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Abstract

A matter of increasing concern in radar scattering is the contribution from gaps
and cracks where two component structures come together. For the two-dimensional
problem of a narrow gap filled with a resistive or impedance material in an otherwise
perfectly conducting plane, the integral equations for the currents induced in the gap are
approximated under the assumption that w < < A, where w is the gap width and A is the
wavelength. The resulting equations are analogous to those occuring in airfoil theory.
Exact solutions are derived in special cases and these are used to guide the
development of approximate analytical expressions for the diffracted fields which are
valid for almost all resistivities of the gap material. By comparison with data obtained
from a moment method solution of the problem, it is demonstrated that the resuits are
accurate even for gap widths as large as X/8 for H-polarization and A/4 for
E-polarization, and the application of these formulas to realistic gap geometries is also

discussed.

Preface

The body of this report is a paper which has been accepted for publication in the
IEEE Transactions on Antennas and Propagation. The determination of the impedance
presented by a variety of crack geometries was carried out by Mr. S. M. Kilberg and is
described in Appendix A, and the extension to an impedance surface is discussed in

Appendix B.



1. Introduction

With the increasing sophistication of radar cross section reduction techniques,
gaps and cracks where two component structures come together can become a
dominant contributor to the bistatic scattering behavior of a target. In those cases where
it is impossible to eliminate the break, it is important to examine the effect of different gap
geometries and material inserts, and to develop ways to compute the scattering. For a
simple gap whose width w is comparable to or larger than the wavelength A, consisting
of a lossy material insert in an otherwise perfectly conducting plane, the scattered field
can be deduced from the GTD solution for an isolated resistive strip [1], or computed
using one of the available codes [2] for solving the integral equation for the strip. On the
other hand, if w < < A (the usual situation at microwave frequencies) an alternative
approach is possible, and this is the subject of the present report.

The problem initially considered is that of a two-dimensional slit in a perfectly
conducting plane occupied by a resistive material of uniform resistivity R ohms per
square and illuminated by a plane wave either H or E polarized. Using Babinet's
principle, the integral equations for the currents supported by the material are deduced
from the corresponding integral equations for a strip, and then approximated under the
assumption that the strip width is small. The resulting equations are special cases of a
general airfoil equation, and analytical solutions are derived in the limits of large and
small resistivities. Guided by these, and using numerical data obtained from a moment
method solution of the equations, approximate analytical expressions for the far zone
diffracted field of the gap are developed. These are valid for almost all (complex)
resistivities, and their accuracy is verified for gap widths as large as A/8 for
H-polarization and A/4 for E-polarization.

If, instead, the gap is occupied by a material at which an impedance boundary
condition is imposed, the analysis is still applicable if R is replaced by n/2, where n is the
surface impedance. Using a quasi-static method we can determine the impedance

presented by a gap of almost any configuration, and two examples are given.



2. Integral Equations for a Resistive Insert

A resistive sheet of uniform resistivity R ohms per square occupies the portion -
W/2 < X < W/2, - < Z < o 0f the otherwise perfectly conducting plane y = 0. A plane wave
is incident on the surface from above (see Figure 1) and we consider separately the
case of H- or E-polarization with
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Hi(orEl)=2e (1)

respectively, where a time factor e-i®t has been assumed and suppressed. In the far

zone, the diffracted field attributable to the resistive insert is
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where (p, ¢) are the usual cylindrical coordinates of the obervation point and the task is

to determine Py g under the assumption that kw < < 1.

2.1 H-Polarization

From Babinet's principle [3] the problem is equivalent to the diffraction of an E
polarized plane wave by the complementary resistive strip of resistivity R = Z2/(4R)
ohms per square where Z is the intrinsic impedance of free space. It is therefore a trivial
matter to deduce the integral equation for the current supported by the insert from the

integral equation for the strip. Thus [4]

or-w/2 < x <w/2, and in terms of J, (x)
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We observe that if R is finite, a = « as kw — 0.

The small argument expansion of the Hankel function is

Hm(z =% (bn.-z-wy%t) +0 (zz,zzl’/n.z)
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where vy = 0.5772157.... is Euler's constant, and hence
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When this is inserted into (7), the lowest order approximation for small kw is

1
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and (8) becomes
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A further simplification is to write

5 0= {1+3AP 6.0, 1, 0.

and the integral equation for J, (£) is then
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We note that Py (¢, ¢,) depends only on the average value of J, ({) and is independent

of ¢ and ¢,. The solution of (14) is discussed in Section 3.



2.2 E-Polarization

If the plane wave incident on the surface y = 0 is E polarized, the integral

equation for the current supported by the insert is, from Babinet's principle,

| €
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[see 5] valid for - w/2 < x < w/2 with J, (£ w/2) = 0, and the diffracted far fieild amplitude is
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It is now convenient to write

J = J, , 18
5 (0) — Sm¢ (x) (18)

where { and (' are the variables defined in (5). Equation (16) then becomes

kw
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for -1 < L < 1 with
J3 (£1)=0 (20)
and
b = -ikw %:-'—E‘ﬁ% . (1)

We observe thatif R#0,b — 0 as kw — 0, and in terms of J5 ({)
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When the small argument expansion of the Hankel function is inserted into (19),

the lowest order approximation for small kw is
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and since J3 ({) is independent of ¢ and ¢, the only angular dependence of Pg (¢, ¢,) is
that shown explicitly in (24). The determination of J3 ({) as a function of b is addressed

in the next section.
3. Solution of the Integral Equations

The integral equations (14) and (23) are closely related to equations which occur

in airfoil theory. If (14) is differentiated with respect to { we obtain

1.
L at
ad, <c>+—jJ )5 27 =0 25)

where the prime attached to the function indicates the derivative and the asterisk
denotes the Cauchy principal value. Similarly, by carrying out the differentiation in (23)
and invoking (20), the equation can be written as
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Both are examples of a general equation whose reduction to a regular Fredholm
equation can be achieved [6] using a Hilbert transform, but unfortunately a closed-form
analytical solution is not available. On the other hand, the dominant terms for |a|, |b]
small or large compared with unity are easily obtained. When used in conjunction with
numerical solutions of (14) and (23), these suggest expressions for the far field

amplitudes which are valid for (almost) all a and b.
3.1 Determination of PH (0, 0g)

Since Py is independent of ¢ and ¢, but is expected to be a function of a, we shall

henceforth write it as Py (a) and in terms of

1
1 N Ar !
K, (@) = 3{_! J, () @7)
we have (see (15) )
P, (@) = 2K, (2) { 1+ AK, ()} (28)

For a = 0, corresponding to an open slit, J> ({) can be obtained from (25) using a Hilbert

transform [7] or, alternatively, from (14) using the inversion formulas in [8]. The result is



giving

K,0)=-—— .
n(0) o (29)
Hence
B (0)=35 (30)
where
1
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and an expression for Ky (a) which encompasses (29) and (32) is

-1

KH(a)=-{"2—a+bn2+f(a)} (33)

provided f(0) = 0 and f(a) = 0 (a¢) for large |a| with € < 1.

To determine f(a), a program was written to solve the integral equation (14) by the
moment method. From the resulting data for Ky (a) it was found that f(a) has dominant
simple poles at a = -0.15, -0.29 and zeros at a = 0, -0.20, and an expression for f(a)

consistent with this is



ca(a+0.20)
@) = @+0.15) (a + 0.29)

(34)

In (34) c is a constant which was found from a numerical examination of Ky (a) for
negative real a. As shown in Figure 2, K4 (a) has simple poles at a = -0.25 and -0.56,

and both specify ¢ = 0.10. An approximate formula for Ky (a) is therefore*

a) = - (a+0.15) (a + 0.29) (35)

("2—a+ﬂm 2) (a+0.15) (a + 0.29) + 0.10a (a + 0.20)

and when this is substituted into (28), an explicit analytical expression for Py (a) is
obtained.

The values of Ky (a) predicted by (35) have been compared with the moment
method data as a function of |a| for a variety of arg a. With the possible exception of
negative real a in the range -0.1 < a < 0, the agreement is excellent for all a and, in

particular, the magnitude is in error by less than one percent for |a| < 10.

3.2 Determination of PE (¢, ¢o)

The procedure employed is similar to that for H-polarization. Writing

1
1 .
Ke (b) = ;_! J,(0) d (36)
we have (see (24) )
P_(0,0,) =- %‘(kw)2 sing sino, Kc. (b) 37)

* Since the kernel of (14) is symmetric, the eigenvalues are all real and the only
possible poles of Ky (a) are also real.
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where J3 ({) is given by the integral equation (23) or (26).

If b =0, J3 ({) can be obtained from (26) by applying a Hilbert transform or,
alternatively, by integrating out the derivatives in (23) and using the inversion formulas

[8] in conjunction with (20). The result is

LO=v1-¢

giving
Kg 0)=0.5, (38)

and when this is inserted into (37), the far field amplitude agrees with the known solution

[9] for a perfectly conducting strip. On the other hand, if |b| > > 1,

1
LO= ¢
implying
®= = (39)
e ®= b’

The limiting values (38) and (39) can now be used to guide the development of an
analytical expression for Kg (b).

From the results of a numerical solution of (23) by the moment method, it was
found that K¢ (b) has a dominant pole at b = -1.15 and an infinite series of adjacent
poles and zeros at increasingly negative real values of b. The effect of each pole-zero

pair is apparent only in the immediate vicinity, and for other values of b an adequate

11



approximation to Kg (b) is obtained by including only five pole-zero pairs. Consistent

with the known value of K¢ (0), we derived that

K. (b) = 062 ~ (b+4.08) (b+7.26) (b+10.37) (b + 13.43) (b + 16.46)
& b+1.15 (b+4.27) (b+737) (b+10.45) (b+ 13.49) (b + 16.50)

(40)

leading to an explicit analytical approximation to Pg (¢, ¢o)-

To assess the accuracy of (40), the results were compared with moment method
data as a function of |b| for various arg (b). The agreement was good. For |b| < 10 the
amplitudes differed by less than 1.5 percent, and for non-negative-real b the error was
less than 2 percent out to |b| = 100. Because of the manner in which b depends on kw

(see (21) ), the smaller values of |b| are more important for practical purposes.

4. Verification and Extension of the Theory
The preceeding analyses are based on a low frequency approximation to the

integrals and, as such, can be justified only for electrically narrow gaps. In practice,
however, the expressions for Py ¢ (6, 0, ) are accurate for a significant range of gap
widths, and this has been verified by comparing the results with those generated by a
moment method solution of (3) and (16). The particular code employed [2] computes the
matrix elements using an analytical expression for all cells within a fraction of a
wavelength of each other, thereby avoiding the errors common to many moment method
codes when applied to small structures.

In Figures 3 through 8 the scattering length (or scattering cross section per unit

length in the z direction)

O 8.05) = =1 Py g 0.0, @)

computed using the code is compared with the values predicted by (28) and (37) for a
variety of R as a function of kw. For E-polarization (Figures 3-5) the agreement is good

12



out to kw = 1.6 almost independently of ¢ and ¢, and the same is true for the phase of
Pe. With H-polarization, however, the low frequency solution does not depend on ¢ and
¢o whereas the exact solution does to an increasing extent as kw increases. This is
evident from Figures 6-8 where the vertical lines show the total variations of the moment
method data for oy (¢, ¢, ) over the range 0< ¢ <90° in the case of backscattering
(6o = 9). The agreement with the low frequency solution is now good out to kw = 0.8 with
a similar result for the phase.

For an actual gap in an airframe structure, an insert composed of a resistive sheet
material is not a very realistic model, but the analyses is also applicable to another type
of insert. If the insert consists of a material satisfying an impedance boundary condition
at the surface y = 0, - w/2 < x < w/2, there is no Babinet equivalent problem, but it is still
possible to derive an integral equation for the (magnetic) current supported by the insert
by using a half-space Green's function in conjunction with a standard integral
representation of the field in y 2 0. The resulting equations are identical to (3) and (16)

with R replaced by 11/2 where 1 is the surface impedance. Thus

a=

n

2 z «2)
and with this identification, the expressions (28) and (37) for the far field amplitudes are
immediately applicable.

A particular advantage of this generalization is that for an actual structure the
impedance can be determined experimentally or, for a narrow gap of relatively simple
geometry, using a quasi-static analysis or code. As an example, consider the
cavity-backed slot shown in Figure 9(a). !f w < < A and the relative permittivity and
permeability of the material filling the cavity are €' and ', respectively, the lowest order
mode field within the cavity when an H polarized plane wave is incident can be written

as

13



H = cos {pk(y+d)}
with

- 4

7 oH, E 7z oH
* ke oy Y ike' ox

where

p=yep (43)
s the refractive index of the material. From the continuity of the tangential fields at the

surface y = 0 it now follows that
n=- 'Z—ptan (pkd) (44)
8!
Similarly, for E-polarization, the lowest order mode within the cavity is

E, = cos L2t sinh{pk(y+d)}

Z

where now
2
p= (-2%’7) e’ (45)
rom which it follows that
=-iZ % tanh (pkd) (46)

We note that for small w/A and d comparable to or greater than w, n = -iZ u'/p
independent of the depth d.
If the cavity has no metal base as in Figure 9(b), the analogous expressions for n

are

tan (pkd) + i —Z,
n=-izB—— P (47)
€ . €
14 5—21 tan (pkd)

14



for H-polarization and

tanh (pkd) +i -2,

—iz = @8)

Py +i-5721 tanh (pkd)

for E-polarization, where Z4 is the relative impedance at the lower surface of the insert
looking into the region y < -d. For a still more realistic (butted) geometry such as that

shown in Figure 9(c), the impedance can be computed using a quasi-static code.

15



feren

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

M.l. Herman and J.L. Volakis, "High Frequency Scattering by a Resistive
Strip and Extensions to Conductive and iImpedance Strips," Radio Sci.,
vol. 22, no. 3, pp. 335-349, 1987.

M.A. Ricoy and J.L. Volakis, "Integral Equations with Reduced Unknowns
for the Simulation of Two-Dimensional Composite Structures," submitted to
IEEE Trans. Antennas Propagat.

T.B.A. Senior, "Some Extensions of Babinet's Principle in Electromagnetic
Theory," IEEE Trans. Antennas Propagat., vol. AP-25, no. 3, pp. 717-720,
1977.

, "Backscattering from Resistive Strips," IEEE Trans. Antennas
Propagat., vol. AP-27, no. 6, pp. 808-813, 1979.

, "A Critique of Certain Half-Plane Diffraction Analyses,”
Electromagnetics, vol. 7, pp. 81-90, 1987.

N.1. Muskhelishvili, Singular Integral Equations. P. Nordhoff, Groningen,
Holland, 1953; pp. 373 et seq.

F.G. Tricomi, Integral Equations. Dover Publications, Inc., New York, N.Y.,
1985.

D.R. Wilton and C.M. Butler, "Effective Methods for Solving Integral and
Integro-Differential Equations,"” Electromagnetics, vol. 1, pp. 289-308,
1981.

J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, Electromagnetic and

Acoustic Scattering by Simple Shapes. Hemisphere Pub. Corp.,
New York, N.Y., 1987; pp. 189 and 209.

M.A. Ricoy, S.M. Kilberg and J.L. Volakis, "Simple Integral Equations for

Two-Dimensional Scattering With Further Reduction in Unknowns,”
submitted to Proc. IEE (London).

16



¢

G

Fig. 1. Geometry of the resistive or impedance insert

17



N I
70 I
X 60
i L
§? 50
2 40
: L
g 30
20
10
<
0 —
0.0 02 0.4 0.8 0.8
Magnitude of a (a <0.)
4
PEITNEITTINNNY
=3
x -
S
g 2
£
a
1
0 v & J———

0.0 0.2 04 0.6 0.8
Magnitude of a (a <0.)

Fig. 2. Plot of the amplitude and phase of K (a) for a real and negative.

18



R'= 0.5
a2
19" ®
e
.5 - ‘ R=2 ‘
o8 °
=12 !
> e s
2 | o . .
" _ R'= 10
| o
1 T A /-
c O R'=15 O
= L
I - . .
=
[ ]
o8 .
20T /
e > ‘ LEGEND (MM DATA)::
o 1 a ® R=20.5+ i0.0
A R =2.0+1i0.0
9 > @ R=5.0+ i0.0
R O R =10.0 + i0.0
w O R =15.0 + i0.0
+
:
0.00 “030 2 08 0% 120 150 180
kw
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Appendix A Determination of the Gap Impedance
(Mr. S.M. Kilberg)

For gaps other than the closed or open rectangular cavity-backed slots shown in
Figures 9(a) and (b), no quasi-static analytical technique has yet been found to
compute the impedance, though we still believe that this should be possible for a few
- other geometries at least. We are continuing to pursue this and are also developing a
numerical approach valid for a wide range of geometries that makes use of the
electrically small dimensions of the gap. Meanwhile, to verify the analytical
expressions for the single gap geometries given in Section 4, and to provide some
data for more complicated geometries, we have computed the gap impedance using
an existing dynamic moment method code [10].

The code utilizes a computationally efficient and simple set of volume/surface
integral equations to model two-dimensional scatterers of arbitrary shape and
composition. Based on the known equivalence between electric and magnetic
currents, the scattered field is expressed in terms of a single component of an
equivalent current at each sampling point. This reduces the demands on computer
resources (CPU time and memory allocation) and provides an efficient method for
computing the currents and, hence, near and far field scattering for electrically large
bodies. Within the program the matrix elements are computed using pulse basis
functions and point matching. For the diagonal (self cell) and near diagonal elements
of the matrix, the integrations are performed analytically to minimize the errors inherent
in dealing with electrically small features. Having found the current, the components of
the total electric and magnetic fields are computed at intervals of 0.01A across the
aperture of the slot. The local impedances are then determined and averaged over
the slot to give the effective impedance looking in.

The gap geometries of interest are shown in Fig. A-1, and the gaps -- open or
closed (i.e. shorted) -- may be either air or dielectric filled. Since the computer
program cannot handle the infinite, perfectly-conducting ground plane associated with
these, all of the geometries were evaluated in the presence of the cylindrical ground
planes shown in Fig. A-2. For each polarization, the ground plane was chosen to
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minimize extraneous edge and surface wave effects while retaining an adequate

simulation of the gap geometry.

A.1 Results for E-Polarization

The computer program was first used to check the validity of (46) and (48) in the
simple case of an air-filled rectangular gap. For both the open and shorted cavities the
agreement is excellent for w < 0.2\ and adequate for w < 0.3A for all values of the gap
depth d that were examined. The comparison for the shorted cavities is given in Fig.
A-3. Though the spatial distributions of the impedance values over the slot showed
some dependence on the angle of incidence ¢,, the averages were relatively
independent of ¢, for ¢, up to about 40 degrees, and the variation decreased with
decreasing w/A. The data also shows that for d > max. (w, 0.2A) the impedance is
almost independent of d, and this is expected since a narrow gap can support only an
evanescent mode. The analogous expressions for the impedances of dielectric-filled
gaps were also confirmed numerically.

Results for slanted, open air-filled cavities (see Fig. A-1(b)) are shown in Figs.
A-4, 5 and 6, and compared with the analytical expression (48) with Z, = Z for a
rectangular (i.e. unslanted) cavity. The agreement is reasonably good for w < 0.2 but
is significantly improved if the gap width used in (48) is measured perpendicular to the

cavity walls, i.e. if w cos a is used in place of w. The resulting expression for p is

p=_ [(—2— ey | (A1)

2wcosa
and with p defined in this manner, the impedances based on (48) are indicated by the
dashed lines in Fig. A-6.
More complicated geometries are shown in Figs. A-7 and 8, and because of the
large number of dimensions which are now involved, we have chosen to tabulate the
results for a small selection. These confirm the validity of (46) and (48) with w and d

identified as the width and depth of the initial rectangular portion. Analogous results
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for a still more realistic geometry typical of the junction betwen two component
structures are presented in Figs. A-9 and 10.

In summary, the fact that for E-polarization a narrow gap can support only an
evanescent mode implies that for an initial cavity whose depth exceeds (about) 0.2A
the impedance is independent of the substructure, thereby allowing us to use the
analytical expression (46) or (48) as appropriate. If the initial cavity is slanted, p
should be defined as in (A.1). For (initial) gap widths w < 0.3\, the accuracv of the

resulting impedance is better than 10 percent.

A.2 Results for H-Polarization

The numerical computation of the impedance is a much more difficult task for
H-polarization, and though the cylindrical ground plane illustrated in Fig. A-1 reduces
the edge effects associated with a terminated ground plane, it is not a perfect model of
an infinite ground plane. Moreover, it does not enable us to model an open slot, and
to test the validity of (47), the computations were carried out with an impenetrable plug
of known relative impedance Z4 inserted in the cavity. For an actual air-filled gap,

Z4 # 1 and depends on the properties of the region beneath.

For an open air-filled rectangular gap simulated by taking Z4 = 1, (47) predicts
n = Z independent of w and d, and this is compared with the numerical results in Fig.
A-11. The agreement is good considering the difficulty in enforcing the condition
Z4 =1 at the plug. The analogous results for the shorted cavity are shown in Fig.
A-12. The agreement with (44) is excellent and because the cavity now supports a
propagating mode, there is a strong dependence on depth.

Since the dominant mode is a propagating one, the simple formulas (44) and (47)
become increasingly inaccurate as the cavity departs from rectangular. Data for
shorted air-filled slanted cavities of widths 0.1, 0.2A and 0.3\ are shown in Figs. A-13,
14 and 15 respectively for three different slant angles and compared with the
theoretical predictions for a = 0. The errors increase with increasing a and there is no

obvious redefiniton of w and/or d that makes (44) applicable. We note in passing that
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the larger discrepancies for w = 0.1 vis-a-vis those for the larger gap widths are
probably due to numerical errors in the dynamic code.

As a final test, the impedance presented by the more realistic shorted cavity in
Fig. A-16 was computed. As the tabulated data shows, (44) is no longer applicable,
and this is hardly surprising in view of the propagating nature of the cavity field. In
contrast to the situation with E-polarization, the substructure of the gap has a
dominating effect for H-polarization, and must be taken into account in computing the
impedance. We are continuing to seek methods which will enable us to do thisin a

simple manner.
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Fig. A-2: Ground plane configurations
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Fig. A-3: Shorted rectangular cavity, E-polarization. In this and all subsequent figures,
the solid lines were derived from the analytical expressions, and the points

were computed numerically. Dimensions are in wavelengths.
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Fig. A-4: Open slanted cavity for E-polarization: slant angle o = 10 degrees
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Fig. A-5: Open slanted cavity for E-polarization: slant angle o = 20 degrees
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Fig. A-6: Open slanted cavity for E-polarization: slant angle o = 30 degrees.
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Shorted Cavity - E Polarization

—> wi <

wi|dt | w2| d2 | (46) Num

03|02]| 01|02 -i264 -i266

0.3]0.2 0.1 ]01 -i264 -i270

02 10201 )02 -i165 | -i169

02 102 }01 |02 -i165 | -i170

Fig. A-7: Results for a shorted cavity, E-polarization
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_Open Cavity - E Polarization

wildt | w2|d2 | (48) Num

03|02 01]02 | -i288 | -i266

03|02 )01 ]01 -i288 -i270

0202|0102 -i165 | -i169

02 [02 |01 |02]) -i165 | -i170

Fig. A-8: Results for an open cavity, E-polarization
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wi|di | w2 | d2 | (46) Num
03| 02| 0105 |-i264 [ -i271
030201 ]02] -i264 | -i272
0303|0202 -i264 | -i270
02 102 |01 | 05| -i164 | -i165
02 03 |01 02| -it64 | -i168
02 | 03|01 | 02| -ite4 | -i168

Fig. A-9: Results for a shorted cavity, E-polarization
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02 (02 |01 |05]| -i165 | -i170
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Fig. A-10: Results for an open cavity, E-polarization
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Fig. A-11: Open rectangular cavity, H-polarization with Z4 = 1.
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Fig. A-12: Shorted rectangular cavity, H-polarization
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Fig. A-13: Shorted slanted cavities for w = 0.1A, H-polarization

42



Im(n)

-300

Slot Angle

-600

Alpha = 0 deg
Alpha = 10 deg
Alpha = 20 deg
Alpha = 30 deg

onmden

~-900 -

-1200 -

'1500 v T v g L]
0.10 0.12 0.14 0.16 0.18 0.20 0.22

Fig. A-14: Shorted slanted cavities for w = 0.2, H-polarization
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Fig. A-15: Shorted slanted cavities for w = 0.3\, H-polarization
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d2
——>
d1 B
w2
Y

wildtl | w2]| d2 | (44) Num

0.2 03| 0.1 0.1 | +i1160 | +i540

0.2 03 |01 | .05 | +i1160 | +i750

02 }.25 | 0.1 | 0.1 +00 | -i3118

02 .25 101 ] .05| +ioo | -i2504

Fig. A-16: Results for the shorted cavity shown, H-polarization
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Appendix B: n Plan

The key to the success of the preceding formulation is the conversion of an
integral over the entire plane y = 0 to one over the surface of the insert or gap alone.
This is certainly possible for a resistive insert in a perfectly conducting plane since
there is a Babinet principle for resistive sheets [3], but the existance of such a principle
is not necessary to reduce the range of integration. This is evident from the fact that
we were able to treat an impedance insert (there is no Babinet principle for impedance
surfaces), and the reduction can always be carried out by using the Green's function
appropriate to the rest of the surface y = 0.

Let us now consider the case of an impedance insert in an impedance

_i
plane and, for simplicity, assume the incident field is H-polarized with H as given in

(1). The boundary conditions ony = 0 are then

9 'kI‘) _
(ay“ H,=0 (B.1)

Z

where

and n, n are the respective surface impedances. Let G(x,y; x',y') be the Green's

function for the half-space y 2 0 when the entire surface y = 0 has impedance

M. =0 ore

N

6=+ {0 (i ) =K (ke oor e gor) 82)
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with the upper (lower) sign for ﬁ =0 (), but for other values of ;1 Gisgivenby a

Sommerfeld integral. With G defined in this manner, application of Green's theorem to

the half-space y 2_0 shows

-ik(xcos ¢, +ysing,) T - sin ¢° -k(x cos ¢, - y sin ¢,)
=86

H, (xy)=e =
N+ sin ¢,
7
oH
. J'( H, 2. G—‘) dx . (B3)
[ARCEY
2

The first two terms on the right hand side are the incident and reflected plane waves
comprising the total field if there were no insert, and the additional effect of the insert is

therefore represented by the term

w w
2 2
aH L
'[(Hz£ : G—") o = -';-(n -n)IHZde' (B.4)
Wi ¥ o W
2 2

which cleary vanishes if n =ﬂ .

Equation (B.3) can be used to construct an integral equation for H, in the gap,

and one such-equation which is analogous to (3) is

w

2
28ing, dxcosy, Kk =
H, (x,0)==—¢ 7 Mm-n) I H, (x',0) G (x,0; X', 0) dx' (B.5)
N+ 8in ¢, W

S

2

w

5 For sufficiently small kw with -ﬁﬁnite,

for x| <
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G (x,0; X, 0) = ;_— (K [x-x") (B.6)

and hence

w
= 2
2sinQ, docose, k - )
H, (x,0)==———¢ 27 m-n J H, (x',0) H, " (k [x-x']) dx' (B8.7)
n+sin ¢,

which can be reduced to

1 B T3 %
j () Hy ( > IC-C'I)d§'=e +ad; (9 (B.8)
-1
(c.f (7)) where
lkw n- n n+sm [V
J (@)= Z 2sing, H, (B.9)
and
2 Z
a=s— —— (B10)
W g1
In terms of J4 ()
. sin g s
1(0,0) =g ——— jJ, Ce 2 dr . B11)
n+sing, 3

As in Section 2.1 the final simplification for kw << 1 is to write

4 (©)= {1 + -i—iA Pu (0, ¢o>} J5 (§)

where J, ({) satisfies the integral equation (14) and A is given in (11), and the

expression for Py (9, ¢,) is then
4
sin ¢° sin ¢°

Pu(0.8)=75 = 4= sz(C)dc jJ2 Qo . B12)

1 +5in ¢, n+sing, ®
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In contrast to (15), the diffraction coefficient is a function of ¢, for all ﬁ #0, but the

important thing to notice is that the integral equation for J, (£) is identical to that for an
impedance insert in a perfectly conducting plane apart from a redefinition of the
constant a in terms of the difference between the surface impedances of the insert and
the surrounding plane. The results in Section 3 of the report now carry over
immediately.

The validity of the above approximations is still to be tested and no studies
analogous to those shown in Figs. 3 through 8 have yet been made. It is, indeed,
possible that a better approximation to the Green's function must be used, and this
should be explored. Though we have concentrated on the case of H-polarization, the

results for E-polarization follow in principle at least on replacing n/Z and n/Z by Z/m
and Z/1—1 respectively, but the accuracy of the approximations will then improve as n

and n increase rather than decrease.
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