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Summary

TlpC is encoded in the second chemotaxis operon of

 

Rhodobacter sphaeroides

 

. This protein shows some
homology to membrane-spanning chemoreceptors of
many bacterial species but, unlike these, is essential
for 

 

R. sphaeroides

 

 chemotaxis to all compounds
tested. Genomic replacement of 

 

tlpC

 

 with a C-terminal

 

gfp

 

 fusion demonstrated that TlpC localized to a dis-
crete cluster within the cytoplasm. Immunogold elec-
tron microscopy also showed that TlpC localized to a
cytoplasmic electron-dense region. Correct TlpC–GFP
localization depended on the downstream signalling
proteins, CheW

 

3

 

, CheW

 

4

 

 and CheA

 

2

 

, and was tightly
linked to cell division. Newly divided cells contained
a single cluster but, as the cell cycle progressed, a
second cluster appeared close to the initial cluster.
As elongation continued, these clusters moved apart
so that, on septation, each daughter cell contained a
single TlpC cluster. The data presented suggest that
TlpC is either a cytoplasmic chemoreceptor respond-
ing to or integrating global signals of metabolic state
or a novel and essential component of the chemotaxis
signalling pathway. These data also suggest that clus-
tering is essential for signalling and that a mechanism
may exist for targeting and localizing proteins within
the bacterial cytoplasm.

Introduction

 

The chemotaxis pathway allows bacteria to modulate their
swimming behaviour so that they accumulate in environ-

ments that are beneficial for growth (for reviews, see Blair,
1995; Armitage, 1999). Motility and chemotaxis have been
implicated in pathogenesis, symbiosis and biofilm devel-
opment. For example, they are essential for the virulence
and symbiosis of many medically important bacteria such
as 

 

Helicobacter pylori

 

 and 

 

Vibrio cholerae

 

 and in the
development of plant–bacterial relationships (Kim and
Farrand, 1998; Klose and Mekalanos, 1998; Van de Broek

 

et al

 

., 1998; Kurdish 

 

et al

 

., 2001; Watnick 

 

et al

 

., 2001).
Chemotaxis has been studied extensively in 

 

Escheri-
chia coli.

 

 This signal transduction pathway consists of four
membrane-spanning methyl-accepting chemotaxis pro-
teins (MCPs) that respond to a change in concentration
of a limited number of periplasmic chemoeffectors to reg-
ulate the activity of a cytoplasmic histidine protein kinase
CheA (for reviews, see Falke 

 

et al

 

., 1997; Mowbray and
Sandgren, 1998). A reduction in ligand occupancy of the
appropriate MCP causes a conformational change across
the membrane and results in autophosphorylation of the
associated CheA via a linker protein CheW (Hess 

 

et al

 

.,
1988a,b). This phosphate moiety is transferred from CheA
to two response regulators, CheY and CheB. Phosphory-
lated CheY binds to a component of the flagellar motor
and results in switching (Welch 

 

et al

 

., 1993). The signal
from CheY-P is terminated by its spontaneous dephos-
phorylation, the rate of which is increased by CheZ.

MCPs from 

 

E. coli

 

 and a variety of other bacteria have
a characteristic tertiary structure, with an N-terminal
ligand-binding domain flanked by two transmembrane
regions and a C-terminal highly conserved signalling
domain. The signalling domain contains a region that
interacts with CheW and CheA and two methylation
regions that are involved in adaptation (Mowbray and
Sandgren, 1998). Genome sequencing projects have
shown that many non-enteric bacteria contain multiple
genes that encode proteins homologous to MCPs,
some of which are predicted to encode chemoreceptors
that do not contain transmembrane regions (see
http://www.tigr.org and http://www.jgi.doe.gov). One of
these proteins (Car from 

 

Halobacterium salinarum

 

) is
responsible for taxis to arginine and is present in the
cytoplasmic rather than the membrane fraction of the cell
(Storch 

 

et al

 

., 1999).
Adaptation is essential for chemotaxis, allowing bacte-
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ria to respond to successive changes in attractant con-
centration. It involves the addition and removal of methyl
groups from specific glutamate residues in the cytoplas-
mic domain of the MCPs, altering the level of activation of
CheA. CheR is a constitutive methyltransferase that adds
methyl groups from 

 

S

 

-adenosyl methionine to these
glutamate residues (Springer and Koshland, 1977). CheB
is a methylesterase that removes these methyl groups,
releasing them as methanol. The activity of CheB
increases 10-fold on phosphorylation by CheA-P, a reac-
tion that occurs at a slower rate than the phosphorylation
of CheY (Hess 

 

et al

 

., 1988b). The net result of these
reactions is that the bacterium is able to respond to a
change in attractant concentration by altering their swim-
ming bias.

Immunogold electron microscopy and green fluorescent
protein (GFP) techniques have shown that MCPs in all
species so far examined form clusters at the poles of
the cell (Alley 

 

et al

 

., 1992; Maddock and Shapiro, 1993;
Harrison 

 

et al

 

., 1999; Gestwicki 

 

et al

 

., 2000; Wadhams

 

et al

 

., 2000). In 

 

E. coli

 

, this polar localization of MCPs is
dependent on the presence of the cytoplasmic signal
transduction proteins CheW and CheA. In the absence of
either of these proteins, the MCPs are no longer polar but
appear diffuse throughout the membrane (Maddock and
Shapiro, 1993).

 

Rhodobacter sphaeroides

 

, an 

 

a

 

-subgroup purple, non-
sulphur photosynthetic bacterium, has multiple copies of
most of the 

 

E. coli

 

 chemotaxis genes, predominantly
encoded in three chemotaxis operons. Transport and par-
tial metabolism are required for some chemosensory
responses (Jeziore-Sassoon 

 

et al

 

., 1998), and the
responses generated can depend on the growth condi-
tions (Shah 

 

et al

 

., 2000). 

 

R. sphaeroides

 

 also contains 13
genes that show homology to 

 

MCPs

 

. Of these, McpG has
been shown to localize to a pole of the cell (Wadhams

 

et al

 

., 2000). This localization is dependent upon the pres-
ence of CheW

 

2

 

 and CheA

 

2

 

. CheW

 

3

 

 is also essential under
photoheterotrophic, but not aerobic, conditions (Martin

 

et al

 

., 2001a). These three proteins are all encoded in

 

che

 

Op

 

2

 

. The reason for the localization of MCPs to a polar
cluster is unknown. It has been suggested that clustering

may be essential for signal generation, amplification
and/or adaptation (Bray 

 

et al

 

., 1998; Levit 

 

et al

 

., 1998).
At the 3

 

¢

 

 end of 

 

che

 

Op

 

2

 

 is a gene, 

 

tlpC

 

, that encodes a
protein that shows limited homology to the highly con-
served domain of MCPs, but has no obvious transmem-
brane regions or methylation sites (Hamblin 

 

et al

 

., 1997a).
A similar gene, 

 

tlpS

 

, has been found upstream of 

 

che

 

Op

 

1

 

.
The aim of this study was to characterize the role of TlpC
in 

 

R. sphaeroides

 

 chemotaxis and to examine the local-
ization of this novel chemotaxis protein within the 

 

R.
sphaeroides

 

 cell.

 

Results

 

Alignment with other chemoreceptors

tlpC

 

 is predicted to encode a 61.6 kDa protein with a pI
of 5.6. A 

 

BLAST

 

 search using the predicted TlpC sequence
identified MCPs as the only proteins in the SWISSPROT
and TrEMBL databases sharing significant identity. The
alignment shows 

 

ª

 

80 residues from the highly conserved
domain (HCD) of 

 

E. coli

 

 Tar and Tsr and McpG from 

 

R.
sphaeroides

 

 that are extremely well conserved in all char-
acterized MCPs (Fig. 1). However, the predicted TlpC and
TlpS sequences, although showing homology to this
region, are considerably less well conserved. Interestingly,
many of the differences seen in this region are conserved
between TlpC and TlpS. Sequence analysis using
HMMTOP (http://www.enzim.hu/hmmtop/index.html) did
not identify any transmembrane domains, and there are
no putative methylation site consensus sequences that
are characteristic of classical MCPs.

 

Phenotypic analysis of a 

 

D

 

tlpC mutant

 

To investigate the role of TlpC in chemotaxis, an
unmarked, internal, in frame deletion of 

 

tlpC

 

 was gener-
ated (JPA470). The ability of this strain to respond to
chemoeffectors was assessed both on swarm plates and
in the tethered cell assay. Swarm plates are sloppy agar
plates containing chemoattractant, which the bacteria
metabolizes creating a concentration gradient out from the

 

Fig. 1.

 

 Alignment of 80 residues from the HCD of the classical chemoreceptors Tar and Tsr from 

 

E. coli

 

 and McpG from 

 

R. sphaeroides

 

. TlpC 
and TlpS, two putative cytoplasmic chemoreceptors from 

 

R. sphaeroides

 

, share some homology with the classical sequences but are less well 
conserved. The lower alignment, which compares only TlpC and TlpS, shows that these proteins share many of the differences in this region.

http://www.enzim.hu/hmmtop/index.html
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inoculation site. Chemotactic bacteria swim up this con-
centration gradient, forming a swarm ring. The swarm
diameters generated by the mutant to all compounds
tested under both aerobic and photoheterotrophic condi-
tions were significantly reduced with respect to the wild
type (

 

P

 

 

 

<

 

 0.05) (Fig. 2). These differences were not the
result of changes in the growth rate of the mutant, which
was normal on the carbon sources tested (data not
shown). The small swarms formed by the wild type on a
‘no added attractant’ control plate were presumed to result
from responses to trace nutrients in the agar. The slightly
increased size of mutant swarms was the result of growth
on the carbon source, not chemotaxis.

To examine the responses of individual cells, they were
tethered by their flagella in a flow cell, and changes in the
rotation rate of their flagella were assessed by observing
the counter-rotation of the cell body on the addition or
removal of attractant. The wild-type response was char-
acterized by a slight increase in the apparent rotation rate
of the cells in response to the addition of 1 mM propi-
onate. Upon removal of the attractant, the cells showed a
prolonged stop followed by adaptation back to prestimulus
behaviour (Fig. 3A and B). Deletion of 

 

tlpC

 

 resulted in a
strain that showed no response to either the addition or

the removal of propionate (Fig. 3C and D) but still retained
a wild-type stopping frequency (data not shown).

Complementation of the deletion strain by a plasmid
containing 

 

tlpC

 

, pC

 

W

 

1, restored chemotaxis to propionate
under aerobic conditions as assessed both on swarm
plates and in the tethered cell assay (data not shown).
This demonstrates that the phenotype of the 

 

D

 

tlpC

 

 mutant
was the direct result of the deletion of the 

 

tlpC

 

 gene. Taken
together, these data show that TlpC is essential for
chemotaxis to all the compounds tested.

 

TlpC is not involved in methanol release

 

In 

 

E. coli

 

, CheB-P releases methyl groups from the MCPs
as methanol during adaptation. Hence, methanol is
released upon the removal of attractant because of the
increased activity of CheB upon phosphorylation by
CheA-P. However, in 

 

Bacillus subtilis

 

, methanol release is
observed on both the addition and the removal of attrac-
tants (Kirby 

 

et al

 

., 1997). We have shown previously that

 

R. sphaeroides

 

 releases measurable methanol only upon
the addition of attractant (Martin 

 

et al

 

., 2001b) (Fig. 4A).
To investigate whether signalling via TlpC required recep-
tor adaptation and methylation, the methanol release pro-
file of the 

 

D

 

tlpC

 

 strain to the addition and removal of 1 mM
propionate was investigated. As in the wild type, methanol
was released upon propionate addition, but not upon its
removal (Fig. 4B). This demonstrates that methylation-
dependent adaptation to propionate is unaffected in the

 

D

 

tlpC

 

 strain, even though there was no chemotactic
response to propionate.

 

TlpC is a cytoplasmic chemotaxis protein

 

To examine the location of TlpC within the cell, a C-
terminal GFP fusion construct was introduced into the
wild-type genome, replacing 

 

tlpC

 

 with 

 

tlpC–gfp

 

 (JPA543)

 

.

 

The fusion protein was expressed from a single copy in
the genome and was thus under the same regulation as
the wild-type gene. Although the presence of the GFP tag
reduced the ability of 

 

R. sphaeroides

 

 to respond to shal-
low gradients of chemoeffectors on swarm plates, the
strain showed normal responses to 1 mM propionate in
tethered cell assays (data not shown). Thus, TlpC–GFP is
partially functional in chemotaxis. No fluorescence was
observed from the wild-type strain (WS8N) in the absence
of the GFP tag (data not shown). TlpC–GFP localized
predominantly to a single cluster within the cytoplasm of
the 

 

R. sphaeroides

 

 cell (Fig. 5A). Fluorescence associ-
ated with the cell membrane was never observed. In gen-
eral, it has been assumed that bacterial cells do not
contain subcellular organelles or show subcellular organi-
zation. However, these results show that TlpC is targeted
to a specific region of the cytoplasm.

 

Fig. 2.

 

 A. Comparison of the swarm diameters of the wild-type 
(WS8N) and the deletion mutant (JPA470) under aerobic and photo-
heterotrophic conditions to 100 

 

m

 

M attractants. The error bars repre-
sent the standard error of the mean from nine experiments. The 

 

D

 

tlpC

 

 
mutant has significantly reduced swarm diameters to all attractants 
tested under both environmental conditions (

 

P

 

 

 

<

 

 0.05).
B. Swarm plate of WS8N and the 

 

D

 

tlpC

 

 mutant showing responses 
to 100 

 

m

 

M propionate under aerobic conditions. The bar represents 
1 cm.
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TlpC is part of an electron-dense region

 

To confirm that the localization of the partially functional
TlpC–GFP-tagged protein is representative of the wild-
type protein, and to counter the possibility that the GFP
fluorescence may have originated from an inclusion body,
we also used electron microscopy to demonstrate that
TlpC is targeted to a specific region of the cytoplasm.

A rabbit polyclonal antibody was generated to His-
tagged TlpC and immunodepleted with acetone powders
prepared from the 

 

DtlpC strain JPA470. Western blot anal-
ysis demonstrated that this serum contained antibody that
reacted strongly with pure TlpC protein and with a protein
of the same molecular weight as TlpC that was present in
WS8N but was absent from the DtlpC mutant (data not
shown).

The localization of gold particles was assessed in 160
randomly selected dividing cells by immunogold electron
microscopy with this immunodepleted antibody. It was
demonstrated conclusively that TlpC is a cytoplasmic pro-
tein and is not membrane associated (Fig. 5B, Table 1).
There were an average of six gold particles per cell, and
88% of the signal was from the cytoplasm. Of the cyto-
plasmic signal, a significant proportion (73% of the total)
originated from an uncharacterized electron-dense region
(EDR). By comparison, there was very little background

signal in the DtlpC strain with only 1.1 gold particles per
cell. The composition of the EDR is unknown, but it
was observed in an earlier study using anti-Tsr antibody
(Harrison et al., 1999).

TlpC–GFP localization is linked to the cell cycle

The pattern of TlpC–GFP fluorescence through the cell
cycle was assessed by time-lapse imaging of actively
dividing cells. Just before cell division, a second point of
fluorescence was observed adjacent to the original TlpC–
GFP cluster (Fig. 6). As division continued, these two
clusters moved apart so that, on division, each daughter
cell contained a single fluorescent locus. This demon-
strates that the number and position of the TlpC clusters
are tightly controlled in R. sphaeroides and are linked to
the cell cycle.

Requirement for CheWs and CheAs in TlpC localization

In E. coli, the normal polar localization of MCPs is depen-
dent on the presence of the downstream signalling pro-
teins CheW and CheA (Maddock and Shapiro, 1993).
Previously, we have demonstrated that the correct polar
localization of McpG from R. sphaeroides is dependent
on CheW2, CheW3 and CheA2 (Wadhams et al., 2000). R.

Fig. 3. The behaviour of the wild type (WS8N) and the DtlpC mutant in the tethered cell assay. The strains and the growth conditions are indicated 
above each graph. The addition and removal of 1 mM propionate is shown by arrows. The results are the average of at least 10 cells. The apparent 
increase and decrease in rotation rate represents increased smooth swimming and stopping respectively.
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sphaeroides has four putative CheA and four putative
CheW homologues encoded in three che operons (Porter
et al., 2002). To investigate the requirement, if any, for
these proteins in the correct localization of TlpC, strains
were generated in which the fusion construct pK18tlpCgfp
was introduced into each of the cheW and cheA deletion
strains (Table 2).

The fluorescence patterns of these mutant strains were
compared with that of the wild-type fusion strain. The
presence or absence of a discrete point of fluorescence
was recorded, and its intensity was scored on a scale
ranging from + (low fluorescence intensity) to +++++ (high
fluorescence intensity). In the absence of CheW1, CheW2,
CheA1, CheA3 or CheA4, there was no difference in the
localization of TlpC–GFP (Table 2). However, deletion of

either CheW3 or CheW4 resulted in a dramatic reduction
in the localized signal, with more fluorescence visible
throughout the whole cytoplasm (Fig. 7, Table 2). Interest-
ingly, the absence of CheA2 resulted in an intermediate
phenotype in which the cytoplasmic cluster was still visi-
ble, although the level of fluorescence was considerably
weaker. Quantitative immunoblots with the antibody to
TlpC showed that the level of TlpC protein in the cell was
unchanged in the DcheW3, DcheW4 and DcheA2 mutants
(data not shown).

Fig. 4. Methanol release from (A) wild-type (WS8N) and (B) DtlpC 
mutant (JPA470) strains upon the addition and removal of 1 mM 
propionate (shown by arrows). In both strains, methanol was released 
upon propionate addition, but not upon its removal. This demonstrates 
that methylation-dependent adaptation to propionate is unaffected in 
the DtlpC strain.

Table 1. Spatial distribution of TlpC by immunogold electron microscopy.

Strain
Total
cells

Total
particles

Mean particles
per cell

Cyto.
particles

EDR-associated
particles

Clustered
particles in EDR

%
cyto.

% EDR
associated

% clustered
in EDR

WS8N 160 963 6.0 851 699 507 88.4 72.6 52.6
JPA470 160 175 1.1 97 29 0 55.4 16.6 0

All percentages are with respect to the total number of particles. The majority of the gold particles were in the cytoplasm (cyto.) of the wild-type
strain (WS8N). Of the cytoplasmic signal, the majority of particles were associated with an electron-dense region (EDR). The background signal
from the DtlpC control strain (JPA470) was very low.

Fig. 5. A. Localization of TlpC–GFP to a discrete point in the cyto-
plasm in the genomic replacement, fusion strain JPA543.
B. Immunogold electron microscopy using an antibody to TlpC show-
ing TlpC localized to an electron-dense region in the cytoplasm of 
wild-type cells.
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Discussion

Here, we have demonstrated by both GFP fusions and
immunogold electron microscopy that TlpC, a protein
essential for normal R. sphaeroides chemotaxis, is local-
ized to a discrete region of the cytoplasm close to the
centre of the cell. The constituents and function of this
region, visualized as an electron-dense region (EDR) in
electron micrographs, are currently unknown. However, an
antibody to the highly conserved domain of E. coli Tsr was
also shown by immunogold electron microscopy to cross-
react with proteins in this region (Harrison et al., 1999).
Cross-reaction with the anti-Tsr antibody was still measur-

able in the DtlpC strain, implying that the EDR may also
contain other R. sphaeroides Tlps and that the presence
of TlpC is not required for EDR formation (unpublished
observations). A third putative cytoplasmic chemotaxis
protein, TlpT, was identified in the third recently identified
chemotaxis locus in R. sphaeroides (Porter et al., 2002).
This is also needed for normal chemosensory responses
and may therefore form part of the cluster. TlpS appears
to be expressed at very low levels, if at all, under normal
laboratory conditions, and its deletion has no effect on
behaviour, and no fluorescence was seen in a strain car-
rying a tlpS–gfp fusion (unpublished data). The sequenc-
ing of the complete genome has identified a gene
encoding a fourth possible Tlp-like protein, TlpL. It there-
fore seems possible that this EDR comprises a cytoplas-
mic cluster of proteins that probably includes multiple
cytoplasmic chemoreceptors as well as TlpC, analogous
to the mixed clusters of receptors seen at the poles of E.
coli.

Clustering of transmembrane chemoreceptors has
been implicated in signal generation, amplification and
adaptation (Bray et al., 1998; Levit et al., 1998). It seems
possible therefore that the clustering of TlpC may be a
prerequisite for its function, as has been assumed for
classical MCPs. To the best of the authors’ knowledge,
these data represent the first direct evidence for the cyto-
plasmic subcellular localization of a bacterial protein with
no identifiable function in DNA replication or cell division.
This protein also demonstrates a degree of organization

Table 2. TlpC–GFP localization in strains deleted for each of the
cheW and cheA homologues.

Strain
TlpC
localization

Relative fluorescence
intensity

JPA543 (wild type) Yes +++++
JPA557 (DcheA1) Yes +++++
JPA548 (DcheA2) Yes +++
JPA1317 (DcheA3) Yes +++++
JPA1311 (DcheA4) Yes +++++
JPA549 (DcheW1) Yes +++++
JPA573 (DcheW2) Yes +++++
JPA550 (DcheW3) No +
JPA1327 (DcheW4) No +

The presence or absence of a discrete point of fluorescence was
recorded and its intensity scored on a scale ranging from + (low
fluorescence intensity) to +++++ (high fluorescence intensity).

Fig. 6. Time course of TlpC–GFP localization in 
cells embedded in 0.8% succinate agarose. 
Images were collected at hourly intervals. 
Before cell division, a second point of fluores-
cence was observed adjacent to the original 
TlpC–GFP cluster. These two clusters moved 
apart as division continued so that, on septa-
tion, each daughter cell contained a single flu-
orescent locus.
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Fig. 7. TlpC–GFP localization in cells deleted for cheA2 (JPA548), cheW3 (JPA550) or cheW4 (JPA1327). Deletion of either CheW3 or CheW4 
resulted in a dramatic reduction in the localized signal, with more fluorescence visible throughout the whole cytoplasm. The absence of CheA2 
resulted in an intermediate phenotype in which the cytoplasmic cluster was visible, but the fluorescence was less intense.
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within the bacterial cytoplasm not seen previously for an
environmental sensing or signalling protein.

The polar clustering of MCPs in many bacterial species
has been shown to be dependent on the presence of
certain  CheW and CheA homologues (Maddock and
Shapiro, 1993; Martin et al., 2001a). With this in mind, we
examined the requirement for each of the R. sphaeroides
CheW and CheA homologues for the correct localization
of TlpC. Quantitative immunoblots were used to demon-
strate that the deletion of cheW and cheA homologues did
not affect the level of expression of TlpC. GFP localization
experiments demonstrated a requirement for CheW3,
CheW4 and, to some extent, CheA2 for the correct local-
ization of TlpC to a cytoplasmic cluster. Whether this
requirement results from the direct interaction of these
CheW and CheA proteins with TlpC or whether they inter-
act with other components of the EDR remains to be
determined. However, in the absence of CheA2, localiza-
tion was only slightly reduced, whereas in the absence of
either CheW3 or CheW4, TlpC localization was signifi-
cantly impaired, suggesting a major role for two of the four
R. sphaeroides CheW proteins in creating or holding the
cluster together. Interestingly, these CheW proteins are
encoded on different che operons, both of which also
encode putative Tlp proteins. Deletion of either CheA2 or
CheW4 results in the loss of chemotaxis. Whether this is
the result of the loss of signalling or the loss of integrity
of the clusters is unknown. Preliminary data indicate that,
although CheA2 is predominantly associated with the
polar cluster of chemoreceptors, CheW4 localizes to the
cytoplasmic cluster.

The localization of TlpC was tightly controlled within the
cell, with almost all cells having a single cluster at about
the mid-point. Analysis of actively dividing cells demon-
strated that the location and number of these clusters was
tightly linked to the cell cycle. Just before cell division, a
second cluster appeared, and the two resulting clusters
moved apart so that, on septation, both daughter cells
contained a single TlpC cluster. It is unclear what controls
the formation of a second cluster and how partitioning is
regulated with respect to the cell cycle. Although it is not
possible to rule out the possibility that TlpC is either
directly or indirectly associated with the DNA and that its
localization is governed by DNA replication, we have been
unable to identify any DNA-binding motifs within the pro-
tein sequence or to isolate DNA in association with the
TlpC cluster (unpublished observations). Whatever mech-
anism is responsible for this precise control over TlpC
localization, these data suggest that the cluster size and
its location may be essential for optimum chemotaxis.

In contrast to all putative MCPs analysed so far in R.
sphaeroides, deletion of tlpC resulted in the abolition of
chemotaxis to all compounds tested under both aerobic
and photoheterotrophic growth conditions. Despite the

fact that deletion of tlpC resulted in a strain that was
unable to respond to propionate either on swarm plates
or in the tethered cell assay, the methanol release profile
of this strain in response to propionate was normal. This
implies that, although propionate is being sensed and the
adaptation pathway is functional, deletion of tlpC prevents
this signal from being transduced to the motor. Therefore,
the activity of the CheW, CheA, CheR and CheB homo-
logues that are required for the adaptation response to
propionate must be unaffected by the tlpC deletion.

TlpC, along with TlpS from R. sphaeroides, shows some
homology to the highly conserved domain of classical
MCPs. However, they have no putative transmembrane
regions and do not have any consensus methylation
sites. This is unlike the cytoplasmic chemoreceptor Car
from H. salinarum (Storch et al., 1999), and two other
Tlps  identified   in  R.  sphaeroides,  TlpT  and  TlpL
(http: // www.jgi.doe. gov / JGI_microbial/html/rhodobacter/
rhodob_homepage.html), which have strong homology
with the highly conserved domain of E. coli MCPs and
appear to have methylation sites.

Here, we have characterized the novel chemotaxis pro-
tein TlpC from R. sphaeroides. The data presented here
lead us to suggest that TlpC is either a cytoplasmic
chemoreceptor responding to or integrating a global signal
of metabolic state or a novel and essential component of
the R. sphaeroides chemotaxis signalling pathway. What-
ever the precise role of TlpC, this essential component of
the R. sphaeroides chemotaxis signalling pathway is pro-
viding a new insight into the cytoplasmic organization and
protein partitioning of bacterial cells. In addition to pro-
teins that participate in cell division and DNA segregation,
this study suggests that bacterial cells also tightly regulate
the localization and segregation of essential signalling
proteins.

Experimental procedures

Strains and growth conditions

Bacterial strains and plasmids are listed in Tables 3 and 4
respectively. R. sphaeroides strains were grown aerobically
in succinate medium (Sistrom, 1960) at 30∞C with shaking.
E. coli strains DH5a and S17-1 lpir were grown in Luria–
Bertani (LB) medium at 37∞C. When appropriate, the antibi-
otics nalidixic acid, kanamycin and streptomycin were used
at 25 mg ml-1 and ampicillin at 100 mg ml-1.

Molecular genetic techniques

All cloning steps were performed by standard methods
(Sambrook and Russell, 2001). Polymerase chain reactions
(PCRs) were performed with Pfu DNA polymerase
(Promega) as advised by the manufacturer. Sequencing
quality DNA was prepared using the Plasmid midi kit
(Qiagen), sequenced by the University of Oxford Biochemis-
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try sequencing service and analysed with the GCG software
package (University of Wisconsin). All primers were supplied
by Genosys Biotechnologies.

Construction of deletion

A 1.3 kb SalI–StuI fragment from pJPA114 and a 0.6 kb StuI–
BglII fragment from pJPA135 were cloned together into a
SalI–BamHI-cut pUC19 to generate pHMK1.8. This construct
contained the N- and C-termini of tlpC deleted between
bases 272 and 1496 with the join in frame, together with
upstream and downstream flanking regions. The whole
insert from this plasmid was excised and cloned into
pK18mobsacB. The construct was sequenced to ensure that
the regions were in frame and contained no errors. The
mutation was introduced into the genome by allelic exchange
as described previously (Schäfer et al., 1994; Hamblin et al.,
1997b). The correct insertion was confirmed by Southern
blot, PCR and sequencing.

Behavioural assays

Swarm plates containing 0.25% agar (BiTek, Difco) and
100 mM attractant in M22 media were inoculated, incubated
and analysed as described elsewhere (Martin et al., 2001a).
Each experiment was performed in triplicate and repeated
three times to generate nine data sets.

Aerobically grown cells were tethered in a flow chamber,
and responses to the addition and removal of 1 mM propi-
onate were examined as described previously (Martin et al.,
2001a). At least three data sets, which together included at
least 10 cells, were collected. Growth rates were measured
as described by Martin et al. (2001a).

For complementation studies, tlpC was amplified by PCR
with primers that included a 5¢ EcoRI site and a 3¢ HindIII site
to facilitate cloning into pRK415. A SmR W cartridge from
pHP45W was inserted into the EcoRI site of both pRK415
and the tlpC-containing derivative to generate pRKW1 and
pCW1 respectively. These were conjugated into WS8N and
JPA470, and chemotaxis assays were performed with the
resultant strains as described above.

Methanol release experiments

Methanol release experiments were performed as described
in detail previously (Martin et al., 2001b). At least three data
sets were collected for each strain.

Construction of gfp fusion strains

A region immediately downstream from tlpC was amplified by
PCR to include a 5¢ XbaI site and a 3¢ EcoRI site and cloned
into pUC19 to generate ptlpCd. egfp was excised from
pEGFP-N1 (Clontech) with PstI and XbaI and ligated into
ptlpCd to form ptlpCmd. tlpC was amplified by PCR to include
a 5¢ HindIII site and a 3¢ NsiI site. This fragment was cloned
into ptlpCmd, which had been linearized with HindIII and PstI
(NsiI and PstI generate complementary cohesive ends) to
generate a plasmid containing an in frame tlpC–gfp fusion
and downstream flanking region, ptlpCgfp. The whole con-
struct was then excised from pUC19 and ligated into the
suicide vector pK18mobsacB with EcoRI and HindIII to gen-
erate pK18tlpCgfp. This construct was inserted into WS8N
and the appropriate cheW and cheA deletion strains (Table 3)
by allelic exchange as described previously (Schäfer et al.,
1994; Hamblin et al., 1997b). Deletion of cheA3, cheW4 and
cheA4 was performed as follows. A region immediately down-

Table 3. Strains used in this study.

Strain Characteristics Source

R. sphaeroides WS8N A spontaneous nalidixic acid-resistant mutant of wild-type WS8 Sockett et al. (1990)
R. sphaeroides JPA470 DtlpC derivative of WS8N This study
R. sphaeroides JPA543 WS8N containing a tlpC–gfp fusion in place of the wild-type tlpC

in the chromosome
This study

R. sphaeroides JPA120 DcheW1 derivative of WS8N Hamblin et al. (1997b)
R. sphaeroides JPA514 DcheW2 derivative of WS8N Martin et al. (2001a)
R. sphaeroides JPA527 DcheW3 derivative of WS8N Martin et al. (2001a)
R. sphaeroides JPA1325 DcheW4 derivative of WS8N This study
R. sphaeroides JPA525 DcheA1 derivative of WS8N Martin et al. (2001a)
R. sphaeroides JPA211 DcheA2 derivative of WS8N Hamblin et al. (1997a)
R. sphaeroides JPA1314 DcheA3 derivative of WS8N This study
R. sphaeroides JPA1308 DcheA4 derivative of WS8N This study
R. sphaeroides JPA557 DcheA1 derivative of JPA543 This study
R. sphaeroides JPA548 DcheA2 derivative of JPA543 This study
R. sphaeroides JPA1317 DcheA3 derivative of JPA543 This study
R. sphaeroides JPA1311 DcheA4 derivative of JPA543 This study
R. sphaeroides JPA549 DcheW1 derivative of JPA543 This study
R. sphaeroides JPA573 DcheW2 derivative of JPA543 This study
R. sphaeroides JPA550 DcheW3 derivative of JPA543 This study
R. sphaeroides JPA1327 DcheW4 derivative of JPA543 This study
E. coli DH5a Cloning strain that supports blue/white screening of colonies Gibco BRL
E. coli S17-1 lpir A strain capable of mobilizing the suicide vector pK18mobsacB

into R. sphaeroides, SmR
Penfold and Pemberton (1992)
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stream of each gene was amplified by PCR to include a 5¢
XbaI site and a 3¢ HindIII site. A region immediately upstream
of each gene was amplified by PCR to include either a 5¢
MfeI site (cheA3) or a 5¢ EcoRI site (cheW4 and cheA4) and
a 3¢ XbaI site. These were ligated in frame into pK18mobsacB
to generate deletion constructs that were inserted into WS8N
by allelic exchange.

Fluorescence analysis

Log-phase cultures were embedded in 1.2% agarose on
microscope slides. Differential interference contrast (DIC)
and fluorescence images were acquired using a Nikon
TE200 microscope with a GFP filter set and recorded with a
cooled CCD camera (Hamamatsu). The images were super-
imposed with IMAGE ANALYSIS software from Digital Pixel.
For analysis of the deletion mutants, the presence or
absence of a discrete point of fluorescence was recorded,
and its intensity was scored by eye on a scale ranging from
+ (low fluorescence intensity) to +++++ (high fluorescence
intensity). The whole field of view was considered, and results
were collected from five independent cultures for each
strain.

For analysis of localization through the cell cycle, cultures
were embedded in 0.8% succinate agarose, and brightfield
and fluorescence images taken as described previously
(Wadhams et al., 2000).

Immunogold electron microscopy

Motile aerobic cultures of R. sphaeroides were fixed, embed-
ded in resin, sectioned and placed on nickel grids as
described previously (Harrison et al., 1999). An antibody that
had been raised against purified TlpC (Eurogentec) was
adsorbed with acetone powders prepared from JPA470 by
standard methods (Harlow and Lane, 1988). Antibody reac-
tions and electron microscopy were performed as described

previously (Harrison et al., 1999) using primary antibody
diluted 1:200 and secondary antibody (12 nm colloidal gold
particles conjugated to goat antibody to rabbit IgG; Jackson
Immunoresearch) diluted 1:40.

Particles were scored as being either cytoplasmic or mem-
brane associated. It was noted whether those particles that
were cytoplasmic were also associated with the EDR and
whether they clustered. A cluster was defined as three or
more gold particles each located no more than 20 nm from
its neighbour together with any outlying particles that were
no more than 40 nm from the core cluster.
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