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Abstract

Boundary conditions involving higher order derivatives are presented for
simulating surfaces whose reflection coefficients are known analytically, numerically or
experimentally. Procedures for determining the coefficients of the derivatives are
discussed, along with the effect of displacing the surface where the boundary
conditions are applied. Provided the coefficients satisfy a duality relation, equivalent
forms of the boundary conditions involving tangential field components are deduced,
and these provide the natural extension to non-planar surfaces. As an illustration, the
simulation of a metal-backed uniform dielectric layer is given. It is shown that fourth
order conditions are capable of providing an accurate simulation for layers a quarter of

a wavelength in thickness or more.



.  Introduction

The use of non-metallic materials, possibly in the form of a non-uniform or
multilayer coating applied to a metallic substrate, has made necessary the
development of methods for simulating material effects in scattering. This is important
in the analytical treatment of simple (canonical) geometries and also for the efficient
generation of numerical solutions.

A possible approach is to employ approximate boundary conditions, and this
paper discusses a hierarchy of boundary conditions which allow the simulation of
surfaces whose reflection coefficients are known analytically, numerically, or
experimentally. The boundary conditions involve higher order normal derivatives of
the normal field components on a surface to account for the angular dependence of
the reflection coefficient, and, as such, constitute a generalization of the standard
impedance (first order) condition. They were first considered by Karp and Karal [1] in a
study of the surface waves supported by dielectric coatings. They were subsequently
employed [2] to simulate a perfectly absorbing surface in a finite element analysis, and
particular versions were recently developed [3, 4] to model dielectric layers with and
without a metal backing.

The boundary conditions in their general form are introduced in the context
of a planar surface and it is shown how they can be used to model a reflection
coefficient. The required order increases with the complexity of the reflection
coefficient, and the effect of displacing the surface where the boundary conditions are
enforced is discussed. Provided the coefficients in the boundary conditions satisfy a

duality relation, the conditions can also be expressed in terms of the tangential field



components. This shows that one effect of the higher order derivatives is to make the
conditions less local in character through the inclusion of tangential field derivatives.
As such they provide a natural extension to non-planar surfaces.

To illustrate the application of these conditions, the problem of a
metal-backed uniform dielectric layer is examined in detail. It is found that fourth order
conditions provide an excellent simulation and their accuracy is determined. The use

of such higher order conditions is analytical and numerical work is also discussed.

2. Boundary Conditions for a Planar Surface
In the case of a planar surface y = 0 the proposed boundary conditions take

the form
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where k is the free space propagation constant and a time factor e-i®t has been
assumed and suppressed. fm and l"m are constants which are chosen to reproduce
the desired scattering properties of the surface, and since a knowledge of Ey or Hy

alone is not in general sufficient to determine an electromagnetic field, the constants

cannot be chosen independently of one another.



An alternative form of (1) is
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and if, for example, M= 3,
a, =[,1,[, . a =l [+, 05 +0,[, ,

a2=r1+r2+r3 , aa=1

When M = M' = 1 with I'; =1/ f1, the conditions are equivalent to impedance boundary

conditions for a surface with normalized impedance |'1, and (1) can therefore be

regarded as generalizations of the standard impedance boundary condition that allow
the simulation of a greater variety of material properties through the inclusion of
additional derivative factors.
If the plane wave
i -ik (x cosd + y sin¢)

Ey =0

is incident on a surface y = 0 at which the boundary conditions (1) are imposed, the

reflection coefficient is
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with an analogous expression for the reflection coefficient R' (¢) associated with the

component Hy. The special case rm =1,m=1,2, ..., M, constitutes a model of a

perfectly absorbing surface [2]. We then have

M
R (¢) =- tan (141 %) )

and as M increases, there is an increasing range of angles about ¢ = n/2 (normal
incidence) where R is effectively zero.

More generally, the constants rm and I"m can be determined from a knowledge
of the actual reflection coefficient of the surface, and some possible procedures are as
follows:

(i) If analytical expressions for the reflection coefficients are available,

expansion in the form (3) leads immediately to the identification of the[ _ and f;n .

(i) The constants can be chosen to recover the poles of the analytical

expressions, but this may produce a less accurate simulation if the reflection

coefficient is not a ratio of polynomials in siné.



(i) From computed or measured data for the reflection coefficients, I'm and

[ m can be obtained by curve fitting. Although this could be adequate in any given
case, it would not reveal the dependence on the material parameters of the surface.

A few simple examples of a reflection coefficient R (¢) are sufficient to
illustrate these procedures. In general, a plane wave reflection coefficient can be

written as

re) . T0)-sing )
o= 0 sing “

where 1 (¢) is an angle-dependent surface impedance. If n =n,, independent of

angle, the corresponding boundary condition has r1 =1, With I'rn =0 form> 1, and this

is the standard impedance boundary condition [5]. Alternatively, if

n(9)=mn, +n, sin” ¢

then

with [ =0 form > 2. As another example of procedure (i), if

n(¢) =coso ,



then for ¢ < n/4 we can write n1(¢) = 1 - 1/2 sin2 ¢ without significant loss of accuracy, in
which case [ = 0.732 and[, = -2.732 with [ [, = 0 for m > 2. For ¢ 2 w/4 we can set
o = /2 - ¢ and use the same approximation for cosa. Alternatively, using procedure

(ii), it is found that if 0 < Re. ¢ < 1/2, R(¢) has a single pole at sin¢ = 0.707 = - r1. The

resulting first order boundary condition is obviously not as accurate as the second
order one given by procedure (i).
In addition to modelling a reflection coefficient, the generalized boundary

conditions (1) allow some flexibility in the location of the surface where they are
enforced. To show this, consider a surface y = t at which the reflection coefficient is

R(¢). The corresponding reflection coefficient at y = 0 is then R(¢) exp (-2ikt sin¢), and

since

1 - ikt sing - —;- (k2 sinZ ¢ +....

-2ikt sin
e ¢ =

: (5)

1 + ikt sing - —12— (k‘t)2 sin2 o+...
the phase factor can be simulated using additional derivative factors in the boundary
condition. In particular, if kt is so small that terms O {(kt)2} can be neglected, one more

derivative factor suffices with |'1 = 1/(ikt), whereas to the next order in kt two

derivatives are needed with |'1'2 = (1xi)/(ikt). This allows us to consider separately the

modelling of the reflection coefficient and the phase factor, but if the location of the



simulating surface is not specified a priori, it can be chosen to minimize the order of

the boundary condition for a given accuracy.

3. Equivalent Forms of the Conditions
The boundary conditions (1) are scalar conditions in as much as each
involves only a single field component, but in the first order case when M = M' = 1 with

r; =1/ I'1 it is well known [5] that they can be expressed in terms of the tangential

field components. This is true for any pair of generalized boundary conditions
provided the rm and I';n are appropriately related, and to illustrate the derivation

of these equivalent boundary conditions involving tangential fields we consider the
second order case.

The boundary condition for Ey is

2
{fy—2+ik(|—1+|—2)§y“k2r1r2} E =0,

and using Maxwell's equations and the fact that V « E = 0, this can be written as
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for any function f =t (x,z). Similarly, from the boundary condition for H,,
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for any function g = g (x,z). Choose
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Then if
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and as shown in [6], the only allowed solutions of these equations are zero.
Hence
[ [, +1 { OE i oH
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ony=0. We note that the relation (8) connecting the fm and I—rln is equivalent to

a,+a
— = (1)

and is a consequence of duality.
The vector forms involving the tangential field components are the obvious
vehicle for extending the generalized boundary conditions (1) to a non-planar surface.

In the third order case the resulting boundary conditions can be expressed as

9
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provided
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or, equivalently,
a'3+a'1 a, +a, (1)

a.2 + a;, a3+,
where n is a unit vector outward normal to the surface and V. is the surface divergence.

The extension of (13) and (14) to higher order boundary conditions is obvious. As is
evident from (1) we can recover the second order relations (8) and (11) from (13) and
(14) by letting [ 5 and [ 3 become infinite, and similarly for the first order relations. In
comparison with the first order (standard impedance) boundary conditions, one effect
of going to a higher order is to make the conditions less local through the inclusion of

tangential derivatives of the fields.

10



4. Metal-Backed Layer

A geometry of practical interest is a uniform dielectric layer of thickness t
backed by a metal (see Figure 1), and we now seek a simulation using generalized
boundary conditions of the form (1) or (2). In doing so, particular attention is given to
layers of reasonable thickness since, as discussed below, approximate boundary
conditions are already available for very thin coatings. For this geometry the exact

reflection coefficients are known, and we can therefore derive the conditions using

procedure (i). These can be referred either to the surface y = 1+ of the dielectric layer
or, by using the expansion (5), to the surface y = 0+ of the metal backing.

For an H-polarized plane wave having E, # 0 the reflection coefficient is

J N2 - cos2¢ tan (kt N2 -cosch ) - ie sing (15)
J N - cos® tan (ke N2 - cos’® ) + ie sing

R()=-

where N = \/—t_:;t is the complex refractive index, ¢ is the relative permittivity and

is the relative permeability of the layer. The corresponding reflection coefficient for

E-polarization is

R (0) =- J N2-c0s2¢ cot (kt Nz-oos2¢)+iu sing
JN?-cos’ cot (ke N° - cos9 ) - i sing

(16)
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where R(¢) and R' (¢) are both referred to y = 1+. Expansion of the tangent and

cotangent in powers of sind leads immediately to the identification of the constants

a_ anda_, but before doing this, it is of interest to examine two boundary conditions

already available in the literature.
The most commonly-used boundary condition for simulating a metal-backed

layer is the standard impedance condition [7]. This is a first order one which can be

derived from (15) and (16) by writing v/ N2 - 0032¢ = N, giving

f,=1—,=-iy-tan (Nkz) (17)
€

with all other [, = 0. For kt < 0.52 the conditions can be transferred to the surface

y = 0+ with a maximum phase error of 10 degrees by employing the first two terms in

(5). The resulting boundary conditions are then second order ones in which [ 1 and

|"1 remain the same and [, and flz = (ikt)". These have been used [3] to simulate a

metal-backed dielectric half-plane and since they are valid only if [N| >> 1, they will be

referred to as high contrast conditions. Low contrast conditions can be derived by

introducing the approximations tan x = x and cot x = 1/x in (15) and (16), giving

kt sin2¢ - ie sind + kt (N2 -1)
ke sin’0 + i0sing + ke (N2 - 1)
3

R(¢) ~-

and
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from which the constants a_ and a'm are easily found. The corresponding boundary
conditions can be transferred to the surface y = 0+ using the first two terms in the

expansion (5), and when only the terms of leading order in kt are retained, the

constants are
2
a°=kT(N '1) ao=1
a, =ie a, =kt (- 1) (18)
a,=-kt(e-1) a,=0 .

These satisfy (11) and the resulting boundary conditions are identical to those derived
by Weinstein [8] by expanding the fields in the dielectric as Taylor series in y.

The high and low contrast boundary conditions provide an accurate

simulation of the coating only for limited ranges of |N| and kt, but by going to a higher

order condition, it is possible to produce a simulation that is valid for all [N| and a wider

range of kt. To this end we write

INE oy <N L S0
2N* TN

By also employing the approximation

13



kt kt
tan (2N sin ¢) N —sin ¢ ,
R(¢) can be expressed as
4
Z (- 1)rn a, sinmq>

R(@)=- ™= (19)

Za sin ¢

where

a,=(N- 51“) [tan (ktN) - tan (-2% ]

kt
a, = [1 + tan (k=N) tan (EN- ]

a,= ;—N{tan (ktN) - tan( )+k1: (N- )[1 + tan (ktN) tan (;—L)]} (20)

a,=- ke [tan (kTN) - tan (—-—;:l ]
Kkt |: kt :|

a,=——|1+tan (ktN) tan (=) | .

t N 2N

Similarly, for E-polarization,

= (2N*- 1){1 +cot(k'rN)cot(::l)]

v kt
a1 =| 2N|J. [COt (kTN) - cot (2N ]
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a, =1+ cot (keN) cot( ") ke (N- -2-‘ﬁ [cot (keN) - cot (:—” (21)

a'3 = -i kn [1 + cot (ktN) cot (:—:‘)}

a' kt
47 2N

[cot (ktN) - cot ( )] .
The boundary conditions implied by (20) and (21) are referred to the‘surface
y = 1+ and are fourth order ones which satisfy duality. As expected, their accuracy

improves with increasing |N|/(kt) and in Figure 2 it is shown that they predict the

correct reflection coefficient fore =4, u =1 and t = 0.1, i.e., Nkt = 1.26. When we set

a,=a,=0and a; = a; =0 the resulting boundary conditions are second order ones.

As evident from Figure 2, their accuracy is substantially less, and the standard
impedance (first order) conditions are valid only for incidence close to grazing or
normal.

The accuracy of the fourth order boundary conditions is quite remarkable
even for fairly thick coatings. Since the conditions correctly predict the dominant
surface wave modes (see comment below), their accuracy is greatest near grazing

incidence, but even at other angles the phase error is less than 2 degrees with
coatings at least A/4 thick regardless of the material properties and polarization. This
is illustrated in Figures 3 and 4 where, for € = 2 and 7 with p real, the maximum layer
thickness for a 2-degree phase error is shown as a function of |N| for ¢ = 90 and 45

degrees, respectively. In all cases the amplitude error is less than two percent, and if €

15



and/or p is complex, the accuracy is even better. This is expected since any loss
diminishes the effect of the deeper parts of the layer. For the standard impedance
boundary condition, results analogous to those in Figure 4 are shown in Figure 5.
Even with the allowed phase error increased to 10 degrees, the maximum layer
thickness is substantially less except at normal incidence, particularly if |[N| is small. In
addition, the accuracy of this boundary condition decreases as grazing incidence is
approached.

Higher order boundary conditions for a metal-backed layer can also be
derived using procedure (ii) of Section 2, which requires a knowledge of the complex
poles of the reflection coefficients (15) and (16). The subset lying in the proper half of
the complex plane are the usual surface wave poles, and the implied expansions of

the reflection coefficients are

% sing_-sing
RO =- D,
m=0

sin 6 _ + sing
(22)
M .nn .
sin 6_ -sin¢

R (0)=- .
( ;-o sin 6 _ +sing

wheref =-iksin®_ andf =-iksin® arethe propagation constants for the

H-polarized (TM) and E-polarized (TE) surface waves, respectively, provided
Re.(f_,1 )>0.

16



It has been observed that the accuracy of the approximate boundary

conditions deteriorates significantly as ¢ decreases unless the correct dominant
surface wave fields are predicted, and the boundary conditions implied by (20) and
(21) must therefore correspond to the correct surface wave poles. The number of

poles (or zeros) of the reflection coefficients (15) and (16) depends on the value of
Re. (ktN). In the TM case with kTN small, only one pole exists corresponding to the
lowest order surface wave mode. As kN increases, two additional poles appear, one
of which is associated with a surface wave mode when u > & where

u2 = (kt)2 (N2 - 1) - sin2 ¢. In the TE case, no poles exist for small k=N, but as kN

increases, two poles appear simultaneously, and one of these is associated with the

lowest order TE surface wave mode when u > n/2. An examination of the accuracy of

(22) showed that they provide a good simulation of the reflection coefficients for those

values of kN such that the corresponding poles with (sin 6_, sin e;“ not much greater

than unity) have just appeared; however, the accuracy decreases substantially as ktN
increases beyond the mid point between the last included pole and the next one to

appear.
5. Concluding Remarks

As illustrated in the case of a metal-backed uniform dielectric layer, the

generalized boundary conditions (1) provide an excellent simulation of the scattering

17



properties of the structure for thicknesses up to A/4 or more for all material properties,
directions of incidence and polarizations. For any other structure whose reflection
coefficient is known analytically, the derivation of the appropriate boundary conditions
can be carried out in a similar manner and their accuracy quantified. Alternatively, if
only computed or measured data for the reflection coefficient are available, the
required boundary conditions can be found by curve fitting.

For a boundary condition of any given order, the accuracy achieved
depends on the location of the surface where the boundary condition is applied, and
one advantage of the method we have followed is that the location is treated
separately. Inthe example discussed, the simulating sheet was placed at the upper
surface of the dielectric, and a fourth order boundary condition was found to produce
excellent results. For other locations, it is necessary to expand the phase factor as
indicated in (5), leading to additional derivative factors in the boundary conditions.
The optimum location minimizes the complexity of the boundary conditions and/or the
error in simulation, and the choice of another location could limit the accuracy

achievable. If, in the above application, the simulating sheet were placed at the metal

backing, the maximum layer thickness that can be reasonably handled is of order 0.1A.
With the sheet located in this manner, the result of coating the metal is simply to
replace the perfectly conducting boundary condition with the appropriate generalized

one. ltis then only a trivial extension to simulate a metal coated on both sides.

Provided the constants [ _ and f;n (ora_ and a;n) satisfy a duality relation

(see, for example, (13) or (14)) the boundary condition can be expressed in terms of

18



the tangential field components. This shows that one effect of the higher order
derivatives in (1) is to make the boundary conditions less local in character, and the
resulting "vector" conditions provide the natural extension of (1) to non-planar
surfaces.

In spite of the apparent complication of the generalized boundary conditions
and their vector equivalents, it has been found possible to work with them numerically
and analytically. Regardless of the order of the conditions, a sheet subject to them
supports only tangential electric and magnetic currents. Thus, in a numerical solution
of a scattering problem, the number of unknowns is the same as for the standard
impedance (first order) boundary condition, and we have already begun to incorporate
the higher order conditions into our existing sheet scattering codes employing either
the moment or conjugate gradient FFT methods. Analytically, it is important to be able
to determine the diffraction coefficient for the edge of a half plane or wedge subject to
these boundary conditions, and thereby extend the capability of GTD scattering codes.
In the case of a half plane we can use either the Maliuzhinets or Wiener-Hopf
techniques and [3] is a example of the application of the former. Provided care is
taken to ensure that all Fourier transforms exist in the classical sense, the Wiener-Hopf
method can handle generalized boundary conditions of any order. The split functions
that occur are the same as for a simple impedance boundary condition, with each
derivative factor in the boundary condition giving rise to a pair of split functions. The
edge diffraction coefficient then involves a product of these functions.

The proposed boundary conditions have many possible practical

applications. In analytical studies of the scattering from junctions and edges, they can

19



be used to model single or multi-layered dielectric slabs or coatings. In numerical
treatments, thicker layers can be simulated without increasing the number of
unknowns at the expense of a slight increase in complexity of the integral equations.
They could also be effective in modelling the dielectric layers used in printed circuit
and microstrip arrays, leading to a significant simplification in the Green's functions

involved, and we are now examining this approach.

20
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Legends for Figures

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Metal-backed dielectric layer.

Reflection coefficient phase vs ¢ for a metal-backed dielectric layer of

thickness /10 having e = 4 and u = 1. Comparison based on 4th, 2nd and
1st order boundary conditions: (a) H-polarization, (b) E-polarization.

Maximum allowed thickness vs |N| for a metal-backed dielectric layer
modelled using the 4th order boundary conditions at y = t+, with a 2-degree
phase (and/or 2 percent amplitude)-error. Curves shown are for e = 2 and

e =7 with ¢ = 90 degrees. Results are indistinguishable for H- and
E-polarizations.

Maximum allowed thickness vs |N| for a metal-backed dielectric layer
modelled using the 4th order boundary conditions at y = t+, with a 2-degree
phase (and/or 2 percent amplitude) error. Curves shown are for € = 2 and
€ = 7 with ¢ = 45 degrees: (a) H-polarization, (b) E-polarization.

Maximum allowed thickness vs |N| for a metal-backed dielectric layer
modelled using the first order (standard impedance) boundary conditions at

y = t+ with 2-degree and 10-degree phase errors. Curves shown are for
€ =2 and e = 7 with ¢ = 45 degrees: (a) H-polarization, (b) E-polarization.
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