> 6 cos @' (2+ cot acot (@ +6))

+ cosse(cot a+cot{a+6))

cot(a+56) cosec2(a+6) (1 - sin29 sin2¢‘)

5 (69)
(sinfBcos @' + cos Hcot (a+6))
Comparing this with equation (16) and noting that the expressions for Sjoin are of
the same form, we see at once that a wedge-like join is not a more significant
contributor at oblique angles of incidence than at nose-on. Indeed, for 6 =0 the

expressions for P and Q become
tan(e+6) -tana and secza
respectively. The integrand of (67) is then independent of ¢‘, and since
b sin(e¢+6)=X-h , Dbecos(e+6)=htana ,

Sjoin reduces to that given in equation (16).

The improvement in the high frequency response of the join obtained at nose-on

incidence by smoothly joining the cap to the cone also occurs at oblique incidence,
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and on putting 6 = 0 in (68) and (69) we have

P=20

cota cosecza(l - sin2 6 sin2¢')

3
(sin6 cos @' + cos Hcot @)
Thus, for a cone-sphere,

2T | - sin®0 sin” ¢

X

i
= ——gec «
87

2  2ikh cos 6 j
S. . e
join

0 (sin6 cos @' + cos 6 cot a)3

X exp {2ikh tan o sin 6 cos @' } dg' + o Q—g%) (70)

and though a precise evaluation of the integral is not possible if 6 # 0, by writing

(70) as

2 2ikhcos 6 jl cos2 6 + xzsin2 6
ae X

i
join - Esec 3
) -1 (cos @+ x tana sin0)

e2ikhx tan o sin 6 dx + O(—l>
(1 —x2) 1/2 kh

X

and assuming
kh tanasin6>> 1

the asymptotic theory of Erdélyi (1956, pp 49 and 50) can be applied to give (Ruehr,
1963):

) 3
2 o 2ikh cos 9{__99_8__‘1’__ 1! (2h tan o sin 0)

cos (a-9)

cos3 (2)
2 2 v (%n tanasin@)} . (71)

cos.3 (at+6)
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This is finite at 6 = 0 and in agreement with (16) there in spite of the formal
restriction to angles away from zero. Moreover, for small 6 (khtanosin<<1),
equation ('71) can be approximated as
SjoinNZLi— secz anikh cos 0 JO(2khtana sin 6) (72)
which can be confirmed by a small angle expansion applied directly to (70). The
appearance of the Bessel function J o is typical of the return from a ring or
a disc.
Using the expression for Sjoin in (71), the cross section o/)xz attributable
to the cone-sphere join has been computed for o = 12 1/2o and khtanco =3, 10,
and in Fig. 9 the resulte® are plotted as functions of 6, 0 < 6 < a. Although the
width of the scattering lobe is not determined by the radius khtana of the ring
singularity alone, it in general decreases as this increases, and for the larger
of the two radii considered the first minimum occurs within the backward cone.
On the other hand, for small angle cones the numerical differences between the
expressions for Sjoin given in equations (71) and (72) are relatively insignif-
icant. In this case, the width is almost exclusively determined by the value of
Khtano, and for kh sufficiently large, the total width measured at the -3db
level is approximately
9 .
Shitena radians
When the cone is not smoothly terminated, so that 6 # 0, the evaluation of
the integral in equation (67) is a more tedious task, but by again applying the
asymptotic theory of Erdélyi, and retaining the first two terms in the series corre-

sponding to P, we have
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0.02

khtana =3

0.01

khtana =10

6, degrees

FIG. 9: BACK SCATTERING CROSS SECTION OF A CONE-SPHERE
JOIN FOR « = 121/2°: khtane IS THE RADIUS OF THE JOIN.
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Ni_ ezikh cos 6 siné 9ikh ta )
join 8 cos (a+6 - 6)cos (o~ 6) ne-sind

2
cos (a+ 6 - 6) cos(a - 9)

. 2 1
sinBcos” cos 6 + —cose(cosze - sin2 ) sin(2 a+ 6)>

cos (a+ 6)

+

3 }H(l) (2kh tan @ sin )
cos (a+6 - 0)

sin 6
+ . )
{cos (a+6 + 0)cos (a+ 6) <21khtana+ sin 6

2
cos (a+ 6 + 6) cos(e+ 6)

. 2 1
sinf cos” O cosbd - = cos 9(00826 - sin2 ) sin (2 a+6)>

+ %OS (a+8) } H(Z) (2kh tan o sin 9)} : (73)
cos” (@+ 6+ 0)

This is clearly in agreement with (71) when 6 = 0. It is also finite for 6 = 0, not-
withstanding the formal restriction to angles 6 # 0 inherent in the derivation, and
the nose-on value can be shown to be identical to that in equation (16). Indeed, for

sufficiently small 6 , o and 6 an adequate approximation to (73) is

2 2ikhcos® ,_.
ae (2ikh tan o tané + 1) J0(2kh tan o sin 6) (74)

and the Bessel function which characterized the near nose-on behavior for a
smoothly-terminated cap is still appropriate when there is a small angular dis-
continuity at the join, but for larger values of 6 (kh tana]tanél > 1) it is necessary
to go back to the full expression ( 73). Because of the reduced accuracy of the
physical optics approximation to the surface field in the presence of a significant
wedge-type singularity, the solution obtained is then of questionable worth, and in
view of the complicated nature of the formulas, we shall concentrate on smoothly-

terminated cones throughout the remainder of this section.
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For a cone-sphere illuminated by a plane wave whose direction of incidence is
within the backward cone (6 < a), a part of the cap is necessarily lit, and cannot
produce a specular return unless the cone itself has generated one at a smaller
angle (and even then only’ if o> 7/4). An expression for the join contribution was
given in equation (71), and this reduces to the form shown in (72) if khtanasing<<1,
The latter appears accurate in spite of the assumption khtan o sin6 > > 1 employed
in its derivation, but if we now apply the large argument condition uniformly, the
Hankel functions in (71) can be replaced by the leading terms of their asymptotic

expansions to give

. N S | X ' cos e eZﬂ(hsecacos(oz+6)+i7T/4
join  8r ee /V2htanoz sin 6 3
cos (a+0)
cosSa  2ikh secacos(a-0) -iT/4
g o095 X o : (75)
3
cos (o - 6)

This can be interpreted physically as a sum of contributions from the extreme

points of the join (see Fig. 5) and, as such, is analogous to the formula for the rim
return (equation 55) in the case of a flat-backed cone. Apart from the variation
represented by the quantities cos3 (et 6), the contributions differ only in phase, and
if it is assumed that 6 is small enough* for us to neglect this variation, the ampli- |
tude of each of the contributions in (75) is smaller than that of the corresponding |

one in (55) by the factor
-2ikhsina cos o tan (a+0) = - Zikhsinzaf s

which is just the ratio of the rim return (12) to the join return (17) at nose-on

incidence.

"This is compatible with the asymptotic expansion of the Hankel functions in (71) if
kh tane is large enough.
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The examples of the flat-backed cone and cone-sphere illustrate the functional
transition of a ring return from the caustic or phase-coherent behavior at nose-on
incidence to the sum of two similar discrete contributions at aspects away from
nose-on, and it comes as no surprise that this is true for any type of ring singu-
larity, no matter whether it occurs in the first or tenth derivative of the profile.

To an accuracy which is adequate for most purposes, the physical optics approxima-
tion shows that as the aspect angle moves away from nose-on, the variation of the

back scattered field is first described by the function

J0(2ka sinf) ,

where a is the radius of the singularity, and for larger values of 6 we can intro-
duce the asymptotic expansion of J o to yield a sum of contributions from those
points of the singularity in the plane containing its axis of symmetry and the direc-
tion of propagation. For incidence outside the backward cone, one of these points
is shadowed and its contribution must be omitted, but if the incidence is still well
‘away from the direction 6 = 7/2 - o of specular reflection from the sides of the
cone, this prescription continues to provide a reasonable basis for estimating the
scattering attributable to the singularity.

In the case of a flat-backed cone, the single rim return remaining outside the
backward cone is identical to the scattering in the far side lobes of the specular
flash, leading to a continuity in the theoretical description that is both mentally
gratifying and computationally convenient. It is probable, however, that the
continuity is somewhat fortuitous, and certainly it is difficult to produce the same
degree of continuity in our simplified formulae for the scattering from a cone-sphere.

To see this, consider a cone-sphere illuminated by a plane wave incident in a
T

5 " Since physical

direction 6 outside the backward cone and such that o< 6 <
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optics is based on independent scattering from the individual surface elements, we
can again treat the cone and cap separately. The scattering from the cone in this
aspect range was described in equations (56) through (62), and for the spherical cap
alone we refer to equation (63) which, when particularized to the case of a smooth
join (6 = 0), has the form

cap _ 2irw
S 2

A

(h secatana) e

Y
2 2ikhsec e cos Id¢” J‘ (sin6sin6' cos @"
35-@

+ cos 0 cos 6')exp{-2ikh secatana (sin 6 sin 6' cos ("' + cos 6 cos 6')} X
X sin0' d6' , (16)

where @" = @' - 7 and runs over the portion of the range (-, ) corresponding to the
illuminated region of the cap.

Taking first the ("' integration and noting that the .saddle pointis @' =0, we caneffect
a steepest descents evaluation under the assumption khsec atana sinf sinf' >>1 ,

giving

T
i . 2
g%, o 4 Kh sec o tan h sec _a tan o e21kh sec @ cos 6 X
2\ sin6

T
—+6
2 — - o _
xs i '\Ism 0" cos (6' - 6) exp{ 2ikh sec a tan « cos (6' 9)} de' (77)
— -«

2

where this is, of course, only a first order evaluation. For the 6' integration the
saddle point is 6' = 6, which is outside the range of integration except when the
direction of incidence is normal to the side of the cone (i.e. 6 = 7/2 - ). If the

incidence is well away from this direction, however, we can write

‘Vsin 0' cos (0'-0) = {‘Jsin 6' cot(6'- 9)}sin(9' -6)
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and remove the bracketted pair of factors from the integrand at the value of 0'
nearest to the saddle point, i.e. at ' = 7/2 - . The remaining integral is then

capable of exact evaluation, and hence

T
i— 2
. + .
ScatpN_ 1 o 4 1f h ta_'ng'tan(a+ ) e21kh sec o cos (o 9)—e21kh sec o cos 6}
2 2\ sinb
(78)

The second term is clearly a shadow boundary contribution and, being in error, is
ignored as usual. Only the first term now remains, and though this is attributable
to the join and is therefore presumed accurate, it is cancelled by the equal and
opposite contribution (57) provided by the rim of the cone. Such cancellation is,
however, only to the first order. Were we to pursue the evaluations of the cone
and cap integrals to the next (lower) order in kh or, equivalently, treat the two
surface integrals together and seek the leading order contribution of the sum (as was
done in the derivation of the join contribution for incidence within the backward cone),
we could expect to arrive at an expression for the scattering amplitude which, in the
far side lobes of the specular flash, was tantamount to taking just the first term in
(75). Unfortunately, no satisfactory way of obtaining this directly has been found,
and to estimate the scattering in the aspect range o < 6 <<7/2 - @ we are forced
to rely on reasoning by analogy with the flat-backed cone solution.

To illustrate the nature of the cap contribution when 6 is not well away from
the specular direction, let us consider the results for 0 = 7/2 - @. Putting

6" =6"-6 and 6 =7/2- « in equation (77), we have

T
-i = — . /2 —
ScapN -e 4 khseczatanoz/vh ;a;la e21kh secatana j Vcos (6" - a) x

0
X cos 0" exp{—2ikh sec atan o cos 9”} do"

and if kh sec atan o> > 1, the two cosine factors can be removed from the

ol




THE UNIVERSITY OF MICHIGAN
8525-2-T

integrand at the saddle point 6'" = 0 and the integral evaluated by steepest descents
to give

cap

S N—%khsecozta.naf ) (79)

This is half the far field amplitude appropriate to a specular return from a sphere
of radius h secatanco, and is the expected answer for the cap at this aspect since
half of the 'required' Fresnel zone is cut off. It is, moreover, of a lower order in
kh than the specular contribution (58) from the sides of the cone, so that for a cone-
sphere the scattering in the direction 6 = 7/2 - « is, to the first order, unaffected
by the presence of the spherical cap.

Thus, for a cone-sphere of base radius b viewed at the angle 6 = 7/2 - @, the

far field amplitude is obtainable from (58) by putting h =b cos @ cote, and is

.
—1-—
S = kb e 4 VFB cota . (80)
3 T
From this we have
9 R (kb) (81)
2
A
with cot o 2
K' = < ) (82)
37

(cf equations 59 and 60), and to judge from the relatively small amount of exper-
imental data available, the above formula is quite accurate. As examples, for
a=12 1/2o the measured values of <7/>L2 in the specular direction are 20.4 db
(vertical polarization) and 20.9 db (horizontal polarization) when kb = 8.126, rising
to 22.0 and 21.8 db respectively when kb = 8.879 (Senior, 1963). The corre-
sponding values deduced from equation (81) are 21.0 and 22.1 db for ka =8.126
and 8.879 respectively, and such agreement is even better than was found with the

flat-backed cone. More data is, however, required before concluding that this is

typical.
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For aspects 6 = 7/2 - o and beyond, the scattering from the flat-backed coneis,
of course, reinforced by the cap return (79), and though this is insignificant at high
frequencies when 6 = 7/2 - o, it becomes more important as 6 increases owing
to the fall-off in the return from the cone. At the same time, the specular return
from the cap increases from the value - %kb shown in (79) up to the value - %-kb
appropriate to a complete Fresnel zone on a sphere of radius b, and to determine
the rate at which this rise occurs, we go back to equation (77). Replacing 6' by

6" + 0 and removing the trigonometric functions from the integrand at the resulting

saddle point 6" = 0, we have

T
4T = o §
cap '3 b’ 2ikbcosec o cos 6 2 e 2ikb cos 6 do"
S T ~-e kbA=< e T
20 —-a-0
2
where, for convenience, we have written
b = hsecotana |,
and a steepest descents evaluation now provides
cap 1 -2ikb (1 - cosec @ cos 6) 2x i(xz—w/ﬁl)
S N—Zkbe 1+ —e T (x) (83)
('
where
= - T
x =fkb' (6 + a 5) (84)

and T(x) is the previously-defined function related to the Fresnel integral. Since
T (0) =1, s reduces to the form shown in equation (79) when x =0(i.e. ,

6=7/2-a), andfor small x>0

S

- 2
capﬂ,_i_ Kb e-21kb(1 -cosec  cos 6) {1 + 3}_{_ e1(X - 7/4)

+ O(x2)} . (85)

Az’
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On the other hand, for large x

. 2

Tw) AT G4 -x) L
2X .

2ix

in which case

2
cap , 1 -2ikb (1 -cosecacos6) ), i i(x"-n/4) -2
S v 2kbe 1 _—_2XV—TI-'1 e +0(x 7)p (86)
and Scap is within (about) 10 percent of the full specular value represented by the

first term on the right of (86) if

T A
9'('2"04)2,@ )

For a cone-sphere viewed at an aspect 6 > 7/2 - «, the effect of the cap con-
tribution is to reinforce the scattering from the sides of the cone. Though its

cone . .
if 0=7/2- «, it becomes ever more important as

magnitude is less than S
6 increases, serving to raise the overall scattering in the further side lobes of the
cone's flash, and ultimately to level out the net return at the value appropriate to

a specular contribution from a sphere of radius b. However, the cap also has an
effect if 6 < 7/2 - @, and to determine this we again go back to equation (77).
Since 7/2 - @ - 6> 0, the trigonometric factors are removed from the integrand at

the value of 6' nearest to the saddle point, i.e. at 6' = 7/2 - «, but this apart the

analysis parallels that presented above for 6 > 7/2 - «, and gives

gap  _ 1 kb A€ Sin (a+6) e—21kb(1 - cosec @ cos 6)
4 sin6
2x i(x2—7r/4)
- <1 +'{—_7—T_|— e T (-x) (87)

where x is defined in equation (84) and is now negative.
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This expression for the cap contribution becomes identical to those given in

equations (79) and (83) when x =0 (i.e., 6 =7/2 - @), but for small x <0,

cap ! -9 -
5 . 1 K c?sa sin(a+6) e 2ikb (1 - cosec « cos 0) X
4 sin 6
x 41+ 2x i -n/4), o (88)
A{TT'
(cf equation 85) . For larger |x‘, however,
4T
Scap 1 4 4/ bcosa sin(a+6) -2ikb(1-cosec @ cos 6) + ikb (7r/2—a/—6)2
~-=¢ - e
2 21 sin6 7

Z-a-0 (89)

which represents the contribution of the cap at aspects forward of the direction of
specular scattering from the cone. As such, (89) should be identical to the first
term on the right hand side of (78), and if 127— - a - 6 1is not too large, so that we
can write

%-a—@"—’cos(cﬁ 0),

the equivalence can be established. But this contribution is just the negative of that
provided by the cone itself, and thus, to the order in kh given here, the overall
return from the cone-sphere is zero. We are therefore back to the discontinuity
referred to earlier, and though we have already shown that for o < 6 << % -«
the join contribution is represented by the leading term on the right hand side of
('75), a first order analysis applied to the integral expressions for Scone and Scap
separately is not sufficient to obtain this explicitly, nor is there any straight for-

cone , Scap at aspects near to the flash

ward method whereby we can treat S
direction in such a way as to achieve the desired continuity in our simplified

formulae for the scattering.
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