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A combination of metabolic and vascular defects have been implicated in the pathogenesis 
of diabetic neuropathy. Animal studies have demonstrated that a reduction in nerve blood 
flow may be an important early defect and that vasodilators can prevent or ameliorate 
nerve dysfunction. The potential factors contributing to nerve ischaemia include structural 
defects in the endoneurial microvasculature together with rheological abnormalities, 
abnormalities in vasoactive agents which regulate nerve blood flow including nitric oxide 
and the eicosanoids, and alterations in tone of the autonomic innervation of the nerve 
vasculature. The principle metabolic defects which have been implicated include disruption 
of the pol yo1 pathway, altered lipid metabolism, advanced glycosylated end-product 
formation, increased oxidative stress, and diabetes-induced defects in growth factors. The 
demonstration that activation of the polyol pathway in experimental diabetes may affect 
nerve blood flow, and conversely that vasoactive agents appear to be important in 
regulating some aspects of nerve metabolism, has highlighted the interdependence of the 
metabolic and vascular defects in the pathogenesis of this condition. Thus, selective 
intervention aimed at a key defect early in this cascade may subsequently correct a 
number of later abnormalities offering therapeutic hope in this chronic debilitating 
complication. 

KEY WORDS Diabetes mellitus Neuropathy lschaemia Polyol pathway Nitric oxide 
Eicosanoids 

Introduction 

Diabetic neuropathy i s  a common complication of 
diabetes but the mechanisms underlying i ts  pathogenesis 
have historically received less attention when compared 
to the renal, eye, and macrovascular lesions which are 
also frequently present. The recognition of the high 
prevalence of neuropathy which was found to be present 
in 39 % of healthy insulin-dependent diabetic patients 
in the Diabetes Control and Complications Trial (DCCT)’ 
and has been reported to afflict over 50 % of diabetic 
subjects after 25 years of diabetes2 or 44 % of diabetic 
subjects between 70 and 79 years of age3 and its 
major contribution to sepsis, debility, and lower limb 
amputations4 has stimulated research into its pathogen- 
esis. These studies have provided clues which suggest 
that many of the mechanisms underlying its pathogenesis 
may in fact be linked. Thus although the diabetic state 
undoubtedly leads to a spectrum of abnormalities which 
lead to the characteristic findings of nerve fibre atrophy 
and the exciting possibility arises that therapeutic 
intervention to correct one hyperglycaemia-induced 
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defect may subsequently correct a number of abnormali- 
ties leading to stabilization or possibility improvement 
of the neuropathy. 

Although the cause of diabetic neuropathy remains 
unknown its correlation with the degree and duration of 
the antecedent hyperg ly~aemia~,~  implicates a pathogen- 
esis directly precipitated by the diabetic state. In the 
DCCT, for example, intensive insulin therapy reduced 
the appearance of neuropathy at 5 years by up to 69 %.9 

The resultant effects of the prevailing hyperglycaemia or 
insulin deficiency precipitating both m e t a b ~ l i c ~ ~ ’ ~ ~ ’ ’  and 
vascular defects12-15 in the nerve are highly controversial 
as i s  the precise tissue compartment in which these 
perturbations primarily occur, The principle metabolic 
defects which have been implicated include disruption 
of the polyol or sorbitol pathway, abnormalities in 
lipid metabolism, advanced glycosylated end-product 
formation, increased oxidative damage, and diabetes- 
induced defects in growth factors. The factors which 
may contribute to nerve ischaemia include structural 
defects in the endoneurial microvasculature together 
with rheological abnormalities, and abnormalities in 
vasoactive agents which play a key role in the control 
of nerve blood flow including the endothelium-derived 
relaxing factor, nitric oxide and the eicosanoids. It is also 
unclear whether these diabetes-induced perturbations 
primarily affect peripheral nerve neurons or the Schwann 
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cells, the perineurial or extracellular matrix, the endon- 
eurial vasculature, or perhaps a site remote from the 
peripheral nerve such as the autonomic ganglia. 

This review will focus on the current hypotheses which 
have been invoked in the pathogenesis of diabetic 
neuropathy and also evaluate whether they are as 
divergent as first seems apparent. 

Aldose Reductase, The Polyol Pathway, 
and the Myoinositol Depletion Hypothesis 

Considerable evidence implicates involvement of the 
polyol pathway in which glucose is metabolized 
to sorbitol and fructose by the enzymes aldose 
reductase (AR2) and sorbitol dehydrogenase, 
respe~tively,~,~,’~,’ 1,16-18 in the development of diabetic 
neuropathy. Glucose-induced alterations in the metab- 
olism of sorbitol, myo-inositol (a precursor for phospho- 
inositide (PI) ~ y n t h e s i s ) ~ , ~ , ’ ~ , ’ ~ , ’ ~  and taurine (a p-amino 
acid)19 and their associated effects on PI and calcium 
metabolism have been proposed to be the mechanisms 
whereby high polyol pathway activity precipitates its 
deleterious effects. 

The myo-inositol depletion hypothesis20-22 has for 
many years been extensively evaluated as the primary 
polyol-pathway-related defect underlying acute exper- 
imental nerve conduction velocity (NCV) slowing. In 
diabetic rat peripheral nerve the metabolism of glucose 
via the high K, AR2 promotes sorbitol and fructose 
accumulation, and myo-inositol depletion, which has 
been implicated in slowing of nerve c o n d ~ c t i o n . ~ ~ - ~ ~  
myo-lnositol supplementation or aldose reductase inhibi- 
tors (ARls) normalize nerve myo-inositol and nerve 
conduction velocity (NCV).23,27-32 Th us the action of 
ARls on the acute and rapidly reversible slowing of nerve 
conduction in experimental diabetes is thought to be 
mediated in part by correction of underlying polyol- 
pathway-induced abnormalities in nerve myo-inositol 
metabolism.26 Depletion of nerve myo-inositol has been 
proposed to impair incorporation into a class of mem- 
brane phospholipids, the phosphoin~sitides.~~’ o,’ 

Impaired activation of protein kinase C (PKC) by PI- 
derived diacylglycerol (DAG) may be the link between 
altered myo-inositol metabolism and (Na, K)-ATPase regu- 
lation in diabetic nerve as a reduction in arachidonyl- 
containing DAGs and PKC activity has been demonstrated 
in diabetic rat sciatic nerve.33 Moreover exogenous PKC 
agonists correct impaired nerve ouabain-sensitive energy 
metabolism and ATPase activity in ~ i t r o . ~ ~ , ~ ~  Therefore 
the effect of myo- inositol depletion on (Na,K)-ATPase 
activity may be mediated through altered PI turnover and 
a PKC-dependent mechanism in experimental diabetes.36 
However, in some diabetic tissues with low polyol 
pathway activity, glucose may lead to increased de novo 
synthesis of DAG and PKC a ~ t i v a t i o n ~ ~ , ~ ~  which mediates 
a reduction in (Na,K)-ATPase a ~ t i v i t y . ~ ”  Therefore PKC 
activation may either have bi-directional effects on 
(Na,K)-ATPase activity or chronic Stimulation of PKC 

could potentially lead to compensatory up- or downregul- 
ation of its action. Thus it would appear that in tissues 
with high AR2 activity (such as rat nerve) DAG depletion is 
the predominant response to hyperglycaemia contrasting 
with tissues with relatively lower aldose reductase activity 
(such as retinal capillary endothelium) where DAG 
accumulation predominates. 

The application of the myo-inositol depletion hypoth- 
esis to human nerve remains controversial as although 
ARls diminish sorbitol accumulation and also increase 
nerve conduction, nerve myo-inositol i s  not measurably 
a I tered40-42 and (Na,K)-ATPase has to date not been 
assessed. 

The (Na,K)-ATPase and Nerve Conduction 

The nerve (Na,K)-ATPase is responsible for the mainte- 
nance of the transmembrane ionic gradient which is  
necessary to facilitate the conduction of electrical 
impulses. Perturbations in nerve (Na,K)-ATPase emerged 
as a possible common denominator for altered energy 
metabolism,2o nerve conduction slowing, and structural 
abnormalities in acute experimental diabetes based on 
direct measurement of reduced nerve (Na,K)-ATPase 
activity in its correction by myo-inositol 
~upplementat ion,~~ ARI treatment25,45 or prostacyclin 
analogues. 46 Moreover pharmacological manipulation of 
non-diabetic rats with agents which impaired the nerve 
(Na,K)-ATPase were able to reproduce diabetic nerve 
conduction s l ~ w i n g . ~ ’ , ~ ~  Thus the ability to restore 
normal nerve (Na,K)-ATPase activity and also correct 
NCV has remained central to the metabolic hypothesis 
of diabetic neuropathy but the mechanism(s) by which 
diabetes results in its impairment remain controversial. 

Osmotic Dysregulation and the 
Compatible Osmolyte Hypothesis 

For over 20 years, stimulation of AR2 activity by mass 
action has been viewed as a critical link between 
hyperglycaemia and the tissue damage underlying some 
chronic diabetic compl i~at ions.~”~ ’  The view that AR2 
i s  an important physiological intracellular osmoregulator 
in the renal medulla, where it is induced by extracellular 
hyperosmolality, has recently emerged as part of a 
‘compatible osmolyte’ h y p o t h e s i ~ . ~ ’ - ~ ~  This hypothesis 
argues that non-ionic and therefore, ‘n~n-per turb ing ’~~ 
compounds such as sorbitol, myo-inositol, and taurine, 
function as alternative organic intracellular osmolytes 
responding coordinately to changes in external osmolal- 
ity, thereby buffering injurious shifts in the intracellular 
electrolyte and water c o m p o s i t i ~ n . ~ ~ - ~ ~  
Osmolar stress precipitates compensatory alterations 
in the intracellular concentration of these alternative 
osmolytes by induction or suppression of the relevant 
synthetic enzymes (AR2 in the case of sorbitolS5) or 
membrane transporters (the sod i urn-myo-i nositol, and 
taurine  transporter^)^^,^^, thus accumulating or disposing 
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of these osmolytes in a coordinated fashion. Although 
initially regarded as metabolically inert, these osmolytes 
are now thought to have important metabolic as well as 
osmoregulatory roles.5,50,51,54,58-60 Thus myo-inositol 
may become limiting for PI signalling,59 and taurine 
depletion may lead to disruption of intracellular calcium 
homeostasis, 6o neuronal hyperexcitabi I ity, ’ and defects 
of neurotransmitter release and ion cond~ctance. ” ,~~  
Given the osmoregulatory and metabolic importance of 
taurine and myo-inositol, abnormal expression of the 
osmo-responsive genes that modulate compatible osmo- 
lyte metabolism might exaggerate the deleterious effects 
of otherwise trivial osmolar and/or metabolic stress, such 
as might occur in diabetes mellitus, thereby predisposing 
to the development of diabetic neuropathy. Indeed, 
provocative, fragmentary but conflicting data suggest a 
possible association between increased AR2 enzymatic 
activity and/or protein and the presence of late diabetic 
compl ications. 64-66 

Disturbances in Cellular Redox 

Increased flux through AR2 and sorbitol dehydrogenase 
oxidizes the NADPH/NADP+ and reduces the NADHi 
NAD’ redox couples, respectively, thereby perturbing 
other adenine nucleotide-linked reactions. Therefore 
activation of the polyol pathway in diabetes may lead 
to metabolic defects by mechanisms involving osmotic 
perturbations as considered above, or by redox disturb- 
ances (Figure 1). Increased oxidative tissue damage in 
diabetes has been proposed to result from oxidation of 
the NADPH/NADP+ couple through depletion of reduced 
glutathione, although direct supporting evidence is lack- 
ing.67 Depletion of NADPH may also affect the synthesis 
of the potent vasodilator and neuromodulator nitric oxide 
(NO) as both nitric oxide synthase (NOS) and AR2 utilize 
NADPH as a cofactor. Thus potentially consumption of 
NADPH by AR2 may lead to NO depletion with 
secondary effects on nerve blood flow (and nerve Na/K- 
ATPase (considered below). The reduction of NADH/ 
NAD+ coupled to the oxidation of glucose-derived 
sorbitol to fructose manifest as an increase in the 
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Figure 1 .  Potential effects of activation of the polyol pathway 
in diabetes 
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1actate:pyruvate ratio (or ‘pseudoischaemia’) has also 
been stressed as the major defect contributing to the 
development of neuropathy.68 This would divert glyco- 
lytic intermediates to the synthesis of phospholipid 
precursors such as alpha-glycerophosphate, phosphatidic 
acid, DAG and cytidine-diphospho-diglyceride (CDP- 
DG), while at the same time interfering with p-oxidation 
of long-chain fatty acids.68 The beneficial effects of myo- 
inositol administration on NCV in diabetic rodents would 
thereby be explained by accelerated disposal of the 
excess DAG and CDP-DG through the stimulation of 
PI synthesis.68 These observations are currently being 
assessed in both cell culture and animal models. 

Nerve lschaemia in Diabetes 

There is now increasing evidence that nerve ischaemia 
plays a central role in the pathogenesis of diabetic 
neuropathy. Studies in anaesthetized rats have identified 
reduced endoneurial blood flow and oxygen tension, 
and increased endoneurial vascular resistance after 4 
months of streptozotocin d i a b e t e ~ . ~ ~ , ~ ~  A 40 % reduction 
in nerve blood flow has been observed as early as 1 
week after the induction of diabetes in the rat.13 Not all 
investigators agree with the concept of an early reduction 
in nerve blood flow in experimental diabetes, as 
microsphere experiments in acutely diabetic rats have 
suggested increased blood flow and vascular per- 
meability.7’ Support for a leading role of a reduction of 
nerve blood flow early in diabetes in the development 
of NCV slowing i s  provided by the ability of vasodilatory 
agents to partially or completely correct nerve conduction 
~ low ing . ’~ , ’  For example, the alpha-adrenergic receptor 
inhibitor prazosin prevented slowing of conduction in 
the tibia1 motor and saphenous sensory nerves in 
acutely streptozotocin-diabetic rats14 and the angiotensin 
converting enzyme inhibitor lisinopril has been found to 
prevent 75 % of the slowing of sciatic motor and sensory 
NCV after 2 months of d iabe te~ . ’~  Lisinopril treatment 
also increased sciatic nerve capillary density, leading to 
the conclusion that lisinopril treatment reduced peripheral 
vascular resistance and increased nerve blood flow by 
stimulating angiogenesis. The nature of the underlying 
pathology leading to reduced nerve blood flow remains, 
however, the subject of controversy. 
The concept of nerve ischaemia in diabetes is however 

not new: Fagerberg’s early autopsy studies demonstrated 
thickened endoneurial vessel walls, which stained p- 
aminosalicylic acid positive and occluded endoneurial 
microvessels.’L A hypoxic hypothesis states that chronic 
experimental diabetic neuropathy, which is analogous 
to human diabetic neuropathy, is the result of initial 
damage to the nerve microvessels, with resultant nerve 
fibre degeneration secondary to endoneurial hypo~ ia .~ ’  
Suggested clinical evidence in support of nerve hypoxia 
in the development of neuropathy has been the finding 
of a reduction of endoneurial oxygen in the sural nerves 
of diabetic patients with p~ lyneuropa thy~~  and the 
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development of abnormalities of neural conduction in 
people with hypoxia secondary to chronic obstructive 
airway d i ~ e a s e . ~ ~ , ~ ~  Non-diabetic animals exposed to 
chronic hypoxia, show some impairment of NCV, and 
resistance to ischaemic conduction block, abnormalities 
of which are reversible when the hypoxia i s  corrected76 
and experimentally-induced reduction in caudal nerve 
action potential can be normalized by hyperbaric oxygen- 
ation, but without improvement in NCV.77 Thus although 
hypoxia may play a role in the development of diabetic 
neuropathy, this may not to be the sole factor. 

An understanding of both the anatomy of the nerve 
vasculature as well as the local (i.e. vasoactive agents) 
and distant (sympathetic tone) factors which regulate 
nerve blood flow may help elucidate the pathogenetic 
mechanisms which contribute to ischaemia. The vascular 
supply of nerve is provided by both an intrinsic system 
consisting of microvessels which are situated longitudi- 
nally within the fascicular endoneurium and an extrinsic 
system composed of the larger nutritive arteries, arterioles, 
venules, and epineural vessels. The nerve has only a 
very limited capacity to autoregulate its vascular supply: 
perhaps only the epineural and perineural vessels are 
capable of autoregulation, thus alterations in systemic 
pressure lead to passive fluctuations of perfusion in the 
n e r ~ e . ~ ~ , ~ ~  Extensive anastomoses (both arteriovenous 
and arterioarterial) are formed between the two systems 
by the epi- and perineural vessels, which together with 
the low metabolic requirements of the nerve confer a 
resistance to ischaemic  insult^.^' However, the recent 
demonstration of extensive perineurial AV anastomoses 
in subjects with diabetic neuropathy has led to speculation 
regarding the role of a ‘vascular steal phenomenon’ 
occurring, in which the nutritive endoneurial capillary 
flow is  impaired by the high shunt flow.ao 

A number of vascular endoneurial abnormalities have 
been found in diabetes which have been suggested to 
implicate ischaemia as the primary pathogenetic defect 
leading to neuropathy. Defects identified include base- 
ment membrane thickening and duplication, endothelial 
cell swelling and proliferation, intimal and smooth 
muscle cell proliferation, capillary closure, and further- 
more vessels from autopsy specimens of sural nerve have 
been found to be occluded by platelet t h r ~ m b i . ~ ~ , ” - ~ ~  
The interpretation of both the cause and the effects 
of these histological observations is not, however, 
straightforward as other studies have failed to find 
evidence of increased frequency of endothelial cell 
abnormalities in sural nerves of neuropathic diabetic 
patients8’ and suggested that differences in age may 
be responsible for the differences observed by other 
investigators. Furthermore, the non-uniform loss of myeli- 
nated fibres in diabetic sural nerves in patients with 
polyneuropathy, which has been taken to indicate nerve 
ischaemia, was also found in patients with Type 1 
hereditary motor and sensory neuropathy, which i s  not 
thought to have a vascular basis.88 Thus the interpretation 
of nerve vascular histological abnormalities in diabetic 
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patients remains controversial. These difficulties do not 
however exclude a significant ischaemic component in 
the development of neuropathy which appears likely in 
view of the accumulating evidence from animal studies. 

Rheological Abnormalities 

The contribution of rheological abnormalities in diabetes 
to the pathogenesis of diabetic neuropathy remains 
uncertain. Potentially at least, diabetic patients may have 
an increased susceptibility to intravascular thrombosis as 
whole blood viscosity is i n ~ r e a s e d ~ ~ , ~ ~  as is  red cell 
aggregation and fibrinogen  level^.^' One study which 
addressed the role of abnormal rheology in the pathogen- 
esis of diabetic distal symmetrical neuropathy, failed to 
find a difference in rheological abnormalities in patients 
who developed neuropathy, compared to diabetic sub- 
jects without neuropathy.y2 The study did however 
confirm that blood viscosity was increased and red cell 
deformability was reduced in all the diabetic patients. 
If there is  a primary abnormality of the neuronal 
microvasculature, with resultant reduction in the luminal 
area, neural blood flow may be compromised by the 
abnormal rheology in the diabetic state, as vessel radius 
primarily determines blood flow. 

Altered Synthesis, Release, and Sensitivity 
to Vasoactive Factors in Diabetes 

The mechanisms underlying the decrease in nerve blood 
flow seen in experimental diabetic neuropathy are 
unknown but depletion of NOy3 or an imbalance of the 
thromboxane:prostacyclin ratio, leading to a predomi- 
nance of vasoconstricting e i c ~ s a n o i d s , ~ ~  may potentially 
result in alterations in sympathetic tone and basal 
vascular tone with the net result of a reduction of 
endoneurial blood flow. 

Nitric Oxide 

Over the last few years the diverse biological functions 
of the endothelium-derived relaxing factor NO have 
become increasingly apparent. This highly reactive, 
short-lived radical gas has been shown to mediate 
vasodilatation and macrophage cytotoxicity, and to play 
an important role as a neuronal messenger within the 
CNS.93,9’,96 Recently, its importance in the pathogenesis 
of diabetic complications, including diabetic neuropathy, 
has been the subject of increasing interest. Endoneurial 
endothel ial cells, smooth muscle cells, pericytes, and 
sympathetic ganglia are also most likely sites of nitric 
oxide synthase (NOS), the enzyme catalysing the conver- 
sion of 1-arginine to citrulline and NO.97 In the endo- 
thelium and neuron, NOS i s  calcium-calmodulin depen- 
dent and increases in intracellular calcium stimulate its 
activity.” Locally released NO in the endoneurial 
microvasculature would, along with locally derived 
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prostacyclins, presumably exert a potent vasodilatory 
effect which modulates regional blood flow. Endothelium-. 
dependent relaxation of smooth muscle has been shown 
to be impaired in both human98 and experimentally 
induced diabete~.~~-’O’ The mechanisms underlying this 
deficit are unclear but may involve depletion of N099-’05 
or altered smooth-muscle sensitivty to N0.’06 Impaired 
local synthesis of NO may alter basal vascular tone 
either by reduced activation of soluble guanylate cyclase 
in vascular smooth or by decreased 
Na/K-ATPase’O’ potentially resulting in decreased endo- 
neurial blood flow. The impaired endoneurial vaso- 
dilatory responses to acetyl c h ~ l i n e ~ ~ , ’ ~ ~  but preserved 
endothelial-independent vasodilatory responses to, for 
example, sodium nitroprusside,’ O1 nitroglycerin, ’ O0,’ O2 

and other agents which directly release NO, implicate 
a defect or defects in either endoneurial N O  synthesis 
or release as the cause of impaired vascular responses 
in diabetes. 

Alternatively, although local endoneurial NO depletion 
may directly contribute to decreased endoneurial blood 
flow, the potential of NO as an inhibitory neuro- 
transmitter’l0 and its role in the maintenance of blood 
pressure via modulating sympathetic toney3 suggest 
another possible mechanism. The acute reduction in 
endoneurial blood flow in diabetes may be mediated by 
acutely increased sympathetic tone, as inhibition of basal 
sympathetic vascular tone by guanethidine restores both 
nerve blood flow and nerve conduction to normal levels 
in acute experimental d iabe te~ . ’~  If NO is functioning 
as an inhibitory neurotransmitter, it i s  tempting to 
speculate that postsynaptic neuronal NO might dampen 
presynaptic acetylcholine release thereby modulating 
peripheral sympathetic tone5 (Figure 2). Thus in diabetes, 
if NO depletion at the level of the sympathetic ganglia 
is an early event, this may result in increased vasocon- 

stricting sympathetic tone to the nerve vasculature 
precipitating nerve ischaemia and acute nerve conduction 
slowing. 

Altered NO metabolism in diabetes may be the means 
by which the divergent metabolic and vascular hypotheses 
evoked in the pathogenesis of diabetic neuropathy are 
j ~ i n e d . ~ , ”  Metabolic competition for NADPH by AR2 
and NOS has been proposed as a potential mechanism 
by which these hypotheses are linked5,47,111 (Figure 3). 
AR2-mediated consumption of NADPH may not only 
directly impair the activity of NOS, but may also lead 
to increased levels of superoxide radicals, as NADPH is 
also required for the production of reduced gluta- 
thione.”> The diabetic endothelium is abnormally sensi- 
tive to damage mediated by both increased production of 
superoxide radicals’02 which may also destroy N0,’02,’03 
and to the increased formation of advanced glycosylation 
end products by glucose’ l 2  and fructose. Support for 
metabolic competition between NOS and AR2 is provided 
by the fact that ARls not only restore osmolyte balance 
in the nerve5,10,19,2y,30 but also improve nerve blood 
flow.’l4 Moreover, in a 3-month STZ-D rat model ARI 
treatment has been demonstrated to restore endothelium- 
dependent relaxation to within normal limits.’ l 1  Recently, 
an NOS inhibitor 1-nitro-N-methyl arginine ester (1- 
NAME) was found to reverse the beneficial effects of an 
ARI in acute experimental diabetic neuropathy, in spite 
of a significant decrease in nerve sorbitol and an increase 
in nerve myo-inositol levels. 1-NAME was also found to 
slow NCV and reduce Na/K-ATPase activity in chronically 
(3-month) treated non-diabetic  animal^.^' These data 
support a role for NO in mediating, at least partially, 
the beneficial effects of ARls on nerve blood flow and 
NCV slowing and also a role in the maintenance of the 
nerve Na/K-ATPase, thus suggesting both a vascular and 
metabolic action. 

NOS 

Figure 2. Sympathetic ganglia, smooth muscle cell, and endothelial cell. Depletion of nitric oxide (NO)  at the level of the 
autonomic ganglia or within the endoneurial vasculature may contribute to reduced nerve blood flow i n  diabetes. AR2, aldose 
reductase; PKC, protein kinase C; ACh, acetyl choline; NOS, nitric oxide synthase; NORADR, noradrenaline 
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Figure 3. Metabolic competition for NADPH by aldose reductase and nitric oxide synthase in normal and diabetic state. AR2, 
aldose reductase; SDH, sorbitol dehydrogenase; NO, nitric oxide; NOS, nitric oxide synthase; NCV, nerve conduction velocity 

Evidence is also accumulating that PKC may regulate 
NOS by direct phosphorylation.”5-”7 The effect of PKC 
on NO synthesis is however controversial as PKC 
activation has been reported to either increase’ ’ or 
decrease116,’ ’’ NO synthesis. Moreover, the bi-direc- 
tional effects of hyperglycaemia on DAG levels and PKC 
activation which may reflect variations in AR2 expression 
and activity in different tissues (Figure 4) suggests that 
tissue-specific differences in these regulatory factors 
may determine the predominant response of NOS to 
hyperglycaemia. Potentially, hyperglycaemia may dimin- 
ish NO synthesis in autonomic ganglia via inhibition of 
basal PI turnover and PKC activity. This may increase 
vascular sympathetic tone, resulting in decreased endo- 
neurial blood flow thereby linking metabolic and vascular 
defects in diabetes. 

Therefore a decrease in the synthesis or release of NO 
or altered tissue sensitivity to NO in diabetes could 
contribute to NCV slowing by decreasing endoneurial 
blood flow both by acutely increasing vascular sympath- 
etic tone and by localized vascular endothelial and 
smooth muscle depletion. Moreover, N O  depletion may 

L-Arginine + 02 

Citrulline + NO 

Figure 4. Interactions of aldose reductase gene expression, 
protein kinase C activation, and nitric oxide synthesis. AR, 
aldose reductase; DAG, diacylglycerol; cNOS, constitutive 
form of nitric oxide synthase, NO, nitric oxide; PKC, protein 
kinase C 

exert more distal effects on nerve function independently 
of nerve blood flow via direct effects on the nerve Na/ 
K-ATPase a c t i ~ i t y : ~ ~ , ’ ~ ~  N O  may modulate PI turnover”8 
and thus act synergistically with osmotically-induced 
myo-inositol depletion in impairing signal transduction 
and NaiK-ATPase regulation. 

Prostaglandin Metabolism 

Diabetes-induced abnormalities in eicosanoid metab- 
olism may potentially have wide-ranging effects on nerve 
function. In diabetes, an increase in the thromboxane: 
prostacyclin ratioy4 may contribute to nerve ischaemia 
(and reduced nerve Na/K-ATPase). Increases in vasocon- 
stricting thromboxanes PGH2’ l 9  Tx A2,I2’ PGF2a, and 
reduction in vasodilating prostacyclin have been 
described in isolated diabetic vascular tissue.’*’ 
Microvascular tone is dependent on the opposing actions 
of endothelial prostacyclin, which together with NO 
elicits vasodilatation, and thromboxane A2, which is  
found mainly in blood platelets and produces vasoconstr- 
iction.120 lschaemia in the nerve may activate phospholi- 
pase disrupting membrane phospholipids and 
generating prostag land i ns from activated arach idon ic 
acid’Z3 (Figure 5). A hypoxic insult may also be one of 
the triggers for the production of the superoxide radical 
via the breakdown of ATP.69 The generation of lipid 
hydroperoxides by the action of free radicals may result 
in increased cyclooxygenase activity and a reduction in 
prostacyclin synthetase activity, thus increasing the 
thromboxane:prostacyclin ratio, with resultant vaso- 
constriction and platelet aggregation. Phospholipase 
activation may also generate endothelium disrupting 
leukotrienes. Eicosanoids may serve to limit the detrimen- 
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Figure 5. Prostaglandin synthesis in diabetes. PLA2, phospholi- 
pase A2; PGH2, prostaglandin endoperoxide H2 

tal effects of ischaemia by inhibiting superoxide anion 
production. 124 

Compelling evidence in the diabetic rat model impli- 
cates a role for disruption of prostaglandin metabolism 
in NCV slowing. Although nerve prostacyclin levels are 
typically not depleted early in experimental ne~ropathy,’~ 
altered prostaglandin metabolism at other sites may 
contribute to the early decrease in endoneurial blood 
flow as both PGE, and PGE2 inhibit sympathetic neuro- 
transmission mainly by reducing the release of noradrena- 
line from adrenergic nerve  terminal^.'^^,'^^ Reduced 
nerve prostacyclin has been found in chronic (+month) 
experimental diabetesg4 and prostaglandin El analogue 
administration has been shown to restore NCV to normal 
in diabetic rats.”4 As levels of CAMP have been found 
to be reduced in experimental ne~ropathy ’~ ’  and there 
exists a direct correlation between nerve prostacyclin 
levels, CAMP,’*’ and the Na/K-ATPase128 which are 
corrected by prostaglandin El administration, then the 
possibility arises that prostaglandin metabolism may be 
a key modulator of the both endoneurial blood flow 
and nerve Na/K-ATPase activity. Moreover therapeutic 
manipulations which have been shown to correct nerve 
conduction slowing such as myo-inositol supplementation 
or gamma-linolenic acid (GLA- from evening primrose 
oil)’6*’8,23,24,29,129,130 may in fact be working at least 
partly by increasing prostacyclin production as both may 
potentially increase arachidonic acid which i s  rate 
limiting for prostaglandin synthesis. 

Carnitine Metabolism 

Abnormalities in fatty acid metabolism have also been 
implicated in the pathogenesis of neuropathy as diabetes- 
induced defects in the desaturation of gamma-linoleic 
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acid to gamma-linolenic acid exist130*131 which may 
precipitate a reduction in nerve blood flow via a decrease 
in production of vasodilating eicosanoidsg4 (Figure 5) 
and by the accumulation of toxic long chain fatty acids 
in the peripheral nerve. 

Abnormal carnitine metabolism in diabetes may also 
predispose to the development of diabetic neuropathy. 
Carnitine and its acetyl ester acetyl 1-carnitine play a 
central role in fatty acid metabolism and are important 
in the production of the metabolic f ~ e l s . ’ ~ ~ , ’ ~ ~  A 
reduction in plasma free carnitine and an increase in 
the carnitine esters has been found in d i a b e t e ~ ’ ~ ~ , ’ ~ ~  
and this may lead to the accumulation of long-chain 
fatty acids which can perturb membrane stability’ 36 

and f ~ n c t i o n ’ ~ ’  and disrupt energy production in the 
nerve. ’ 38,1 39 Carnitine and acetyl 1-carnitine promote 
transport of cytosolic long-chain fatty acids across the 
inner mitochondria1 membrane to undergo p-oxidation 
and may thereby prevent their excessive 
accumulation.’ 35-142 Acetyl I-carnitine may have neuro- 
trophic properties as it facilitates the neurite outgrowth 
of rat phaeochromocytoma cells (PC12) to nerve growth 
factor’43 (NGF) and stimulates nerve growth factor 
receptor (NGFR) synthesis in PC12 cells by increasing 
NGFR protein and mRNA (1 44). Acetyl-1-carnitine also 
enhances nerve fibre repair and regeneration after nerve 
tran~ection’~’ in non-diabetic rats and has cholinergic 

Polyol pathway-induced accumulation 
of NADH precipitating a metabolic ‘pseudohypoxia’ has 
also been implicated in tissue fatty acid accumu- 
I a t i ~ n , ~ ’ , ’ ~ ~  and may thus also be amenable to acetyl 1- 
carnitine treatment. Finally, acetyl-1-carnitine may affect 
arachidonic acid metabolism, enhancing the production 
of prostacyclin which may improve both nerve blood 
flow and correct reduced nerve Na/K-ATPase. Preliminary 
studies have suggested that acetyl 1-carnitine can prevent 
slowing of nerve conduction in streptozotocin-diabetic 
 rat^'^^,'^' and vascular d y s f ~ n c t i o n ’ ~ ~  although the 
mechanisms remain obscure. On-going phase 3 clinical 
studies are examining its potential in the management 
of early diabetic neuropathy. 

Nonenzymat ic GI ycat ion 

Nonenzymatic protein glycation’ is  a well-established 
mechanism by which glucose and its metabolites may 
exert detrimental effects in diabetes by a process which 
may be exacerbated by increased flux through the polyol 
pathway as fructose, and some of its triose-phosphate 
metabolites are much stronger glycating agents than 
glucose on a molar basis.68 In keeping with this is the 
evidence that an ARI has been shown to effect the 
fluorescence level of endoneurial extracellular matrix 
from diabetic rats’51 and aminoguanidine, a glycation 
inhibitor, partially protects against the nerve conduction 
slowing and nerve fibre damage in chronically diabetic 
rats.’52 Potentially, excess protein glycation in diabetes 
could have detrimental effects on the endoneurial 
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microenvironment either by damaging the vascular 
supply, or by directly altering the composition of the 
extracellular matrix. Schwann cells and/or regenerating 
axons interact with extracellular proteins via specific 
membrane ’substrate adhesion molecules’ or ‘SAMS‘ 
which may also be an important modulation of 
n e u r o t r o p h i ~ m . ’ ~ ~ - ’ ~ ~  This i s  reflected by the inability 
of laminin to support neurite outgrowth in tissue culture, 
after the laminin underwent chemical g 1 ~ c a t i o n . l ~ ~  
Therefore the nonenzymatic glycation of extracellular 
matrix proteins could interfere with their ability to exert 
neurotrophic effects on peripheral nerve fibres. 

Growth Factors 

Recent advances in the treatment of drug-induced 
neuropathies with neurotrophic agents have rekindled 
interest in neurotrophism and, in particular, the potential 
role of neurotrophic factors in the pathogenesis and 
treatment of diabetic neuropathy. 

The prototypic neurotrophic agent i s  NGF, discovered 
by Levi-Montaicini and Harnb~rg . ’~ ’  NGF is  produced 
by target organs of autonomic and sensory neurons 
where levels of NGF mRNA parallel the density of 
innervation by NGF-sensitive neurons.’ s7,158 Retrograde 
transport of NGF from target organs to neuronal cell 
bodies is  required for normal growth, maintenance, and 
regeneration of the peripheral nervous system. Recently, 
there is  strong evidence suggesting that adult Schwann 
cells also make growth factors and express growth factor 
receptors during neuronal development. ’ 59,1 6o These 
growth factors include not only NGF but also ciliary 
neurotrophic factor (CNTF) and IGF-I. 

Potential blunting of normal neurotrophic responses 
could play a role in the pathogenesis of diabetic 
neuropathy. Persistent hyperglycaemia may: 

1. decrease growth factor synthesis by target organs; 
2. disrupt retrograde transport of growth factors to the 

neuronal cell body; 
3. affect the signal transduction mechanism of growth 

factors in neurons; or 
4. alter the ability of neurons or Schwann cells to 

produce growth factors required for normal cell 
maintenance. 

Current data indicate all four possibilities may contribute, 
either individually or collectively, to the pathogenesis of 
diabetic neuropathy. 

Growth factor Synthesis by Target Organs 

It has been recognized for many years that trophic 
substances in the nervous system could influence the 
developmental fate of a neuron. The best studied of 
these is  NGF, a protein produced by target cells of 
sympathetic and neural-crest derived sensory neurons. 
After retrograde axonal transport, NGF can induce 
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enzymes required for neurotransmitter synthesis, protein 
phosphorylation, methylation, and gene expression of 
ras-like proteins in neurons. NGF is  required for normal 
function of these neurons in embryonic, postnatal, and 
adult life, and loss of NGF leads to neuronal dysfunction. 
These same NGF requiring sensory neurons, are com- 
monly affected in diabetes, producing autonomic and/ 
or sensory neuropathy(s). Evidence suggests that NGF 
may play a role in the pathophysiology of these 
neuropathies. Endogenous NGF levels are reduced in 
sympathetically innervated target organs of streptozoto- 
cin-treated rats. 1 6 ’  In both streptozotocin-treated rats as 
well as genetically diabetic mice (C57BL/KsJ db/db), 
there i s  a profound decrease of NGF production by the 
submandibular glands.’62 In humans, patients with 
diabetic neuropathy have significantly lower levels of 
serum NGF than non-diabetic controls.163 These data 
all suggest that growth factor production is altered in 
diabetes, and such a disruption of normal neurotrophic 
factor production may play a role in the pathogenesis 
of diabetic neuropathy. 

Axonaf Transport of Growth factors 

NGF binds selectively to the terminal proteins of sympath- 
etic and neural crest-derived sensory neurons, and, after 
internalization, is transported by retrograde axonal flow to 
the cell bodies. This transport is  altered in streptozotocin 
diabetic rats. Mesenteric nerves, which supply the 
alimentary tract, can develop a distal diabetic axonopa- 
thy. During experimentally induced diabetes, retrograde 
axonal transport of NGF along the mesenteric nerves 
to the superior mesenteric ganglion is reduced by 
approximately half.’64 Similarly, NGF transport is 
decreased in diabetic somatic sensory n e ~ r 0 n s . l ~ ~  These 
alterations in NGF transport form a subset of more 
widespread transport dysfunction in diabetes. Decreased 
axonal transport during experimentally induced diabetes 
has been reported for proteins, gl ycoproteins, and 
neurotran~mitters.’~~ These results suggest that impair- 
ment of axonal transport, especially the retrograde flow 
of growth factors, may play a role in the pathogenesis 
of diabetic neuropathy. 

Signal Transduction of Growth factors in 
Diabetes 

In neural tissues, activation of muscarinic, cholinergic, 
adrenergic, histaminergic or serotergic receptors results 
in stimulation of PI turnover.166 Interestingly, not only 
have neurotransmitters been linked to PI turnover but 
NGF has also been shown to stimulate PI turnover in 
rat superior cervical ganglia’67 and PC12 cells.’68 The 
most extensively studied growth factor which can be 
coupled to PI turnover is, however, epidermal growth 
factor (EGF). When EGF binds to its receptor on the A- 
431 cell, there is  an increase in PI turnover,’69 followed 
by an increase in intracellular calcium, and PKC mediated 
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phosphorylation of the EGF receptor. ’ 70 Recently, IGF- 
II has been shown to stimulate IP, and DAG production 
in proximal tubular basolateral membranes from canine 
kidney;’ 71 mannose-6-phosphate may potentiate this 
s t i rnu la t i~n , ’~~  reflecting a potential role for carbohydrate 
moieties in the regulation of growth factor signal transduc- 
tion. 

Although alterations in PI metabolism are well docu- 
mented in diabetes, much less is known about the 
potential role growth factors may play in these alterations. 
The definitive experiments, examining growth factor 
coupled PI turnover in multiple diabetic tissues, have 
not been done. 

Growth Factor Production 

In adult rat sciatic nerve, NGF production is low, as 
long as axonal contact i s  maintained.’73,’74 W‘ ith nerve 
transection, Schwann cells distal to the cut, including 
those which ensheath motor axons, dramatically increase 
their production of NGF’75 and NGF  receptor^,'^^,'^^ 
reaching a maximal at 5 to 7 days. Transection of 
selective ventral roots entering the sciatic nerve results 
in increased NGF receptor expression by Schwann cells 
associated with degenerating motor neurons alone, but 
not intact sensory n e ~ r 0 n s . l ~ ~  Analogous to axonal 
regeneration, Schwann cells express NGF receptors 
during normal development with a dramatic decline in 
receptor number (25-fold) upon PNS maturation.’60 

Schwann cells have also been implicated as local 
producers of CNTF and IGF-I. Motor neurons serve as 
the major target for CNTF, a small polypeptide originally 
purified from chick and rabbit sciatic nerve.178 CNTF 
enhances avian motor neuron survival both in vivo and 
in vitro and can rescue neonatal rat facial motor neurons 
from experimentally induced cell death.’79,180 IGF-I 
immunoreactivity is present in Schwann cell cytoplasm 
and is  increased by sciatic nerve transection.18’ Addition 
of IGF-I to freeze injured sciatic nerves enhances 
regeneration in a dose-dependent fashion.’82 In strepto- 
zotocin-treated rats, there i s  a decrease in serum IGF-I 
 level^'^^-'^^ and a reduction in IGF-I mRNA in liver, 
kidney, lung, and 

The effects of diabetes on nervous system expression 
of NGF, IGF-I or CNTF remains however unknown. 
Successful axonal maintenance, regeneration, and refor- 
mation of axon-Schwann cell contacts is likely to be 
dependent on this local synthesis of growth factors and 
growth factor receptors. ’ 7 3  Blunted neurotrophic effects 
may occur in diabetes and contribute to the pathogenesis 
of diabetic neuropathy. Currently, these ideas remain 
untested and further work in this field is required. 

Concluding Remarks 

In summary, all of the above abnormalities identified in 
diabetes, can be traced to the metabolic effects of 
hyperglycaernia and/or other effects of insulin deficiency 

on the richly varied cell constituents of peripheral nerve, 
its supporting connective tissue and vascular elements, 
and possibly the autonomic innervation that controls the 
endoneurial blood flow. Considerable evidence appears 
to link both the metabolic and vascular hypotheses of 
diabetic neuropathy. For example, increased glucose 
flux through the polyol pathway may be deleterious in 
diabetes by precipitating osmotic dysregulation in tissue 
with high levels of AR2 activity when myo-inositol and 
taurine depletion may become rate limiting for their 
normal metabolic functions; producing redox pertur- 
bations manifest as oxidation and reduction of the 
NADPH/NADP+ and NADH/NAD+ redox couples, 
respectively, and increasing nonenzymatic protein glyca- 
tion.These metabolic perturbations may potentially lead 
to alterations in nerve blood flow due to disruption of 
sympathetic tone and disturbances in the production of 
vascoactive factors. Alterations in fatty acid metabolism 
in diabetes may directly disrupt nerve structure and 
function but also may disturb the production of vasodilat- 
ing eicosanoids. In addition, accumulating evidence 
implicates a role for blunted neurotrophism in the 
development of diabetic neuropathy. 

Although the diverse effects of hyperglycaemia, at first 
glance, appear to preclude the development of an 
effective therapeutic strategy in the management of this 
chronic complication, the interdependence of the many 
factors which are necessary for normal nerve function 
suggests that selective intervention aimed at a key defect 
early in this cascade may correct many of the later 
defects as has been observed by the wide ranging effects 
of the ARls. 
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