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ABSTRACT

Present step and ramp edge models are inadequate for edges detected by multi-
resolution operators. Since isolated edges rarely occur in real scenes, we propose new
edge models based on the pulse and staircase functions. In these models we include the
effect of one edge on another neighboring edge which propagates through at higher
operator size. Depending on the mutual polarities of the steps in the staircase and pulse
functions, the edge points related to these discontinuities attréct or repel each other
when the operator size increases. When they attract each other at some scale they col-
lapse into one. In this paper, we demonstrate our models for the Laplacian of Gaussian

operator, however, our results are equally valid for other multi-resolution operators.

Index Terms: Edge models, multi-resolution operator, Scale-Space, Laplacian of Gaus-

sian operator.
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1. Introduction

Edge detection is the first stage in most Computer Vision systems. Past experience
with various edge operators has indicated that the problem of detecting edges in real
scenes is extremely difficult. In an image, changes of intensity take place at many spa-
tial scales depending on their physical origin. Therefore, the detection of all significant
edges present in a scene requires that an edge operator be applied at various resolutions
so that the discontinuities in intensities at all levels can be captured. An edge detection
scheme based on multiscale analysis performed with filters of different sizes was first
introduced by Rosenfeld and Thurston[RoT71]. Recently, Marr[Mar82] argued on these
same lines by proposing multiple sized Laplacian of Gaussian operators. In his
approach, the image is convolved with the Laplacian of Gaussian operator and the edge
points are detected by locating the zero-crossings in the convolved image. By convolv-
ing the image with the operators having different variance, the intensity changes are

separated at various scales.

Once the discontinuity points’ are obtained at various scales®, the next step is to
manage them efficiently in a representation which is better than the information
present at any one scale independently. This problem has been called a channel integra-
tion problem. A set of discontinuity points detected at one scale is called a channel, so
the idea is to combine all channels to come up with some representation which is better

than any single channel independently.

'We will use the terms discontinuity and edge points interchangeably.

>The use of the term "scale” has been confused in the literature. One interpretation of scale is the de-
gree of smoothing which essentially can be controlled by varying the variance of Gaussian. Scale has also
been related to the rate of intensity changes in the gray level images. Since both of these are closely related
in multi-resolution edge operators, we will use this term for both contexts without resolving the confusion.
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One point of view has been that at lower scale, many edge points are obtained
because some false edges are also detected. So an effort should be made to remove false
edge points. Eklund et al [EEN80] do exactly this. They apply a threshold to the mag-
nitude and the direction of edges to remove the false edge points. The removal of some
edge points in busy areas usually creates gaps in the edge contours which are otherwise
closed. They apply the good continuation measure to fill the gaps between any two end
points of a broken contour. The good continuation measure is the function of the dis-
tance between two end points and the angle between the line joining those two points.
The problem with this approach is that it uses the thrésholding explicitly. Moreover,
distinguishing between the false and the true edge points is not an easy task. Due to
the nature of the operator, some false edge points are detected at all scales and some of

the true edge points disappear at higher scale.

Witkin [Wit83] presented a Scale-Space Filtering approach to this problem. In his
approach, he convolves the signal with multiple-sized second derivative of Gaussian
filters and detects the zero-crossings in the output of the filters. Those zero-crossing
when plotted in (z,0) space form the contours. In order to simplify the representation,
he proposed a ternary tree of zero-crossings called an interval-tree. The interval- tree
transforms the zero-crossings contours into a data structure which can be easily han-
dled. By proposing the Scale-Space approach, Witkin not only reaffirmed the impor-
tance and complexity of this problem but also intrigued many researchers ( see [ZuH84],

[YuP83a), [YuP83b], [AsB84], [BWD83] etc ).

Witkin's elegant approach motivated us to consider this problem in more detail in
order to get a better understanding of Scale-Space in quantitative terms. In the long

term our aim is to characterize the scene by a set of primitives. We want to fit the
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primitives to the edge points in the scale-space of an image. We want to use a priori
knowledge about the behavior of the primitives in the scale-space in order to get a con-

sistent fit of primitives at all scales.

In this paper, we consider the known edge models and study their behavior in the
Scale-Space. We have found that modeling edges using step and ramp functions is
inadequate for the multi-resolution operators. It is noted that in real scenes isolated
step and ramp edges are rarely encountered. In the case of edges which are present
close to each other, at the bigger operator sizes, one edge affects a neighboring edge.
Therefore, in this case, the behavior of such edges at bigger operator size is not similar
to the behavior of an isolated edge. We will present new edge models based on the
pulse and staircase functions. The pulse and staircase functions have two discontinui-
ties close to each other. We find that depending on the mutual polarities of the steps
in those functions, the zero-crossings attract or repel each other as the operator size
increases. We will demonstrate our point of view by considering the second derivative
of Gaussian operator or the Laplacian of Gaussian in two dimensions only. However,

our results are equally valid for any other multi-resolution operator.

In the next section, we review the related work on edge operators. In section 3,
we define the second derivative of Gaussian operator in order to establish the notations.
In section 4.1, we consider the step and ramp edge models and analyze their behavior at
multiple scales. In section 4.2, we discuss the pulse and the staircase functions as can-
didates for edges which are detected at multiple scales. In section 5, we discuss the
zero-crossing contours related to the intensity functions considered in section 4. In sec-
tion 6, we study the effect of noise on our models. Finally, in section 7 we extend our

results for 2-dimensional images.
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2. Edge Operators:

Most of the previous operators e.g. Beaudet, Robert, Kirsh, Heuckel and Sobel
were differential in nature[BaB82, RoK82]. These operators essentially measure the
first derivative which gives a rate of change of intensity.values. The points where the
local maxima of the first derivative occur are declared as the edge points. These max-
ima are located by using thresholding. Marr and Hildreth[MaH76] proposed the Lapla-
cian of Gaussian operator. Under certain conditions the Laplacian approximates the
second derivative[Hil83]. Therefore, the locations of zeros in the Laplacian signify the
locations of extrema in the first derivative. The main motivation for this operator was
the biological vision systems, because the output of this operator resembles the response
of the center-surround cells found in biological visual systems. When Marr and Hildreth
used this operator at multiple resolutions in their work it was first time that large
mask sizes were used. In comparison to the previous commonly used 3 by 3 masks, the
smallest mask they used was 31 by 31. It was found that the larger operators were able
té suppress the noise to some extent. The next problem was to combine the output
obtained from variable sized operators. They suggested a criterion that the zero-
crossings that coincide over several scales are physically significant. This claim, how-

ever, was never justified.

In recent literature two more edge operators for detecting step discontinuities have
been proposed: Haralick’s zero-crossing operator([Har80], [Har81|, [Har82], [Har84]) and
Canny'’s edge detector[Can83]. Haralick fits a bi-cubic polynomial to the neighborhood
of a pixel. He computes the first and the second directional derivative in the direction
of the gradient of the intensity function in terms of coefficients of the polynomial. The

coefficients for a given pixel location are found by using a least square fit to the gray
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level neighborhood of the pixel. A given pixel is declared an edge point if (i)the first
derivative is above some threshold and (ii)the second derivative is equal to zero. There
are two main differences between Haralick's operator and the Laplacian of Gaussian
operator. Firstly Haralick's operator is directional while the Laplacian of Gaussian is
not. In 2-D images at the points where Laplacian does not approximate the second
derivative, Haralick's operator correctly detects the gray level changes in comparison to
the Laplacian of Gaussian operator. Secondly Haralick's operator needs an explicit
thresholding for the first derivative while the Laplacian of Gaussian operator does not

generally require thresholding.

Canny[Can83] proposed an edge operator for detecting step edges. The operator
has a shape similar to the first derivative of Gaussian. In order to detect edge points,
Canny finds out the extremas in the first derivative which are essentially zero crossings
in the second derivative. Canny has claimed that Haralick’s operator is equivalent to
his operator. He further proposed that the bi-cubic is the only polynomial which can
be used in Haralick's zero-crossing edge operator in order to get an optimum edge
operator for the step edges. If the degree of polynomial is changed, the operator would
not be optimum. His argument is based on the comparison between the graphs of the

first derivative of Gaussian and Haralick’s operator.

Canny'’s first derivative of Gaussian operator is designed for detecting the step
edges, but the methodology he has developed can be used to come up with an operator
to detect any other function e.g. ramp. He has also proposed that his operator should
be applied at various scales. When comparing Canny's operator with Haralick’s opera-
tor, one may raise many interesting questions : Do we need to apply Haralick’s operator

at multiple scales? If yes, what is the scale in the Facet model? Is it the degree of poly-
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nomial or the neighborhood size or both ?

Recently Torre and Poggio[ToP84)] proposed another edge operator which has the
shape similar to the first derivative of Gaussian. In their approach they use the fact
that the numerical differentiation of images is an ill posed problem. Therefore differen-
tiation needs to be regularized by a regularizing filtering operation before differentia-
tion. They show that the edge detection scheme consists of two steps: filtering step and

the differentiation step.

It is interesting to notice that these three edge detectors, proposed by Haralick,
Canny, and Torre and Poggio, have similar shapes, however, they were designed by

completely different approaches.

3. Laplacian of Gaussian Operator

In this section, we describe the Laplacian of Gaussian operator and introduce some
notations which will be used in this paper. For simplicity, we will consider only one
dimensional case here. For one dimension the Laplacian becomes the second derivative.
Our results, however, can easily be extended for two dimensional images. We denote
the zero mean Gaussian density function with variance ¢ by g?(z). Neglecting the

multiplicative constant, g°(z) is given as follows:

22

2° (1)

g%(z)=e

Let 72 represent the Laplacian (second derivative ) for two dimensions ( one dimen-

sion), and '¢’ represent the convolution operation.
The second derivative of Gaussian is given as follows:
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2 (2)

2
¢ =v%%z) =(1-5)e
(/4

The response of this operator for an input function f(x) can be computed by evaluating

the following convolution integral.

ho(z) = [ (z) * v?¢°(z) (3)

ho(z)= [ f(t -n) v¥g°n)d n

Using the linearity property of convolution, equation (3) can also be written as:

h(z,0)=v?|f(z) * ¢°(2)]

The convolution integral for discrete domain changes to summation as follows:
-1

of ] o=n .
B =="3% f(@). 4% -a)
m
a==(0
where m is the size of the image. Since @7 is circular symmetric, the above equation can
be written as:
-1

) =273 1 (a). #le) (4

am=0

According to the above equation, the response at a given pixel location is the

weighted sum of neighboring pixels.

The discontinuities in f(x) are related to the zero crossings in A(z ). The positive

terocrossing can be defined as follows:

if lim,_oh%(z +€) <O0and lim,_gh%(z —-¢) >0
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then z is zero-crossing of A“(z). Likewise the negative zerocrossing can be defined by

reversing inequalities in the above expressions.

The size of the neighborhood of a pixel used by the operator® is called the mask
size. In Eq.(4), we are performing convolution; therefore, the mask size should be the
same as the image size. The Laplacian of Gaussian operator can be defined without
referring to its mask size. In an implementation of the operator, however, we always
have a finite number of bits. Therefore the effective value of g7 becomes zero for
bigger neighborhood. Due to this fact it is not necessary to include the elements for
which g7 is zero. The rate of decay of Gaussian depends on ¢. By knowing the word
length used in an implementation, we can come up with an upper bound for a signifi-
cant neighborhood size for a given o value. This way an approximate relationship
between mask size and variance can be derived. Hildreth[Hil83] suggests two criterion
to select the relationship between mask size and 0. Firstly the positive area w of the
operator must satisfy: w = V20, which is motivated neurophysiologically. Secondly,
the mask size should be such that the response of the operator for a uniform intensity
must be zero. This last condition is a check for a numerical error. The idea is to con-
sider a neighborhood size such that the values of the operator sum to zero. The Lapla-
cian of Gaussian has positive values in the center surrounded by negative values.
Truncating the operator by a smaller mask size would result in the loss of the negative
surround. Thus, the overall sum would be positive instead of being zero( see [GrH85]

and [Har85] ).

In Figure 1 we show the operator having three different values of o.

3From now onwards we will use the term 'operator’ for the Laplacian of Gaussian operator.
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Figure 1. Laplacian of Gaussian operator having a.0c =3,b. 0 =5,c.0 = 17.

4. Edge Models
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In this section, first we consider step and ramp edge models. Since the gray level
function changes significantly at the edges of objects , the ideal edge can be modeled by
a step function. In real images, however, the gray level change at the edges of object is
not abrupt but, instead, changes gradually. Those edges can be modeled by the ramp
function. Our aim here is to study the behavior of these simple edges as the function

of 0.

In the next subsection, we will consider the pulse and staircase models for inten-
sity functions. These functions contain two discontinuities which are a distance apart.

We will then analyze the effects of o for these models.

4.1. Step Edge

An ideal edge can be modeled by the step function. Step function, U(z), is

defined as:

{ 0if z<0
Ulz)= ¢y if >0

If we convolve the step function with ¢%(z ) we get the following:

ho(z) = ¢, U(z) * ¢°(z)

ho(z)= [ e, U(z-n) g°(m) dn= [¢,9%n) dy

-00 -00
Now taking the second derivative, we get:

Ef(z)=v?h(z)=—c, (;’;) 9°(z) (6)

In Figure 2.b-d we plot E' for various values of g. The function E 7 crosses zero at

11 Pulse and Staircase Models
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z = 0 for all values of 0. The location of the zero-crossing corresponds to the loca-
tion of the discontinuity in the step function. The amplitude ¢ of the step function
appears as a multiplicative constant in Eq.(8). Thus this term essentially controls the
amplitude but not the shape of the graphs shown in Figures 2.b-d. A zero-crossing is
obtained at the corresponding location of a discontinuity regardless of the amplitude
of the step function. Moreover, the location of zero-crossing does not change when o

is changed in Eq.(8).

4.2. Ramp Edge

Let us consider a ramp edge of width w and find out the response of the operator.

The ramp function is defined as follows:

0if 2<0
R(z)= ez if 0<z<w (7)
cow f z>w
Let R’ and R’ denote the first and second derivative of the ramp function. Then

from Eq.(7) we get:

R'(z)= ¢ [U(z)- Uz - w)] (8)

R (z)=cow [§z)- &z - w)] (9)

The ramp function is shown in Figure 3 with its second derivative. Convolution of
R' and R’ with g°(z) yields the following.

z -9
!

R *g%z)=cow[[es9%n)dn+ [ cyg°n)dn)

-00 ~00

And

Pulse and Staircase Models 12
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Figure 2. The effect of 0 on the ideal step edge. In (a) we show

the step function, while in (b) to (d) we show the output obtained by
convolving the step function with the second derivative of Gaussian

having 0 = 3,7,11
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Ef(z)=R +g%z)

Ef(z)=cqw [§z)-Kz - w)] * ¢°(z)

which gives

Ef(z)=cqw [9°%(z) - 9z - w)] (10)

Figure 4 shows the graphs of E'y for various values of 0. The function £y has
a zero-crossing at z = -121, , which corresponds to the middle point of the ramp func-

tion. In this case the slope ¢, of the ramp also appears as a multiplicative constant in
Eq.(10). This implies the operator is not able to distinguish between two intensity
changes which occur at a different rate. A zero-crossing is obtained in the second
derivative corresponding to a discontinuity in step and ramp regardless of the rate of

intensity changes.

The actual value of an extrema of first derivative, not the position, carries the
information about the rate intensity changes. Consider the example of ramp function
R (z) defined in Eq.(7). The first derivative of this function is given in Eq.(8). An
extrema of R’ #g%(z) is ¢ ow, which depends on the value of slope ¢ 4. The slope ¢,

of ramp essentially tells the rate of intensity changes.

Information about the rate of intensity changes is more important for operators
which have a fixed mask size. Due to this fact, Haralick’s operator and other fixed
sized operators need some kind of thresholding for the first derivative of intensity
function. However, when the discontinuities are detected at multiple scales this infor-

mation is indirectly captured in the scale space of the image.

Pulse and Staircase Models 14
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(a)

o) T

Figure 3. (a) ramp function (b) First derivative of ramp (c) second
derivative of ramp.
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Figure 4. The effect of 0 on the ideal ramp edge. In (a) we show

the ideal ramp edge, while in (b) to (d) we show the output obtained by
convolving the ramp function with the second derivative of Gaussian having

oc=3711

Two remarks can be made concerning the ramp discontinuity. Firstly the zero

Pulse and Staircase Models 16
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crossing in £y corresponding to the ramp discontinuity is solely due to the sym-
metric nature of the operator. Any other operator which is not symmetric will not be
able to detect this discontinuity. Furthermore, in order to detect the discontinuity due
to the ramp, the operator size should always be greater than the ramp width ; other-
wise the discontinuity will not be detected. In order to detect the discontinuities

related to ramps of various widths we have to apply a variable sized operator.

4.3. Pulse Function

Consider a function which is a pulse of width w as shown in the Figure 5.3 . A

pulse can be represented by the summation of two step functions s.e.

fi(z)=Ulz) - cU(z-w)

where ¢ is the ratio of the magnitudes of two steps.

If we apply the operator to this function we get the following :

Ef(z)=v*h{(z)=-(

There are two discontinuities in the pulse function: one atz =0 and the other at
z=w as shown in Figure 5.a. We want the operator to respond at both of the
discontinuity points, but the above equation clearly indicates that the locations of
discontinuities are not necessarily at =0 and w. For a fixed value of w, the pulse
width , locations of discontinuity points depend upon the value of . In Figures 5.b-d,

we plot E'7 for three different values of 0. It is easy to notice that the location of
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zero-crossings,

corresponding to the discontinuities, shift as o increases.

4.4. Staircase Function

The staircase function can be represented as the summation of two steps as fol-

lows.
fdz)="U(z)+ ¢ U(z-w)

where ¢ 5 is the ratio of magnitudes of two steps.

If we apply the operator to this function, we get the following :

he(z)=f{z) * ¢%z)

)9"(3)—62-(%) 9°(z-w)  (19)

The staircase function has two discontinuities atz =0 and z =w, as shown in
Figure 6.a. In principle we should get zero-crossings at these locations in function F,.

We plot EJ for three different values of o in Figure 6.b-d. In (b) EJ crosses zero

. w .
approximately at z = 0,w and also crosses zero at z = 3 a false zero-crossing.

While in (d) the function E'J crosses zero only once.

5. Zero-crossing Contours

The locations of zero-crossings in the function convolved with the second deriva-
tive of Gaussian can be plotted in the (z,0) space. These zero-crossings form the con-

tours in the (z,0) space. In Figures 7-9 we show the zero-crossing contours for the

Pulse and Staircase Models 18



RSD-TR-7-85

20 0

20 0

] | |

)  x-axis (x109) c-2x13 (X109

20 0 800'!
2007 \ /|

l
mi— T ew ||
BT |
| YR/
! : j -20 0 ‘
= 0550 L 99 "rs | o9
(<) x—3x15 (410 (d) c-ax1s (X102

Figure 5. The effect of o on the ideal pulse edge. In (a) we show the
pulse function, while in (b) to (d) we show the output obtained by convolvi
the pulse function with the second derivative of Gaussian having
o = 3,7,13. The sero-crossings repel each other as o
changes.
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Figure 8. The effect of o on the ideal staircase edge. In (a) we show the

pulse function, while in (b) to (d) we show the output obtained by convolving
the staircase function with the second derivative of

Gaussian having 0 = 3,7,11. The sero-crossings attract each other as o
is changed.

Pulse and Staircase Models 20



RSD-TR-7-85

functions considered in the last section.

The zero-crossing contours of the step and ramp functions are the straight lines as
shown in Figure 7.a and 7.b respectively. The straight line in the (z,0) plane shows
that the locations of zero-crossings due to the ramp and step do not change when o

increases.

In Figure 8 we show the zero-crossing contours of the staircase function. In these
contours there is a straight line and a circular arc. The zero-crossings which constitute
the straight line, in this case, are the false zero-crossings since they do not correspond

to any actual discontinuities in the staircase function. They occur at this location due

. w . .
to the symmetric nature of the operator because for z = 3 the expression for £, in

equation (12) becomes zero regardless of the value of 0. Note that the symmetry of
the operator worked to our advantage in the case of ramp. The remaining two zero-
crossings which correspond to the actual discontinuities in the staircase function make
a circular arc. Since these zero-crossings shift towards each other as & is increased, at
some value of o they collapse into one point which corresponds to the peak of the con-

tour.

In Figure 9 we show the zero-crossing contours for the pulse function. The zero-
crossings related to the discontinuities in the pulse function make two diverging lines.
Since the rzero-crossings shift away from each other when o is increased, the two zero-

crossings related to the pulse function never collapse into one.

We can classify the zero-crossings in two categories. The first kind of zeros are not
effected when the o is increased. The zeros related to isolated step or ramp fall in this

class. At all scales the locations of those zeros are the same. Therefore we call these

21 Pulse and Staircase Models
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(a) (b )

Figure 7. The sero-crossing contours of the step (a) and the ramp(b)
functions. The location of sero-crossing does not change as
o is increased. Therefore, the sero-crossing contours for the
ramp and the step functions are the straight lines. These Figures

demonstrate that for ideal step and ramp we do not need
multi-resolution operators.
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Figure 8. The sero-crossing contours of the staircase function.

The sero-crossings which make a straight line passing through
the middle of the above contour are the false sero-crossings. Due
to the propagation effect the true sero-crossings move towards
each other when o increases. At some o these

sero-crossings collapse into one.

23
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zero-crossings Stationary Zero-crossings. The second class contains the zeros of pulse
and staircase functions. These zeros are Free Zero-crossings and, by increasing o,
they can be displaced. In the case of pulse, the zero-crossings move away from each
other, while in the case of the staircase they move towards each other. When the
zero-crossings move towards each other, they collapse into one. The direction of dis-
placement of free zeros depends on the mutual polarities of the two step functions: if
both steps have same polarities, then the zero-crossings shift towards each other; if

they have opposite polarities, then they shift away from each other.

The zero-crossings shift at higher operator size because one edge affects neighbor-
ing edges. There are two step edges in the pulse and the staircase functions separated
by a distance. Thus, at higher operator size the two steps affect each other and the
zero-crossings get displaced. In the case of the ramp and step functions there is only
one isolated edge, so the zero-crossings related to both of them do not move when o

varies. We call this affect the Propagation Effect and define it as follows.

Propagation Effect: The discontinuitics within the field of an operator influence cach
other. Due to this the zero-crossings attract or repel each other depending on the mutual

polaritics of steps.

The value of o -at which two zero-crossings collapse into one is important. This
corresponds to the peak of the zero-crossing contour. The location of the peak of curve
0(z) can easily be found out from its maxima. Differentiating equation (12) with

respect to dummy variable 7 along a contour in (z,0) space we get:

dE_BEdz+3E do
dn ~ Odzdn 090 dn

. . d E .. .
Since £ =0 on the zero-crossings contour, so, —— = Implicit Function

d
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(b)

N/
N7
-

()

Figure 9. The sero-crossing contours of the pulse function.
The ratio of the magnitudes of two steps is 1,2 and 8 in a., b.
and c. respectively. Due to the propagation effect the true

sero-crossings move away from each other when o
increases.
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)

Figure 10. Propagation Effect. (a) at smaller operator sise an edge
is not affected by the neighboring edge. (b). due to bigger operator
size the effect of the neighboring edge propagates.

Theorem[VoG81], we get:
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4E
dz _do
iE " d:
do

The right side of the above equation vanishes when:

d E '
e (13)

Therefore the value of z where the above equation is satisfied is the peak of the curve

o(z ). Now differentiating Eq.(12) with respect to z, we get:

(-2 )97 (z)+ < (1-ﬁj—,;ﬂf) 0 (z-w)  (4)

The location of the peak of the contour can be computed by equating the right hand

side of the above equation to zero.

1 z? o - w)? 0
= -5 (z)+;‘2(1-‘—‘—02—l)g (z-w)=0  (15)

If w is known this equation can be sclved numerically to get the pair (z,0) for the
location of the peak of the contour. The value of 0 where the peak occurs sets an upper
bound above which the discontinuities related to the staircase function of a given width
can not be detected. On the other hand if the location of the peak in (z,0) space is

known then the width w of the staircase can be computed from the above equation.

The idea of the shifting of edge points is not new. It has been known qualitatively
that the bigger operators dislocate the edge points and the smaller operators detect too
many edge points. In fact, Canny found an uncertainity principle between the localiza-
tion and detection. Which states that for a given signal to noise ratio an arbitrarily
good localization or detection can be obtained by scaling but not both simultaneously.

What is new is the Propagation Effect. This effect not only explains the localization
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quantitatively but it also describes the direction in which the zero-crossings shift. It has
been proposed in the literature that the bigger operator can be used for good detection
and the smaller operator for good localization. As it is clear from the Propagation
Effect that this simple criterion will not work for the multi-resolution operators. For
the zero-crossings which collapse into one at a particular scale, one always has to
resolve the ambiguity of relating the one zero-crossing at higher scale to omne of two

zero-crossings present at the lower scale.

An interesting observation which can be made from the above discussion is the
following. It is known that the zero-crossing operator always favors closed contours.
Isolated edge points are seldom obtained by this operator, but this was never explained
before. The propagation effect explains the formation of the closed contours because
the gray level functions corresponding to all the objects are the pulse or staircase func-

tions.

6. Noise Analysis

In the previous section, we considered the zero-crossings contours related to our
edge models in the ideal situation. In this section, we study the effect of noise on these
models. We introduce additive uniform noise with signal to noise ratio (SNR) of 1.5
and 6.25. We define SNR as follows:

C ..
SNR = (—— )?
0’!
where C_; is the contrast of the smaller one of two steps present in the pulse and
staircase functions, and o, is the standard deviation of the noise. This definition is

close to one used by Abdou and Pratt[AbP79], except that we use the contrast of
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smaller step since we have two steps in our models.

In Figures 11-12 we show the results for the pulse and staircase functions with
added noise. In Figure 11.a the signal with the added noise is plotted while in 11.b we
show the contour obtained by applying the operator to the noisy signal. In 11.c we
apply a threshold to the magnitudes of the slope of zero-crossings in order to remove

some of the noisy zero-crossings.

In this analysis we are interested in two issues. Firstly we want to study the
extent to which the actual shape of the contours are distorted due to noise. Secondly
we want to know whether any false contour is formed due to the presence of noise

whose shape is similar to the contours of the pulse or staircase functions.

It is easy to notice that in the case of pulse function the actual shape of zero-
crossing contour is well maintained even in the presence of noise. Very few of the noisy
zero-crossings survive after the thresholding step. In the case of staircase the shape of
contour remains the same in the presence of noise except straight line which passes
through the center of the circular arc is distorted. As we mentioned before the reason
for getting the zero-crossings which constitute the straight line is due to symmetry of
the operator. In the presence of the noise the two terms in the Eq.(12) are not equal
hence they do not cancel each other. Therefore, in some cases the zero-crossing in the

center does not appear.

7. Two Dimension Case:

In this section we apply results established for one dimension in the previous sec-
tion to synthetic images. Our aim is to verify the Propagation Effect in the synthetic

images and get an insight of behavior of zero-crossings at multiple scales. So that the
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Figure 11. Effect of Noise. a.Pulse function with SNR = 1.5
b. Zero-crossing contours without thresholding c.Contours obtained by
applying threshold of 10 to the slope of sero-crossings.
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Figure 12. Effect of Noise. a.Staircase function with SNR = 8.25
b. Zero-crossing contours without thresholding ¢. Contours with
threshold of 10

theory developed in this paper can be extended to solve the channel integration prob-
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lem for the real scenes.

In Figure 13.a we show a synthetic picture which has an infinite step edge. The
gray levels related to the background and the object are 100 and 170 respectively. In b
to d we show the results obtained by applying the operator having o equal to 3,5 and
7. For each operator size the step edge is detected at the actual location in the syn-
thetic image. In the ramp in this case is 16 pixels. Each row in the synthetic image
simulates the ramp function in one dimension. Therefore the overall image becomes
some distorted form of the ideal step edge. In fact due to camera noise, quantization
and lighting conditions in real scenes the step edges become ramp edges. As shown in
Figure 14 the discontinuity related to ramp edge is detected by the operator at all

operator size. The location of zero-crossing does not change when o varies.

In Figure 16 we show a synthetic image with two infinite step edges separated by
a distance. This image simuiates a two dimensional staircase edge. The gray levels in
each row of the image vary like one dimensional staircase function. In the part b and ¢
of the Figure two edges besides the center edge are detected while in d only one edge is

detected. This verifies the Propagation Effect.

Finally in Figure 15 similar results are repeated for the pulse edge. Here the locali-

zation of edges due to Propagation Effect is obvious.

In Figure 17 we show the image of a square object and the edges detected for 0 =
1,3,5,7. The behavior of edge points in the scale-space of this image is bit complex. In
this example the Propagation Effect is present in all the the directions within a circular
neighborhood of the operator. Therefore, the edge points close to the cormers of the
square are displaced farther than the points far from the corners. There is another rea-

son for the large displacement of corner points besides the Propagation Effect. At
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Figure 13. a. Image of step edge. edges detected at b, 0==3,
c. o ==5 and d. 0 == 7, The location of the edge does not
change when ¢ increases,
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Figure 15. a. Image of pulse edge. edges detected at b. o N o
=23, ¢.0 == 5 and d, ¢ == 7, The location
of edges change by one pixel in ¢. and by three pixels in d.
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igure 18. a. Image of staircase edge. edges detected at b.
0 ==3,c.0==8 and d. 0 == 7, Two edges
collapse into one in d.

corner points the Laplacian does not approximate the second directional derivative
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taken in the direction of gradient[Ber84).

In Figure 17.c a few points close to corners are displaced while in Figure 17.d most
of the edge points are shifted except the central points. Due to this it appears that
there are some kind of dents in the square. These dents disappear in Figure 17.d

where the édge points in the middle are also displaced.

Our aim, in this example, is not only to detect the edges of the square object. Any
5 by 5 operator will give reasonable results in this case. Motivation for this analysis is
to gain knowledge about the behavior of the simple models in the scale space. The
study about the models when integrated will ultimately lead us to detect the edges in a

very complex real scene.

8. Summary and Conclusion

In this paper we considered the problem of detecting gray level discontinuities at
multiple scales. \We found that the current edge models are inadequate for edges
detected by the multi-resolution operators. Since isolated step or ramp edges rarely
occur in natural scenes, we proposed pulse and staircase models. In these models we
include the effect of an edge on the neighboring edge which propagates through when
the operator size increases. While analyzing the behavior of the pulse and the staircase
models in the scale-space, we found that the zero-crossings attract or repel each other.
When they attract each other at some value of o they collapse into one. In principle the
Propagation Effect can be modeled such that one edge is affected by more than one
neighboring edges. But for simplicity in this paper we considered only the effect of one
neighboring edge.

In our future work we want to fit the primitives to the discrete zero-crossings in

the scale-space of the image. Using proposed models we expect to recover rich and
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us to detect the edges in a very complex real scene.
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Figure 17. a. Image of square object. edges detected at b.
o==1,c.0==3,d.0=25and e. o == 7.

robust information about the intensity function. In particular we are interested to
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extract information about the the contrast, slope and orientation of edges.
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